JP2012178282A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2012178282A
JP2012178282A JP2011040774A JP2011040774A JP2012178282A JP 2012178282 A JP2012178282 A JP 2012178282A JP 2011040774 A JP2011040774 A JP 2011040774A JP 2011040774 A JP2011040774 A JP 2011040774A JP 2012178282 A JP2012178282 A JP 2012178282A
Authority
JP
Japan
Prior art keywords
fuel
power generation
electrode
fuel electrode
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011040774A
Other languages
Japanese (ja)
Other versions
JP5723175B2 (en
Inventor
Noboru Ishizone
昇 石曽根
Masayuki Suda
正之 須田
Kazutaka Yuzurihara
一貴 譲原
Toru Ozaki
徹 尾崎
Takamasa Yanase
考応 柳▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011040774A priority Critical patent/JP5723175B2/en
Publication of JP2012178282A publication Critical patent/JP2012178282A/en
Application granted granted Critical
Publication of JP5723175B2 publication Critical patent/JP5723175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell that appropriately removes impurities in a fuel electrode even if using a fuel supply source for generating a fuel by reacting a plurality of fuel precursors.SOLUTION: The fuel cell includes: a power generation section 2 having a fuel electrode 23, an oxidant electrode 22 and a solid polymer electrolyte membrane 21; a fuel electrode section having a fuel supply space 25 supplied with a fuel; and a fuel supply source 3 for bringing a plurality of fuel precursors 32 into contact with each other and causing a chemical reaction to generate the fuel and supplying the fuel. The fuel supply source has a plurality of storage sections for storing the plurality of fuel precursors, respectively, and a fuel control mechanism 33 for moving at least the fuel precursor stored in either storage section to the other storage section. The fuel control mechanism performs supply control of controlling the fuel precursor movement according to a physical quantity related to impurities accumulated in the fuel electrode by the reaction of the fuel with an oxidant, so that the pressure of the fuel caused by the supply control removes at least part of the impurities.

Description

本発明は発電部及び燃料貯蔵源を備えた燃料電池に関する。   The present invention relates to a fuel cell including a power generation unit and a fuel storage source.

現在燃料電池には多数の方式が存在するが、電子機器に用いられる燃料電池は、そのシステムの小型化・簡素化が容易である事から固体高分子形燃料電池の適用が有望である。固体高分子形燃料電池は、燃料極と酸化剤極と両極に挟持された固体高分子電解質膜とから成る単電池によって構成され、燃料極側にメタノールや水素等の燃料を供給し、酸化剤極側に酸化剤気体、例えば酸素や空気を供給し、これらの電気化学反応により電力を発生する。その中でも燃料極に水素を供給する直接水素型燃料電池は発電電圧が高く注目されている。なお直接水素型燃料電池は燃料極側の水素を循環させるフロー系と水素の循環を行わないデッドエンド系に大別されるが、特にノートパソコンや携帯電話等のモバイル機器においては補機等の構成要素が少ないデッドエンド系の方が高エネルギー密度化が容易である為適している。   Currently, there are many types of fuel cells. However, fuel cells used in electronic devices are promising to be applied to polymer electrolyte fuel cells because the system can be easily downsized and simplified. A polymer electrolyte fuel cell is composed of a unit cell comprising a fuel electrode, an oxidant electrode, and a solid polymer electrolyte membrane sandwiched between the two electrodes, and supplies fuel such as methanol and hydrogen to the fuel electrode side, An oxidant gas such as oxygen or air is supplied to the pole side, and electric power is generated by these electrochemical reactions. Among them, direct hydrogen fuel cells that supply hydrogen to the fuel electrode are attracting attention because of their high power generation voltage. Direct hydrogen fuel cells are broadly divided into a flow system that circulates hydrogen on the fuel electrode side and a dead-end system that does not circulate hydrogen. Especially in mobile devices such as laptop computers and mobile phones, there are auxiliary devices, etc. The dead-end system with fewer components is suitable because it is easy to increase the energy density.

