JP2012178380A - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
JP2012178380A
JP2012178380A JP2011039183A JP2011039183A JP2012178380A JP 2012178380 A JP2012178380 A JP 2012178380A JP 2011039183 A JP2011039183 A JP 2011039183A JP 2011039183 A JP2011039183 A JP 2011039183A JP 2012178380 A JP2012178380 A JP 2012178380A
Authority
JP
Japan
Prior art keywords
cylindrical cavity
electric field
plasma
plasma processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011039183A
Other languages
Japanese (ja)
Other versions
JP2012178380A5 (en
JP5913817B2 (en
Inventor
Shinji Kohama
慎司 小濱
Masaru Izawa
勝 伊澤
Kenji Maeda
賢治 前田
Yoshihide Kihara
嘉英 木原
Koichi Yamamoto
浩一 山本
Hitoshi Tamura
仁 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011039183A priority Critical patent/JP5913817B2/en
Priority to US13/236,775 priority patent/US20120186747A1/en
Publication of JP2012178380A publication Critical patent/JP2012178380A/en
Publication of JP2012178380A5 publication Critical patent/JP2012178380A5/ja
Application granted granted Critical
Publication of JP5913817B2 publication Critical patent/JP5913817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processing device which is improved in characteristics of processing, and the uniformity of a geometry resulting from the processing in a radial direction of a sample.SOLUTION: The plasma processing device comprises: a vacuum container; a processing chamber which is placed in the vacuum container, and in which plasma is formed; a sample holder placed in the processing chamber; a round plate member which is made of a dielectric and disposed over the processing chamber, and through which an electric field for forming the plasma extends; a cylindrical cavity part which is placed over the plate member, and into which the electric field is led; a cylindrical pipe line which is coupled with an upper central portion of the cavity and extends vertically, and in which the electric field is transmitted; and a generator which is placed at an end of the pipe line, and operable to generate the electric field. The cavity part includes: a first cylindrical cavity part having a bottom face formed by the plate member, and a cylindrical cavity with a large diameter; a second cylindrical cavity part located above and connected with the first cylindrical cavity part, and having a cylindrical cavity with a small diameter; and a stepped portion located and connecting between the first and second cylindrical cavity parts.

Description

本発明は、有磁場マイクロ波を用いたプラズマ処理装置及び、プラズマ処理方法に関わり、特に半導体デバイスの製造工程でウエハ表面の積膜をエッチング処理するのに好適なプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus using a magnetic field microwave and a plasma processing method, and more particularly to a plasma processing apparatus suitable for etching a deposited film on a wafer surface in a semiconductor device manufacturing process.

国際半導体技術ロードマップ(International Technology Roadmap for Semiconductor;ITRS)によれば、2012年にMPU物理ゲート長22nmノードの量産が開始され、ウエハ面内の許容ゲート長差(CDU)<1.0nmの性能確保が必要となる。さらに、2015年に450mmウエハの処理のためのラインが立ち上がることが予想されている。これに伴い、半導体デバイスの微細化と、ウエハの大口径化に対応した次世代のプラズマ処理装置が必要となり、特に上記の450mmウエハ径(18inch)で、広範囲に渡って高い均一性を持つプラズマ源の開発が急務となる。   According to the International Technology Roadmap for Semiconductor (ITRS), the mass production of MPU physical gate length of 22 nm node started in 2012, and the allowable gate length difference (CDU) in the wafer plane <1.0 nm Securement is necessary. Furthermore, a line for processing 450 mm wafers is expected to start in 2015. Along with this, a next-generation plasma processing apparatus is required to cope with miniaturization of semiconductor devices and an increase in wafer diameter, and in particular, plasma having high uniformity over a wide range with the above-mentioned 450 mm wafer diameter (18 inches). Source development is an urgent need.

半導体デバイス製造工程で、プラズマエッチング,プラズマCVD,プラズマエッチング等のプラズマ処理が広く用いられている。プラズマは、真空処理室内に高周波電力やマイクロ波電力を投入して内部に供給されたガスの粒子を励起して生成する。上記プラズマ処理では、真空処理室中に配置した半導体ウエハ等の基板状の試料がこのプラズマを用いて処理される。   In the semiconductor device manufacturing process, plasma processing such as plasma etching, plasma CVD, and plasma etching is widely used. Plasma is generated by exciting high-frequency power or microwave power into the vacuum processing chamber and exciting the gas particles supplied to the inside. In the plasma processing, a substrate-like sample such as a semiconductor wafer disposed in a vacuum processing chamber is processed using this plasma.

すなわち、このプラズマ中のイオン等の荷電粒子をウエハの表面に誘引しプラズマにより形成された高い反応性を有するラジカル(活性粒子)とウエハ表面に配置された膜状の材料との化学反応を促進して当該膜のプロセスを進行させ所望の形状を得ている。このようなプラズマ処理には、半導体デバイスの微細化に対応した圧力領域での形状制御性とウエハ面内処理均一性が求められている。特に、マイクロ波2.45GHzとソレノイドコイル磁場(875Gauss)とを用いてECR(Electron Cyclotron Resonance)を生じさせてプラズマを形成する有磁場マイクロ波プラズマエッチング装置は、低圧力で高密度なプラズマを生成できるため、半導体製造工程で用いられてきた。   In other words, charged particles such as ions in the plasma are attracted to the surface of the wafer to promote a chemical reaction between radicals (active particles) formed by the plasma and a film-like material placed on the wafer surface. Then, the process of the film is advanced to obtain a desired shape. Such plasma processing is required to have shape controllability in a pressure region corresponding to miniaturization of semiconductor devices and uniformity of in-plane processing. In particular, a magnetic field microwave plasma etching system that generates plasma by generating ECR (Electron Cyclotron Resonance) using microwave 2.45 GHz and solenoid coil magnetic field (875 Gauss) generates high-density plasma at low pressure. Since it can be used, it has been used in the semiconductor manufacturing process.

このような従来の技術の例としては、特開平7−235394号公報(特許文献1)に開示のものが知られている。この従来技術では、2.45GHzのマイクロ波を矩形導波管と円形導波管を伝播させて円筒空洞内に導入していた。この時、マイクロ波の伝播は、矩形導波管をTE01モード、円筒導波管をTE11モードで伝播していた。このモードで円筒空洞内に入ったマイクロ波は、マイクロ波透過窓とシャワープレートを介して真空処理室に導入される。そして、真空処理室を取り囲むソレノイドコイルによって処理室内の軸方向に磁場を形成し、径方向に875Gaussの等磁場面を形成する。2.45GHzの電界と875Gaussの磁界にて、ECRを起こし、プラズマを真空処理室に発生している。具体的には、電子は磁場からローレンツ力を受け、マイクロ波がサイクロトロン周波数となるため、電子は同位相の電場を感じ、電力に応じて直流的に加速する。このため、高速電子が電離を促進し、低圧でも高密度プラズマを形成している。   As an example of such a conventional technique, one disclosed in Japanese Patent Laid-Open No. 7-235394 (Patent Document 1) is known. In this prior art, a 2.45 GHz microwave was introduced into a cylindrical cavity by propagating through a rectangular waveguide and a circular waveguide. At this time, the microwave propagated in the TE01 mode in the rectangular waveguide and in the TE11 mode in the cylindrical waveguide. Microwaves that enter the cylindrical cavity in this mode are introduced into the vacuum processing chamber through the microwave transmission window and the shower plate. A magnetic field is formed in the axial direction of the processing chamber by a solenoid coil surrounding the vacuum processing chamber, and an 875 Gauss isomagnetic surface is formed in the radial direction. ECR is caused by an electric field of 2.45 GHz and a magnetic field of 875 Gauss, and plasma is generated in the vacuum processing chamber. Specifically, electrons receive a Lorentz force from a magnetic field, and microwaves have a cyclotron frequency. Therefore, the electrons feel an electric field having the same phase and are accelerated in a DC manner according to the electric power. For this reason, high-speed electrons promote ionization and form high-density plasma even at low pressure.

マイクロ波プラズマエッチング装置の円筒空洞部内では、円筒導波管を通ったTE11モードのマイクロ波は、円筒空洞部で処理室の複数の箇所で反射端を持つ定在波となっている。この反射端は、石英製マイクロ波透過窓,石英製シャワープレート,プラズマ,プラズマを透過し処理室内の電極(試料台),処理室下端など至る箇所が端点となる。この他に、石英が誘電体のため、マイクロ波透過窓内,シャワープレート内,マイクロ波透過窓の下面とシャワープレートの上面の間で反射を繰り返し反射端となることも判っている。   In the cylindrical cavity of the microwave plasma etching apparatus, the TE11 mode microwave that has passed through the cylindrical waveguide is a standing wave having reflection ends at a plurality of locations in the processing chamber in the cylindrical cavity. The reflection end is an end point such as a quartz microwave transmission window, a quartz shower plate, plasma, plasma, and a portion of the processing chamber electrode (sample stage), lower end of the processing chamber, and the like. In addition, since quartz is a dielectric, it is also known that reflection is repeated between the inside of the microwave transmission window, the shower plate, the lower surface of the microwave transmission window, and the upper surface of the shower plate.

また、プラズマ密度が一定以上を超えた場合(有磁場の場合、電子密度>1×1011個/cm3)、マイクロ波のO波成分がカットオフとなり、プラズマにてマイクロ波が全反射する。これらの反射端と円形導波管の入射端から、進行波と反射波が複雑に干渉し、円筒空洞内で様々なモード、つまりは、波長を持つ定在波が発生している。この入射波TE11の単一モード、もしくは円筒空洞部の複数モードの定在波が、マイクロ波透過窓を通過し、真空室に入りプラズマの着火源として働き、プラズマの均一性を決定付けていたため、従来より、円筒空洞高さを適切に選び、均一で安定な高密度プラズマを生成していた。 When the plasma density exceeds a certain level (in the case of a magnetic field, the electron density> 1 × 10 11 / cm 3 ), the microwave O-wave component is cut off, and the microwave is totally reflected by the plasma. From these reflection ends and the incident end of the circular waveguide, traveling waves and reflected waves interfere in a complicated manner, and standing waves having various modes, that is, wavelengths, are generated in the cylindrical cavity. A single mode of the incident wave TE11 or a standing wave of a plurality of modes in the cylindrical cavity passes through the microwave transmission window, enters the vacuum chamber, functions as a plasma ignition source, and determines the uniformity of the plasma. For this reason, conventionally, the cylindrical cavity height has been appropriately selected to generate uniform and stable high-density plasma.

特開平7−235394号公報JP 7-235394 A

上記従来技術では、TE11モードを円形導波管で伝送しているため、円筒空洞部でもTEモード(TE11,TE21,TE01等)が生じやすく、円筒空洞部には基本的にはTEモードの定在波が発生し、真空処理室の広い範囲に渡り略均一なマイクロ波を伝播して均一なプラズマの密度を実現しようとするものである。しかしながら、このような技術では、プラズマ生成パラメータであるガス種・真空処理室内圧力・磁場プロファイル等の条件により、定在波の反射端であるプラズマ状態が変わるため、円筒空洞部での電界分布は変化し、TEモード以外のモードも発生しているという知見が、発明者らの検討により得られた。   In the above prior art, since the TE11 mode is transmitted through the circular waveguide, the TE mode (TE11, TE21, TE01, etc.) is likely to occur even in the cylindrical cavity, and the TE mode is basically defined in the cylindrical cavity. A standing wave is generated, and a substantially uniform microwave is propagated over a wide range of the vacuum processing chamber to achieve a uniform plasma density. However, in such a technique, the plasma state that is the reflection end of the standing wave changes depending on the plasma generation parameters such as the gas type, the pressure in the vacuum processing chamber, and the magnetic field profile, so the electric field distribution in the cylindrical cavity is The knowledge that the mode other than the TE mode is generated has been obtained by the inventors' investigation.

