JP2012178533A5 - - Google Patents

Download PDF

Info

Publication number
JP2012178533A5
JP2012178533A5 JP2011057202A JP2011057202A JP2012178533A5 JP 2012178533 A5 JP2012178533 A5 JP 2012178533A5 JP 2011057202 A JP2011057202 A JP 2011057202A JP 2011057202 A JP2011057202 A JP 2011057202A JP 2012178533 A5 JP2012178533 A5 JP 2012178533A5
Authority
JP
Japan
Prior art keywords
thermoelectric
space
working substance
conversion element
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011057202A
Other languages
Japanese (ja)
Other versions
JP5771852B2 (en
JP2012178533A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011057202A priority Critical patent/JP5771852B2/en
Priority claimed from JP2011057202A external-priority patent/JP5771852B2/en
Publication of JP2012178533A publication Critical patent/JP2012178533A/en
Publication of JP2012178533A5 publication Critical patent/JP2012178533A5/ja
Application granted granted Critical
Publication of JP5771852B2 publication Critical patent/JP5771852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

非特許文献1によるとBiTeでは、フォノンの平均自由行程よりも長さが短くなると、その方向にはフォノンは弾道的に伝導する。細線での伝熱は熱伝方向を細線の長さ方向を取ると、細線の長さとそれと垂直方向である肉厚と、フォノンの平均自由行程との大小関係によって特徴づけられる。長さや肉厚がフォノンの平均自由行程よりも長い場合には熱伝導はフーリエ法則に従い、拡散的フォノンである。太さがフォノンの平均自由行程より短いときには、フォノンは肉厚方向に対しては弾道的フォノン伝導するが細線の表面粗さによるフォノン散乱のために拡散的フォノン伝導で特徴づけられる値よりも熱伝導が小さくなってしまう。長さがフォノンの平均自由行程より短いときには、表面粗さに影響を受けないと弾道的なフォノン伝導により、拡散的フォノン伝導で特徴づけられるものより長さ方向の熱伝導が大きくなる。一方非特許文献2ではナノチューブに対して非平衡分子動力学を用いて太さ方向の伝熱量に対する依存性を評価している。1シートからなるナノチューブでは表面粗さが減少し室温では1.6μmまで長さ方向に弾道的なフォノン伝導の影響がある。その結果拡散的フォノン伝導で特徴づけられる値より熱伝導が大きい。一方、電気伝導度は導電材料の空間次元が小さい場合や、それが層状に重なった場合は、電子が移動するときに横切る断面積が微小であれば、狭い方向に流れる電流を担う電子の許されるエネルギー状態間隔が大きく電子の散乱が起こりにくくなり、電子の状態密度が空間次元によって変化し電気伝導がよくなる。低次元になると熱電材料の性能指数が改善されることを利用するものにナノ薄膜・超格子・ナノワイヤーなどの熱電材料がある。According to Non-Patent Document 1, in Bi 2 Te 3 , when the length becomes shorter than the phonon mean free path, the phonon conducts ballistically in that direction. The heat transfer in the thin wire is characterized by the magnitude relationship between the length of the thin wire, the thickness in the direction perpendicular thereto, and the mean free path of the phonon when the heat transfer direction is taken along the length of the thin wire . When the length and thickness are longer than the phonon mean free path, the heat conduction follows the Fourier law and is a diffusive phonon. When the thickness is shorter than the phonon mean free path , the phonon conducts ballistic phonon in the thickness direction but heats more than the value characterized by diffusive phonon conduction due to phonon scattering due to the surface roughness of the wire. Conduction is reduced. When the length is shorter than the phonon mean free path, the ballistic phonon conduction, if not affected by the surface roughness, results in greater thermal conduction in the length direction than that characterized by diffusive phonon conduction. On the other hand, Non-Patent Document 2 evaluates the dependence on the amount of heat transfer in the thickness direction using non-equilibrium molecular dynamics for nanotubes. In a single-sheet nanotube, the surface roughness is reduced and there is an influence of ballistic phonon conduction in the length direction up to 1.6 μm at room temperature. As a result, the heat conduction is greater than the value characterized by diffusive phonon conduction. On the other hand, when the spatial dimension of the conductive material is small or when it is layered, the electrical conductivity is the allowance of the electrons carrying the current flowing in a narrow direction if the cross-sectional area traversed when the electrons move is small. The energy state interval generated is large and the scattering of electrons is less likely to occur, and the density of states of electrons changes depending on the spatial dimension, resulting in improved electrical conduction. Thermoelectric materials such as nanothin films, superlattices, and nanowires take advantage of the improvement in the figure of merit of thermoelectric materials at lower dimensions.

現在利用されている熱電材料には、ビスマス・テルル系、シリサイド系化合物などの金属間化合物がある。また新たな熱電材料として層状コバルト酸化物、クラスレート化合物などのかご状型のものや、強相関電子を利用したものがある。PbTe系化合物の最高使用温度は950K程度であるが、n型PbTeは不純物ドープによる電子濃度が5×1025−3のとき、約450K最高性能指数が1.7×10−3−1を持ち、電子濃度を増やすと徐々に最高性能指数が比例して減り、7×1025−3では、約800Kでは最高性能指数が1.2×10−3−1となる。PbTe系化合物は低温端温度が300で高温端温度が950Kである広い温度域をもつ。Thermoelectric materials currently in use include intermetallic compounds such as bismuth / tellurium and silicide compounds. Also, new thermoelectric materials include cage -type materials such as layered cobalt oxides and clathrate compounds, and those using strongly correlated electrons. The maximum use temperature of the PbTe-based compound is about 950K, but n-type PbTe has an about 450K maximum performance index of 1.7 × 10 −3 K −1 when the electron concentration by impurity doping is 5 × 10 25 m −3. When the electron concentration is increased, the maximum performance index gradually decreases in proportion. At 7 × 10 25 m −3 , the maximum performance index becomes 1.2 × 10 −3 K −1 at about 800K. PbTe-based compound hot end temperature at the cold end temperature 300 K has a wide temperature range is 950K.

電気伝導度を損なうことなく熱伝導度を小さくさせて性能指数を上げるために、非特許文献3では、BiSbTeの結晶をアルゴン中で数十ナノメートルに砕いてからホット・プレスして固めている。結晶間の「アモルファスと結晶の中間的な構造」を低コストで作製し40%の改良でZT=1.4している。特許文献6では熱流を防いで電流を流すために、結晶同士の界面にガラス層からなる粒界層が実質的に存在しないようにして格子振動を防ぐ工夫を行った熱電材料に100ナノメートル以下の多結晶を利用している。ここでは、かご状構造の熱電材料を用いてエアロゾルデポジション法による常温衝撃固化現象で基板上に構成している。In Non-Patent Document 3, BiSbTe crystals are crushed to a few tens of nanometers in argon and then hot-pressed and hardened in order to increase the figure of merit by reducing thermal conductivity without impairing electrical conductivity. . An “amorphous structure between crystals” is produced at low cost between crystals, and ZT = 1.4 with 40% improvement. In Patent Document 6, in order to prevent heat flow and flow current, a thermoelectric material in which a grain boundary layer composed of a glass layer is not substantially present at the interface between crystals to prevent lattice vibration is 100 nanometers or less. Is used. Here, a thermoelectric material having a cage structure is used and formed on a substrate by a normal temperature impact solidification phenomenon by an aerosol deposition method.

物体間の空間をどのように作業物質が移動するかは作業物質のポテンシャルによって決まる。その空間に接する表面近傍では電気鏡像効果によりそのポテンシャルが低くなる。そのポテンシャルは、シミュレーションによって、あるいは非特許文献4ように解析的に求められる。How the working material moves in the space between the objects depends on the potential of the working material. In the vicinity of the surface in contact with the space, the potential is lowered by the electromirror effect. Its potential, by simulation, or analytically determined as non-patent document 4.

放射性同位元素を使った熱電発電では、放射性同位元素が自然崩壊の過程における放射粒子線を利用し放射性同位元素を含む部位の崩壊熱あるいは放射粒子線の捕集部でそのとき発生した熱エネルギーを使って熱電発電を行っている。In thermoelectric power generation using radioisotopes, the radioactive isotope uses the radiation particle beam in the course of natural decay, and the decay heat of the part containing the radioisotope or the thermal energy generated at that time is collected in the collection part of the radiation particle beam. It is used for thermoelectric power generation.