ところで燃料電池の発電反応の過程で酸化剤極において水が生成する。酸化剤極で生成した水の多くは空気中に蒸発するが、温度や湿度等の運転環境によって固体高分子電解質膜を通して燃料極に水が移動し、逆拡散水として燃料極に移動する。フロー系の燃料電池では逆拡散水は燃料ガスの移動に伴い燃料極から移動し、燃料極から除去されるが、デッドエンド系の燃料電池では燃料ガスの移動速度が遅い為に、逆拡散水は燃料極から移動せずに蓄積される場合がある。逆拡散水は微量であれば燃料電池の発電反応に影響はないが、継続した発電を行った場合には燃料極の触媒層表面を覆ってしまい拡散過電圧の増大を引き起こして発電性能の著しい低下を招く事がある。   By the way, water is generated at the oxidant electrode during the power generation reaction of the fuel cell. Most of the water generated at the oxidizer electrode evaporates into the air, but the water moves to the fuel electrode through the solid polymer electrolyte membrane depending on the operating environment such as temperature and humidity, and moves to the fuel electrode as back-diffused water. In the flow type fuel cell, the reverse diffusion water moves from the fuel electrode as the fuel gas moves and is removed from the fuel electrode. However, in the dead end type fuel cell, the movement speed of the fuel gas is slow. May accumulate without moving from the fuel electrode. If the amount of reverse diffusion water is small, there is no effect on the power generation reaction of the fuel cell. However, if continuous power generation is performed, the surface of the catalyst layer of the fuel electrode is covered, causing an increase in diffusion overvoltage, resulting in a significant decrease in power generation performance. May be invited.

上記課題に対し、燃料極に対して一時的に通常運転よりも高圧力の水素を供給する事によって燃料極に存在する水を除去する方法が提案されている(例えば特許文献1参照)。特許文献1に係る燃料電池は発電部と、燃料供給源から供給される燃料ガスを発電部に流通させる燃料流路と、燃料流路内の燃料ガス圧力を通常運転圧力よりも高圧力に制御する圧力制御機構と、圧力制御機構の高圧力制御によって作動し燃料流路内の水やその他発電の妨げとなる不純物を燃料電池外に排出する不純物排出機構を備えている。特許文献1に係る燃料電池では燃料電池の状態をモニタリングしており、発電開始から所定の時間が経過した場合、あるいは燃料電池の電圧が所定の値を下回った場合、あるいは燃料電池内の不純物濃度が所定値を上回る場合、あるいは燃料電池内の燃料濃度が所定値を下回った場合等のタイミングで燃料流路の圧力を上昇させる。また圧力制御機構の動作に伴い、燃料電池内の不純物を外部へと放出させるべく圧力が所定値以上になった時にのみ開弁する不純物排出機構が備えられている。上記動作によれば燃料流路内の不純物を発電部から除去する事が可能である。   In response to the above problem, a method has been proposed in which water present in the fuel electrode is removed by temporarily supplying hydrogen to the fuel electrode at a higher pressure than in normal operation (see, for example, Patent Document 1). The fuel cell according to Patent Document 1 controls a power generation unit, a fuel flow path for distributing fuel gas supplied from a fuel supply source to the power generation unit, and a fuel gas pressure in the fuel flow path higher than a normal operation pressure. And an impurity discharge mechanism that operates by high pressure control of the pressure control mechanism and discharges water in the fuel flow path and other impurities that interfere with power generation to the outside of the fuel cell. In the fuel cell according to Patent Document 1, the state of the fuel cell is monitored, and when a predetermined time has elapsed since the start of power generation, or when the voltage of the fuel cell falls below a predetermined value, or the impurity concentration in the fuel cell When the fuel cell pressure exceeds a predetermined value, or when the fuel concentration in the fuel cell falls below a predetermined value, the pressure in the fuel flow path is increased. In addition, an impurity discharge mechanism is provided that opens only when the pressure exceeds a predetermined value in order to release impurities in the fuel cell to the outside as the pressure control mechanism operates. According to the above operation, it is possible to remove impurities in the fuel flow path from the power generation unit.