円筒空洞部でのTEモードの1例として、TEモードでのプロセスレートがウエハの表面の方向について(所謂面内の方向で)均一になるとして、極端に中心の電界強度が強く外周が緩やかに弱くなる、径方向に中凸形のプロファイルとなっていた。これは、プラズマにも転写され、ICF分布の場合、中心のICF電流が多く外周が小さい分布として現れ、レート分布の場合、中心レートが高く外周が低い分布として顕著に現れていた。この様なプラズマで、プロファイルが中凸型であっても、試料台の中心と外周の温度差を付け制御することで、イオンの入射量を変化させることで、試料の仕上がりを面内均一にしていた。   As an example of the TE mode in the cylindrical cavity, it is assumed that the process rate in the TE mode is uniform in the direction of the surface of the wafer (so-called in-plane direction). The profile was weak and weakly convex in the radial direction. This is also transferred to the plasma, and in the case of ICF distribution, it appears as a distribution with a large ICF current at the center and a small outer periphery, and in the case of rate distribution, it appears prominently as a distribution with a high center rate and a low outer periphery. Even if the profile is center-convex with such a plasma, by controlling the temperature difference between the center and the outer periphery of the sample table, the amount of incident ions can be changed to make the sample finish in-plane uniform. It was.

この試料台での制御とは別に、従来の円筒空洞構造では、特にフッ化物系のプロセス条件で、円形導波管直下、つまりは、円形導波管と円筒空洞部上蓋の接合部が不連続となり、この不連続部極端な強電界を発生させ、処理室内に発生しているプラズマとは別に、2つの小円形プラズマ(以下、異常放電)が発生することが実験的に判っている。この異常放電は石英製シャワープレート直下や、石英製マイクロ波透過窓とシャワープレートの間などで発生する。このため、ウエハ上のエッチングレート面内分布として転写した形で現れ、径方向ではM型もしくはW型のプロファイルを取ることがあった。このため、プロセス条件によってウエハ上のレート分布が、周方向と、径方向それぞれで、明らかに均一性に欠ける場合があった。   Apart from this control on the sample stage, in the conventional cylindrical cavity structure, especially under the fluoride-based process conditions, the junction directly between the circular waveguide and the top of the cylindrical cavity is discontinuous. Thus, it has been experimentally found that two small circular plasmas (hereinafter referred to as abnormal discharges) are generated separately from the plasma generated in the processing chamber by generating an extremely strong electric field at the discontinuous portion. This abnormal discharge occurs directly under the quartz shower plate or between the quartz microwave transmission window and the shower plate. For this reason, an etching rate distribution on the wafer appears in a transferred form, and an M-type or W-type profile may be taken in the radial direction. For this reason, the rate distribution on the wafer may clearly lack uniformity in the circumferential direction and the radial direction depending on the process conditions.

よって、処理室内に生成するプラズマのプロファイルは、凸や凹といった周方向に均一で、径方向はこの中心と外周の勾配差が小さい状態の場合、ウエハ試料台の温度差にて調整はできる。しかし、大部分はプラズマによるところが大きいため、φ450mmの大口径ではこの変動差が更に大きくなることが考えられる。   Therefore, the profile of plasma generated in the processing chamber is uniform in the circumferential direction such as convex or concave, and the radial direction can be adjusted by the temperature difference of the wafer sample stage when the gradient difference between the center and the outer circumference is small. However, since most of the difference is due to plasma, it is considered that this variation difference is further increased at a large diameter of φ450 mm.

本発明の目的は、試料の径方向について処理の特性や加工形状の均一さを向上させたプラズマ処理装置を提供することにある。   An object of the present invention is to provide a plasma processing apparatus in which the processing characteristics and the uniformity of the processing shape are improved in the radial direction of a sample.

上記目的は、真空容器と、この真空容器内部に配置され内部でプラズマが形成される処理室と、この処理室内に配置されその上面に試料が載置される試料台と、前記処理室の上方に配置され前記プラズマを形成するために供給される電界が透過する誘電体製の円形の板部材と、この板部材の上方に配置され内部に前記電界が導入される円筒形を有する空洞部と、この空洞の上部の中心に連結され上下に延在した内部を前記電界が伝播する円筒形の管路と、この管路の端部に配置され前記電界を発生する発生器とを備え、前記空洞部が前記板部材を底面とする径の大きな円筒形の空洞を有した第1の円筒空洞部とこの第1の円筒空洞部の上方でこれに接続されて配置され径の小さな円筒形の空洞を有した第2の円筒空洞部と、前記第1及び第2の円筒空洞部との間でこれらを接続する段差部とを備えたプラズマ処理装置により達成される。   The object is to provide a vacuum vessel, a processing chamber arranged inside the vacuum vessel and forming plasma therein, a sample stage arranged in the processing chamber and on which a sample is placed, and an upper side of the processing chamber A circular plate member made of a dielectric material through which an electric field supplied to form the plasma is transmitted, and a hollow portion having a cylindrical shape which is arranged above the plate member and into which the electric field is introduced A cylindrical pipe that is connected to the center of the upper part of the cavity and extends vertically, and the electric field propagates through the inside, and a generator that is arranged at an end of the pipe and generates the electric field, A first cylindrical cavity having a cylindrical cavity having a large diameter with the plate member as a bottom surface, and a cylindrical cylinder having a small diameter disposed above and connected to the first cylindrical cavity. A second cylindrical cavity having a cavity, and the first and second It is achieved by a plasma processing apparatus provided with a step portion connecting these with the cylindrical cavity.

さらに、前記第2の円筒空洞部と前記管路との間でこれらを接続する別の段差部と、空洞部の天井面が前記板部材に平行な面とを備えたことにより達成される。   Furthermore, this is achieved by providing another stepped portion for connecting the second cylindrical cavity portion and the pipe line, and a ceiling surface of the cavity portion parallel to the plate member.

さらにまた、前記第2の円筒空洞部の天井面が前記板部材と平行に配置されこの天井面の前記板部材の上面からの高さH2は前記電界の波長λに対してλ<H2<5λ/4の範囲にされたことにより達成される。   Furthermore, the ceiling surface of the second cylindrical cavity is arranged in parallel with the plate member, and the height H2 of the ceiling surface from the upper surface of the plate member is λ <H2 <5λ with respect to the wavelength λ of the electric field. This is achieved by being in the range of / 4.

さらにまた、前記第1の円筒空洞部の天井面が前記板部材と平行に配置されこの天井面の前記板部材の上面からの高さH1は前記電界の波長λに対してλ/4<H1の範囲にされたことにより達成される。   Furthermore, the ceiling surface of the first cylindrical cavity is arranged in parallel with the plate member, and the height H1 of the ceiling surface from the upper surface of the plate member is λ / 4 <H1 with respect to the wavelength λ of the electric field. This is achieved by making it within the range.

さらにまた、前記第2の円筒空洞部の円筒形の半径R2が前記電界の波長λに対してλ/4<R2の範囲にされたことにより達成される。   Furthermore, this is achieved by setting the cylindrical radius R2 of the second cylindrical cavity to a range of λ / 4 <R2 with respect to the wavelength λ of the electric field.

さらにまた、前記第2の円筒空洞部が中心を円筒形を有した前記試料台の中心軸に合わせて配置され、前記段差部が前記中心軸から外周側に向かう方向について円筒形状を有した前記試料台の外周より中央側に配置されたことにより達成される。   Furthermore, the second cylindrical cavity is arranged in alignment with the central axis of the sample stage having a cylindrical shape at the center, and the stepped portion has a cylindrical shape in a direction from the central axis toward the outer peripheral side. This is achieved by being arranged on the center side from the outer periphery of the sample stage.

さらにまた、前記電界が2.45GHzのマイクロ波の電界であって、前記処理室内に875Gaussの磁界を供給する磁場発生手段を有して、前記処理室内にECRにより前記プラズマが形成されることにより達成される。   Furthermore, the electric field is a microwave electric field of 2.45 GHz, and has magnetic field generating means for supplying an 875 Gauss magnetic field in the processing chamber, and the plasma is formed by ECR in the processing chamber. Achieved.

さらにまた、前記管路からTE11モードの前記マイクロ波が前記空洞部に供給されることにより達成される。   Furthermore, this is achieved by supplying the TE11 mode microwave from the pipe to the cavity.

本発明の実施例に係るプラズマ処理装置の構成の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of a structure of the plasma processing apparatus which concerns on the Example of this invention. 図1に示す実施例に係るプラズマ処理装置の上部に配置された電界導入部を拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed the electric field introduction | transduction part arrange | positioned at the upper part of the plasma processing apparatus based on the Example shown in FIG. 従来の技術における円筒空洞部内の水平方向に切った断面における電界および磁界の分布を示す模式図である。It is a schematic diagram which shows distribution of the electric field and magnetic field in the cross section cut in the horizontal direction in the cylindrical cavity part in a prior art. 図1に示す本実施例における円筒空洞部内の水平方向に切った断面における電界および磁界の分布を示す模式図である。It is a schematic diagram which shows distribution of the electric field and magnetic field in the cross section cut in the horizontal direction in the cylindrical cavity part in a present Example shown in FIG. 図1に示す実施例の円筒空洞部内の電界について模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the electric field in the cylindrical cavity part of the Example shown in FIG. 従来の技術及び図1に示す本実施例の処理室内でのプラズマから試料台内の電極に流れ込むイオン電流の試料の面内方向の分布(ICF分布)を示すグラフである。It is a graph which shows the distribution (ICF distribution) of the in-plane direction of the sample of the ionic current which flows into the electrode in a sample stand from the plasma in the process chamber of a prior art and a present Example shown in FIG.

以下に説明する本発明に係るプラズマ処理装置の実施の形態では、円筒空洞部を径の異なる第1及び第2の円筒空洞部を有する複数の円筒形状部分が同心状に上下方向に連結され複数段の円筒形状の空洞を備えて上記の課題を解決する目的を達成する。以下に詳細を説明する本発明の実施例に係るプラズマ処理装置において、その上部配置される電界を伝播するための構成である導波管及び空洞共振部は、その上部に上面が複数の段差を有した円筒形の空洞を内部に有しており、この内部に導入されるマイクロ波の電界は下方の処理室に伝播して導入される電界の分布の不均一を抑制して均一性を高めるように、所望の共振及び伝播の分布にされる。   In the embodiment of the plasma processing apparatus according to the present invention described below, a plurality of cylindrical portions having first and second cylindrical cavities having different diameters are connected to each other in the vertical direction concentrically. The objective which solves said subject is achieved by providing the cylindrical hollow of a step. In the plasma processing apparatus according to the embodiment of the present invention, which will be described in detail below, the waveguide and the cavity resonance part, which are configured to propagate the electric field disposed above, have a plurality of steps on the upper surface. It has a cylindrical hollow inside, and the electric field of the microwave introduced into this inside propagates to the lower processing chamber and suppresses the non-uniformity of the distribution of the introduced electric field, thereby improving the uniformity. Thus, the desired resonance and propagation distribution is achieved.

本実施の形態では、円形導波管をTE11モードで伝播したマイクロ波は、円筒空洞部にてTM12モードに変換される。これにより、真空処理室の中心と壁面の中間の位置で従来よりも強いプラズマを形成する。このことにより、プラズマの密度や強度の分布の不均一さが低減され均一性の向上した処理を行うことができる。   In the present embodiment, the microwave propagated through the circular waveguide in the TE11 mode is converted into the TM12 mode in the cylindrical cavity. Thereby, plasma stronger than before is formed at a position between the center of the vacuum processing chamber and the wall surface. Thus, nonuniformity of plasma density and intensity distribution is reduced, and processing with improved uniformity can be performed.

