JP2012179628A - Hollow granular mold flux for continuously casting steel - Google Patents

Hollow granular mold flux for continuously casting steel Download PDF

Info

Publication number
JP2012179628A
JP2012179628A JP2011043852A JP2011043852A JP2012179628A JP 2012179628 A JP2012179628 A JP 2012179628A JP 2011043852 A JP2011043852 A JP 2011043852A JP 2011043852 A JP2011043852 A JP 2011043852A JP 2012179628 A JP2012179628 A JP 2012179628A
Authority
JP
Japan
Prior art keywords
flux
mold flux
gas
hollow granular
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011043852A
Other languages
Japanese (ja)
Other versions
JP5727263B2 (en
Inventor
Nobutaka Nakagawa
信貴 中川
Taichi Wada
太一 和田
Koji Harada
浩次 原田
Akira Matsuo
晶 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel and Sumikin Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47011316&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012179628(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp, Nippon Steel and Sumikin Metal Products Co Ltd filed Critical Nippon Steel Corp
Priority to JP2011043852A priority Critical patent/JP5727263B2/en
Publication of JP2012179628A publication Critical patent/JP2012179628A/en
Application granted granted Critical
Publication of JP5727263B2 publication Critical patent/JP5727263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent alteration of melting characteristics of hollow granular mold flux caused by pulverization of the flux and scattering of powder dust while in use, by mitigating the pulverization even if the flux is conveyed by gas at high speed over a long distance.SOLUTION: The hollow granular mold flux includes 2.0-10.0 mass% organic binder made of one or more kinds among polysaccharides, a cellulose-based semisynthetic polymer, sodium alginate, a lignin compound, vinylic polymer compounds, polyethylene glycols, etc., and 1.0-10.0 mass% inorganic binder made of one or more kinds among sodium oxo acid salts, potassium oxo acid salts, etc., with respect to the entire amount.

Description

本発明は鋼の連続鋳造において鋳型内に添加して使用する連続鋳造用モールドフラックスに関し、フラックス貯留ホッパーから連続鋳造装置などへフラックスを搬送するのに、長距離の気体搬送を適用した場合にフラックス粒子が粉化し難いものを提供することを目的とする。   The present invention relates to a mold flux for continuous casting that is used by being added to a mold in continuous casting of steel, and the flux is used when a long-distance gas conveyance is applied to convey the flux from a flux storage hopper to a continuous casting apparatus or the like. An object is to provide a material in which particles are difficult to powder.

溶鋼の連続鋳造においてはモールドフラックスが鋳型内の湯面に散布される。このフラックスは溶鋼表面で溶解してスラグの溶融層を形成し、溶鋼の保温、酸化防止および非金属介在物の吸収を行なうとともに、鋼の凝固シェルと鋳型との間に流れ込んで潤滑作用を行なう。   In continuous casting of molten steel, mold flux is sprayed on the molten metal surface in the mold. This flux melts on the surface of the molten steel to form a molten layer of slag, which keeps the molten steel warm, prevents oxidation and absorbs nonmetallic inclusions, and flows between the solidified shell of steel and the mold for lubrication. .

フラックスは粉末であると飛散し易く作業環境の悪化を招くおそれがあるので、粒径が1mm以下の顆粒状のものが使用されることが多い。顆粒状にするには粘土状にした素材を押出しする方法などもあるが、フラックス成分のスラリーを作り、熱風乾燥塔内で噴霧して乾燥する方法がある。この方法においては水分の急激な蒸発によりほぼ球状の中空な顆粒を製造することが可能である。   Since the flux is likely to be scattered when it is a powder, the work environment may be deteriorated, so that a granular material having a particle size of 1 mm or less is often used. There is a method of extruding a clay-like material to form a granule, but there is a method of making a slurry of a flux component and spraying and drying it in a hot air drying tower. In this method, it is possible to produce almost spherical hollow granules by rapid evaporation of moisture.

このようなモールドフラックスは連続鋳造に使用するさい、例えば特開平11−239855号公報(特許文献1)に示されているような投入装置で自動的に鋳型内に供給される。この投入装置においては、フラックス貯蔵タンクからフラックス投入シュートの個所までフラックスを移送するのにチューブ状のフレキシブルスクリューコンベアが使用され、貯蔵タンクと投入シュート間の相対位置の変化に対処している。   When such mold flux is used for continuous casting, for example, it is automatically supplied into the mold by a charging device as shown in Japanese Patent Application Laid-Open No. 11-239855 (Patent Document 1). In this charging device, a tube-shaped flexible screw conveyor is used to transfer the flux from the flux storage tank to the location of the flux charging chute to cope with changes in the relative position between the storage tank and the charging chute.