しかしながら上述の特許文献1に係る燃料電池では、圧力制御機構にレギュレータバルブを用いており、燃料供給源は常に高圧の燃料を供給する必要がある為、燃料供給源には水素吸蔵合金や高圧水素ボンベが使用される。上記の燃料供給源は高い耐圧性を有する為、非常に堅牢な構造であり燃料電池システムが大型化してしまう。   However, in the fuel cell according to Patent Document 1 described above, a regulator valve is used for the pressure control mechanism, and the fuel supply source must always supply high-pressure fuel. Therefore, the fuel supply source includes a hydrogen storage alloy or high-pressure hydrogen. A cylinder is used. Since the fuel supply source has a high pressure resistance, it has a very robust structure and the fuel cell system becomes large.

また、燃料供給源として、水素化合物と水等の複数種類の燃料前駆体を反応させて燃料ガスを発生して発電部に供給する燃料ガス発生器を用いる場合がある。このような燃料供給源は、発電に必要な分の燃料を発生させる為に、比較的低圧で駆動させることが可能であり、堅牢な構造を必要としない為、燃料電池システムの小型化が望める。しかし燃料を低圧で燃料流路に供給する為に、特許文献1に係る技術を適用してもレギュレータバルブに入力する1次圧が低い為に、燃料流路内の不純物を十分に排除する事が困難である。   Further, as a fuel supply source, a fuel gas generator that generates a fuel gas by reacting a plurality of types of fuel precursors such as a hydrogen compound and water and supplies the fuel gas to a power generation unit may be used. Such a fuel supply source can be driven at a relatively low pressure in order to generate as much fuel as necessary for power generation, and does not require a robust structure, so that the fuel cell system can be miniaturized. . However, in order to supply fuel to the fuel flow path at a low pressure, the primary pressure input to the regulator valve is low even if the technique according to Patent Document 1 is applied, so that impurities in the fuel flow path can be sufficiently eliminated. Is difficult.

特開2008−41647号公報JP 2008-41647 A

そこで、本発明は上記状況に鑑みてなされたもので、複数の燃料前駆体を反応させて燃料を発生させる燃料供給源を用いた場合でも、燃料極の不純物を適切に除去する事ができる燃料電池を提供する事を目的とする。   Therefore, the present invention has been made in view of the above situation, and even when a fuel supply source that generates fuel by reacting a plurality of fuel precursors is used, a fuel that can appropriately remove impurities in the fuel electrode. The purpose is to provide batteries.

上記課題を解決するための本発明の燃料電池の第1の特徴は、燃料が供給される燃料極と酸化剤が供給される酸化剤極と燃料極及び酸化剤極に挟持された固体高分子電解質膜を備える発電部と、発電部に、燃料極の電解質膜が配置された面に対向するように設けられ燃料が供給される燃料供給空間を有する燃料極部と、複数の燃料前駆体を接触させ化学反応を行うことによって燃料を発生させ、燃料極部に対して燃料を供給する燃料供給源とを有し、燃料供給源は、複数の燃料前駆体をそれぞれ貯蔵する複数の貯蔵部と、複数の燃料前駆体のうち、少なくともいずれかの貯蔵部に貯蔵された燃料前駆体を他方の貯蔵部へ移動させる燃料制御機構とを有し、前記燃料制御機構は、前記燃料と酸化剤との反応により燃料極に蓄積する不純物に関する物理量に基づいて燃料前駆体の移動を制御する供給制御を行い、不純物の少なくとも一部は、供給制御によって発生した燃料の圧力で除去されるものであることを要旨とする。   The first feature of the fuel cell of the present invention for solving the above problems is that a fuel electrode to which fuel is supplied, an oxidant electrode to which an oxidant is supplied, a solid polymer sandwiched between the fuel electrode and the oxidant electrode A power generation unit including an electrolyte membrane, a fuel electrode unit provided on the power generation unit so as to face a surface on which the electrolyte membrane of the fuel electrode is disposed, and having a fuel supply space to which fuel is supplied, and a plurality of fuel precursors A fuel supply source that generates fuel by contacting and performing a chemical reaction and supplies fuel to the fuel electrode portion, and the fuel supply source includes a plurality of storage portions that respectively store a plurality of fuel precursors A fuel control mechanism that moves a fuel precursor stored in at least one of the plurality of fuel precursors to the other storage, and the fuel control mechanism includes the fuel and the oxidant. Concerning impurities accumulated in the fuel electrode due to the reaction of Perform supply control for controlling the movement of the fuel precursor based on the physical quantity, at least a portion of the impurities is summarized in that it is intended to be removed by the pressure of the fuel generated by the feed control.