熱電材料を用いたシステムは、使用する温度領域や熱量にあわせて、熱電材料の種類・形状・大きさや、その周りの断熱材の種類・厚みを選ぶことで最適化されている。空冷フィン、ファン付き空冷フィン、あるいは水冷などを用いて放熱を行い、そのほかの構造物との熱のやり取りも考慮しなければならない。そして、熱電材料はグリース・接着・はんだづけによって、電極・構造物に取り付けられている。また、はんだの電気化学的溶出ないように、あるいはグリース・接着剤などの拡散がないように、システム内のモジュール内部への湿気侵入防止のために、エポキシ樹脂、シリコン樹脂などでシールしている。こういったグリースやシール材によってモジュールの低温部と高温部間の熱伝導が生じて性能が下がっている。
熱電発電出力Pは

Figure 2012178533
と表される。ここで、T、Tは高温および低温接合部温度、m=R/Rである。R、Rは内部抵抗および外部負荷である。電極−熱電材料間、異種熱電材料間などの電気的接触抵抗Rの熱発電モジュール効率ηへの影響は
Figure 2012178533
となる。ここで、
Figure 2012178533
である。非特許文献6によるとSi/SiO基板上にCu/Ni電極をメタライズされたところに電気化学的堆積法で熱電材料BiTeを高さHで断面積がAの形状に製作すると、その抵抗RBi2Te3はRBi2Te3=ρBi2Te3A/HとなるのでPはH/Aに比例することになる。ここでρBi2Te3はBiTeの抵抗率である。H/Aを一定で、Hをマイクロからナノサイズに小さくすると、必要な断面積は減少し、出力密度が増えることが報告されている。実用用途として、人体と大気間の温度差でP〜10数μWが得られている。Systems using thermoelectric materials are optimized by selecting the type / shape / size of the thermoelectric material and the type / thickness of the surrounding heat insulating material according to the temperature range and heat quantity to be used. Heat should be dissipated using air-cooled fins, air-cooled fins with fans, or water cooling, and heat exchange with other structures must also be considered. The thermoelectric material is attached to the electrode / structure by grease, adhesion, or soldering. Also, to prevent moisture from entering the inside of the module in the system, seal it with epoxy resin, silicone resin, etc., so that there is no electrochemical elution of solder or diffusion of grease and adhesives. Yes. Such grease and sealing material cause heat conduction between the low-temperature part and the high-temperature part of the module, which reduces the performance.
The thermoelectric power output P is
Figure 2012178533
It is expressed. Here, T H and T C are high temperature and low temperature junction temperature, m = R L / R. R and RL are an internal resistance and an external load. Electrode - between the thermoelectric material, the electrical effect of the thermoelectric module efficiency η of the contact resistance R c, such as between different thermoelectric material
Figure 2012178533
It becomes. here,
Figure 2012178533
It is. According to Non-Patent Document 6, when a Cu / Ni electrode is metallized on a Si / SiO 2 substrate, the thermoelectric material Bi 2 Te 3 is manufactured to have a height H and a cross-sectional area A by electrochemical deposition. Since the resistance R Bi2Te3 is R Bi2Te3 = ρ Bi2Te3 A / H, P is proportional to H / A. Here, ρ Bi2Te3 is the resistivity of Bi 2 Te 3 . It has been reported that when H / A is constant and H is reduced from micro to nano size, the required cross-sectional area decreases and the power density increases. As a practical use, P to several tens of μW is obtained due to a temperature difference between the human body and the atmosphere.

ある熱源に接触する絶縁体皮膜された電極板とそれと異なる熱源に接触する面が絶縁体で皮膜された電極板の対がある。この電極対の間にπ型モジュールを単位にシステムが構成される。例えば、発電稼動で出力電流を上げるために、複数のπ型モジュールの足部分の極性がそれぞれ同じ熱電材料になるように一枚の皮膜された電極板上に並ぶ並列配列あるいは出力電圧を上げるために、π型モジュールを上下に反転し極性の異なる対同士が一枚の皮膜された電極板に並ぶ直列配列、またこれらの複合した配列がある。このように複数のπ型モジュールは熱源、電極そして極性の異なる熱電材料の複数の対から組み立てられている。モジュールの性能を向上させるに熱電材料対の性能指数を変えることが必要である。このとき各π型の足の熱電材料対の断面積と長さがそれぞれ違う。熱電システムは、ある熱源から熱量Qinを取得し、それを熱電モジュールに与え、熱量は熱電材料中を流れて放熱量Qoutとしてもう一方の熱源へと放出される。この間に電気的仕事Pが外界に作用する。すなわち、

Figure 2012178533
(+はゼーベック効果による発電動作、−はペルチェ効果による冷却動作)
なるエネルギー収支バランスが生じる。システム効率ηは
Figure 2012178533
である。ηを最大化するには
1)使用するモジュールの能力と目標性能とをバランスさせる。
2)モジュール単体の性能を適当な経済性で最大発揮できるようにする。
を考慮に入れる。
例えば、発電稼動のシステム効率ηgen
Figure 2012178533
である。モジュール内部抵抗R MODと外部仕事する際の抵抗Rの比m=R/R MODについて、ηgenを最大にするmになるように最適化する。最大効率ηmaxは温度条件と熱電材料の物性値すなわち性能指数のみによって決まることが知られている。また、冷却稼動のシステム効率ηre
Figure 2012178533
で表される。ηreを最大にするmになるように最適化する。その結果、Rに流れる作業物質流が最小化されPが最小になる。Surface contacting the coating is an electrode plate with an insulator in contact with a certain heat source to that different heat source is a pair of film is an electrode plate with an insulator. A system is configured between the electrode pairs in units of π-type modules. For example, in order to increase the output current in power generation operation, in order to increase the parallel arrangement or the output voltage on a single coated electrode plate so that the legs of the plurality of π-type modules have the same thermoelectric material, respectively. In addition, there are a series arrangement in which π-type modules are turned upside down and pairs having different polarities are arranged on a single coated electrode plate, or a composite arrangement of these. Thus, the plurality of π-type modules are assembled from a plurality of pairs of heat sources, electrodes, and thermoelectric materials having different polarities. It is necessary to change the figure of merit of thermoelectric material pairs to improve module performance . At this time, the cross-sectional areas and lengths of the thermoelectric material pairs of each π-type foot are different. The thermoelectric system obtains a heat quantity Q in from one heat source and applies it to the thermoelectric module, and the heat quantity flows through the thermoelectric material and is released to the other heat source as a heat release quantity Q out . During this time, electrical work P acts on the outside world. That is,
Figure 2012178533
(+ Is power generation operation by Seebeck effect,-is cooling operation by Peltier effect)
The energy balance becomes. System efficiency η is
Figure 2012178533
It is. To maximize η 1) Balance the capabilities of the modules used and the target performance.
2) To maximize the performance of a single module with appropriate economic efficiency.
Take into account.
For example, the system efficiency η gen for power generation operation is
Figure 2012178533
It is. The ratio m = R o / R i MOD of the module internal resistance R i MOD and the resistance R o at the time of external work is optimized so as to be m that maximizes η gen . It is known that the maximum efficiency η max is determined only by temperature conditions and physical property values of thermoelectric materials, that is, performance indexes. The system efficiency η re for cooling operation is
Figure 2012178533
It is represented by Optimize for m to maximize ηre . As a result, P working substance flowing through the R o is minimized is minimized.