ところがこのような投入装置で顆粒のフラックスを供給すると顆粒が壊れて粉塵が発生することがある。そこで特開平10−156492号公報(特許文献2)にはこれの対策を講じた顆粒状のモールドフラックスの製造方法が示されている。それによると基材原料、SiO原料、溶融調整剤および溶融速度調整剤などを原料として、押出造粒、撹拌造粒、転動造粒、流動造粒、スプレー造粒などの任意の方法で顆粒状に造粒したのち、乾燥状態においてシリコーンオイル、流動パラフィン、エチレングリコールなどの少なくともいずれかを添加して均一に混合するというものである。これによりスクリューコンベアや投入装置とのフラックスの摩擦力が顕著に緩和されて顆粒が破壊されにくくなり、粉化が著しく改善されるとしている。 However, when the flux of granules is supplied by such a charging device, the granules may break and dust may be generated. Japanese Patent Application Laid-Open No. 10-156492 (Patent Document 2) discloses a method for producing a granular mold flux in which such measures are taken. According to that, using raw materials such as base material, SiO 2 raw material, melting regulator and melting rate regulator as raw materials, any method such as extrusion granulation, stirring granulation, rolling granulation, fluidized granulation, spray granulation, etc. After granulating into granules, at least one of silicone oil, liquid paraffin, ethylene glycol and the like is added and mixed uniformly in a dry state. As a result, the frictional force of the flux with the screw conveyor and the charging device is remarkably relaxed, making it difficult for the granules to be broken, and the powdering is remarkably improved.

一方、チューブを通じてフラックスを搬送する手段として空気を使用するものも採用されている。気体による搬送は距離が増えても設備費用がさほど増大しないことから特に長距離の搬送に適しており、数十mから100m程度に至る例もある。しかしながら気体搬送は距離が長いこともあってフラックス粒子と配管との摩擦や、粒子同士の衝突や摩擦が大きくなり、粉化の程度が著しくなることが知られている。   On the other hand, what uses air is also employ | adopted as a means to convey a flux through a tube. Since transportation by gas does not increase the equipment cost so much even if the distance increases, it is particularly suitable for long distance transportation, and there are examples ranging from several tens of meters to about 100 m. However, it is known that the gas conveyance has a long distance, and friction between the flux particles and the pipe, collision between particles and friction increase, and the degree of pulverization becomes remarkable.

本発明の出願人は以前からフラックスの気体搬送における顆粒の粉化を問題にしており、粉化に対する抵抗力を評価する方法を考え出して特開2001−83071号公報(特許文献3)に示した。これによると粉化の程度は気送距離が長くなるほど、また気体流量が大であるほど大きくなるという知見を得ている。そして配管の長さと気体流量との積が1m・m/minを超えると粉化が著しくなるとしている。しかし特許文献3においてはフラックスの粉化傾向の評価方法に止まり、粉化が少ないフラックスの製造方法に関しては特段の説明はない。 The applicant of the present invention has long been concerned with granulation of granules in gas transport of flux, and has devised a method for evaluating resistance to powdering and disclosed in Japanese Patent Laid-Open No. 2001-83071 (Patent Document 3). . According to this, it has been found that the degree of pulverization increases as the air transportation distance increases and the gas flow rate increases. When the product of the pipe length and the gas flow rate exceeds 1 m · m 3 / min, pulverization becomes significant. However, in Patent Document 3, there is only a method for evaluating the pulverization tendency of the flux, and there is no particular explanation regarding the method for producing the flux with less pulverization.

特開平11−239855号公報JP-A-11-239855 特開平10―156492号公報JP-A-10-156492 特開2001−83071号公報JP 2001-83071 A

前記のように引用文献3ではフラックスの気体搬送における顆粒の粉化を問題にしているものの、これに対する対応策については示されておらず、また粉化が少ないフラックスを製造する方法に関してはその後にも文献が無いのが現状である。また引用文献2のシリコーンオイルなどの潤滑材の混合により顆粒の粉化を防止する方法は、特にスクリューコンベアなどにおけるフラックスの摩擦力の緩和を図ったものであり、フラックスの気体搬送における顆粒の粉化に対して大きな効果は期待できない。そこで本発明はフラックスの気体搬送においても顆粒の粉化が低減された連続鋳造用モールドフラックスを提供することを課題とする。   As described above, although cited document 3 has a problem of granulating powder in the gas conveyance of the flux, no countermeasure is provided for this, and a method for producing a flux with less powdering is described later. However, there is no literature. The method of preventing granulation of granules by mixing a lubricant such as silicone oil in Cited Reference 2 is intended to alleviate the frictional force of the flux especially in screw conveyors, etc. We cannot expect a big effect on the conversion. Then, this invention makes it a subject to provide the mold flux for continuous casting by which the powdering of the granule was reduced also in the gas conveyance of flux.

本発明は前記課題を解決するものであって、鋼の連続鋳造用の中空顆粒状モールドフラックスにおいて、モールドフラックス全量に対して、有機バインダーを2.0〜10.0質量%、無機バインダーを1.0〜10.0質量%含有することを特徴とする鋼の連続鋳造用の中空顆粒状モールドフラックスである。ここにおいて、有機バインダーが、多糖類、セルロース系の半合成高分子、アルギン酸ナトリウム、リグニン化合物、ビニル系高分子化合物、ポリエチレングリコールの1種以上であり、無機バインダーが、ナトリウムオキソ酸塩、カリウムオキソ酸塩のうちの1種以上であることも特徴とする。   This invention solves the said subject, Comprising: In the hollow granular mold flux for continuous casting of steel, 2.0-10.0 mass% of organic binders, and inorganic binder 1 are 1 with respect to mold flux whole quantity. It is a hollow granular mold flux for continuous casting of steel, characterized by containing 0.0 to 10.0% by mass. Here, the organic binder is at least one of polysaccharides, cellulose-based semi-synthetic polymers, sodium alginate, lignin compounds, vinyl-based polymer compounds, and polyethylene glycol, and the inorganic binder is sodium oxoacid salt, potassium oxo It is also characterized by being one or more of acid salts.