かかる特徴によれば燃料前駆体を貯蔵部の内部で反応させて発生した燃料を発電部に供給する燃料電池において、発生する燃料の供給量を変えることによって燃料極に溜まる不純物を移動させて発電性能の回復を行う事が出来る。   According to such a feature, in a fuel cell that supplies fuel generated by reacting a fuel precursor inside the storage unit to the power generation unit, the amount of generated fuel is changed to move impurities accumulated in the fuel electrode to generate power. Performance recovery can be performed.

また本発明の燃料電池の第2の特徴は、第1の特徴の燃料電池において、前記燃料制御機構は、不純物に関する物理量を検出する物理量検出部を備え、物理量算出部が、不純物が燃料極に所定量以上蓄積した事を示す物理量を算出したときに燃料前駆体の移動を増加させる増加供給制御を行う事を要旨とする。   According to a second feature of the fuel cell of the present invention, in the fuel cell of the first feature, the fuel control mechanism includes a physical quantity detection unit that detects a physical quantity related to the impurity, and the physical quantity calculation unit includes the impurity in the fuel electrode. The gist is to perform an increase supply control for increasing the movement of the fuel precursor when a physical quantity indicating that a predetermined amount or more has been accumulated is calculated.

かかる特徴によれば除去が必要となる量の不純物が燃料極に溜まった事を検出して燃料前駆体の反応させる速度を増加させて、通常運転よりも速い速度で燃料を燃料極に対して供給するので、噴射された燃料によって燃料極に溜まった不純物を適切なタイミングで移動する事が出来る。   According to such a feature, the amount of impurities that need to be removed is detected in the fuel electrode, and the speed at which the fuel precursor reacts is increased, so that the fuel is fed to the fuel electrode at a faster speed than in normal operation. Since the fuel is supplied, the impurities accumulated in the fuel electrode by the injected fuel can be moved at an appropriate timing.

また本発明の燃料電池の第3の特徴は、第2の特徴の燃料電池において、前記燃料制御機構は、不純物に関する物理量を検出する物理量検出部を備え、物理量算出部が、不純物が燃料極に所定量以上蓄積した事を示す物理量を算出したときに燃料前駆体の移動を減少させる減少供給制御と、減少供給制御の後に燃料前駆体の移動を増加させる増加供給制御とを行う事を要旨とする。   According to a third feature of the fuel cell of the present invention, in the fuel cell of the second feature, the fuel control mechanism includes a physical quantity detection unit that detects a physical quantity related to the impurity, and the physical quantity calculation unit includes the impurity in the fuel electrode. The gist is to perform a decrease supply control that reduces the movement of the fuel precursor when calculating a physical quantity indicating that a predetermined amount or more has been accumulated, and an increase supply control that increases the movement of the fuel precursor after the decrease supply control. To do.

かかる特徴によれば第2の特徴の燃料電池の効果に加え、通常運転よりも速い速度で供給される燃料の量が増加し、燃料極部に対してより長い時間燃料が噴射されて供給されるので、燃料極に溜まった不純物の移動をより確実に行う事が出来る。   According to this feature, in addition to the effect of the fuel cell of the second feature, the amount of fuel supplied at a faster speed than in normal operation increases, and fuel is injected and supplied to the fuel electrode portion for a longer time. Therefore, the movement of impurities accumulated in the fuel electrode can be performed more reliably.