以下、本発明の実施形態を図面にて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〔実施例〕
図1は、本発明の実施例に係るプラズマ処理装置の構成の概略を示す縦断面図である。本図において、本実施例に係るプラズマ処理装置100は、円筒形状を有した処理室114を内部に備えた真空容器と、その上部に配置され処理室114内へ導入される電界が生成され伝播する電界導入部と、真空容器下方に配置され処理室114内のガスや生成物、プラズマの粒子が真空容器外に排出され処理室114内部を排気する排気部とを備えている。
〔Example〕
FIG. 1 is a longitudinal sectional view schematically showing the configuration of a plasma processing apparatus according to an embodiment of the present invention. In this figure, the plasma processing apparatus 100 according to the present embodiment generates and propagates a vacuum vessel having a processing chamber 114 having a cylindrical shape therein, and an electric field that is disposed above the chamber and introduced into the processing chamber 114. And an exhaust section that is disposed below the vacuum chamber and exhausts gas, products, and plasma particles from the vacuum chamber to the outside of the vacuum chamber.

電界導入部は大きく分けて、周波数2.45GHzのマイクロ波の電界の形成手段であるマグネトロン101とこれが端部に配置され各々断面の形状が矩形及び円形を有する管路が連結された導波管と、この導波管の下端部に連結されて処理室114の上方でこれを覆って配置される円筒形状を有する室内空間を有する共振部と備えて、これらは説明の順に連結されて配置されている。導波管部の端部(図上は左端部)に配置されたマグネトロン101で励起されて形成された周波数2.45GHzのマイクロ波は、導波管部を構成しマグネトロン101がその一端部の側面に設置された矩形導波管102の内部を伝播する。   The electric field introduction section is roughly divided into a waveguide in which a magnetron 101 which is a means for forming a microwave electric field having a frequency of 2.45 GHz and a pipe having a rectangular shape and a circular shape are connected to each other at the end. And a resonance part having a cylindrical interior space connected to the lower end portion of the waveguide and covering the processing chamber 114 above the processing chamber 114, and these are connected and arranged in the order of description. ing. A microwave having a frequency of 2.45 GHz formed by being excited by the magnetron 101 disposed at the end portion (left end portion in the drawing) of the waveguide portion constitutes the waveguide portion, and the magnetron 101 is provided at one end portion thereof. It propagates inside the rectangular waveguide 102 installed on the side surface.

導波管部は、上部に配置されて図上水平方向に延在するものであってその一端部に上記電界の形成手段が連結されて配置され断面が矩形を有した矩形導波管102と、この矩形導波管102の他端部の下方でこれと連結され上下方向に延在するものであって断面が円形状を有する円形導波管104とを有している。矩形導波管102及び円形導波管104の内部ではマイクロ波の電界はその強度あるいは密度の支配的な分布として特定のモードを有して導波管部の端部に向けて伝播する。なお、本実施例では矩形導波管102の一端部と他端部との間の上面に、方向性結合器と自動整合器103を有している。   The waveguide section is arranged at the upper part and extends in the horizontal direction in the figure, and is connected to the electric field forming means at one end thereof, and a rectangular waveguide 102 having a rectangular cross section. The rectangular waveguide 102 has a circular waveguide 104 which is connected to the lower end of the rectangular waveguide 102 and extends in the vertical direction and has a circular cross section. Inside the rectangular waveguide 102 and the circular waveguide 104, the microwave electric field propagates toward the end of the waveguide portion with a specific mode as a dominant distribution of its intensity or density. In this embodiment, a directional coupler and an automatic matching unit 103 are provided on the upper surface between one end and the other end of the rectangular waveguide 102.

本実施の形態では、本実施例ではTE01モードを有して図上右端部に向けてマイクロ波の電界が矩形導波管102内部を進行して伝播する。矩形導波管102の右端部に到達した電界は、変換導波管を介して、下方に連結され配置された円形導波管104内部に導入される。円形導波管104内部では電界はTE11モードを支配的な分布として有して図上下方の下端部に向けて伝播する。   In this embodiment, in this embodiment, a TE01 mode is provided and a microwave electric field propagates through the rectangular waveguide 102 and propagates toward the right end in the figure. The electric field that has reached the right end of the rectangular waveguide 102 is introduced into the circular waveguide 104 that is connected and disposed below through the conversion waveguide. Inside the circular waveguide 104, the electric field has a TE11 mode as a dominant distribution and propagates toward the lower end in the lower part of the figure.

円形導波管104は、その断面が円形の管内部に電界の円偏波モード変換のために石英等の誘電体材305を具備している。誘電体材305は円筒形状を有して管内の内壁面に接して稠密に配置されている。この誘電体材305をTE11モードの合成電界ベクトルに対し45度方向の位置に挿入すると、導入されるTE11モードの電界は90度位相が遅れるために出口では円周方向に回転した円偏波とすることができる。   The circular waveguide 104 includes a dielectric material 305 such as quartz for the circular polarization mode conversion of the electric field inside the circular tube. The dielectric material 305 has a cylindrical shape and is densely arranged in contact with the inner wall surface in the tube. When this dielectric material 305 is inserted at a position in the 45-degree direction with respect to the TE11 mode combined electric field vector, the TE11 mode electric field introduced is delayed by 90 degrees in phase, so that the circularly polarized wave rotated in the circumferential direction at the exit can do.

この円形導波管104の円形の断面での周方向に回転する電界により電界はその強度或いは密度の分布はその時間的に不均一が抑制されて均一性が向上されたものにされる。このような電界が下方に導入されて処理室内に形成されるプラズマの強度或いは密度の分布の均一性も同様に向上される。   The electric field rotating in the circumferential direction in the circular cross section of the circular waveguide 104 is such that the intensity or density distribution of the electric field is suppressed from being nonuniform in time and the uniformity is improved. The uniformity of the intensity or density distribution of the plasma formed in the processing chamber by introducing such an electric field downward is also improved.

断面の周方向に回転し所定のモードであるTE11モードを有して円形導波管104の端部に到達した電界は、下端部の下方でこれに連結された円筒空洞部内に導入される。本実施例の円筒空洞部は上記の通り異なる2つの径を有した円筒形状が上下に同心状に連結された内部の空洞を有しており、下方の円筒形の空洞部である第1円筒空洞部106の径よりも上方に配置される第2円筒空洞部107の径のほうが小さくされている。   The electric field that rotates in the circumferential direction of the cross section and has the TE11 mode, which is a predetermined mode, and reaches the end of the circular waveguide 104 is introduced into a cylindrical cavity connected to it below the lower end. As described above, the cylindrical cavity portion of the present embodiment has an internal cavity in which cylindrical shapes having two different diameters are concentrically connected in the vertical direction, and the first cylinder which is a lower cylindrical cavity portion. The diameter of the second cylindrical cavity 107 disposed above the diameter of the cavity 106 is made smaller.

本実施の例では、第1円筒空洞部は下方に配置されて同心状の円筒形状を有する処理室114と同径を有している。円形導波管104の下端部は、上記第1円筒空洞部106の上方に配置された第2円筒空洞部107の上面を構成するリング状の円板107′の中央部に配置された円形の開口の内周縁に沿って接続され、円形の開口と円形導波管104の内部とが連通することで、第2円筒空洞部107内部と円形導波管104内部とが連通されている。   In the present embodiment, the first cylindrical cavity has the same diameter as that of the processing chamber 114 disposed below and having a concentric cylindrical shape. The lower end portion of the circular waveguide 104 is a circular portion disposed at the center of a ring-shaped disk 107 ′ that constitutes the upper surface of the second cylindrical cavity portion 107 disposed above the first cylindrical cavity portion 106. The second cylindrical cavity 107 and the circular waveguide 104 are communicated with each other by being connected along the inner peripheral edge of the opening and communicating the circular opening and the inside of the circular waveguide 104.

第2円筒空洞部107内に導入されることで円筒空洞部内に導入された円偏波であるマイクロ波の電界は、円筒空洞部内において所定の強度や密度の分布と伝播のモードを有したものになり、第1円筒空洞部106の底面を構成してこれと同心状に配置される石英等の誘電体製の円板であるマイクロ波導入窓108とその下方に配置されて処理室114内部に面してその天井面を構成する石英等の誘電体製の円板であるシャワープレート109とを透過して処理室114内部に導入される。   The electric field of microwave which is circularly polarized wave introduced into the cylindrical cavity by being introduced into the second cylindrical cavity 107 has a predetermined intensity and density distribution and propagation mode in the cylindrical cavity. The microwave introduction window 108 which is a disc made of a dielectric material such as quartz and which is disposed concentrically with the bottom surface of the first cylindrical cavity 106 and the inside of the processing chamber 114 And is introduced into the processing chamber 114 through the shower plate 109, which is a disc made of a dielectric material such as quartz, which constitutes the ceiling surface thereof.

なお、電界導入部は、処理室114を構成する真空容器及び円筒空洞部の側壁の外周と上面の上方でこれらを囲んで配置された1系統ないし3系統のソレノイドコイル110とヨーク111とを有している。これらは供給された直流電力により処理室114内部にその軸方向に静磁界を形成する。   Note that the electric field introducing unit includes one or three systems of solenoid coils 110 and a yoke 111 arranged so as to surround the vacuum vessel and the cylindrical cavity that constitute the processing chamber 114 and above the outer periphery and upper surface of the side wall. is doing. These form a static magnetic field in the axial direction inside the processing chamber 114 by the supplied DC power.

マイクロ波導入窓108はその外周縁部において、下方の処理室114の内部と外部との間を気密に封止するOリング等のシール手段を有している。このシール手段により、処理中に減圧されて所定の真空度にされる処理室114内外が所期の圧力差を維持できるようにシールされている。   The microwave introduction window 108 has sealing means such as an O-ring that hermetically seals the inside and the outside of the lower processing chamber 114 at the outer peripheral edge thereof. By this sealing means, the inside and outside of the processing chamber 114 that is depressurized during processing to a predetermined degree of vacuum is sealed so that the desired pressure difference can be maintained.

マイクロ波導入窓108の下方にはこれと所定のすき間をあけて円板状のシャワープレート109が配置されている。シャワープレート109の中央の所定の範囲には貫通孔が複数配置され、これらを介して処理室114内部に処理用のガスが導入される。処理用のガスは図示しないガス源に連結された供給管路を通り、マイクロ波導入窓108とシャワープレート109との間のすき間に導入され、そのすき間内で拡散し当該すき間と連通した上記複数の貫通孔から処理室114内に上方から流入することで、処理室114内での処理用ガスの分布の不均一が低減される。   A disc-shaped shower plate 109 is disposed below the microwave introduction window 108 with a predetermined gap therebetween. A plurality of through holes are arranged in a predetermined range in the center of the shower plate 109, and a processing gas is introduced into the processing chamber 114 through these. The processing gas passes through a supply line connected to a gas source (not shown), is introduced into a gap between the microwave introduction window 108 and the shower plate 109, diffuses in the gap, and communicates with the gap. By flowing into the processing chamber 114 from above through the through-holes, non-uniform distribution of the processing gas in the processing chamber 114 is reduced.

処理室114の内部のシャワープレート109下方には、円筒形状を有して内部に導電体製の円板状の電極を有して試料である半導体ウエハが載せられる試料台116が配置されている。試料台116は円筒形を有した処理室114の側壁との間とすき間を開けて配置され、側壁との間は水平方向(図上左右方向)の複数の支持梁により連結されている。これら支持梁によって試料台116は、真空容器内部の処理室114内において試料台116の下方に空間を開けて、謂わば中空に保持されている。   Below the shower plate 109 inside the processing chamber 114, a sample stage 116 having a cylindrical shape and having a disk-shaped electrode made of a conductive material on which a semiconductor wafer as a sample is placed is disposed. . The sample stage 116 is disposed with a gap between the cylindrical side wall of the processing chamber 114 and is connected to the side wall by a plurality of support beams in the horizontal direction (left and right in the figure). The sample stage 116 is held in a so-called hollow state by opening a space below the sample stage 116 in the processing chamber 114 inside the vacuum vessel by these support beams.