請求項1は、図1のように熱電材料10、11の熱流乃至作業物質流が伝わる方向に伝熱を防げるように、サブマイクロメートルの空間12を配し、この空間12での作業物質流が左右の2つの熱電材料10、11での作業物質流と、ほとんど変えずあるいはより大きな値を保ちつつ、格子振動・マグノン・スピン波といった擬粒子が存在することに起因する伝熱や、熱源による熱揺らぎ、そして低温での量子揺らぎを抑えることで熱電システムの効率を向上させることを特徴とする。図1の空間12を造る2つの熱電材料10、11の端子間内の尖塔表面13から、対峙端子表面14間距離が尖塔表面13での絶対温度Tに依存した「距離」Lmax(T)を超えると、空間12のフォノンによる熱伝達をほとんど無視できるようになる。なお、格子振動のLmax(T)に比べマグノンやスピン波などのLmax(T)は遥かに小さい。Lmax(T)は、原子間力顕微鏡と測定表面間距離の実測測定範囲から得ることができる。一方、空間はサブマイクロ以下にすることによって、作業物質の空間電荷に制限されるのを回避することを可能とする。空間の大きさをサブマイクロメートルからLmax(T)に近づけることで、この部分の作業物質流をより大きくできる。以後、熱流乃至作業物質流の伝わるのを防げるように1つ以上存在する上記構造を含んだ空間を空間部分と略する。熱電材料10,11のいずれか一方を熱電材料以外の作業物質良導体にすることもできる。稼働時は空間部分の輻射エネルギー損失による熱エネルギーの伝導は空間部分の対峙端子間13,14の温度差と、対峙する面積に依存する。端子間13、14がLmax(T)より広いがサブマイクロメートルよりも狭いと、空間部分を挟む熱電材料間や熱電材料と電極間の温度差は数ケルビン程度のため殆ど損出は抑えられる。また空間12を真空にすることで、そこでの対流による伝熱を抑えられる。金属では熱伝導は古典系作業物質の熱伝導成分κによるものがほとんどであるが、半導体になってくると、格子による熱伝導成分κph成分が大きくなっていく。空間部分でのκとκphの物理伝達現象の要因の違いを利用して、κphをゼロそしてκ を低減する工夫である。
κph成分とκ成分が同じ場合には、フォノンによる熱伝導だけを抑えて他が変わらなくすると数1の性能指数は容易に2倍になる。性能指数の良い熱電材料にκph成分とκ成分が同程度のものがある。
本明細書に組み込まれ、その一部を構成する添付の図面は、本発明の原理に従った1つ以上の実施例を図示し、本明細書とともに、そのような実施例を模式的に説明するものである。発明の概念図では発明の本質を強調した説明になっている。
In the first aspect, as shown in FIG. 1, a submicrometer space 12 is arranged so as to prevent heat transfer in the direction in which the heat flow or working substance flow of the thermoelectric materials 10 and 11 is transmitted. The heat transfer due to the existence of quasi-particles such as lattice vibration, magnon, and spin wave while maintaining almost the same or larger value as the working substance flow in the two left and right thermoelectric materials 10, 11 It is characterized by improving the efficiency of the thermoelectric system by suppressing the thermal fluctuations due to, and the quantum fluctuations at low temperatures. The distance between the pinnacle surfaces 13 between the terminals of the two thermoelectric materials 10, 11 that make up the space 12 in FIG. 1 depends on the absolute temperature T at the pinnacle surface 13, “distance” L max (T) Exceeding this makes it possible to almost ignore the heat transfer due to phonons in the space 12. Incidentally, compared to the lattice vibration L max (T) magnon and L max, such as spin waves (T) is much smaller. L max (T) can be obtained from the actual measurement range of the distance between the atomic force microscope and the measurement surface. On the other hand, by making the space below sub-micro, it is possible to avoid being limited to the space charge of the working substance. The working material flow in this portion can be made larger by making the size of the space closer to L max (T) from submicrometers. Hereinafter, a space including one or more of the above-described structures so as to prevent transmission of heat flow or working material flow is abbreviated as a space portion. Either one of the thermoelectric materials 10 and 11 can be a good working substance conductor other than the thermoelectric material. During operation, conduction of thermal energy due to radiation energy loss in the space portion depends on the temperature difference between the opposed terminals 13 and 14 in the space portion and the area to be opposed. When terminals 13 and 14 are wider than L max (T) but narrower than sub-micrometers, the temperature difference between thermoelectric materials sandwiching the space and between thermoelectric materials and electrodes is about several Kelvin, so that almost no loss can be suppressed. . Further, by making the space 12 into a vacuum, heat transfer by convection there can be suppressed. Although the thermal conductivity in the metal is mostly due to heat conduction component kappa c classical system working substance and becomes a semiconductor, the thermal conductivity component kappa ph component due to the lattice becomes larger. By utilizing a difference in factors of physical transfer phenomena kappa c and kappa ph in space portion, a contrivance for reducing the zero and kappa c the kappa ph.
If the κ ph component and the κ c component are the same, the performance index of Equation 1 can easily be doubled if only the heat conduction by phonons is suppressed and the others remain unchanged. Thermoelectric materials with good figure of merit have the same κ ph and κ c components .
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments in accordance with the principles of the invention and together with the description schematically illustrate such embodiments. To do. The conceptual diagram of the invention emphasizes the essence of the invention.

空間部分をいれることで、発電稼働時に空間部分が作業物質流を主に妨げる可能性がある。熱、電界、電磁波などを利用して作業物質は表面から放出される。図1で作業物質が11から10の方向に移動するとき、空間部分では、熱電材料内13,14の熱などのエネルギーによる作業物質が励起することによって、あるいは尖塔表面13近傍で作業物質がそのポテンシャル障壁をトンネル透過することによって、作業物質が空間部分12に移り、対峙極14へと移動する。巨視的量子力学によると、空間部分界面13の作業物質のポテンシャル障壁をトンネル透過する確率は作業物質質量が大きくなれば成るほど指数関数的に小さくなるが、極低温で稼動するときは揺らぎが抑えられるのでL  By inserting the space portion, the space portion may mainly hinder the work material flow during power generation operation. The work substance is released from the surface using heat, electric field, electromagnetic waves, and the like. When the working substance moves in the direction from 11 to 10 in FIG. 1, the working substance is excited in the space portion by the excitation of the working substance by energy such as heat in the thermoelectric materials 13, 14 or in the vicinity of the spire surface 13. By tunneling through the potential barrier, the working substance moves to the space portion 12 and moves to the counter electrode 14. According to macroscopic quantum mechanics, the probability of tunneling through the potential barrier of the working material at the space interface 13 decreases exponentially as the working material mass increases, but fluctuations are suppressed when operating at very low temperatures. L maxmax (T)がより小さくなり、13,14の端子間距離をより狭くできることで、作業物質質量が大きいイオンによる熱電変換素子も可能になる。半導体での電子とホールでは、一般にホールの質量が電子の質量の数倍である。その結果、ある程度空間12が離れるとp形半導体でもホールがトンネル透過するよりは電子がトンネル透過する。熱電材料11が半導体、尖塔13が金属であるときは、半導体11と尖塔13とは発電稼働時はオーミック接合、冷却稼働ではショットキー接合であるほうがいい。Since (T) becomes smaller and the distance between the terminals 13 and 14 can be made narrower, a thermoelectric conversion element using ions having a large work substance mass is also possible. In the case of electrons and holes in a semiconductor, the mass of holes is generally several times the mass of electrons. As a result, when the space 12 is separated to some extent, electrons are tunneled through the p-type semiconductor rather than through holes. When the thermoelectric material 11 is a semiconductor and the steeple 13 is a metal, the semiconductor 11 and the steeple 13 are preferably ohmic junctions during power generation operation and Schottky junctions during cooling operation.

空間部分に電圧が印加されると、尖塔の高さが高く、表面13、14の端子間距離がL  When voltage is applied to the space, the height of the spire is high and the distance between the terminals of the surfaces 13 and 14 is L maxmax (T)に大きいほうから近づけたり、図1の尖塔表面13の凸先端部で曲率半径が小さかったりすれば電界が大きくなり、作業物質である荷電粒子の尖塔表面13近傍での作業物質のポテンシャル障壁の高さと厚さが大きく低減する。最大電界は尖塔表面13の凸先端部近傍であり、熱電材料11と尖塔表面13の接合面から尖塔表面13の凸先端までの高さと凸先端部の曲率半径に依存する増強因子βを用いるとその最大電界EIf the radius is closer to (T) or the radius of curvature is small at the convex tip portion of the spire surface 13 in FIG. 1, the electric field becomes larger, and the potential of the working substance in the vicinity of the spire surface 13 of charged particles as the working substance. The height and thickness of the barrier are greatly reduced. The maximum electric field is in the vicinity of the convex tip of the steeple surface 13, and an enhancement factor β that depends on the height from the joint surface of the thermoelectric material 11 and the steeple surface 13 to the convex tip of the steeple surface 13 and the radius of curvature of the convex tip is used. Its maximum electric field E Convex はEIs E Convex =βE= ΒE s となる。ここで、EIt becomes. Where E s は熱電変換素子の作業物質放出表面13が平板のときの平板近傍電界である。作業物質がトンネル透過するにはこの値が10Is an electric field in the vicinity of a flat plate when the working substance discharge surface 13 of the thermoelectric conversion element is a flat plate. This value is 10 for the working material to pass through the tunnel. 9 [V/m]より大きい必要がある。尖塔表面13の曲率半径を小さくし、尖塔の高さを高くし、表面13、14の端子間距離を短くすることで電界を高めることができる。電流は尖塔先端の表面近傍の電界や作業物質放出面積に依存し、作業物質の種類や作業物質の熱励起放出・作業物質の電界放出・作業物質の光放出などの放出方法によってあるいは空間12での空間電荷分布にしたがって流れる。It must be larger than [V / m]. The electric field can be increased by reducing the radius of curvature of the steeple surface 13, increasing the height of the steeple, and shortening the distance between the terminals of the surfaces 13 and 14. The current depends on the electric field in the vicinity of the surface of the tip of the spire and the work substance emission area. It flows according to the space charge distribution.