また本発明の燃料電池の第4の特徴は、第3の特徴の燃料電池において、燃料供給源と発電部との間には、燃料を燃料極部に供給する開状態と、燃料を燃料極部に供給しない閉状態とのどちらかを維持する燃料弁を備え、燃料弁は、前記燃料制御機構が減少供給制御を行っているときに、閉状態となることを要旨とする。   According to a fourth aspect of the fuel cell of the present invention, in the fuel cell according to the third aspect, an open state in which fuel is supplied to the fuel electrode portion and a fuel electrode between the fuel supply source and the power generation portion. A fuel valve is provided that maintains either a closed state in which no fuel is supplied to the unit, and the fuel valve is in a closed state when the fuel control mechanism is performing a decrease supply control.

かかる特徴によれば、燃料極部に供給する燃料の供給速度が一時的に勢いを増す事が出来る為、燃料極に溜まった不純物の移動をより確実に行う事が出来る。   According to such a feature, since the supply speed of the fuel supplied to the fuel electrode portion can temporarily increase, the impurities accumulated in the fuel electrode can be moved more reliably.

また本発明の燃料電池の第5の特徴は、第1から4の特徴のいずれかに記載の燃料電池において、燃料極部は、燃料極部の内部の不純物を排出する排出部と連結することを要旨とする。   According to a fifth feature of the fuel cell of the present invention, in the fuel cell according to any one of the first to fourth features, the fuel electrode portion is connected to a discharge portion that discharges impurities inside the fuel electrode portion. Is the gist.

かかる特徴によれば、燃料極に溜まった不純物は圧力差によって供給速度が増した燃料によって排出部へと移動するため、燃料極部内の不純物をより確実に除去する事が出来る。   According to this feature, the impurities accumulated in the fuel electrode are moved to the discharge portion by the fuel whose supply speed is increased by the pressure difference, so that the impurities in the fuel electrode portion can be more reliably removed.

また本発明の燃料電池の第6の特徴は、第5の特徴の燃料電池において、燃料極部と排出部とは着脱可能であり、燃料極部と排出部との間には、燃料極部の内部の不純物を排出部に排出する開状態と、燃料極部の内部の不純物を排出部に排出しない閉状態とのどちらかを維持する排出弁を備え、排出弁は、燃料極部に備えられている事を要旨とする。   According to a sixth feature of the fuel cell of the present invention, in the fuel cell of the fifth feature, the fuel electrode portion and the discharge portion are detachable, and the fuel electrode portion is between the fuel electrode portion and the discharge portion. A discharge valve is provided to maintain either an open state in which impurities inside the fuel cell are discharged to the discharge part or a closed state in which impurities inside the fuel electrode part are not discharged to the discharge part. It is a summary.

かかる特徴によれば、排出部内に移動した不純物は排出部を交換する事により燃料電池装置の外部へと除去することが出来、連続運転時における不純物の除去回数を大幅に増やす事が出来る。   According to this feature, the impurities moved into the discharge part can be removed to the outside of the fuel cell device by exchanging the discharge part, and the number of impurities removed during continuous operation can be greatly increased.

また本発明の燃料電池の第7の特徴は、第1から6の特徴のいずれかに記載の燃料電池において、燃料極部は、燃料が燃料極の面方向に対して垂直方向に供給される燃料流路を備えることを要旨とする。   According to a seventh feature of the fuel cell of the present invention, in the fuel cell according to any one of the first to sixth features, the fuel electrode portion is supplied with fuel in a direction perpendicular to the surface direction of the fuel electrode. The gist is to provide a fuel flow path.

かかる特徴によれば、燃料は燃料流路を通る事によって燃料極近傍まで速い供給速度を維持したまま供給できるので、より確実に不純物の除去を行う事が出来る。   According to such a feature, the fuel can be supplied while maintaining a high supply speed to the vicinity of the fuel electrode by passing through the fuel flow path, so that impurities can be more reliably removed.