真空容器の下方には、処理室114内部を排気して処理中等において内部を所定の圧力に調節する排気部が配置されている。処理室114の下部であって試料台116の直下方には、処理室114内部に導入された処理用ガスや処理のさいに形成された生成物やプラズマ等の粒子が外部に流出する開口が配置され、この開口から流路を通して粒子が排出される。   Below the vacuum vessel, there is disposed an exhaust unit for exhausting the inside of the processing chamber 114 and adjusting the inside to a predetermined pressure during processing. Under the processing chamber 114 and directly below the sample stage 116, there is an opening through which processing gas introduced into the processing chamber 114, particles formed during the processing, particles such as plasma flow out. And particles are discharged from this opening through the flow path.

本実施例に係るプラズマ処理装置100においては、開口の下方には、排気部を構成して、流路の軸方向に交差して配置された回転軸周りに回転して流路の断面積を増減するための複数の板状のフラップを有したバリアブルバルブ113及びその下方で入口が流路の出口に連通された真空ポンプであるターボ分子ポンプ112が配置されている。ガス源から上記すき間を通り導入孔から導入される処理用ガスの導入の量速度とともに、ターボ分子ポンプ112及びバリアブルバルブ113の回転の動作が調節されることで、処理室114内部の圧力が所定の真空度に調節される。   In the plasma processing apparatus 100 according to the present embodiment, an exhaust unit is formed below the opening, and the cross-sectional area of the flow path is determined by rotating around a rotation axis that is arranged to intersect the axial direction of the flow path. A variable valve 113 having a plurality of plate-like flaps for increasing and decreasing, and a turbo molecular pump 112, which is a vacuum pump having an inlet connected to an outlet of the flow path, are arranged below the variable valve 113. By adjusting the rotational operation of the turbo molecular pump 112 and the variable valve 113 together with the amount speed of introduction of the processing gas introduced from the introduction hole through the gap from the gas source, the pressure inside the processing chamber 114 is predetermined. The degree of vacuum is adjusted.

プラズマ処理装置100はその真空容器の側壁において、処理室114と同等の真空度まで減圧される搬送室を構成した図示しない別の真空容器である搬送容器と連結されて、内部の処理室114と搬送室とが図示しないゲートバルブ等の開閉弁により開放、遮断される。処理室114内にAr等のガスが導入されて所定の真空度まで減圧された状態で搬送室内を図示しないロボットアーム等の搬送手段の上に載せられて搬送されてきた試料は、上記ゲートバルブが開放された状態で処理室114内の試料台116の上面を構成する載置面上方で試料台116側に受け渡される。   The plasma processing apparatus 100 is connected to a transfer container which is another vacuum container (not shown) constituting a transfer chamber whose pressure is reduced to the same degree of vacuum as that of the process chamber 114 on the side wall of the vacuum container. The transfer chamber is opened and closed by an open / close valve such as a gate valve (not shown). A sample that has been transported while being placed on transport means such as a robot arm (not shown) in the transport chamber in a state where a gas such as Ar is introduced into the processing chamber 114 and reduced in pressure to a predetermined degree of vacuum, Is opened to the sample table 116 side above the mounting surface constituting the upper surface of the sample table 116 in the processing chamber 114.

上記ゲートバルブが閉塞されて処理室114内部が外部と気密に封止された後、試料が試料台116の載置面上に載せられて図示しない静電吸着手段により吸着保持され、試料の裏側面と載置面との間のすき間にこれらの間の熱伝達を促進するための熱伝導性ガスが載置面上に配置された導入口から供給される。   After the gate valve is closed and the inside of the processing chamber 114 is hermetically sealed from the outside, the sample is placed on the mounting surface of the sample table 116 and is sucked and held by an electrostatic chucking means (not shown). A heat conductive gas for promoting heat transfer between the surface and the mounting surface is supplied from an introduction port disposed on the mounting surface.

試料台116の載置面の上方にこれと並行に配置されたシャワープレート109の中央部の所定半径の領域内に配置された複数の導入孔から処理用ガスが処理室114内に導入される。さらに、処理室114内部は試料台114の直下方に配置された開口を介して排気部のターボ分子ポンプ112,バリアブルバルブ113の動作によって排気され内部が減圧されて、これらのバランスにより処理室114内部が0.05〜5Paの範囲の所定の真空度の圧力に調節される。   A processing gas is introduced into the processing chamber 114 from a plurality of introduction holes arranged in a region of a predetermined radius at the center of the shower plate 109 arranged in parallel to the upper surface of the sample table 116. . Further, the inside of the processing chamber 114 is evacuated by the operation of the turbo molecular pump 112 and the variable valve 113 in the exhaust section through an opening arranged immediately below the sample stage 114, and the inside is depressurized. The inside is adjusted to a pressure of a predetermined degree of vacuum in the range of 0.05 to 5 Pa.

この状態で、マイクロ波導入窓108,シャワープレート109を透過して処理室114内に上方から2.45GHzの電界が導入され、並行してソレノイドコイル110により形成され2.45GHzの電界とECRを生起するための875Gaussの強さの静磁場が導入される。この電界と磁界との相互作用により生じたECRにより処理用ガスが励起されてプラズマ115が処理室114内に形成される。   In this state, an electric field of 2.45 GHz is introduced from above into the processing chamber 114 through the microwave introduction window 108 and the shower plate 109, and formed in parallel with the solenoid coil 110 to generate the electric field and ECR of 2.45 GHz. A static magnetic field of 875 Gauss strength is introduced to occur. The processing gas is excited by the ECR generated by the interaction between the electric field and the magnetic field, and the plasma 115 is formed in the processing chamber 114.

プラズマ115が形成されると、試料が載置されている試料台116内に配置された図示しない導電性部材により構成された電極に400kHz乃至13.56MHzの高周波電力がこれに電気的に接続された高周波電源117から1系統ないし2系統印加される。この供給された高周波電力により試料台116の載置面または試料の上面上方にバイアス電位が形成され、プラズマ115の電位とバイアス電位との電位差によってプラズマ115中のイオン等荷電粒子が試料表面に誘引されて試料表面の処理対象の膜に衝突する。この衝突の際の入射エネルギーを用いてプラズマ115中に生じる活性の高い粒子と膜を構成する材料との反応を促進して上記膜を含む膜構造が所望の形状にエッチングされる。   When the plasma 115 is formed, a high frequency power of 400 kHz to 13.56 MHz is electrically connected to an electrode made of a conductive member (not shown) disposed in the sample stage 116 on which the sample is placed. One or two systems are applied from the high frequency power source 117. A bias potential is formed on the mounting surface of the sample table 116 or above the upper surface of the sample by the supplied high-frequency power, and charged particles such as ions in the plasma 115 are attracted to the sample surface by the potential difference between the potential of the plasma 115 and the bias potential. It collides with the film to be processed on the sample surface. Using the incident energy at the time of the collision, the reaction between the highly active particles generated in the plasma 115 and the material constituting the film is promoted, and the film structure including the film is etched into a desired shape.

上記エッチングの処理が所望の形状にされたこと、あるいは処理対象の膜の処理が終点まで到達したことが検出されると、高周波電力の供給が停止されてプラズマ115が消失される。この後、試料の裏面に導入された熱伝導性ガスの供給が停止されると共に、試料の静電気力を用いた載置面上での吸着,保持が解除されて試料が試料台116上に載置面から遊離して取り外される。   When it is detected that the etching process has a desired shape or that the process of the film to be processed has reached the end point, the supply of high-frequency power is stopped and the plasma 115 disappears. Thereafter, the supply of the thermally conductive gas introduced to the back surface of the sample is stopped and the adsorption and holding on the mounting surface using the electrostatic force of the sample are released, and the sample is placed on the sample table 116. It is detached from the mounting surface and removed.

この後ゲートバルブが開放されてロボットアームにより試料が処理室114あるいは真空容器外の搬送室内に搬出される。次に処理室114内で処理されるべき試料が有る場合にはこの試料が再度ロボットアームにより処理室114内に搬入されて試料台116上に載せられて上記と同様に処理される。   Thereafter, the gate valve is opened, and the sample is carried out into the processing chamber 114 or the transfer chamber outside the vacuum container by the robot arm. Next, when there is a sample to be processed in the processing chamber 114, the sample is again carried into the processing chamber 114 by the robot arm, placed on the sample table 116, and processed in the same manner as described above.

上記の試料の処理に際するプラズマ処理装置100の各部の動作は、図示しない制御部により調節される。各部はその動作の状態を検知するセンサ等の検知手段を有し、検知手段と制御部とは通信手段により通信可能に接続されている。制御部は、受信した上記検知手段からの信号からその状態を判定したり各部への指令信号を算出するための演算器と、受信した信号からの状態を記憶したり判定や指令を算出するためのプログラムを記憶する半導体メモリやハードディスクドライブ等の記憶手段、及び演算器からの指令信号や検知手段から出力された信号を通信手段との間でやり取りするインターフェースを有して、演算器からの指令信号に基づいて各部の動作が適切なタイミングで適切な量だけ実施される。   The operation of each part of the plasma processing apparatus 100 during the processing of the sample is adjusted by a control unit (not shown). Each unit has detection means such as a sensor for detecting the state of operation, and the detection unit and the control unit are communicably connected by a communication unit. The control unit determines a state from the received signal from the detection means and calculates a command signal to each unit, and stores a state from the received signal and calculates a determination and a command. A command from a computing unit having an interface for exchanging a command signal from a computing unit or a signal output from a detection unit with a communication unit, such as a semiconductor memory or a hard disk drive for storing the program of Based on the signal, the operation of each unit is performed in an appropriate amount at an appropriate timing.

図2を用いて、本実施例の円筒空洞部内での電界の伝播について説明する。図2は、図1に示す実施例に係るプラズマ処理装置の上部に配置された電界導入部を拡大して示した縦断面図である。本図において、マイクロ波導入窓108下方には処理室114を構成して円筒形の内部の空間でプラズマ115が形成される放電部とこれを囲む真空容器の円筒形の側壁部まで示しているが、その真空容器の下方の部分については図示を略している。また、図1と同じ符合が引用された部分については、特に必要の無いものについては説明を省略する。   The propagation of the electric field in the cylindrical cavity of the present embodiment will be described with reference to FIG. FIG. 2 is an enlarged longitudinal sectional view showing the electric field introducing portion disposed at the upper part of the plasma processing apparatus according to the embodiment shown in FIG. In this figure, a processing chamber 114 is formed below the microwave introduction window 108 to show a discharge portion where plasma 115 is formed in a cylindrical inner space and a cylindrical side wall portion of a vacuum vessel surrounding the discharge portion. However, the lower part of the vacuum vessel is not shown. In addition, as for the portions where the same reference numerals as those in FIG.