また本発明の鋼の連続鋳造用の中空顆粒状モールドフラックスは、モールドフラックスの供給に際して、フラックスを気体中で浮遊状態にした状態で送る気体搬送をするためのものであることも特徴とする。このとき、気体搬送における搬送距離と、気体の流量との積が10m・m/min以上であることも特徴とする。また、気体搬送における搬送距離と気体の流量との積が10m・m/minのとき、粒子径が150μm未満の粒子のフラックス全量に対する割合の増加量が20質量%以下であることを特徴とする。 The hollow granular mold flux for continuous casting of steel of the present invention is also characterized in that it is for carrying a gas that is sent in a state where the flux is floated in a gas when the mold flux is supplied. At this time, the product of the conveyance distance in gas conveyance and the flow rate of gas is also characterized by being 10 m · m 3 / min or more. In addition, when the product of the transport distance and the gas flow rate in the gas transport is 10 m · m 3 / min, the increase in the ratio of the particle diameter with respect to the total flux of particles less than 150 μm is 20% by mass or less. To do.

本発明の鋼の連続鋳造用の中空顆粒状モールドフラックスは、有機バインダーおよび無機バインダーをそれぞれ適量含有することにより顆粒の強度が大きくなり、長距離を高速で気体搬送しても粉化が少ない。したがってフラックスの粉化によるフラックスの溶融特性の変質に起因するスラグベアなどの欠陥発生を防止することができる。またさらに使用時の粉塵の飛散を防止することにより作業環境の悪化を防止できる。   The hollow granular mold flux for continuous casting of steel according to the present invention contains a proper amount of an organic binder and an inorganic binder, so that the strength of the granules increases, and even when gas is conveyed at high speed over long distances, there is little powdering. Therefore, it is possible to prevent the occurrence of defects such as slag bears due to alteration of the melting characteristics of the flux due to powdering of the flux. Further, the working environment can be prevented from deteriorating by preventing dust from being scattered during use.

有機バインダーの量と、フラックスの粉化量および嵩比重との関係を示すグラフである。It is a graph which shows the relationship between the quantity of an organic binder, the powdered quantity of a flux, and bulk specific gravity. 無機バインダーの量と、フラックスの粉化量および嵩比重との関係を示すグラフである。It is a graph which shows the relationship between the quantity of an inorganic binder, the powdered quantity of a flux, and bulk specific gravity.

本発明が対象とする鋼の連続鋳造用の中空顆粒状モールドフラックスは、製造方法としては原料粉末を水に懸濁させてスラリー状にしたものを、熱風乾燥塔内で噴霧して乾燥する方法が行われる。水に懸濁させるべき原料粉末としては例えば合成珪酸カルシウム、ウォラストナイト(珪灰石)、ポルトランドセメント、石灰石、珪藻土などであり、これらを目標とするCaO/SiO比になるように混合する。またさらに蛍石、Na化合物などの溶融温度や溶融粘度の調整剤や、溶融速度を調整するための炭素粉末も必要に応じて添加される。これらの原料はそれぞれの粉末を混合したものを使用しても、炭素粉末以外の一部または全部を溶融して粉砕したプリメルト原料としても良い。 The hollow granular mold flux for continuous casting of steel targeted by the present invention is a method for producing a slurry by suspending raw material powder in water and spraying it in a hot air drying tower. Is done. Examples of the raw material powder to be suspended in water include synthetic calcium silicate, wollastonite, portland cement, limestone, diatomaceous earth, and the like, and these are mixed so as to have a target CaO / SiO 2 ratio. Further, a melting temperature and melt viscosity adjusting agent such as fluorite and Na compound, and carbon powder for adjusting the melting rate are added as necessary. These raw materials may be a mixture of the respective powders, or may be a premelt raw material obtained by melting and pulverizing a part or the whole other than the carbon powder.

本発明においてはフラックスの成分範囲について特に限定するものではないが、上記のような原料を混合した結果、分析値としては例えば、SiO:20〜45質量%(以下、%という)、CaO:25〜45%、Al:1〜15%、NaO:0.5〜20%、F:0.5〜20%、C:0.5〜10%といった成分となる。 Although not particularly limited for the components range of the flux in the present invention, as a result of mixing the raw materials as described above, as an analytical value, for example, SiO 2: 20 to 45 mass% (hereinafter,% as), CaO: 25~45%, Al 2 O 3: 1~15%, Na 2 O: 0.5~20%, F: 0.5~20%, C: a 0.5% to 10%, such as components.