また本発明の燃料電池の第8の特徴は、第7の特徴の燃料電池において、燃料流路は、燃料が燃料極の面方向に拡散する拡散部を備えることを要旨とする。   An eighth feature of the fuel cell according to the present invention is that, in the fuel cell according to the seventh feature, the fuel flow path includes a diffusion portion in which the fuel diffuses in the surface direction of the fuel electrode.

かかる特徴によれば、燃料流路から供給された燃料は拡散部により燃料極に沿って広範囲に渡って供給されるので、不純物の除去をより広範囲に行う事が出来る。   According to this feature, the fuel supplied from the fuel flow path is supplied over a wide range along the fuel electrode by the diffusion section, so that impurities can be removed in a wider range.

また本発明の燃料電池の第9の特徴は、第5または6の特徴の燃料電池において、燃料供給空間は、燃料極に対して設けられた溝であることを要旨とする。   A ninth feature of the fuel cell of the present invention is that, in the fuel cell of the fifth or sixth feature, the fuel supply space is a groove provided for the fuel electrode.

かかる特徴によれば、燃料供給空間は溝状に形成されているので、燃料供給空間に不純物が溜まった場合に、より確実に不純物を排出部へ移動する事が出来る。   According to this feature, since the fuel supply space is formed in a groove shape, when impurities accumulate in the fuel supply space, the impurities can be more reliably moved to the discharge portion.

また本発明の燃料電池の第10の特徴は、第2から9の特徴のいずれかに記載の燃料電池において、物理量は、発電部の電圧値であり、物理量検出部は電圧値が所定値以下となる状態を検出することを要旨とする。   According to a tenth feature of the fuel cell of the present invention, in the fuel cell according to any one of the second to ninth features, the physical quantity is a voltage value of the power generation unit, and the physical quantity detection unit has a voltage value of a predetermined value or less. The gist is to detect the state that becomes.

かかる特徴によれば、燃料電池の電圧を読み取って減少供給制御または増加供給制御を制御するので、燃料電池に対して過度な負荷を燃料電池に与える事なく安全に燃料極の水の除去が出来る。   According to this feature, the fuel cell voltage is read and the decrease supply control or the increase supply control is controlled, so that water in the fuel electrode can be removed safely without applying an excessive load to the fuel cell. .

また本発明の燃料電池の第11の特徴は、第2から9の特徴のいずれかに記載の燃料電池において、物理量は、発電部の電流値であり、物理量検出部は電流値が所定値以上となる状態を検出することを要旨とする。   According to an eleventh feature of the fuel cell of the present invention, in the fuel cell according to any one of the second to ninth features, the physical quantity is a current value of the power generation unit, and the physical quantity detection unit has a current value of a predetermined value or more. The gist is to detect the state that becomes.

かかる特徴によれば、燃料電池の電流を読み取って減少供給制御または増加供給制御を制御するので、燃料電池に対して過度な負荷を燃料電池に与える事なく、安全に燃料極の水の除去が出来る。   According to such a feature, the fuel cell current is read to control the decrease supply control or the increase supply control, so that the fuel cell water can be safely removed without applying an excessive load to the fuel cell. I can do it.

また本発明の燃料電池の第12の特徴は、第2から9の特徴のいずれかに記載の燃料電池において、物理量は、燃料電池が発電を開始してからの時間であり、物理量検出部は時間が所定時間を経過した状態を検出することを要旨とする。   According to a twelfth feature of the fuel cell of the present invention, in the fuel cell according to any one of the second to ninth features, the physical quantity is a time from when the fuel cell starts power generation. The gist is to detect a state in which a predetermined time has passed.

かかる特徴によれば、燃料電池が発電を開始してからの時間を読み取って定期的に停止制御と供給制御を切り替えるので、不純物の除去をより確実に行う事が出来る。   According to such a feature, since the time after the fuel cell starts power generation is read and the stop control and the supply control are periodically switched, impurities can be removed more reliably.