図1の空間12に与えられた電圧では空間部分に生じる電界の強さを必要な値まで大きくできない場合、あるいは作業物質流が小さい場合は、図2のように作業物質である荷電粒子受取端子表面22の形状を、作業物質である荷電粒子放出尖塔表面24を囲むように変形することで、最大電界E  When the voltage applied to the space 12 in FIG. 1 cannot increase the intensity of the electric field generated in the space portion to a required value or when the working material flow is small, the charged particle receiving terminal which is the working material as shown in FIG. By deforming the shape of the surface 22 so as to surround the charged particle emission spire surface 24 which is a working substance, the maximum electric field E Convex の値は変形する前より高まりそこでの荷電粒子放出する面積部分は増加する。またその他の尖った部位の電界が最大になる可能性もでてくる。その結果、荷電粒子放出量が増える。このように、表面22,24の形状を変化させることにより、作業物質である荷電粒子の電界放出による空間23での作業物質流が空間を挟む熱伝導材料20,21のいずれかの作業物質流に出来るだけ近づけ、あるいはより良くすることで、数1の性能指数を向上させることを可能とする。作業物質流量が小さい場合に図3のよう複数の尖塔構造30,31,32にし、並列にすることで作業物質流量を増やすことができる。The value of becomes higher than before deformation, and the area where charged particles are emitted increases. There is also a possibility that the electric field of other pointed parts will be maximized. As a result, the amount of charged particle emission increases. In this way, by changing the shape of the surfaces 22 and 24, the working substance flow in the space 23 due to the electric field emission of the charged particles as the working substance causes the working substance flow of any of the heat conducting materials 20 and 21 to sandwich the space. It is possible to improve the figure of merit of Equation 1 by making it as close as possible or better. When the working material flow rate is small, the working material flow rate can be increased by forming a plurality of spire structures 30, 31, and 32 in parallel as shown in FIG.

請求項1は図1の対峙端子対13、14が分離した空間部分の存在する熱電変換素子であるが、上記の方法を用いても作業物質が空間部分を移動しにくく、空間部分内の伝導する作業物質流が空間部分を挟む両端の熱伝導材料内の作業物質流に満たない場合がある。この場合には図6のように作業物質良導体で空間62を架橋することで、熱流を抑えた状態で、Lmax(T)よりも長い部材を用いることで対峙する端面61から端面60への直接の格子振動による熱流を抑えて、分離しているときより大きな作業物質流を得ることが可能である。図6で63として、数ナノメートルの径をもつ柱状(図4a)あるいは、数ナノメートルの厚みをもつ筒状(図4b)あるいは、作業物質流の方向に対して垂直面の少なくとも一辺が、数ナノメートルの長さである板状(図4c)の部材を使うと肉厚を表わす断面ではない表面でのフォノン散乱の影響が表面以外でのフォノン散乱の影響に比べて顕著になる。また、この場合作業物質流の方向以外で作業物質が散乱を受けにくい状態が存在することになり、表面が作業物質流の方向での作業物質の散乱にあまり影響を与えないほどの微小断面積であれば、作業物質流が大きくなる。空間次元の影響が作業物質流に影響を与える。この断面積で、架橋部材内部の作業物質流が架橋部材を挟む両端の熱電材料の作業物質流より小さくなるときには、作業物質良導体の断面積を大きくするか、複数の作業物質良導体を用いる(以後、微細構造物で架橋した空間を繋がった空間部分と略す)。数ナノメートルの肉厚の板状の部材(図4b,c)では細い部材(図4a)に比べて作業物質流が悪くなるが、三次元であるバルクに比べてはよくなる。請求項2では図6のように熱電変換素子60、61の間62に細い伝導体小体63で対峙端子対が繋がった空間部分を持つことにより性能指数を高めることを特徴とする。Claim 1 is a thermoelectric conversion element in which a space portion where the counter terminal pairs 13 and 14 of FIG. 1 are separated exists. However, even if the above method is used, the working substance is difficult to move in the space portion, and conduction in the space portion is performed. There are cases where the working substance flow to be performed is less than the working substance flow in the heat conducting material at both ends sandwiching the space portion. In this case, the space 62 is bridged with a working material good conductor as shown in FIG. 6, so that the heat flow is suppressed and a member longer than L max (T) is used to face the end surface 61 to the end surface 60. It is possible to suppress the heat flow due to direct grid vibration and obtain a larger working material flow when separated. As 63 in FIG. 6, at least one side of a columnar shape having a diameter of several nanometers (FIG. 4a), a cylindrical shape having a thickness of several nanometers (FIG. 4b), or a plane perpendicular to the direction of the working substance flow, When a plate-like member having a length of several nanometers (FIG. 4c) is used, the influence of phonon scattering on a surface that is not a cross section representing the thickness becomes more significant than the influence of phonon scattering outside the surface. In addition, in this case, there is a state where the working substance is not easily scattered in the direction other than the working substance flow direction, and the surface has a small cross-sectional area that does not significantly affect the scattering of the working substance in the working substance flow direction. If so, the working material flow is increased. Spatial dimension influences the working material flow. When the working material flow inside the bridging member is smaller than the working material flow of the thermoelectric material at both ends sandwiching the bridging member with this cross-sectional area, the cross-sectional area of the working material good conductor is increased or a plurality of working material good conductors are used (hereinafter referred to as the working material good conductor). , A space that is cross-linked with a fine structure is abbreviated as a space part). A plate-like member having a thickness of several nanometers (FIGS. 4B and 4C) has a worse working substance flow than a thin member (FIG. 4A), but is better than a three-dimensional bulk. As shown in FIG. 6, the figure of merit is enhanced by having a space portion where a pair of opposite terminals are connected by a thin conductor body 63 between the thermoelectric conversion elements 60 and 61 as shown in FIG.

電流は、古典系作業物質あるいは量子系作業物質により伝えられる。熱は電力を生じさせるものに付随して伝えられたり、格子振動、輻射などによって伝えられたりする。空間部分が狭い場合、あるいは空間部分が細線によって架橋された場合は極低温では量子系作業物質を利用することができる。以後細線によって架橋された空間部分を繋がった空間部分と略する。磁場がある場合、ホール効果やネルンスト効果により、あるいはそれに作業物質の抵抗が加わり、熱流や電流や電圧が同じ方向を向かない。格子振動に対してはL max (T)以上の距離であり、作業物質流に対してはそれに付随する伝熱を妨げるように空間部分や繋がった空間部分を設けることにより熱電材料の性能指数を向上させる。The current is transmitted by a classical working material or a quantum working material. Heat is transmitted along with what generates electric power, or is transmitted by lattice vibration, radiation, or the like. When the space portion is narrow, or when the space portion is cross-linked by a thin line , the quantum work material can be used at a very low temperature. Hereinafter, the space part bridged by the thin line is abbreviated as a connected space part. In the presence of a magnetic field, the resistance of the work substance is added due to the Hall effect or the Nernst effect, or the heat flow, current and voltage do not point in the same direction. It is a distance of L max (T) or more with respect to lattice vibration, and the performance index of the thermoelectric material is obtained by providing a space portion or a connected space portion so as to prevent the heat transfer associated with the working material flow. Improve.

光を含む電磁波や放射線を図8の空間82に接し対峙する熱電材料81の界面に照射すると、そのエネルギーが作業物質に与えられる。これにより作業物質が高いエネルギー状態になり、空間部分への作業物質のポテンシャル障壁越えのエネルギーが小さくなる。
また作業物質のポテンシャルをトンネル透過するポテンシャル障壁の幅が小さくなる。あるいは表面上の飛び出しやすい作業物質の状態をとることができる。放射線源は、主に、作業物質の作業物質放出表面から作業物資受取表面への移動を助ける働きをする。請求項3は図8の空間82を移動する作業物質や、放出端子表面をもつ材料81や表面から空間82に出ようとする作業物質に空間82に配した電磁波供給部や放射線源から作業物質にエネルギーを与え、作業物質が空間82を伝導しやすくすることを可能とする。放射線源を作業物質の放出端子乃至放出端子81に対峙する熱電材料80表面部分に埋め込むこともできる。放射線源を作業物質放出端子81近傍に置いた場合あるいは埋め込んだ場合には、放射崩壊による熱を利用することができる。光を用いる場合には光ファイバー等を用いて空間部分内に導き作業物質放出面を照射する。あるいは空間部分での中心部分での対峙端子間距離が短く、外側で対峙端子間距離を長くすることで内部まで光が到達できるようになる。図8において81を尖塔構造にすることで電界電子放出の効果を含めることもできる。
When an electromagnetic wave or radiation containing light is applied to the interface of the thermoelectric material 81 that contacts and opposes the space 82 in FIG. 8, the energy is given to the work substance. As a result, the working substance becomes a high energy state, and the energy exceeding the potential barrier of the working substance to the space portion is reduced.
In addition, the width of the potential barrier that tunnels through the potential of the working material is reduced. Or the state of the working substance which is easy to jump out on the surface can be taken. The radiation source primarily serves to help move the work material from the work material discharge surface to the work material receiving surface. Claim 3 is a working substance moving from the electromagnetic wave supply part or radiation source disposed in the space 82 to the working substance moving in the space 82 in FIG. 8, the material 81 having the discharge terminal surface, or the working substance to be released from the surface into the space 82. The working material can be easily conducted through the space 82. It is also possible to embed the radiation source in the surface portion of the thermoelectric material 80 facing the work substance discharge terminal or the discharge terminal 81. When the radiation source is placed in the vicinity of the working substance discharge terminal 81 or embedded, the heat generated by the radiation decay can be used. When light is used, it is guided into the space using an optical fiber or the like to irradiate the work substance discharge surface. Alternatively, the distance between the counter terminals at the center portion in the space portion is short, and the light can reach the inside by increasing the distance between the counter terminals on the outside. In FIG. 8, the effect of field electron emission can be included by making 81 a spire structure.