ここで本発明においては、原料粉末を懸濁させた液中に有機バインダーおよび無機バインダーを添加する。有機バインダーとしては水溶性の高分子化合物が使用され、乾燥すると固化して接着力を生ずるものである。これにより原料粉末の粒子同士が強固に固着されて顆粒の強度が大きくなる。有機バインダーの原料となる水溶性の高分子化合物としては天然高分子、半合成高分子、合成高分子に類別できる。   Here, in the present invention, an organic binder and an inorganic binder are added to the liquid in which the raw material powder is suspended. As the organic binder, a water-soluble polymer compound is used, which solidifies upon drying to produce an adhesive force. Thereby, the particles of the raw material powder are firmly fixed to increase the strength of the granule. Water-soluble polymer compounds used as raw materials for organic binders can be classified into natural polymers, semi-synthetic polymers, and synthetic polymers.

天然高分子としてはほとんどが多糖類に属し、澱粉、デキストリン、グアーガム、キサンタンガム、アラビアゴム、カラギーナン、ペクチンなどが該当する。また半合成高分子としては、メチルセルロース、カルボキシメチルセルロース、エチルセルロース、ヒドロキシエチルセルロースなどのセルロース系のものの他に、アルギン酸ナトリウムやパルプ廃液を処理して得られるリグニンスルホン酸カルシウムなどのリグニン化合物がある。また合成高分子としては、ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドンなどのビニル系高分子化合物やポリエチレングリコールなどが使用できる。有機バインダーはこれらの1種でも2種以上を混合して使用してもよい。   Natural polymers mostly belong to polysaccharides and include starch, dextrin, guar gum, xanthan gum, gum arabic, carrageenan, pectin and the like. Semi-synthetic polymers include lignin compounds such as sodium alginate and calcium lignin sulfonate obtained by treating pulp waste liquor in addition to celluloses such as methylcellulose, carboxymethylcellulose, ethylcellulose, and hydroxyethylcellulose. As the synthetic polymer, vinyl polymer compounds such as polyvinyl alcohol, polyvinyl methyl ether, and polyvinyl pyrrolidone, polyethylene glycol, and the like can be used. These organic binders may be used alone or in combination of two or more.

有機バインダーの添加量は、熱風乾燥塔内で噴霧して乾燥されたモールドフラックスの全量に対して2.0〜10.0%が含有されるようにするのが適当である。図1は有機バインダーの量と、ある条件で空気搬送したときの粉化量およびフラックスの嵩比重との関係を示すグラフである。これを見ると有機バインダーはある程度までは分量が増加すると顆粒の強度を増大させるが、さらに分量が増大すると強度が却って低下する。図1に記載されているように、このように強度が低下する範囲においては嵩比重が低下することが判明した。したがって有機バインダーの分量が多いときの強度の低下は顆粒の中空部分の増加によるものと考えられる。また有機バインダーは炭素粉末を分散させる作用もあり、この効果を発揮させるためにも添加が必要である。したがって有機バインダーの添加量はモールドフラックスの全量に対して2.0〜10.0%、好ましくは2.5〜7.0%とする。   The amount of the organic binder added is suitably 2.0 to 10.0% with respect to the total amount of mold flux sprayed and dried in the hot air drying tower. FIG. 1 is a graph showing the relationship between the amount of the organic binder, the amount of pulverization when the air is conveyed under certain conditions, and the bulk specific gravity of the flux. From this, the organic binder increases the strength of the granules when the amount increases to some extent, but the strength decreases on the contrary when the amount further increases. As shown in FIG. 1, it was found that the bulk specific gravity decreases in such a range where the strength decreases. Therefore, the decrease in strength when the amount of the organic binder is large is considered to be due to an increase in the hollow portion of the granule. The organic binder also has an action of dispersing the carbon powder, and it is necessary to add it in order to exhibit this effect. Therefore, the addition amount of the organic binder is 2.0 to 10.0%, preferably 2.5 to 7.0% with respect to the total amount of the mold flux.

一方、無機バインダーとしては、水に溶けてその後乾燥させると固化する無機物が使用され、炭酸ナトリウム、アルミン酸ナトリウム、燐酸ナトリウム、珪酸ナトリウムなどのナトリウムオキソ酸塩が適する。また上記各化合物のナトリウムに代えてカリウムにした炭酸カリウムその他のカリウムオキソ酸塩も使用できる。またこれらの1種でも2種以上を混合して使用してもよい。無機バインダーの成分は乾燥により原料粉末の粒子表面に付着して固化し、粉末粒子同士を固着して顆粒の強度を増大させると考えられる。   On the other hand, as the inorganic binder, an inorganic substance that dissolves in water and solidifies when dried is used, and sodium oxoacid salts such as sodium carbonate, sodium aluminate, sodium phosphate, and sodium silicate are suitable. In addition, potassium carbonate or other potassium oxoacid salts in which potassium is used in place of sodium of the above compounds can be used. Moreover, you may use these 1 type or in mixture of 2 or more types. The component of the inorganic binder is considered to adhere to the particle surface of the raw material powder and solidify by drying, and fix the powder particles to increase the strength of the granules.