本実施例において、円形導波管104内を伝播してきたマイクロ波の電界は円形導波管104の下端部に到達すると、これに連結され円形導波管104の半径よりも大きな径を有する円筒形の空洞を内部に備えた円形空洞部内に導入される。本実施例の円筒空洞は、その内部に円筒形を有した処理室114の中心から内側壁表面までの半径と同じかこれと見なせる程度に近似した大きさを有する径R1を有した大径の第1の円筒空洞部106と、この第1の円筒空洞部106の上方でこれに同心状に連結されて配置され径R1より値の小さい径R2を有する小径の第2の円筒空洞部107とを有している。   In this embodiment, when the microwave electric field propagating through the circular waveguide 104 reaches the lower end of the circular waveguide 104, the microwave electric field is connected to the cylinder and has a larger diameter than the radius of the circular waveguide 104. It is introduced into a circular cavity with a shaped cavity inside. The cylindrical cavity of the present embodiment has a large diameter having a diameter R1 having a size that is the same as the radius from the center of the processing chamber 114 having a cylindrical shape to the inner wall surface thereof or that can be regarded as this. A first cylindrical cavity portion 106, and a second cylindrical cavity portion 107 having a small diameter having a diameter R2 smaller than the diameter R1 and concentrically connected to the upper portion of the first cylindrical cavity portion 106; have.

さらに、第2の円筒空洞部107の上部は中央部が円形の空間を有したリング状の平面円板であってその下面が第2の円筒空洞部107内の円筒形の空間の天井面を構成する第2の上面板107′を有している。第2の上面板107′の中央部の円形の開口は上方に連結された円形導波管104内に面して第2の円筒空洞部107と円形導波管104とは内部が円形の開口により連通されている。さらに、本実施例において円形の開口の内周縁の半径は円形導波管104の内径と同値からそれと見なせる程度に近似した大きさを有して、第2の上面板107′の円形開口の内周端が円形導波管104の円形の開口とその外周側のフランジを有した下端部に接続されている。   Further, the upper part of the second cylindrical cavity 107 is a ring-shaped flat disk having a circular space at the center, and the lower surface thereof is the ceiling surface of the cylindrical space in the second cylindrical cavity 107. A second upper surface plate 107 'is provided. The circular opening at the center of the second upper surface plate 107 ′ faces the upwardly connected circular waveguide 104, and the second cylindrical cavity 107 and the circular waveguide 104 are circular openings inside. It is communicated by. Further, in the present embodiment, the radius of the inner peripheral edge of the circular opening has a size that is similar to the inner diameter of the circular waveguide 104 and can be regarded as the same, so that the inner diameter of the second upper surface plate 107 ′ The peripheral end is connected to a lower end portion having a circular opening of the circular waveguide 104 and a flange on the outer peripheral side thereof.

さらに、第1の円筒空洞部106の上部は中央部が円形の空間を有したリング状の平面円板であってその下面が第1の円筒空洞部106内の円筒形の空間の天井面を構成する第1の上面板106′を有している。第1の上面板106′の中央部の円形の開口は上方に連結された第2の円筒空洞部107内に面して第1の円筒空洞部106と第2の円筒空洞部107とはそれら内部が第1の上面板106′中央部の円形の開口により連通されている。   Further, the upper portion of the first cylindrical cavity 106 is a ring-shaped flat disk having a circular space at the center, and the lower surface thereof is the ceiling surface of the cylindrical space in the first cylindrical cavity 106. A first top plate 106 'is provided. The circular opening at the center of the first upper surface plate 106 ′ faces the upwardly connected second cylindrical cavity 107, and the first cylindrical cavity 106 and the second cylindrical cavity 107 are separated from each other. The inside is communicated by a circular opening at the center of the first upper surface plate 106 '.

さらに、本実施例において当該円形の開口の内周縁の半径は第2の円筒空洞部107またはその内部の円筒形の空間の半径と同値からそれと見なせる程度に近似した大きさを有して、第1の上面板106′の円形開口の内周端が第2の円筒空洞部107の円筒形の側壁の円形の下端部に接続されている。本実施例の第1の円筒空洞部106及び第2の円筒空洞部107の各々は円形導波管104及び下方のマイクロ波導入窓108,円筒形を有する処理室114の上下方向の軸と同心状に位置しており、これらは同軸状に配置されている。第1の円筒空洞部106及び第2の円筒空洞部107の各円筒を構成する側壁は上記軸に対し平行に配置されており、これら第2の円筒空洞部107の側壁の下端および第1の上面板106′とはおよそ垂直をなして接続されており第1の円筒空洞部106と第2の円筒空洞部107とは段差を構成して全体の円筒空洞部が複数段(2段)の円筒形状を備えている。   Furthermore, in this embodiment, the radius of the inner peripheral edge of the circular opening has a size that is similar to the radius of the second cylindrical cavity 107 or the cylindrical space inside the second cylindrical cavity 107 and can be regarded as the same. The inner peripheral end of the circular opening of one upper surface plate 106 ′ is connected to the circular lower end of the cylindrical side wall of the second cylindrical cavity 107. Each of the first cylindrical cavity 106 and the second cylindrical cavity 107 of the present embodiment is concentric with the vertical waveguide 104, the lower microwave introduction window 108, and the vertical axis of the processing chamber 114 having a cylindrical shape. These are located in the same shape and are arranged coaxially. Side walls constituting the respective cylinders of the first cylindrical cavity portion 106 and the second cylindrical cavity portion 107 are arranged in parallel to the axis, and the lower end of the side wall of the second cylindrical cavity portion 107 and the first cylindrical cavity portion 107 are arranged. The first cylindrical cavity 106 and the second cylindrical cavity 107 are stepped so as to be connected to the upper surface plate 106 'in a substantially vertical manner, and the entire cylindrical cavity has a plurality of stages (two stages). It has a cylindrical shape.

このような構成の円筒空洞内に進行したマイクロ波の電界は、小径の第2の円筒空洞部107内で拡散する(一次拡散)。拡散した電界は第2の上面板107′の円形の開口の内周縁または円形導波管104の円形の下端部を発点として上下左右に均等に分散,進行する。そして、円形の開口の外周側に向かって進行した電界は第2の円筒空洞部107の内側壁面で反射し、さらに外周側に向かって拡散する電界と干渉して、定常状態としての定在波が生じる。   The microwave electric field that has traveled into the cylindrical cavity having such a configuration diffuses in the second cylindrical cavity 107 having a small diameter (primary diffusion). The diffused electric field is distributed and proceeds evenly vertically and horizontally starting from the inner periphery of the circular opening of the second upper surface plate 107 ′ or the circular lower end of the circular waveguide 104. Then, the electric field traveling toward the outer peripheral side of the circular opening is reflected by the inner wall surface of the second cylindrical cavity 107 and further interferes with the electric field diffusing toward the outer peripheral side, so that the standing wave as a steady state. Occurs.

このような第2の円筒空洞部107内に形成された電界は下方にも伝播して第1の円筒空洞部106内にも導入される。この結果、第2の円筒空洞部107と円形導波管104との接続部での作用と同様に、第1の上面板106′の中央部の円形の開口の内周縁を始点として電界が上下左右に均等に分散,進行して拡散する(二次拡散)。そして、第1の円筒空洞部106の内側側壁面で反射して後続の電界と干渉して、定常状態としての定在波が発生する。   Such an electric field formed in the second cylindrical cavity 107 propagates downward and is also introduced into the first cylindrical cavity 106. As a result, similarly to the operation at the connection portion between the second cylindrical cavity 107 and the circular waveguide 104, the electric field rises and falls starting from the inner periphery of the circular opening at the center of the first upper surface plate 106 '. Disperses evenly from side to side and proceeds to diffuse (secondary diffusion) And it reflects on the inner side wall surface of the 1st cylindrical cavity part 106, interferes with a subsequent electric field, and the standing wave as a steady state generate | occur | produces.

上下2つの円筒形の空間の内部で生じた2つのマイクロ波の電界の定在波は、円筒空洞部を下方に伝播してマイクロ波導入窓108及びシャワープレート109を透過して処理室114内に進入して、処理室114に導入された処理用ガスを励起してプラズマ115を形成する。円筒空洞部内の上記定在波は、マイクロ波導入窓108やシャワープレート109、さらにはプラズマ115,試料台116上面等の処理室114の構成が全体として反射端となり、複雑な定在波がマイクロ波導入窓108と円筒空洞部内で形成されて定常の状態となる。   The standing waves of the two microwave electric fields generated inside the two upper and lower cylindrical spaces propagate downward in the cylindrical cavity, pass through the microwave introduction window 108 and the shower plate 109, and pass through the processing chamber 114. The plasma 115 is formed by exciting the processing gas introduced into the processing chamber 114. The standing wave in the cylindrical cavity is reflected by the entire configuration of the processing chamber 114 such as the microwave introduction window 108, the shower plate 109, the plasma 115, the upper surface of the sample table 116, and the like. It is formed in the wave introduction window 108 and the cylindrical cavity, and is in a steady state.

本実施例と従来技術との円筒空洞部内部の電界または磁界の分布について図3,図4を用いて比較して説明する。図3は、従来の技術における円筒空洞部内部の電界または磁界の分布を模式的に示す図である。   The distribution of the electric field or magnetic field inside the cylindrical cavity between this embodiment and the prior art will be described in comparison with FIGS. FIG. 3 is a diagram schematically showing an electric field or magnetic field distribution inside a cylindrical cavity in the prior art.

従来の技術では、円形導波管とこれの下方で連結された円筒空洞部の上蓋と接続部では、その表面が段差を有して電界の分布が不連続となり他の箇所よりも強い電界が局所的に生じて異常放電が発生する虞が有った。この点について、従来の技術における円筒空洞部内を水平方向に切った断面での分布を説明すると、図3(a)に示すような電界の分布となる。さらに、これと平行してこの分布において電界の向き直行する磁界がソレノイドコイル110によって形成されて印加されている。この際の磁界の磁力線の等高分布は図3(b)に示す様になる。   In the conventional technique, the circular waveguide and the upper lid and the connecting part of the cylindrical cavity connected below the circular waveguide have a step on the surface, and the electric field distribution becomes discontinuous, resulting in a stronger electric field than other parts. There was a risk of abnormal discharge occurring locally. With respect to this point, the distribution in a cross section obtained by cutting the inside of the cylindrical cavity portion in the horizontal direction in the prior art will be described as an electric field distribution as shown in FIG. Further, in parallel with this, a magnetic field in which the electric field is directed in this distribution is formed and applied by the solenoid coil 110. At this time, the contour distribution of the magnetic field lines of the magnetic field is as shown in FIG.

これらの図に示すように、従来の技術においては円形導波管直下の円筒空洞部内で電界及び磁界の強度や密度の値の増減はその山谷として処理室114の中心近傍で発生している。このような電界,磁界の分布(電磁場)は円筒空洞部の円形断面の円周方向について回転しており、その1回転の周期に合わせて周期的に変動することになって、円筒空洞部または下方の処理室の半径方向についての強度や密度の分布は所定の半径位置、例えば円形導波管の周縁部の直下方の位置において極大(山)となるTM11モードとなると考えられる。このような電界または磁場の分布に応じて形成されるプラズマを用いた処理では、そのプロセスの条件によっては円形導波管の断面の半径といった処理室の中心軸の近傍に極大が存在する影響が処理の特性、例えば試料の表面における半径方向のエッチングの速度(レート)の分布(レートプロファイル)として現れて試料の面内方向について処理後の形状に許容範囲を越える差が生じてしまうという問題が生起していた。   As shown in these drawings, in the conventional technique, the increase and decrease in the values of electric field and magnetic field strength and density occur in the vicinity of the center of the processing chamber 114 in the cylindrical cavity directly under the circular waveguide. Such electric field and magnetic field distribution (electromagnetic field) rotates in the circumferential direction of the circular cross section of the cylindrical cavity, and periodically varies in accordance with the period of one rotation. The distribution of intensity and density in the radial direction of the lower processing chamber is considered to be a TM11 mode having a maximum (mountain) at a predetermined radial position, for example, a position immediately below the peripheral edge of the circular waveguide. In the processing using plasma formed according to the electric field or magnetic field distribution, there is an influence that the local maximum exists near the central axis of the processing chamber, such as the radius of the cross section of the circular waveguide, depending on the process conditions. Processing characteristics, such as a distribution (rate profile) of the etching rate (rate) in the radial direction on the surface of the sample, resulting in a difference exceeding the allowable range in the shape after processing in the in-plane direction of the sample. It was happening.