空間部分あるいは繋がった空間部分を含む熱変換素子は作業物質の移動度が位置的・時間的に均一でなくなる。作業物質の持つ電荷の流入量と流出量が違う界面では、作業物質の電荷の流入あるいは流出が多く電荷が蓄積し、作業物質流を阻害する。また、作業物質の電荷が蓄積すると熱変換素子の劣化が起こる。請求項4は作業物質受取端子表面あるいは放出端子表面に作業物質良導体薄膜をコーティングすることでそれら表面に局部的に存在する作業物質を拡散させる効果が得られることを特徴とする。作業物質良導体薄膜のコーティングは、素子を強化することにより、あるいは熱の集中を防ぐことにより劣化の影響を少なくし、単位時間に得られるエネルギー量を増加させる。作業物質受取端子表面あるいは放出端子表面を作業物質良導体をコーティングすることにより作業物質受取端子表面あるいは放出端子表面と熱電材料内部との局在濃度差に基づいた端子内部への移動に対する作業物質のポテンシャル障壁を小さくし、あるいは作業物質の濃度が過不足であることに基づく破壊を少なくすることができる。In the heat conversion element including the space portion or the connected space portion, the mobility of the working material is not uniform in position and time. At the interface where the amount of inflow and outflow of electric charge of the working material is different, the inflow or outflow of the electric charge of the working material is large and the electric charge is accumulated, thereby obstructing the working material flow. Further, when the charge of the working substance is accumulated, the heat conversion element is deteriorated. The fourth aspect of the present invention is characterized in that an effect of diffusing a working substance locally present on the surface of the working substance receiving terminal surface or the discharging terminal surface is obtained by coating the working substance good conductor thin film. The coating of the working material good conductor thin film reduces the influence of deterioration by strengthening the element or preventing concentration of heat, and increases the amount of energy obtained per unit time. The potential of the working substance against movement into the terminal based on the local concentration difference between the working substance receiving terminal surface or the discharge terminal surface and the thermoelectric material by coating the working material receiving terminal surface or the discharge terminal surface with a good working material conductor The barriers can be reduced, or destruction caused by excessive or insufficient working substance concentrations can be reduced.

空間部分をもつ熱電変換素子では、作業物質の空間部分での移動にともない、空間内の局所的な移動による衝撃や力学的破壊により端子部分の劣化が起る。また、空間に気体、あるいは金属蒸気を封入することで、気体分子との作業物質との間の衝突、作業物質の空間でのエネルギー状態を変化させる。請求項5は作業物質放出表面透過後の放出表面内あるいは受取表面の作業物質励起による摩擦以外の熱電材料破壊を無くすためにその表面を他の物質でコーティングしたり他の物質を接合させたり、原子間結合力を大きくすることによって、あるいは原子集団で協調した動きをさせることで保護することを特徴とする。あるいは作業物質受取端子をかご型の熱電材料を用いることによって振動を吸収し劣化を防ぐことも可能である。In a thermoelectric conversion element having a space portion, the terminal portion deteriorates due to impact or mechanical destruction due to local movement in the space as the working substance moves in the space portion. In addition, by encapsulating the gas or metal vapor, the space, the collision between the work material and gas molecules, changing the energy state in the space of the working substance. In order to eliminate thermoelectric material destruction other than friction caused by working substance excitation in the release surface or the receiving surface after passing through the work substance release surface, the surface may be coated with another substance or joined with another substance. It is protected by increasing interatomic bonding force or by making coordinated movements in atomic groups. Alternatively, a cage-type thermoelectric material can be used for the work substance receiving terminal to absorb vibration and prevent deterioration.

セグメント化された熱電材料を組み合わせる方式では熱電システムの耐久性は熱電材料と電極部分の接合している部分やセグメントで生じる界面の使用時の温度分布、空間部分の熱膨張や熱源の熱揺らぎによる動作時の温度変化の影響による熱応力での疲労により決まる。また、このために熱電材料と電極間の接触抵抗が大きくなって、その結果、疲労亀裂のジュール熱による焼損が報告されている。空間部分を設けることによって、熱膨張による力学的な破損を防ぐことができる。対峙端子間はLmax (T)より大きくしてあるので、特に低温での量子揺らぎや、動作時の温度変化による界面の揺らぎでの熱応力による破壊や、作業物質以外の界面間移動による疲労破壊が抑えられる。In the method of combining segmented thermoelectric materials, the durability of the thermoelectric system depends on the temperature distribution at the time of using the interface between the thermoelectric material and the electrode part, the interface between the segments, the thermal expansion of the space part, and the thermal fluctuation of the heat source. It is determined by fatigue due to thermal stress due to the influence of temperature change during operation. For this reason, contact resistance between the thermoelectric material and the electrode is increased, and as a result, burnout due to Joule heat of fatigue cracks has been reported. By providing the space portion, mechanical damage due to thermal expansion can be prevented. Since the distance between the opposite terminals is larger than L max (T), fatigue due to thermal fluctuation due to quantum fluctuation at low temperature, fluctuation of the interface due to temperature change during operation, and movement between interfaces other than the working substance Destruction is suppressed.