無機バインダーの添加量は、熱風乾燥塔内で噴霧して乾燥されたモールドフラックスの全量に対して1.0〜10.0%が含有されるようにするのが適当である。図2は無機バインダーの量と、ある条件で空気搬送したときの粉化量およびフラックスの嵩比重との関係を示すグラフである。これを見ると有機バインダーの場合と同様にある程度までは分量が増加すると顆粒の強度を増大させるが、さらに分量が増大すると強度が却って低下する。やはり前記有機バインダーの場合と同様に、このような強度が低下する範囲においては嵩比重が低下しており、強度の低下は顆粒の中空部分の増加によるものと考えられる。無機バインダーは有機バインダーに比べて安価であり、有機バインダーは炭素粉末の分散のために必要ではあるものの使用をできるだけ少なくして、無機バインダーを活用したほうがコスト的に有利である。また有機バインダーは分量が多いと鋳片の炭素量の増大を招くおそれがあり、この点からも大量の使用は好ましくない。したがって無機バインダーの添加量はモールドフラックスの全量に対して1.0〜10.0%、好ましくは1.5〜9.0%とする。   The amount of the inorganic binder added is suitably 1.0 to 10.0% with respect to the total amount of mold flux sprayed and dried in the hot air drying tower. FIG. 2 is a graph showing the relationship between the amount of the inorganic binder, the amount of pulverization when air-conveyed under a certain condition, and the bulk specific gravity of the flux. As can be seen from the graph, when the amount is increased to a certain extent as in the case of the organic binder, the strength of the granule is increased. However, when the amount is further increased, the strength is decreased. As in the case of the organic binder, the bulk specific gravity is reduced in such a range that the strength is reduced, and the decrease in the strength is considered to be due to an increase in the hollow portion of the granule. Inorganic binders are cheaper than organic binders, and organic binders are necessary for the dispersion of carbon powder, but it is advantageous in terms of cost to use inorganic binders by minimizing the use. Moreover, when there is much quantity of an organic binder, there exists a possibility of causing the increase in the carbon content of a slab, and also from this point, a large amount of use is not preferable. Therefore, the addition amount of the inorganic binder is 1.0 to 10.0%, preferably 1.5 to 9.0% with respect to the total amount of the mold flux.

なお無機バインダーの成分は例えば炭酸ナトリウムのようにバインダーのためだけではなく、ナトリウムの添加といった成分構成のためにも使用される。この場合フラックス成分の構成部分としてもバインダーとしても作用し、無機バインダーの添加量にも入るものである。しかし例えば炭酸ナトリウムがプリメルト剤を製造するための原料として他の材料と一緒に溶融される場合には、原料粉末をスラリーにしたときに水に溶けることはないので、無機バインダーの添加量には入らない。   In addition, the component of an inorganic binder is used not only for binders, such as sodium carbonate, but also for component constitution such as addition of sodium. In this case, it acts as a component of the flux component as well as a binder, and is included in the added amount of the inorganic binder. However, for example, when sodium carbonate is melted together with other materials as a raw material for producing a premelt agent, it does not dissolve in water when the raw material powder is made into a slurry. not enter.

本発明の鋼の連続鋳造用の中空顆粒状モールドフラックスはモールドフラックスの供給に際して、気体搬送を適用するのに特に適している。すなわち気体搬送は長距離の搬送に適用されることが多く、たとえば配管長さが50mから90mといった例もある。ところで粉粒体の気体搬送の方法には一般に2種類の方式が知られており、低濃度高速輸送方式と高濃度低速輸送方式とがある。   The hollow granular mold flux for continuous casting of steel according to the present invention is particularly suitable for applying gas conveyance when supplying mold flux. That is, gas conveyance is often applied to long-distance conveyance. For example, there is an example in which a pipe length is 50 m to 90 m. By the way, two types of methods are generally known as a method for conveying powder particles, and there are a low concentration high speed transport method and a high concentration low speed transport method.

低濃度高速輸送方式は粉粒体を浮遊状態にして、輸送元で例えば100kPa程度以下の圧力を加えることにより10〜30m/sといった気流速度で搬送するものである。一方、高濃度低速輸送方式は、輸送元で気体を例えば数百kPaに加圧した状態で粉粒体を断続的に送り出すことにより配管の断面が断続的に塞がれた状態にし、圧力のエネルギーにより数m/s程度の気流速度で搬送するものである。   In the low-concentration high-speed transportation method, the granular material is floated and transported at an air velocity of 10 to 30 m / s by applying a pressure of about 100 kPa or less at the transportation source. On the other hand, the high-concentration low-speed transportation system makes the section of the pipe intermittently closed by intermittently sending out the powder particles in a state where the gas is pressurized to, for example, several hundred kPa at the transportation source, It is conveyed at an air velocity of about several m / s by energy.