上記の本実施例では、第1の円筒空洞部106の上方に小径の第2の円筒空洞部107を接続して配置している。上記の通り、第2の円筒空洞部107の側壁の下端部での側壁内面と第1の円筒空洞部106の第1の上面板106′の下面とは略垂直をなして接続されており、この接続部の内部に形成される電界の分布はこの内側に、謂わば突出した角部において不連続になり、この接続部を始点として下方に向けて伝播する強い電界Ezが局所的に生じる。   In the present embodiment, the second cylindrical cavity 107 having a small diameter is connected and disposed above the first cylindrical cavity 106. As described above, the inner surface of the side wall at the lower end of the side wall of the second cylindrical cavity 107 and the lower surface of the first upper surface plate 106 ′ of the first cylindrical cavity 106 are connected substantially perpendicularly. The distribution of the electric field formed inside the connection portion becomes discontinuous inside the so-called protruding corner portion, and a strong electric field Ez propagating downward from the connection portion is locally generated.

このような電界の分布が不連続となることにより生じる強い電界Ezは、第2の円筒空洞部107の第2の上面板107′の中央の円形開口と円形導波管104の下端部との接続部においても生じており、本実施例の円筒空洞部では、円形導波管104の下端部での内周縁の直下方と第2の円筒空洞部107の側壁の下端部の直下方という、中心軸から半径方向について2つの位置にEzを有している。これらの強い電界Ezが円筒空洞部から下方に伝播する電界と重畳されたものが処理室114内に伝播する。   A strong electric field Ez generated by the discontinuity of the electric field distribution is generated between the circular opening at the center of the second upper surface plate 107 ′ of the second cylindrical cavity 107 and the lower end of the circular waveguide 104. It also occurs in the connecting portion, and in the cylindrical cavity portion of this embodiment, it is directly below the inner peripheral edge at the lower end portion of the circular waveguide 104 and immediately below the lower end portion of the side wall of the second cylindrical cavity portion 107. Ez is provided at two positions in the radial direction from the central axis. A superposition of the strong electric field Ez and the electric field propagating downward from the cylindrical cavity propagates into the processing chamber 114.

本実施例での第1の円筒空洞部106内での水平方向の断面での電界分布を図4(a)に示す。さらに、従来の技術と同様に、電界の方向に直交する磁界がソレノイドコイル110により生起されて印加されており、その分布は図4(b)に示された分布となる。   FIG. 4A shows an electric field distribution in a horizontal section in the first cylindrical cavity 106 in the present embodiment. Further, as in the prior art, a magnetic field perpendicular to the direction of the electric field is generated and applied by the solenoid coil 110, and the distribution thereof is as shown in FIG.

この図に示される通り、本実施例での第1の円筒空洞部106内の電界の分布は、TM12モードを有しておりこの分布の電界が円筒空洞部の断面の円周方向について所定の周期で回転することで、その周期的に強度,密度が変動する。単位時間あたりに時間的に平均して考察した場合には、本実施例での第1の円筒空洞部106内での電界の分布はその半径方向について複数(2箇所)での電界Ezからの影響を強く受けたものとなり、典型的には半径方向について複数(2つ)の極大(山)を有したものとなる。   As shown in this figure, the distribution of the electric field in the first cylindrical cavity 106 in this embodiment has a TM12 mode, and the electric field of this distribution has a predetermined value in the circumferential direction of the cross section of the cylindrical cavity. By rotating with a period, intensity and density fluctuate periodically. When considering the average over time per unit time, the distribution of the electric field in the first cylindrical cavity 106 in the present embodiment is from the electric field Ez in a plurality (two places) in the radial direction. It is strongly influenced, and typically has a plurality (two) maximums (mountains) in the radial direction.

図5を用いて、本実施例の円筒空溝内の電界について説明する、図5は、図1に示す実施例の円筒空洞部内の電界について模式的に示す縦断面図である。特に、処理室114と同径の第1の円筒空洞部106とこの上方に接続されて配置され円形導波管104の下方でこれと接続された小径の第2の円筒空洞部107の径を、円筒空洞部内での電界の定在波の波長λに対してλ/4<R2、及びλ<H2<λ+λ/4(=5λ/4),λ/4<H1を満たす値の範囲にした場合の定在波の発生について説明する。   The electric field in the cylindrical empty groove of the present embodiment will be described with reference to FIG. 5. FIG. 5 is a longitudinal sectional view schematically showing the electric field in the cylindrical cavity portion of the embodiment shown in FIG. In particular, the diameter of the first cylindrical cavity portion 106 having the same diameter as that of the processing chamber 114 and the second cylindrical cavity portion 107 having a small diameter connected to the first cylindrical cavity portion 107 below the circular waveguide 104 is connected to the first cylindrical cavity portion 106. Λ / 4 <R2, and λ <H2 <λ + λ / 4 (= 5λ / 4) and λ / 4 <H1 with respect to the wavelength λ of the standing wave of the electric field in the cylindrical cavity The generation of standing waves in the case will be described.

なお、図2の場合と同様に、本図において、図1に示す実施例の電界導入部を拡大して示すものであってマイクロ波導入窓108下方には処理室114を構成して円筒形の内部の空間でプラズマ115が形成される放電部とこれを囲む真空容器の円筒形の側壁部まで示しているが、その真空容器の下方の部分については図示を略している。また、マグネトロン101と水平方向に延在する矩形導波管102等は示していない。さらに、図1と同じ符合が引用された部分については、特に必要の無いものの説明を省略する。   As in the case of FIG. 2, in this figure, the electric field introduction portion of the embodiment shown in FIG. 1 is shown enlarged, and a processing chamber 114 is formed below the microwave introduction window 108 to form a cylindrical shape. The discharge portion where the plasma 115 is formed in the space inside and the cylindrical side wall portion of the vacuum vessel surrounding the discharge portion are shown, but the lower portion of the vacuum vessel is not shown. Further, the magnetron 101 and the rectangular waveguide 102 extending in the horizontal direction are not shown. Further, the portions where the same reference numerals as those in FIG. 1 are quoted are omitted because they are not particularly necessary.

本図において、円形導波管104の下端部から第2の円筒空洞部107内に導入されたマイクロ波の電界は、内部の空洞内で拡散を起こす(一次拡散)。すなわち、円形導波管104の下端または第2の上面板107′の中央部の開口の内周縁から上下左右の周囲に均等に電界が進行する。第2の円筒空洞部107の外周に向けて進行した電界は、第2の円筒空洞部107の垂直な内側壁面で反射し、後続の拡散する電界と干渉を生じ、この結果第2の円筒空洞部107内に定常状態としての定在波が生起される。そして、このような電界の分布は、およそ垂直をなして配置される円形導波管104の下端部での内壁面と第2の上面板107′の下面との接続部401において不連続なものとなり、この接続部401においてZ方向(図上下方、円形導波管104または処理室114の中心軸の方向)に大きな強度を有する電界Ez2を生じる。   In this figure, the microwave electric field introduced from the lower end of the circular waveguide 104 into the second cylindrical cavity 107 causes diffusion in the internal cavity (primary diffusion). That is, the electric field is uniformly propagated from the lower end of the circular waveguide 104 or the inner peripheral edge of the opening of the central portion of the second upper surface plate 107 ′ to the upper, lower, left and right. The electric field that has traveled toward the outer periphery of the second cylindrical cavity 107 is reflected by the vertical inner wall surface of the second cylindrical cavity 107 to cause interference with the subsequent diffusing electric field, resulting in the second cylindrical cavity. A standing wave as a steady state is generated in the unit 107. Such an electric field distribution is discontinuous at the connection portion 401 between the inner wall surface at the lower end portion of the circular waveguide 104 arranged approximately vertically and the lower surface of the second upper surface plate 107 ′. Thus, an electric field Ez2 having a large intensity is generated in the connecting portion 401 in the Z direction (downward in the drawing, the direction of the central axis of the circular waveguide 104 or the processing chamber 114).

このような第2の円筒空洞部107内の電界は下方に伝播して接続された第1の円筒空洞部106内に導入される。この導入された電界は、上記の円形導波管104からの電界と同様に、第1の円筒空洞部106内の空洞内で拡散する(二次拡散)。この際、第2の円筒空洞部107と第1の円筒空洞部106との間の段差を構成する接続部403においても、第2の円筒空洞部107と同様に、ここを中心とする乱反射した波面が発生し、局所的にZ方向に強い強度を有する電界Ez1を生じる。これにより、第1の円筒空洞部106及び第2の円筒空洞部107内で段差を構成するこれらの間の接続部403を湧き出し口と吸い込み口とする電気力線404が生じる。   Such an electric field in the second cylindrical cavity 107 is introduced into the first cylindrical cavity 106 connected to propagate downward. The introduced electric field diffuses in the cavity in the first cylindrical cavity 106 (secondary diffusion), similar to the electric field from the circular waveguide 104 described above. At this time, similarly to the second cylindrical cavity 107, the diffuse reflection is performed around the connection part 403 that forms a step between the second cylindrical cavity 107 and the first cylindrical cavity 106. A wavefront is generated, and an electric field Ez1 having a strong intensity locally in the Z direction is generated. As a result, electric lines of force 404 are generated in which the connecting portion 403 between the first cylindrical cavity portion 106 and the second cylindrical cavity portion 107 that form a step is used as a spring outlet and a suction inlet.

このような分布となる本実施例においては、円形導波管104の下端部の周縁直下方で発生する電界Ez1と第2の円筒空洞部107の側壁の下端部の直下方で発生する電界Ez2との重畳により得られる電界の強度の分布が、下方に配置される処理室114内もしくはそのECRが生じる面において半径方向(図上水平方向,r方向)について不均一が低減されて均等に近付くように、第1の円筒空洞部106の高さH1や第2の円筒空洞部107の高さH2の値を適正に調節して設定される。このことにより、処理室114中心と外周との間のプラズマの密度,強度の不均一が低減され、処理室114または下方の試料台116の載置面上に載せられる試料の中心から外周縁までの半径方向について均一性が向上したプラズマが形成される。   In this embodiment having such a distribution, the electric field Ez1 generated immediately below the periphery of the lower end portion of the circular waveguide 104 and the electric field Ez2 generated immediately below the lower end portion of the side wall of the second cylindrical cavity portion 107. The intensity distribution of the electric field obtained by the superimposing of the radii and the non-uniformity in the radial direction (horizontal direction, r direction in the figure) in the processing chamber 114 disposed below or in the plane where the ECR occurs is uniformly approached. As described above, the values of the height H1 of the first cylindrical cavity portion 106 and the height H2 of the second cylindrical cavity portion 107 are appropriately adjusted and set. As a result, non-uniformity in plasma density and intensity between the center and the outer periphery of the processing chamber 114 is reduced, and from the center of the sample placed on the mounting surface of the processing chamber 114 or the lower sample stage 116 to the outer periphery. A plasma with improved uniformity in the radial direction is formed.