高温部と低温部の温度差が広域である発電時稼動中の発電では、複数段空間部分を配すことにより、起電力を大きくすることができる。図10のように複数セグメント化された熱電材料あるいは作業物質良導体により構成されているとする。このとき、熱電変換素子101表面にあるナノサイズの導体柱あるいはコイルの高さ、これらの作業物質放出面の曲率半径は作業物質の熱電材料のバルク状態密度からの変形や作業物質の移動に影響を与えるが、これらの値や、これら導体柱やコイルの作業物質放出表面積、空間部分端子間の最適距離およびセグメントの数は次のようにして決まる。空間部分端子間距離はサブマイクロメータでLmax (T)より大きい値から近づけることで、図10の発電稼働を具体例として、下記のように作業物質流をより大きくできる。
1)空間部分端子間内の尖塔表面から対峙端子表面間距離が max (T)を超えると、この空間部分のフォノンによる熱伝達をほとんど無視できる。この max (T)は、尖塔表面と対峙端子を構成する原子間の力と関係があり原子間力顕微鏡と測定表面間距離の実測測定範囲から得ることができる。熱膨張や熱源の熱揺らぎ、特に低温では量子揺らぎを考慮することで max (T)を補正できる。
2)動作中の空間部分内の尖塔表面の近傍の増強電界強度は対峙端子間での電位差/距離に曲率を考慮に入れた比例係数βをかけて近似できる。あるいは、シミュレーションによって求められる。また対峙端子間の電位差は空間部分両端の熱電材料の起電力に影響を受ける
3)作業物質の熱励起や低温での量子揺らぎやトンネル透過による作業物質の移動量は作業物質放出面積・方向に依存する。また注入された端子でも、作業物質の移動の方向によって作業物質が注入された熱電材料バルクの作業物質の状態密度が注入前から変わり、その結果微視的な電気伝導度、熱伝導度に影響を与える。尖塔乃至尖塔に至る部位を細線にすることで、これらの物性値が変化し、性能指数がよくなる。空間部分の作業物質受取端面が上記2を満たすように空間形状や空間部分端子間距離を最適化して熱電材料の作業物質流に近づける。このような工夫によりスムーズで効率的な作業物質の空間移動が可能となる。
4)一つの尖塔では熱電材料バルク以上の作業物質流が得られないときは、図2のように複数の尖塔を配すことにより作業物質流を大きくすることができる。複数の尖塔が電子放出端子表面に密にあると上記2のβの効果が大きく低減される。電界電子放出による作業物質流が分割される前の両端にある熱電材料の作業物質流以上になるか、あるいはできるだけ近づけるように電子放出端子表面の尖塔密度を含めて最適化する。このようにして適切な空間部分端子間距離が定まる。
温度差が広域であるために、分割される前の両端にある熱電材料の作業物質流以上になるか、空間部分内の増強電界強度による電界電子放出による作業物質流れが熱電材料バルクの作業物質流量以上になるか、あるいはできるだけ近づけるように電子放出端子表面の尖塔密度を含めて最適化できるならば、以上の1から4の工夫を他の空間部分に適応する。上記の結果、1個以上の電極端子表面の形状を含めて最適化された空間部分により、対峙端子間温度差による輻射放出エネルギー損失以外の付加損出を大きく低減できる。高温部と低温部の温度差が狭域である発電稼動がある場合は、空間部分端子間距離の最適化ができない。この場合は図6の繋がった空間部分を用いる。冷却の場合は必要なだけの電圧・電流を印加する。上記のように製造されれば、熱電材料の性能指数が最高であっても、熱変換素子の性能指数は大きく改善される。また冷却稼働は発電稼働の可逆過程なので、冷却稼働でもこのように製造された熱変換素子の効率は大きく改善される。
In power generation in operation during power generation in which the temperature difference between the high-temperature part and the low-temperature part is wide, the electromotive force can be increased by arranging a plurality of stages. As shown in FIG. 10, it is assumed that a plurality of segmented thermoelectric materials or good working substance conductors are used. At this time , the height of the nano-sized conductive pillar or coil on the surface of the thermoelectric conversion element 101 and the radius of curvature of the working substance discharge surface influence the deformation of the working substance from the bulk density of the thermoelectric material and the movement of the working substance. However, these values, the working substance discharge surface area of these conductor columns and coils, the optimum distance between the space terminals and the number of segments are determined as follows. By making the distance between the space partial terminals closer to a value larger than L max (T) with a sub-micrometer, the working material flow can be further increased as described below by taking the power generation operation of FIG. 10 as a specific example.
1) When the distance between the surface of the spire in the space portion terminal to the surface of the counter terminal exceeds L max (T) , heat transfer due to phonons in this space portion can be almost ignored. This L max (T) is related to the force between atoms constituting the spire surface and the counter terminal, and can be obtained from the actual measurement range of the distance between the atomic force microscope and the measurement surface. L max (T) can be corrected by taking into account thermal expansion and thermal fluctuations of the heat source, particularly quantum fluctuations at low temperatures.
2) The enhanced electric field strength in the vicinity of the surface of the steeple in the operating space can be approximated by multiplying the potential difference / distance between the counter terminals by the proportionality factor β taking into account curvature. Or it is calculated | required by simulation. The potential difference between the opposite terminals is influenced by the electromotive force of the thermoelectric material at both ends of the space portion.
3) The amount of movement of the working substance due to thermal excitation of the working substance, quantum fluctuations at low temperatures, and tunnel transmission depends on the working substance release area and direction . In the injected terminal, the state density of the working substance in the bulk of the thermoelectric material into which the working substance is injected changes depending on the direction of movement of the working substance, and as a result, the microscopic electric conductivity and thermal conductivity are affected. give. By making the spiers to the spiers a thin line, these physical property values change and the figure of merit improves. The space shape and the distance between the space portion terminals are optimized so that the working material receiving end face of the space portion satisfies the above-mentioned 2, and the working material flow of the thermoelectric material is brought close to the working material flow. Such a device enables smooth and efficient space movement of the working substance.
4) When a working material flow exceeding the bulk of the thermoelectric material cannot be obtained with one spire, the working material flow can be increased by arranging a plurality of spires as shown in FIG. When the plurality of spires are dense on the surface of the electron emission terminal, the effect of β of 2 is greatly reduced. The work material flow by field electron emission is optimized including the spire density on the surface of the electron emission terminal so that it is greater than or equal to the work material flow of the thermoelectric material at both ends before being divided. In this way, an appropriate distance between the space partial terminals is determined.
Due to the wide temperature difference, the working material flow of the thermoelectric material at both ends before being divided becomes greater than the working material flow of the thermoelectric material at the both ends, or the working material flow due to field electron emission due to the enhanced electric field strength in the space part is the working material of the thermoelectric material bulk If optimization including the spire density on the surface of the electron emission terminal can be performed so that the flow rate is increased or as close as possible, the above ideas 1 to 4 are applied to other space portions. As a result, an additional loss other than the radiation emission energy loss due to the temperature difference between the opposite terminals can be greatly reduced by the optimized space portion including the shape of one or more electrode terminal surfaces. When there is a power generation operation in which the temperature difference between the high temperature part and the low temperature part is narrow, the distance between the space partial terminals cannot be optimized. In this case, the connected space part of FIG. 6 is used. When cooling, apply the necessary voltage and current. If manufactured as described above, even if the performance index of the thermoelectric material is the highest, the performance index of the heat conversion element is greatly improved. Moreover, since the cooling operation is a reversible process of the power generation operation, the efficiency of the heat conversion element manufactured in this way is greatly improved even in the cooling operation.

図9のように熱電材料90と91あるいは熱電材料と端子を移動させる代わりに、熱電材料90との間で作業物質が散乱されにくく、しかも作業物質を放出する対峙端面91の尖塔の放出面積より大きくしかもそれに相似形状またはそれを囲む形状をもつ微小な作業物質の良伝導体94が作業物質の放出面に平行に移動するのをこの95に配置したアクチュエータは助ける。稼働開始時に交流を重畳することによって、空間部分92あるいは、アクチュエータが駆動する面94と電極表面90との間93がコンデンサーの役割を果たすことにより空間部分にかかる電圧を高い状態にすることができる。その結果、その高電圧を初動動作のトリガーとして利用できる。また、多段にすることでCR発振やCL発振を利用することで稼働時に目的とする空間部分にかかる電圧を高い状態にすることができる。As shown in FIG. 9, instead of moving the thermoelectric materials 90 and 91 or the thermoelectric material and the terminal , the working substance is less likely to be scattered between the thermoelectric materials 90, and moreover from the emission area of the spire on the opposite end face 91 that releases the working substance. The actuator arranged in 95 helps the fine working substance 94 having a large shape similar to or surrounding the fine moving substance 94 to move parallel to the working material discharge surface. By superimposing alternating current at the start of operation, the space portion 92 or the space 93 between the surface 94 driven by the actuator and the electrode surface 90 serves as a capacitor, so that the voltage applied to the space portion can be made high. . As a result, the high voltage can be used as a trigger for the initial action. Further, by using multiple stages, the voltage applied to the target space portion during operation can be made high by using CR oscillation or CL oscillation.

作業物質放出面あるいは作業物質受取面に手掛りを構成することにより、尖塔構造を作製しやすくなる。図11は請求項7を請求項1記載の熱電変換素子に適用する例である。作業物質放出端子表面をもつ熱電材料または作業物質良導体111と作業物質放出端子113の間に製造時における手掛り部位115を設けることにより尖塔構造を製造しやすくする。ナノメートルオーダーの放出端子にサブマイクロメートルオーダーの手掛り部位を設けることができる。あるいは作業物質受取面上に作業物質良導体である手掛り部位を設けることにより作率物質流の移動量を大きくすることもできる。  By constructing a cue on the working substance discharge surface or the working substance receiving surface, it becomes easy to produce a spire structure. FIG. 11 shows an example in which claim 7 is applied to the thermoelectric conversion element according to claim 1. By providing a cue portion 115 at the time of manufacture between a thermoelectric material having a work substance discharge terminal surface or a good work substance conductor 111 and the work substance discharge terminal 113, the spire structure is easily manufactured. A submicrometer order cue portion can be provided on the nanometer order discharge terminal. Alternatively, the amount of movement of the efficiency material flow can be increased by providing a cue portion which is a good conductor for the work material on the work material receiving surface.
図12は請求項7を請求項2記載の熱電変換素子に適用する例である。熱電材料または作業物質良導体120、121と作業物質が流れやすい架橋材料123とをつなぐ接合部に123よりも作業物質流の方向の形状の大きい手掛り部位124の125の少なくとも一方を設けることで性能の向上を目指す。  FIG. 12 shows an example in which claim 7 is applied to the thermoelectric conversion element according to claim 2. By providing at least one of the clue portions 124 having a shape larger in the direction of the working substance flow than 123 at the joint portion connecting the thermoelectric material or good working substance conductors 120 and 121 and the bridging material 123 in which the working substance easily flows, the performance can be improved. Aim for improvement.
手掛り部位115、124、125は構造を主に担うのではなく、作業物質流を制御することを担うこともある。手掛り部位で作業物質が散乱されにくくすることにより品質を向上することができる。また手掛り部位自体の作業物質の散乱されやすさを変えず、手掛り部位にコーティングを行うことによって作業物質の流れ、熱の流れを制御することもできる。あるいは、作業物質受取端子表面113あるいは作業物質良導体架橋部材123は手掛り部位の内部で直接、熱電材料または作業物質良導体に接続することで作業物質流を大きくすることができる。  The cue portions 115, 124, 125 are not primarily responsible for the structure but may be responsible for controlling the working material flow. The quality can be improved by making the work substance difficult to be scattered at the cue portion. Further, the flow of the work substance and the heat can be controlled by coating the cue part without changing the ease of scattering of the work substance in the cue part itself. Alternatively, the working substance flow can be increased by connecting the working substance receiving terminal surface 113 or the working substance good conductor bridging member 123 directly to the thermoelectric material or working substance good conductor inside the clue part.