高濃度低速輸送方式は配管が長距離になるにしたがって気圧を上げなければならないといった問題がある。一方、本発明の中空顆粒状モールドフラックスは中空であるため嵩比重が小さく、気体中で容易に浮遊状態にできる。これにより配管が長距離であっても円滑に搬送できるので低濃度高速輸送方式を採用している。   The high-concentration low-speed transportation method has a problem that the air pressure must be increased as the piping becomes longer. On the other hand, since the hollow granular mold flux of the present invention is hollow, it has a small bulk specific gravity and can be easily floated in a gas. As a result, the pipe can be transported smoothly even over long distances, so a low concentration high speed transportation system is adopted.

中空顆粒状モールドフラックスの気体搬送のときの崩壊の程度は搬送距離が長くなるに従って増加し、また気体の流量が大きくなるに従って増加する。搬送距離と気体の流量との積が10m・m/min以上であるとフラックスの種類によっては崩壊の程度が著しくなるが、本発明の中空顆粒状モールドフラックスにおいてはこのような条件での気体搬送に適用しても崩壊の程度が少ないものである。上記の搬送距離と気体の流量との積は、たとえば50mの搬送距離を流量が0.2m/min(配管径が19mm)で搬送した場合が該当し、そのときの気流速度は12m/sとなる。 The degree of collapse of the hollow granular mold flux during gas conveyance increases as the conveyance distance increases and also increases as the gas flow rate increases. If the product of the transport distance and the gas flow rate is 10 m · m 3 / min or more, the degree of collapse may be significant depending on the type of flux, but the hollow granular mold flux of the present invention has gas under such conditions. Even if it is applied to conveyance, the degree of collapse is small. The product of the transport distance and the gas flow rate corresponds to, for example, a case where a transport distance of 50 m is transported at a flow rate of 0.2 m 3 / min (pipe diameter is 19 mm), and the air velocity at that time is 12 m / s. It becomes.

気体搬送したときの崩壊の程度の試験方法としては、気体の流量が0.2m/minで50mの距離を実際に気体搬送する。すなわち搬送距離と気体の流量との積としては10m・m/minとなるが、これによる粒子径が150μm未満の粒子のフラックス全量に対する割合の増加量が20質量%以下であれば良好なものということができる。本発明の中空顆粒状モールドフラックスはこのようなものに該当する。 As a test method for the degree of collapse when gas is conveyed, the gas is actually conveyed for a distance of 50 m at a gas flow rate of 0.2 m 3 / min. In other words, the product of the transport distance and the gas flow rate is 10 m · m 3 / min, but if the increase in the ratio of particles with a particle diameter of less than 150 μm to the total flux is 20% by mass or less, the product is good. It can be said. The hollow granular mold flux of this invention corresponds to such a thing.

以下、実施例により本発明を詳細に説明する。
本発明の中空顆粒状フラックスを試作するにあたり、バインダー成分を除く基本フラックスとして、表1に示す成分のフラックスを作製した。これらのフラックスは合成珪酸カルシウム、ポルトランドセメント、蛍石などの、所定のフラックス成分にするための原料を混合し、炭素粉末以外の全部を溶融して粉砕したプリメルト原料とした。このプリメルト原料粉末と上記の炭素粉末とを表1の成分になるように混合した。
Hereinafter, the present invention will be described in detail by way of examples.
In producing the hollow granular flux of the present invention, fluxes having the components shown in Table 1 were prepared as basic flux excluding the binder component. These fluxes were prepared as pre-melt raw materials obtained by mixing raw materials for making a predetermined flux component such as synthetic calcium silicate, Portland cement, fluorite, etc., and melting and pulverizing all but the carbon powder. This pre-melt raw material powder and the above carbon powder were mixed so as to become the components shown in Table 1.

Figure 2012179628
Figure 2012179628

表1に示した基本フラックスに対して、表2に示す各種の有機バインダーおよび無機バインダーを配合して水を加え、懸濁させてスラリー状にした。さらにこれを熱風乾燥塔内で噴霧して乾燥し、中空顆粒状のフラックスとした。なお表2に示す有機バインダーおよび無機バインダーの配合量は、基本フラックスとの合計であるフラックス全量に対する割合である。   To the basic flux shown in Table 1, various organic binders and inorganic binders shown in Table 2 were blended and water was added to suspend them into a slurry. Furthermore, this was sprayed and dried in a hot air drying tower to obtain a hollow granular flux. In addition, the compounding quantity of the organic binder shown in Table 2 and an inorganic binder is a ratio with respect to the flux whole quantity which is the sum total with a basic flux.

Figure 2012179628
Figure 2012179628

上記のようにして製造した中空顆粒状のフラックスについて嵩密度を測定したが、その結果を表2に示す。また気体搬送したときの崩壊の程度について試験を行なった。試験方法は2.0kgのフラックスを、内径19mm、長さ50mの配管を通して気体の流量が0.2m/minで搬送した。その後フラックスの粒子径が150μm未満の粒子の、フラックス全量に対する割合の増加量を求めた。その結果も表2に併せて示す。 The bulk density of the hollow granular flux produced as described above was measured, and the results are shown in Table 2. Moreover, it tested about the extent of the collapse | disintegration when carrying gas. The test method carried 2.0 kg of flux through a pipe having an inner diameter of 19 mm and a length of 50 m at a gas flow rate of 0.2 m 3 / min. Thereafter, the amount of increase in the ratio of the particles having a particle size of the flux of less than 150 μm to the total amount of the flux was determined. The results are also shown in Table 2.