本実施例では、TM12モードの自由空間中の実効波長λ=130〜140mmである。このことから、マイクロ波導入窓108の上面と第2の円筒空洞部107内の空間の天井面(第2の上面板107′下面)までの距離H2は、λ<H2<λ+λ/4(=5λ/4)の範囲にされることが好ましい。また、第1の円筒空洞部106の天井面(第1の上面板106′の下面)のマイクロ波導入窓108の上面との距離H1は、上記実効波長を効率よく伝播して下方の処理室114内に導入するために、λ/4<H1の範囲とすることが好ましい。さらに、本実施例においては第1の円筒空洞部106の中心軸から側壁までの距離(半径)R1は円筒形を有した処理室114またはその放電部の径と同等であるが、第2の円筒空洞部107の中心軸と側壁までの距離(半径)R2は、λ/4<R2の範囲とすることが好ましい。   In this embodiment, the effective wavelength λ in the free space of the TM12 mode is 130 to 140 mm. From this, the distance H2 from the upper surface of the microwave introduction window 108 to the ceiling surface (the lower surface of the second upper surface plate 107 ′) of the space in the second cylindrical cavity 107 is λ <H2 <λ + λ / 4 (= It is preferable to be in the range of 5λ / 4). Further, the distance H1 between the ceiling surface of the first cylindrical cavity 106 (the lower surface of the first upper surface plate 106 ') and the upper surface of the microwave introduction window 108 efficiently propagates the effective wavelength and lowers the processing chamber. In order to introduce it into 114, the range of λ / 4 <H1 is preferable. Further, in this embodiment, the distance (radius) R1 from the central axis to the side wall of the first cylindrical cavity portion 106 is equal to the diameter of the processing chamber 114 having a cylindrical shape or its discharge portion. The distance (radius) R2 between the central axis of the cylindrical cavity 107 and the side wall is preferably in the range of λ / 4 <R2.

第1の円筒空洞部106内ではこれらEz1とEz2とが重畳された結果の分布を有する電界が下方に向けて伝播される。この分布を、下方で形成される処理室114内のプラズマの分布が所望の分布となる、例えば中心から半径方向外側にわたり密度または強度の均一性を向上させた分布となるように、第1の円筒空洞部106の高さH1や半径、第2の円筒空洞部の高さ402、半径R2が適切な値の範囲に調節されて設定される。例えば、前記所望の密度や強度の半径方向の勾配を持たせるため、マイクロ波導入窓108上面と第1の円筒空洞部106の天井面及び第2の円筒空洞部107の天井面との間の距離間あるH1,H2を調整して設定した後、試料の処理が行われる。   In the first cylindrical cavity portion 106, an electric field having a distribution resulting from superimposing these Ez1 and Ez2 is propagated downward. The first distribution is such that the distribution of plasma in the processing chamber 114 formed below becomes a desired distribution, for example, a distribution in which the uniformity of density or intensity is improved from the center to the outside in the radial direction. The height H1 and radius of the cylindrical cavity portion 106, the height 402 of the second cylindrical cavity portion, and the radius R2 are adjusted and set to appropriate values. For example, in order to provide a radial gradient of the desired density and strength, between the upper surface of the microwave introduction window 108 and the ceiling surface of the first cylindrical cavity portion 106 and the ceiling surface of the second cylindrical cavity portion 107. After adjusting and setting the distance H1, H2 between the distances, the sample is processed.

このような条件を満たすことで、2つの円筒空洞部からの電界は下方に伝播して処理室114内に形成されるECR面に効率よく吸収される。このことによって、処理室114の中心から外周に渡りより密度の高く不均一性が低減されたプラズマが生成される。   By satisfying such conditions, the electric fields from the two cylindrical cavities propagate downward and are efficiently absorbed by the ECR plane formed in the processing chamber 114. As a result, plasma with higher density and reduced non-uniformity is generated from the center to the outer periphery of the processing chamber 114.

前述のように、従来の技術では、中心から外周部にかけて、特に外周部においてプラズマの強度や密度が小さくなってしまう分布となる。一方、本実施例では処理室114の中心から半径方向について外周側の複数の箇所で電界の強度または密度の局所的に高い領域を配置している。このため、処理室114の中心から外周部にかけて密度や強度の低下が顕著に生じる従来の技術の問題を抑制し、外周部に渡る密度,強度の勾配は従来技術よりも低くされ、処理室114の半径方向について均一性が向上したプラズマが形成できる。このような本実施例において、試料台上の試料上方でのICF分布とエッチング処理の特性、例えば処理のレートの分布を確認した結果、従来の技術と比較して均一性が改善する結果を得ている。   As described above, in the conventional technique, the distribution is such that the intensity and density of plasma decrease from the center to the outer periphery, particularly in the outer periphery. On the other hand, in this embodiment, regions where the intensity or density of the electric field is locally high are arranged at a plurality of locations on the outer peripheral side in the radial direction from the center of the processing chamber 114. For this reason, the problem of the prior art in which the density and strength are significantly reduced from the center to the outer peripheral portion of the processing chamber 114 is suppressed, and the gradient of density and strength over the outer peripheral portion is made lower than that of the prior art. Plasma with improved uniformity in the radial direction can be formed. In this example, as a result of confirming the ICF distribution above the sample on the sample stage and the characteristics of the etching process, for example, the distribution of the processing rate, a result in which the uniformity is improved as compared with the conventional technique is obtained. ing.

また、円形導波管104に円偏波発生用の誘電体材105を挿入し、円形導波管104中のTE11モードの位相を45度変えることで、円筒空洞部の入射端で均一なTE11モードが得られる。このため、TMモードによる径方向の分布改善と円偏波による周方向の分布改善により、処理室114内で発生するプラズマの均一性を併せて改善する効果を得られる。このようなプラズマにより得られたラジカルの分布は、試料上面の処理対象膜の等方的なエッチングに有効になることは言うまでもない。これにより、大口径化した試料に対して処理の性能を向上させたプラズマ処理装置を提供できる。   Further, by inserting a dielectric material 105 for generating circularly polarized waves into the circular waveguide 104 and changing the phase of the TE11 mode in the circular waveguide 104 by 45 degrees, uniform TE11 is obtained at the incident end of the cylindrical cavity. A mode is obtained. For this reason, the effect of improving the uniformity of the plasma generated in the processing chamber 114 can be obtained by the radial distribution improvement by the TM mode and the circumferential distribution improvement by the circular polarization. It goes without saying that the radical distribution obtained by such plasma is effective for isotropic etching of the film to be processed on the upper surface of the sample. Thereby, it is possible to provide a plasma processing apparatus with improved processing performance for a sample having a large diameter.

本実施例の円筒空洞部の形状の調節は、使用者が高さH1,H2は第1の上面板106′,第2の上面板107′の上下方向の位置を移動させて行うことができる。なお、図示しないが第1の上面板106′,第2の上面板107′の外周縁部には、側壁との間の相対移動とともに側壁と上面板とを短絡させるチョークフランジ等の電界の漏洩を抑制するための手段を備えている。   The user can adjust the shape of the cylindrical cavity of the present embodiment by moving the heights H1 and H2 of the first upper surface plate 106 ′ and the second upper surface plate 107 ′ in the vertical direction. . Although not shown in the drawing, electric field leakage such as a choke flange which short-circuits the side wall and the upper surface plate along with the relative movement between the first upper surface plate 106 ′ and the second upper surface plate 107 ′ together with the relative movement between the side walls. Means for suppressing this are provided.

また、本実施例の第2の円筒空洞部107の半径R2は、下方に配置される円筒形状を有する試料台116の外形よりも小さい値にされている。また、試料台116上面に配置される載置面の外周縁の径よりも大きい値にされている。このような配置により、接続部403に発生する電界EZ2による電界の密度の強い箇所(半径位置)は試料台116の外形より内側であって試料の外周側に形成することができる。このことにより、接続部403及び接続部401の箇所に対応する半径位置に生じる電界EZ1,EZ2によって、プラズマの密度や強度の試料の半径方向についての分布が試料の外周側部分で大きく低下してしまい処理の当該半径方向の特性が不均一になるという従来技術の問題の生起を抑制して、より均一性が向上したプラズマ処理を行うことができる。   In addition, the radius R2 of the second cylindrical cavity 107 of the present embodiment is set to a value smaller than the outer shape of the sample stage 116 having a cylindrical shape disposed below. Further, the value is larger than the diameter of the outer peripheral edge of the mounting surface arranged on the upper surface of the sample table 116. With such an arrangement, a portion (radius position) where the electric field density due to the electric field EZ2 generated in the connection portion 403 is strong can be formed inside the outer shape of the sample table 116 and on the outer peripheral side of the sample. Accordingly, the electric field EZ1, EZ2 generated at the radial position corresponding to the connection portion 403 and the connection portion 401 greatly reduces the distribution of the plasma density and strength in the radial direction of the sample in the outer peripheral portion of the sample. It is possible to suppress the occurrence of the problem of the prior art that the radial characteristics of the process become non-uniform, and perform plasma processing with improved uniformity.

図6を用いて、本実施例の作用・効果について説明する。図6は、従来の技術及び図1に示す本実施例の処理室114内でのプラズマ115から試料台116内の電極に流れ込むイオン電流の試料の面内方向の分布(ICF分布)を示すグラフである。本図の例において、プラズマ115の形成に用いた処理用ガスはCl2/HBr/O2/Arの混合ガスであり、処理室114内の圧力は0.4Pa、試料台116の載置面の表面からのECR面の高さは165mm、供給されるマイクロ波の電力を従来の円筒空洞部の場合は1200W、本実施例では1800Wとした場合に得られた結果である。 The operation and effect of the present embodiment will be described with reference to FIG. FIG. 6 is a graph showing the in-plane direction distribution (ICF distribution) of the ion current flowing from the plasma 115 into the electrode in the sample stage 116 from the plasma 115 in the processing chamber 114 of the present embodiment shown in FIG. It is. In the example of this figure, the processing gas used for forming the plasma 115 is a mixed gas of Cl 2 / HBr / O 2 / Ar, the pressure in the processing chamber 114 is 0.4 Pa, and the mounting surface of the sample stage 116 This is a result obtained when the height of the ECR plane from the surface of the substrate is 165 mm, and the power of the supplied microwave is 1200 W in the case of the conventional cylindrical cavity, and 1800 W in this embodiment.

従来の技術では、中心部のイオン電流が高く外周部が低い分布を示している。このため、プラズマの分布は凸型形状となっていた。特に、イオン電流の密度は試料の外周側部分(150mm以上)の領域において低下が顕著であり、プラズマ115の密度や強度も同様に外周側部分において大きな低下が生じていると考えられる。そして、この条件での従来の技術による試料の処理の面内の方向についての均一性は11%であった。   The conventional technique shows a distribution in which the ion current at the center is high and the outer periphery is low. For this reason, the plasma distribution has a convex shape. In particular, it is considered that the density of the ion current is remarkably reduced in the region of the outer peripheral portion (150 mm or more) of the sample, and the density and intensity of the plasma 115 are also greatly reduced in the outer peripheral portion. The uniformity in the in-plane direction of the sample processing according to the conventional technique under this condition was 11%.

一方、本実施例の場合には、試料台116の中心から半径方向について150mmの近傍においてイオン電流が高くなっていることが示されている。一方、試料の中心と外周部分においてICFは低い分布を示している。つまり、本実施例の上記条件でのプラズマの強度や密度はM型形状の分布となっている。そして、当該条件での試料の処理の面内方向についての均一性は5%となった。   On the other hand, in the case of the present embodiment, it is shown that the ion current is high in the vicinity of 150 mm in the radial direction from the center of the sample stage 116. On the other hand, the ICF shows a low distribution at the center and the outer periphery of the sample. In other words, the intensity and density of the plasma under the above conditions of the present embodiment have an M-shaped distribution. And the uniformity about the in-plane direction of the process of the sample on the said conditions became 5%.

上記の検出データは、ECR面の高さとともにマイクロ波のパワーを各々複数の値に変動させて複数の条件での処理において検出したうちで最も均一性が良い結果を示したものである。また、フッ化物系のプロセス条件でも均一性の改善結果が得られた。   The above detection data shows the most uniform result among the detections in the process under a plurality of conditions by changing the microwave power to a plurality of values along with the height of the ECR plane. In addition, uniformity improvement results were obtained even under fluoride process conditions.