本発明の原理に従った熱電材料の性能指数の最大化や最適化されたπ型モジュールやシステム実施形態についての以上の説明は、熱電材料、π型モジュールやシステムの最適化の例示及び説明を提供するものであり、網羅的なものでも、本発明の範囲を開示されたシ  The above description of maximizing the figure of merit of thermoelectric materials and optimized π-type modules and system embodiments in accordance with the principles of the present invention provides examples and explanations for optimizing thermoelectric materials, π-type modules and systems. The scope of the present invention is disclosed, even if it is exhaustive. ステム実施形態そのものに限定するものでもない。以上の教示により変更及び変形が可能であり、あるいは、本発明の様々なシステム実施形態の実施から変更及び変形が得られる。明らかなように、請求項に係る発明に従った空間部分あるいは繋がった空間部分を持つ熱電材料より熱変換素子を実現する方法、π型モジュール及び/又はシステムを提供することには、数多くの実施形態が採用され得る。It is not limited to the stem embodiment itself. Modifications and variations are possible in accordance with the above teachings, or variations and modifications can be obtained from implementations of the various system embodiments of the present invention. As is apparent, there are numerous implementations in providing a method, π-type module and / or system for realizing a thermal conversion element from a thermoelectric material having a space portion or a connected space portion according to the claimed invention. A form may be employed.

本出願の説明に使用された如何なるアクチュエータ、π型モジュールそしてシステム、特に断らない限り、本発明に決定的に重要な、あるいは不可欠なものとして解されるべきではない。  Any actuators, π-type modules and systems used to describe this application, unless otherwise noted, should not be construed as critical or essential to the invention.

熱電変換素子の尖塔端子を含む空間部分の図。The figure of the space part containing the spire terminal of a thermoelectric conversion element. 熱電変換素子の尖塔端子とそれを囲む端子を含む空間部分の図。The figure of the space part containing the spire terminal of a thermoelectric conversion element, and the terminal surrounding it. 熱電変換素子の尖塔構造を複数持つ空間部分の図。The figure of the space part which has two or more spire structures of a thermoelectric conversion element. 肉厚の断面積が微細な柱構造図。(a)は円柱。(b)は中空筒。(c)は直方体。Column structure diagram with a thin cross-sectional area. (A) is a cylinder. (B) is a hollow cylinder. (C) is a rectangular parallelepiped. 層状構造をもつ架橋部材の肉厚断面図。(a)は円柱。(b)は直方体。The thickness sectional drawing of the bridge | crosslinking member which has a layered structure. (A) is a cylinder. (B) is a rectangular parallelepiped. 熱電変換素子の繋がった空間部分の図。The figure of the space part to which the thermoelectric conversion element was connected. 熱電変換素子で複数の架橋部材をもつ繋がった空間部分の図。The figure of the connected space part which has a some bridge | crosslinking member with a thermoelectric conversion element. 熱電変換素子の空間部分の図。The figure of the space part of a thermoelectric conversion element. 作業物質放出端面と相似形状をもつアクチエータで動作する作業物流のある空間部分の図。The figure of the space part with the work physical distribution which operate | moves with the actuator which has a shape similar to a work substance discharge | release end surface. 熱電変換素子の多段にセグメント化された空間部分の図。The figure of the space part segmented into the multistage of the thermoelectric conversion element. 熱電変換素子の手掛り部位をもつ尖塔端子を含む空間部分の図。The figure of the space part containing the spire terminal which has a cue part of a thermoelectric conversion element. 熱電変換素子の手掛り部位をもつ繋がった空間部分の図。The figure of the connected space part with the clue part of a thermoelectric conversion element.

10 作業物質受取端子表面をもつ熱電材料または作業物質良導体
11 作業物質放出端子表面をもつ熱電材料または作業物質良導体
12 空間
13 作業物質放出端子の尖塔表面
14 作業物質受取端子表面
20 作業物質受取端子表面をもつ熱電材料または作業物質良導体
21 作業物質放出端子表面をもつ熱電材料または作業物質良導体
22 空間
23 作業物質放出端子の尖塔表面
24 作業物質受取端子表面
30、31、32 尖塔構造
60 熱電材料
61 熱電材料または作業物質良導体
62 空間
63 作業物質良導体である架橋部材
70 作業物質受取端子表面をもつ熱電材料または作業物質良導体
71 作業物質放出端子表面をもつ熱電材料または作業物質良導体
72 空間
73 複数の作業物質良導体架橋部材
80 作業物質受取端子表面をもつ熱電材料または作業物質良導体
81 作業物質放出端子表面をもつ熱電材料または作業物質良導体
82 空間
90、91 熱電材料または作業物質良導体
92 空間
93 相似形状をもつ面と端子表面との間の空間
94 相似形状をもつ面
95 相似形状をもつ面と端子表面との間を保持し、作業物質が流れるようにする材料
100、101、102 熱電材料または作業物質良導体のセグメント
110 作業物質受取端子表面をもつ熱電材料または作業物質良導体
111 作業物質放出端子表面をもつ熱電材料または作業物質良導体
112 空間
113 作業物質放出端子の尖塔表面
114 作業物質受取端子表面
115 手掛り部位
120 熱電材料
121 熱電材料または作業物質良導体
122 空間
123 作業物質良導体架橋部材
124、125 手掛り部位
10 Thermoelectric material or working substance good conductor with working substance receiving terminal surface 11 Thermoelectric material or working substance good conductor with working substance discharging terminal surface 12 Space 13 Spire surface of working substance discharging terminal 14 Working substance receiving terminal surface 20 Working substance receiving terminal surface Thermoelectric material or working substance good conductor 21 having a working substance discharge terminal surface Thermoelectric material or working substance good conductor 22 Space 23 Spire surface 24 of working substance discharge terminal Working substance receiving terminal surface 30, 31, 32 Spire structure 60 Thermoelectric material 61 Thermoelectric Good material or working substance conductor 62 Space 63 Bridging member 70 which is a working substance good conductor Thermoelectric material or working substance good conductor 71 having a working substance receiving terminal surface Thermoelectric material or working substance good conductor 72 having a working substance discharge terminal surface Space 73 Multiple working substances Good conductor bridging member 80 Heat with work substance receiving terminal surface Good material or working substance conductor 81 Thermoelectric material or working substance good conductor 82 having working substance discharge terminal surface Space 90, 91 Thermoelectric material or working substance good conductor 92 space 93 Space 94 between the surface having a similar shape and the terminal surface Surface 95 having a similar shape and a material 100, 101, 102 for allowing the working substance to flow between the surface having the similar shape and the terminal surface, or a segment 110 of a good conductor of the working substance, or a thermoelectric material having a working substance receiving terminal surface or Working material good conductor 111 Thermoelectric material having working substance discharge terminal surface or working substance good conductor 112 space 113 Working substance discharge terminal spire surface 114 Working substance receiving terminal surface 115 Cue part 120 Thermoelectric material 121 Thermoelectric material or working substance good conductor 122 Space 123 Work Material good conductor bridging member 124, 125

Claims (8)