フラックス番号1から14は本発明のものであって、有機バインダーおよび無機バインダーの添加量が適切であるので、150μm未満粒の増加量はいずれも本発明で規定する20%以下であった。したがって気体中で浮遊状態にした状態で長距離を高速で送る気体搬送に適したフラックスとなっている。   Flux numbers 1 to 14 are those according to the present invention, and the addition amount of the organic binder and the inorganic binder is appropriate. Therefore, the amount of increase of grains less than 150 μm was 20% or less as defined in the present invention. Therefore, it is a flux suitable for gas conveyance which sends a long distance at a high speed in a state of being suspended in the gas.

これに対して比較例である番号15のフラックスは有機バインダーの添加量が少ないので、また番号16のフラックスは無機バインダーの添加量が少ないので、いずれも150μm未満粒の増加量が多かった。   On the other hand, the flux of No. 15 as a comparative example has a small amount of organic binder added, and the flux of No. 16 has a small amount of inorganic binder added.

また比較例である番号17のフラックスは有機バインダーの添加量が多すぎるので、また番号18のフラックスは無機バインダーの添加量が多すぎるのでいずれも嵩比重が小さくなり、それに伴って150μm未満粒の増加量が多かった。   Moreover, since the flux of No. 17 which is a comparative example has too much addition amount of the organic binder, and the flux of No. 18 has too much addition amount of the inorganic binder, the bulk specific gravity becomes small in any case, and accordingly, the particle size of less than 150 μm There was a lot of increase.

また比較例である番号19および番号20のフラックスは、それぞれ複数種の有機バインダーおよび無機バインダーの添加量の合計が多すぎるので、いずれも嵩比重が小さく150μm未満粒の増加量が多かった。   In addition, the fluxes of No. 19 and No. 20 which are comparative examples had too many total addition amounts of a plurality of types of organic binders and inorganic binders, respectively, so that the bulk specific gravity was small and the amount of increase of grains less than 150 μm was large.

Claims (5)

鋼の連続鋳造用の中空顆粒状モールドフラックスにおいて、モールドフラックス全量に対して、有機バインダーを2.0〜10.0質量%、無機バインダーを1.0〜10.0質量%含有することを特徴とする鋼の連続鋳造用の中空顆粒状モールドフラックス。 The hollow granular mold flux for continuous casting of steel contains 2.0 to 10.0% by mass of organic binder and 1.0 to 10.0% by mass of inorganic binder with respect to the total amount of mold flux. Hollow granular mold flux for continuous casting of steel. 有機バインダーが、多糖類、セルロース系の半合成高分子、アルギン酸ナトリウム、リグニン化合物、ビニル系高分子化合物、ポリエチレングリコールの1種以上であり、無機バインダーが、ナトリウムオキソ酸塩、カリウムオキソ酸塩のうちの1種以上であることを特徴とする請求項1記載の鋼の連続鋳造用の中空顆粒状モールドフラックス。 The organic binder is one or more of polysaccharides, cellulose-based semi-synthetic polymers, sodium alginate, lignin compounds, vinyl-based polymer compounds, and polyethylene glycol, and the inorganic binder is sodium oxoacid salt or potassium oxoacid salt. The hollow granular mold flux for continuous casting of steel according to claim 1, characterized in that it is at least one of them. モールドフラックスの供給に際して、フラックスを気体中で浮遊状態にした状態で送る気体搬送をするためのものであることを特徴とする請求項1または2に記載の鋼の連続鋳造用の中空顆粒状モールドフラックス。 The hollow granular mold for continuous casting of steel according to claim 1 or 2, characterized in that, when supplying the mold flux, it is for conveying the gas in a state where the flux is floated in the gas. flux. 気体搬送における搬送距離と、気体の流量との積が10m・m/min以上であることを特徴とする請求項3記載の鋼の連続鋳造用の中空顆粒状モールドフラックス。 4. The hollow granular mold flux for continuous casting of steel according to claim 3, wherein the product of the transport distance in the gas transport and the gas flow rate is 10 m · m 3 / min or more. 気体搬送における搬送距離と気体の流量との積が10m・m/minのとき、粒子径が150μm未満の粒子のフラックス全量に対する割合の増加量が20質量%以下であることを特徴とする請求項3または4に記載の鋼の連続鋳造用の中空顆粒状モールドフラックス。 When the product of the transport distance and the gas flow rate in gas transport is 10 m · m 3 / min, the amount of increase in the ratio of the particles having a particle diameter of less than 150 μm to the total flux is 20% by mass or less. Item 5. A hollow granular mold flux for continuous casting of steel according to Item 3 or 4.
JP2011043852A 2011-03-01 2011-03-01 Hollow granular mold flux for continuous casting of steel Active JP5727263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011043852A JP5727263B2 (en) 2011-03-01 2011-03-01 Hollow granular mold flux for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043852A JP5727263B2 (en) 2011-03-01 2011-03-01 Hollow granular mold flux for continuous casting of steel