また、均一性が高い状態では、ラジカルが均一にウエハに照射されるため、ラジカル起因のエッチングにも有利であることは言うまでもない。特に高圧力条件(3Pa〜10Pa)では電離した電子やイオンの拡散度は大きく、ウエハ上にはイオンよりもラジカルが支配的となり、高圧においてもウエハ面内の形状やレートのばらつきを改善する。   Needless to say, in a state of high uniformity, radicals are evenly irradiated onto the wafer, which is advantageous for radical-induced etching. In particular, the diffusion degree of ionized electrons and ions is large under high pressure conditions (3 Pa to 10 Pa), radicals are dominant over ions on the wafer, and variations in shape and rate within the wafer surface are improved even at high pressures.

以上の通り、本実施例によれば、処理室内に形成されるプラズマの密度や強度の分布の不均一を低減して、試料の径方向について処理の特性や加工形状の均一さを向上させたプラズマ処理装置を提供できる。   As described above, according to the present embodiment, the nonuniformity of the density and intensity distribution of the plasma formed in the processing chamber is reduced, and the processing characteristics and the uniformity of the processing shape are improved in the radial direction of the sample. A plasma processing apparatus can be provided.

101 マグネトロン
102 矩形導波管
103 自動整合器
104 円形導波管
105 誘電体材
106 第1の円筒空洞部
107 第2の円筒空洞部
108 マイクロ波導入窓
109 シャワープレート
110 ソレノイドコイル
111 ヨーク
112 ターボ分子ポンプ
113 バリアブルバルブ
114 処理室
115 プラズマ
116 試料台
117 高周波電源
401,403 接続部
402 第2の円筒空洞部の高さ
404 電気力線
101 Magnetron 102 Rectangular waveguide 103 Automatic matching box 104 Circular waveguide 105 Dielectric material 106 First cylindrical cavity 107 Second cylindrical cavity 108 Microwave introduction window 109 Shower plate 110 Solenoid coil 111 Yoke 112 Turbo molecule Pump 113 Variable valve 114 Processing chamber 115 Plasma 116 Sample stage 117 High frequency power supply 401, 403 Connection portion 402 Height of second cylindrical cavity 404 Electric field lines

Claims (8)

真空容器と、この真空容器内部に配置され内部でプラズマが形成される処理室と、この処理室内に配置されその上面に試料が載置される試料台と、前記処理室の上方に配置され前記プラズマを形成するために供給される電界が透過する誘電体製の円形の板部材と、この板部材の上方に配置され内部に全電界が導入される円筒形を有する空洞部と、この空洞の上部の中心に連結され上下に延在した内部を前記電界が伝播する円筒形の管路と、この管路の端部に配置され前記電界を発生する発生器とを備え、
前記空洞部が前記板部材を底面とする径の大きな円筒形の空洞を有した第1の円筒空洞部とこの第1の円筒空洞部の上方でこれに接続されて配置され径の小さな円筒形の空洞を有した第2の円筒空洞部と、前記第1及び第2の円筒空洞部との間でこれらを接続する段差部とを備えたプラズマ処理装置。
A vacuum chamber, a processing chamber disposed inside the vacuum chamber and generating plasma therein, a sample stage disposed in the processing chamber and having a sample placed thereon, and disposed above the processing chamber. A circular plate member made of a dielectric material through which an electric field supplied to form plasma is transmitted, a hollow portion having a cylindrical shape that is disposed above the plate member and into which the entire electric field is introduced, and A cylindrical pipe that is connected to the center of the upper part and extends up and down to propagate the electric field, and a generator that is arranged at an end of the pipe and generates the electric field,
A first cylindrical cavity having a large-diameter cylindrical cavity with the plate member as a bottom surface, and a small-diameter cylindrical shape connected to and disposed above the first cylindrical cavity A plasma processing apparatus comprising: a second cylindrical cavity portion having a cavity; and a step portion connecting the first cylindrical cavity portion and the second cylindrical cavity portion.
請求項1に記載のプラズマ処理装置であって、
前記第2の円筒空洞部と前記管路との間でこれらを接続する別の段差部と、空洞部の天井面が前記板部材に平行な面とを備えたプラズマ処理装置。
The plasma processing apparatus according to claim 1,
The plasma processing apparatus provided with another level | step-difference part which connects these between the said 2nd cylindrical cavity part and the said pipe line, and the surface where the ceiling surface of a cavity part is parallel to the said plate member.
請求項1または2に記載のプラズマ処理装置であって、
前記第2の円筒空洞部の天井面が前記板部材と平行に配置されこの天井面の前記板部材の上面からの高さH2は前記電界の波長λに対してλ<H2<5λ/4の範囲にされたプラズマ処理装置。
The plasma processing apparatus according to claim 1 or 2,
The ceiling surface of the second cylindrical cavity is arranged in parallel with the plate member, and the height H2 of the ceiling surface from the upper surface of the plate member is λ <H2 <5λ / 4 with respect to the wavelength λ of the electric field. Plasma processing equipment made to range.
請求項1乃至3のいずれかに記載のプラズマ処理装置であって、
前記第1の円筒空洞部の天井面が前記板部材と平行に配置されこの天井面の前記板部材の上面からの高さH1は前記電界の波長λに対してλ/4<H1の範囲にされたプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 3,
The ceiling surface of the first cylindrical cavity is arranged in parallel with the plate member, and the height H1 of the ceiling surface from the upper surface of the plate member is in the range of λ / 4 <H1 with respect to the wavelength λ of the electric field. Plasma processing apparatus.
請求項1乃至4のいずれかに記載のプラズマ処理装置であって、
前記第2の円筒空洞部の円筒形の半径R2が前記電界の波長λに対してλ/4<R2の範囲にされたプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 4,
The plasma processing apparatus, wherein a cylindrical radius R2 of the second cylindrical cavity is in a range of λ / 4 <R2 with respect to the wavelength λ of the electric field.
請求項1乃至5のいずれかに記載のプラズマ処理装置であって、
前記第2の円筒空洞部が中心を円筒形を有した前記試料台の中心軸に合わせて配置され、前記段差部が前記中心軸から外周側に向かう方向について円筒形状を有した前記試料台の外周より中央側に配置されたプラズマ処理装置。
A plasma processing apparatus according to any one of claims 1 to 5,
The second cylindrical cavity is arranged in alignment with the central axis of the sample stage having a cylindrical shape at the center, and the stepped part has a cylindrical shape in a direction from the central axis toward the outer peripheral side. A plasma processing apparatus disposed on the center side from the outer periphery.
請求項1乃至7のいずれかに記載のプラズマ処理装置であって、
前記電界が2.45GHzのマイクロ波の電界であって、前記処理室内に875Gaussの磁界を供給する磁場発生手段を有して、前記処理室内にECRにより前記プラズマが形成されるプラズマ処理装置。
A plasma processing apparatus according to any one of claims 1 to 7,
A plasma processing apparatus, wherein the electric field is a microwave electric field of 2.45 GHz, has magnetic field generating means for supplying a magnetic field of 875 Gauss in the processing chamber, and the plasma is formed by ECR in the processing chamber.
請求項7に記載のプラズマ処理装置であって、
前記管路からTE11モードの前記マイクロ波が前記空洞部に供給されるプラズマ処理装置。
The plasma processing apparatus according to claim 7,
A plasma processing apparatus in which the microwave of the TE11 mode is supplied from the pipe to the cavity.
JP2011039183A 2011-01-26 2011-02-25 Plasma processing equipment Active JP5913817B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011039183A JP5913817B2 (en) 2011-02-25 2011-02-25 Plasma processing equipment
US13/236,775 US20120186747A1 (en) 2011-01-26 2011-09-20 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039183A JP5913817B2 (en) 2011-02-25 2011-02-25 Plasma processing equipment

Publications (3)

Publication Number Publication Date
JP2012178380A true JP2012178380A (en) 2012-09-13
JP2012178380A5 JP2012178380A5 (en) 2014-04-10
JP5913817B2 JP5913817B2 (en) 2016-04-27

Family

ID=46980066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039183A Active JP5913817B2 (en) 2011-01-26 2011-02-25 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP5913817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157883A1 (en) * 2021-01-21 2022-07-28 株式会社日立ハイテク Plasma treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264722A (en) * 1991-02-20 1992-09-21 Hitachi Ltd Method and device for plasma treatment using microwave
JPH09270386A (en) * 1996-04-01 1997-10-14 Hitachi Ltd Plasma processing device and its method
JPH09289099A (en) * 1996-02-20 1997-11-04 Hitachi Ltd Plasma processing method and device
JP2002289398A (en) * 2001-01-18 2002-10-04 Tokyo Electron Ltd Plasma apparatus and plasma forming method
JP2003303775A (en) * 2002-04-09 2003-10-24 Tokyo Electron Ltd Plasma treatment device
JP2010050046A (en) * 2008-08-25 2010-03-04 Hitachi High-Technologies Corp Plasma treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264722A (en) * 1991-02-20 1992-09-21 Hitachi Ltd Method and device for plasma treatment using microwave
JPH09289099A (en) * 1996-02-20 1997-11-04 Hitachi Ltd Plasma processing method and device
JPH09270386A (en) * 1996-04-01 1997-10-14 Hitachi Ltd Plasma processing device and its method
JP2002289398A (en) * 2001-01-18 2002-10-04 Tokyo Electron Ltd Plasma apparatus and plasma forming method
JP2003303775A (en) * 2002-04-09 2003-10-24 Tokyo Electron Ltd Plasma treatment device
JP2010050046A (en) * 2008-08-25 2010-03-04 Hitachi High-Technologies Corp Plasma treatment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157883A1 (en) * 2021-01-21 2022-07-28 株式会社日立ハイテク Plasma treatment device
JPWO2022157883A1 (en) * 2021-01-21 2022-07-28
JP7302094B2 (en) 2021-01-21 2023-07-03 株式会社日立ハイテク Plasma processing equipment
TWI808609B (en) * 2021-01-21 2023-07-11 日商日立全球先端科技股份有限公司 Plasma treatment device
US11948776B2 (en) 2021-01-21 2024-04-02 Hitachi High-Tech Corporation Plasma processing apparatus

Also Published As

Publication number Publication date
JP5913817B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5360069B2 (en) Plasma processing apparatus and plasma processing method
US20120186747A1 (en) Plasma processing apparatus
JP3233575B2 (en) Plasma processing equipment
US9761418B2 (en) Plasma processing apparatus
WO2010004997A1 (en) Plasma processing apparatus
US8075733B2 (en) Plasma processing apparatus
WO2010048076A2 (en) Plasma source for chamber cleaning and process
JP7085828B2 (en) Plasma processing equipment
KR20140046481A (en) High efficiency plasma source
US11145490B2 (en) Plasma processing method
KR102523730B1 (en) Dual-frequency surface wave plasma source
TW201309106A (en) Plasma processing device
US9583314B2 (en) Plasma processing apparatus
JP7001456B2 (en) Plasma processing equipment
US20050126711A1 (en) Plasma processing apparatus
JP2012049376A (en) Plasma processing apparatus and plasma processing method
JP2012023163A (en) Plasma processing apparatus
JP2010021446A (en) Plasma processing method, plasma processing apparatus and storage medium
JP5913817B2 (en) Plasma processing equipment
JP6991934B2 (en) Plasma processing equipment
JP3973283B2 (en) Plasma processing apparatus and plasma processing method
JP2005079416A (en) Plasma processing device
US20090137128A1 (en) Substrate Processing Apparatus and Semiconductor Device Producing Method
JPH06120169A (en) Plasma generating apparatus
JP6560071B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5913817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350