熱電材料の端部とそれと対峙する材料表面との間乃至前記熱電材料を構成する熱電材料部内に、熱流乃至作業物質流の伝わるのを妨げる1つ以上の空間を備え、これら空間と接する熱電材料と同等乃至それ以上の作業物質流量があるが作業物質に起因する以外の熱伝量が殆ど無視できる距離以上の大きさであり、電界電荷粒子、磁界電荷粒子、ジョセフソン接合あるいは濃度拡散場を含めた外界作業物質粒子放出しやすい形状である空間部分を持つことにより空間部分がなく互いに接合した場合に比べ熱伝導率を低減しあるいは熱応力による損傷乃至素材イオンの拡散混入を低減すること、あるいは作業物質端部への移動により発生した熱を利用することを特徴とする熱電変換素子。One or more spaces between the end of the thermoelectric material and the surface of the material facing the thermoelectric material or in the thermoelectric material portion constituting the thermoelectric material, which prevent the flow of the heat flow or working substance flow , and the thermoelectric material in contact with these spaces The flow rate of the work substance is equal to or greater than that, but the heat transfer other than that caused by the work substance is almost negligible, and the electric field charge particles , magnetic field charge particles, Josephson junction or concentration diffusion field By including a space part that is easy to release the external working substance particles included , there is no space part to reduce the thermal conductivity or to reduce the damage due to thermal stress or the diffusion of material ions, Or the thermoelectric conversion element characterized by using the heat | fever generate | occur | produced by the movement to the edge part of a working substance. 熱電材料の端部とそれと対峙する材料表面との間乃至前記熱電材料を構成する熱電材料部内に、熱流乃至作業物質流の伝わるのを殆ど妨げる広がりである1つ以上の空間を備え、これらの少なくとも1つの空間に1つ以上の細線で架橋することにより、この架橋した空間に接する熱電材料と同等乃至それ以上の作業物質流量があるが作業物質に起因する以外の熱伝量がフォノンの散乱によって小さくできる距離以上の細線の長さであり、空間部分がなく互いに接合した場合に比べ熱伝導率を低減しあるいは熱応力による損傷乃至素材イオンの拡散混入を低減することを特徴とする熱電変換素子。In thermoelectric material part comprising between to the thermoelectric material of the end portion and the therewith confronting the material to the surface of the thermoelectric material comprises one or more spaces are spread prevent the transferred heat flow to the working substance stream most of these By bridging at least one space with one or more fine wires, there is a working substance flow rate equal to or higher than that of the thermoelectric material in contact with this bridging space , but the heat transfer other than that caused by the working substance causes phonon scattering. Thermoelectric conversion characterized in that it is longer than the distance that can be reduced by the length of the wire, and has reduced thermal conductivity or reduced damage due to thermal stress or diffusion of material ions compared to the case where they are joined together without any space. element. 請求項1、請求項2記載の熱電変換素子において、これらの少なくとも1つの空間に熱電材料などの界面近傍に電磁波源あるいは放射線源を具備した空間をもつために、これら線源を具備した空間と接する熱電材料と同等乃至それ以上の電流量があり、空間部分乃至架橋した空間部分がなく互いに接合した場合に比べ熱伝導率を低減することを特徴とする熱電変換素子。 Claim 1, in the thermoelectric conversion element according to claim 2, wherein, with these in order to have a space provided with the electromagnetic wave source or radiation source to at least one spatial vicinity of the interface, such as a thermoelectric material, a space provided these ray source A thermoelectric conversion element having a current amount equal to or greater than that of a thermoelectric material in contact with the thermoelectric material, and having a space portion or a bridged space portion and having a reduced thermal conductivity as compared to a case where they are joined to each other. 請求項1、請求項2、請求項3記載の熱電変換素子で空間部分乃至架橋した空間部分に接する表面を導電性材料によりコーティングあるいは材料を接合し、局部的な帯電乃至作業物質の滞留を防ぐことを特徴とする熱電変換素子。The surface in contact with the space portion or the space portion cross-linked with the thermoelectric conversion element according to claim 1, claim 2, or claim 3 is coated or joined with a conductive material to prevent local charging or retention of a working substance. The thermoelectric conversion element characterized by the above-mentioned. 請求項1、請求項記載の熱電変換素子で空間部分乃至架橋した空間部分に接する表面をコーティングあるいは材料を接合することで前記表面の作業物質のエネルギー状態を変えて大きな電流乃至作業物質流が流れても劣化しにくいこと特徴とする熱電変換素子。By applying a coating or a material to the surface in contact with the space portion or the bridged space portion with the thermoelectric conversion element according to claim 1 or claim 3 , the energy state of the work material on the surface is changed, and a large current or work material flow is generated. A thermoelectric conversion element characterized by being hardly deteriorated even when flowing. 請求項1、請求項2、請求項3、請求項4、請求項5記載の熱電変換素子乃至空間部分に可動部をもつ熱変換素子を用いたセグメント素子であることにより設計しやすいことを特徴とする熱電変換モジュールおよび、それらを内蔵する熱電変換システム。A segment element using a thermoelectric conversion element according to claim 1, claim 2, claim 3, claim 4, or claim 5 or a heat conversion element having a movable portion in a space portion, which is easy to design. A thermoelectric conversion module and a thermoelectric conversion system incorporating them. 請求項1に記載の作業物質が放出しやすい形伏をもつ部位に空間部分でない方向から至る部位、または請求項2に記載の細線を結合する部位に、作業物質流の伝わる方向に垂直な方向の形状が前記外界作業粒子放出しやすい形状を持つ手掛り部位や前記細線と比べて大きい突起物乃至細線を付加することを特徴とする熱電変換素子。A direction perpendicular to the direction in which the working substance flow is transmitted to a part extending from a direction that is not a space part to a part having a shape that is easy to release the working substance according to claim 1, or a part that joins the thin line according to claim 2 A thermoelectric conversion element comprising a cue portion having a shape that allows easy release of the external work particles and a protrusion or fine wire larger than the fine wire. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項7に記載の熱電変換素子乃至請求項6に記載の熱電変換モジュールおよび、それらを内蔵する熱電変換システム。The thermoelectric conversion element according to claim 1, claim 2, claim 3, claim 4, claim 5, and claim 7, and the thermoelectric conversion system incorporating them.
JP2011057202A 2011-02-27 2011-02-27 A thermoelectric conversion element that includes a space part or a connected space part that reduces the amount of heat transfer to the thermoelectric material and the working material flow is greater than the original thermoelectric material Active JP5771852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057202A JP5771852B2 (en) 2011-02-27 2011-02-27 A thermoelectric conversion element that includes a space part or a connected space part that reduces the amount of heat transfer to the thermoelectric material and the working material flow is greater than the original thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057202A JP5771852B2 (en) 2011-02-27 2011-02-27 A thermoelectric conversion element that includes a space part or a connected space part that reduces the amount of heat transfer to the thermoelectric material and the working material flow is greater than the original thermoelectric material

Publications (3)

Publication Number Publication Date
JP2012178533A JP2012178533A (en) 2012-09-13
JP2012178533A5 true JP2012178533A5 (en) 2012-11-08
JP5771852B2 JP5771852B2 (en) 2015-09-02

Family

ID=46980176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057202A Active JP5771852B2 (en) 2011-02-27 2011-02-27 A thermoelectric conversion element that includes a space part or a connected space part that reduces the amount of heat transfer to the thermoelectric material and the working material flow is greater than the original thermoelectric material

Country Status (1)

Country Link
JP (1) JP5771852B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350817B2 (en) * 2014-08-23 2018-07-04 眞人 馬淵 Module group consisting of a combination of a thermoelectric conversion element and a π-type module group consisting of a thermoelectric material, a thermoelectric conversion element and a thermoelectric material.
CN109975348A (en) * 2019-03-07 2019-07-05 北京工业大学 A kind of in-situ heat electric performance testing device, preparation method and system
CN110020479B (en) * 2019-04-09 2022-07-08 中国核动力研究设计院 Analysis method for random turbulence excitation induced vibration of cylindrical structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03270084A (en) * 1990-03-19 1991-12-02 Murata Mfg Co Ltd Manufacture of thermoelectric element
US6403876B1 (en) * 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US8018053B2 (en) * 2008-01-31 2011-09-13 Northrop Grumman Systems Corporation Heat transfer device

Similar Documents

Publication Publication Date Title
Zabek et al. Solid state generators and energy harvesters for waste heat recovery and thermal energy harvesting
JP6350817B2 (en) Module group consisting of a combination of a thermoelectric conversion element and a π-type module group consisting of a thermoelectric material, a thermoelectric conversion element and a thermoelectric material.
US7884277B2 (en) Apparatus for the conversion of electromagnetic radiation in electric energy and corresponding process
Shakouri Recent developments in semiconductor thermoelectric physics and materials
Shakouri Nanoscale thermal transport and microrefrigerators on a chip
JP4881919B2 (en) Thermoelectric generator with thermoelectric element
Jiang Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects
JP2011514670A (en) Energy conversion device
JP2011514659A (en) Method and system for solid state cooling system
KR20120086190A (en) Thermoelectric Device using Bulk Material of Nano Structure and Thermoelectric Module having The Same, and Method of Manufacture The Same
KR101779497B1 (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
WO2014030264A1 (en) Thermoelectric conversion element including in thermoelectric material space or space in which connection is made such that heat transfer amounts are reduced and working substance flow is equal to or greater than that for original thermoelectric material
Khoshaman et al. Thermionics, thermoelectrics, and nanotechnology: New possibilities for old ideas
JP5771852B2 (en) A thermoelectric conversion element that includes a space part or a connected space part that reduces the amount of heat transfer to the thermoelectric material and the working material flow is greater than the original thermoelectric material
Bosisio et al. Nanowire-based thermoelectric ratchet in the hopping regime
JP2012178533A5 (en)
Muttalib et al. Nonlinear thermoelectricity in disordered nanowires
Gerstenmaier et al. Efficiency of thermionic and thermoelectric converters
US20150333242A1 (en) Energy Generation Device Using Non-Maxwellian Gases
US20210273150A1 (en) Thermoelectric device utilizing non-zero berry curvature
Ghamaty et al. Quantum well thermoelectric devices
JP3582233B2 (en) Thermoelectric conversion element
JP4574274B2 (en) Thermoelectric converter
US20150357540A1 (en) Heat engine and method for harvesting thermal energy
CN110459669B (en) Quasi-one-dimensional nano-structure thermoelectric material, device and preparation method thereof