Publications (2)

Publication Number Publication Date
JP2012179628A true JP2012179628A (en) 2012-09-20
JP5727263B2 JP5727263B2 (en) 2015-06-03

Family

ID=47011316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043852A Active JP5727263B2 (en) 2011-03-01 2011-03-01 Hollow granular mold flux for continuous casting of steel

Country Status (1)

Country Link
JP (1) JP5727263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209711A (en) * 2016-05-26 2017-11-30 日鐵住金建材株式会社 Continuous casting mold powder and method for enhancing granule strength of continuous casting mold powder
JP2020055027A (en) * 2018-10-04 2020-04-09 日鉄建材株式会社 Slurry, method for producing mold powder, and mold powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344955B (en) * 2015-12-18 2018-08-24 河南通宇冶材集团有限公司 A kind of high intensity continuous crystallizer protecting slag and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087960A (en) * 1983-09-22 1985-05-17 フオセコ・インターナシヨナル・リミテツド Solvent for casting metal, manufacture thereof and casting method
JPS61123454A (en) * 1984-11-20 1986-06-11 Kawasaki Steel Corp Flux for continuous casting and its production
JPH09182944A (en) * 1995-12-28 1997-07-15 Nippon Steel Metal Prod Co Ltd Production of mold flux for continuously casting steel and device therefor
JP2001083071A (en) * 1999-09-13 2001-03-30 Nippon Steel Metal Prod Co Ltd Method and device for measuring intensity of granular powder for continuous casting, and method for manufacturing granular powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087960A (en) * 1983-09-22 1985-05-17 フオセコ・インターナシヨナル・リミテツド Solvent for casting metal, manufacture thereof and casting method
JPS61123454A (en) * 1984-11-20 1986-06-11 Kawasaki Steel Corp Flux for continuous casting and its production
JPH09182944A (en) * 1995-12-28 1997-07-15 Nippon Steel Metal Prod Co Ltd Production of mold flux for continuously casting steel and device therefor
JP2001083071A (en) * 1999-09-13 2001-03-30 Nippon Steel Metal Prod Co Ltd Method and device for measuring intensity of granular powder for continuous casting, and method for manufacturing granular powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017209711A (en) * 2016-05-26 2017-11-30 日鐵住金建材株式会社 Continuous casting mold powder and method for enhancing granule strength of continuous casting mold powder
JP2020055027A (en) * 2018-10-04 2020-04-09 日鉄建材株式会社 Slurry, method for producing mold powder, and mold powder
JP7333166B2 (en) 2018-10-04 2023-08-24 日鉄建材株式会社 Slurry, method for producing mold powder, and mold powder

Also Published As

Publication number Publication date
JP5727263B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5727263B2 (en) Hollow granular mold flux for continuous casting of steel
CN101981090A (en) Process for production of water-absorbing resins
EP3022165A1 (en) Process and apparatus for dry granulation of slag with reduced formation of slag wool
JP2008512268A5 (en)
JP2011068134A (en) Method for producing coated basic material for hydraulic composition, coated basic material for hydraulic composition, additive for hydraulic composition and method for producing hydraulic composition
CN104507893A (en) Powdery set-accelerating agent and method for spray application of monothilic refractory
WO2007066660A1 (en) Method of castable refractory spray application and spray material for use therein
WO2018108678A1 (en) Mixing nozzle for a shotcrete application device, and a shotcrete application device comprising such a mixing nozzle, and a shotcrete application method
WO2018108679A1 (en) Mixing nozzle for a gunned-concrete application device, gunned-concrete application device having such a mixing nozzle, and gunned-concrete application method
Han et al. Effect of microstructure on the granule strength of hollow granulated mold fluxes for continuous casting
JP6663301B2 (en) Mold powder for continuous casting, and method for enhancing granule strength of mold powder for continuous casting
CN102378820A (en) Method for adding binder, device for adding binder, kneading machine and kneading method
CN103128271A (en) Iron-based mixed powder for powder metallurgy
CN113399143B (en) Granulation external lubricant adding system and method
JPS595058B2 (en) Granular powder for continuous steel casting
US9464338B2 (en) Reclaiming and inhibiting activation of DRI dust and fines
Muhiddinov et al. Development and Evaluation of Solutions to Suppress Dust on Vehicle Roads in Quarries
CN202440134U (en) Particle material fluidized conveying pipe
JP7333166B2 (en) Slurry, method for producing mold powder, and mold powder
US12054795B2 (en) System and method for delivering fluidized powder based on flue gas carrying waste slag and instant cooling steel slag
JPH04210858A (en) Flux for continuous casting
CN112497553A (en) Processing system and processing technology before screening of copolyamide hot melt adhesive powder
JPH11277201A (en) Mold powder for continuous casting of steel
KR20170092530A (en) Improvements in methods and systems requiring lubrication
TW202138571A (en) Method for modifying mineral raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150402

R150 Certificate of patent or registration of utility model

Ref document number: 5727263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250