また本発明の燃料電池の第13の特徴は、第4から12の特徴のいずれかに記載の燃料電池において、貯蔵部と排出部とは、発電部から着脱可能なカートリッジ構造である事を要旨とする。   A thirteenth feature of the fuel cell according to the present invention is that, in the fuel cell according to any one of the fourth to twelfth features, the storage portion and the discharge portion have a cartridge structure that is removable from the power generation portion. And

かかる特徴によれば、可搬型の燃料電池において、カートリッジの交換により連続して発電を行えるので、長時間の発電が可能である。   According to this feature, in a portable fuel cell, power can be generated continuously by exchanging cartridges, so that power generation can be performed for a long time.

本発明によれば、複数の燃料前駆体を反応させて燃料を発生させる燃料供給源を用いた場合でも、燃料極の不純物を適切に除去する事ができる燃料電池を提供する事が可能である。   According to the present invention, it is possible to provide a fuel cell that can appropriately remove impurities in the fuel electrode even when a fuel supply source that generates fuel by reacting a plurality of fuel precursors is used. .

本発明の一実施例に係る燃料電池1の全体の概略構成である。1 is an overall schematic configuration of a fuel cell 1 according to an embodiment of the present invention. 本発明の実施例の形態1における燃料電池の概略図である。It is the schematic of the fuel cell in the form 1 of the Example of this invention. 固体高分子電解質膜と酸化剤極及び燃料極の部分拡大図である。It is the elements on larger scale of a solid polymer electrolyte membrane, an oxidizing agent electrode, and a fuel electrode. 本発明の実施の形態1における燃料電池の電圧と燃料圧力の遷移図である。It is a transition diagram of the voltage of a fuel cell and fuel pressure in Embodiment 1 of the present invention. 本発明の実施の形態2における燃料電池の電圧と燃料圧力の遷移図である。It is a transition diagram of the voltage of a fuel cell and fuel pressure in Embodiment 2 of the present invention. 本発明の実施の形態3における燃料電池の概略図である。It is the schematic of the fuel cell in Embodiment 3 of this invention. 本発明の実施の形態4における燃料電池の概略図である。It is the schematic of the fuel cell in Embodiment 4 of this invention. 本発明の実施の形態5における燃料極部の拡大断面図である。It is an expanded sectional view of the fuel electrode part in Embodiment 5 of this invention. 本発明の実施の形態5の変更例における燃料極部の拡大断面図である。It is an expanded sectional view of the fuel electrode part in the modification of Embodiment 5 of this invention. 本発明の実施の形態6における燃料極部の分解斜視図である。It is a disassembled perspective view of the fuel electrode part in Embodiment 6 of this invention.

(実施の形態1)
図1から図4に基づいて本発明の実施の形態1における燃料電池1の実施例を説明する。
(Embodiment 1)
An example of the fuel cell 1 according to Embodiment 1 of the present invention will be described with reference to FIGS.

図1には本発明の一実施例に係る燃料電池1の全体の概略構成、図2には燃料電池1の概略図、図3は固体高分子電解質膜21と酸化剤極22及び燃料極23の部分拡大図、図4は本実施例の燃料電池1を動作したときの発電部2の電圧と燃料の圧力の遷移図を示してある。   FIG. 1 is a schematic configuration of an entire fuel cell 1 according to an embodiment of the present invention, FIG. 2 is a schematic diagram of the fuel cell 1, and FIG. 3 is a solid polymer electrolyte membrane 21, an oxidant electrode 22, and a fuel electrode 23. FIG. 4 shows a transition diagram of the voltage of the power generation unit 2 and the pressure of the fuel when the fuel cell 1 of this embodiment is operated.

図1に示されるように、燃料電池1は、発電部2と、燃料供給源3から構成される。   As shown in FIG. 1, the fuel cell 1 includes a power generation unit 2 and a fuel supply source 3.

図2に示すように発電部2は固体高分子電解質膜21の両面に酸化剤が供給される酸化剤極22と燃料が供給される燃料極23を有する。ここで酸化剤としては通常大気中の酸素が用いられる事が多いが、窒素などの不純物を排除するために酸素ボンベなどによって純酸素を供給しても良い。燃料極23に与えられる燃料としては水素が挙げられる。燃料は燃料供給源3の内部の複数の貯蔵部にそれぞれ収容されている複数の燃料前駆体32が複数の貯蔵部の一部である反応部31の内部で反応する事によって得られる。ここで燃料前駆体32の具体例として水素化ホウ素ナトリウム・水素化アルミ等の水素化化合物やアルミ等の金属や水・触媒を含む触媒溶液が挙げられ、上記水素化化合物や金属と水や触媒溶液を接触させる事で、水素発生反応が生じる事が知られている。複数の燃料前駆体32を反応させるには、燃料制御機構33が一方の燃料前駆体2を他方の燃料前駆体2の存在する反応部31に供給するという方法がある。また反応部31ではない貯蔵部に設置された複数の燃料前駆体2が、燃料制御機構33によって同時に反応部31へと送られるという方法もある。本発明の技術は少なくとも1種類の燃料前駆体32が、燃料制御機構33により反応前とは異なる場所へ移動することによって燃料の発生を行う系に適用される。当然の事ながら燃料前駆体32を反応部31へ供給されなければこのような系において燃料は発生しない。なお本明細書においては、燃料制御機構33が燃料前駆体32を反応部31へと供給する動作を供給制御、燃料制御機構33が燃料前駆体32を反応部31へ供給していない状態を停止制御と呼ぶ。また通常運転時よりも大きな電力を発生する高負荷運転時においても燃料の安定した供給が可能であるように、燃料供給源3における供給制御をしている間の燃料発生速度は発電部2が発電で使用する燃料消費速度よりも速い事が好ましい。   As shown in FIG. 2, the power generation unit 2 includes an oxidant electrode 22 to which an oxidant is supplied and a fuel electrode 23 to which a fuel is supplied on both surfaces of the solid polymer electrolyte membrane 21. Here, oxygen in the atmosphere is usually used as the oxidizer, but pure oxygen may be supplied by an oxygen cylinder or the like in order to eliminate impurities such as nitrogen. An example of the fuel provided to the fuel electrode 23 is hydrogen. The fuel is obtained by reacting a plurality of fuel precursors 32 respectively stored in a plurality of storage units inside the fuel supply source 3 in a reaction unit 31 which is a part of the plurality of storage units. Specific examples of the fuel precursor 32 include a hydrogenated compound such as sodium borohydride and aluminum hydride, a catalyst solution containing a metal such as aluminum, water, and a catalyst, and the hydrogenated compound, metal, water, and catalyst. It is known that a hydrogen generation reaction occurs when the solution is brought into contact. In order to cause the plurality of fuel precursors 32 to react, there is a method in which the fuel control mechanism 33 supplies one fuel precursor 2 to the reaction unit 31 in which the other fuel precursor 2 exists. There is also a method in which a plurality of fuel precursors 2 installed in a storage unit that is not the reaction unit 31 are simultaneously sent to the reaction unit 31 by the fuel control mechanism 33. The technique of the present invention is applied to a system in which at least one fuel precursor 32 is generated by moving the fuel control mechanism 33 to a location different from that before the reaction. As a matter of course, no fuel is generated in such a system unless the fuel precursor 32 is supplied to the reaction section 31. In this specification, the fuel control mechanism 33 controls the operation of supplying the fuel precursor 32 to the reaction unit 31, and stops the state where the fuel control mechanism 33 does not supply the fuel precursor 32 to the reaction unit 31. Called control. Further, the power generation unit 2 determines the fuel generation speed during the supply control in the fuel supply source 3 so that the fuel can be stably supplied even during high-load operation that generates larger electric power than during normal operation. It is preferable that it is faster than the fuel consumption rate used for power generation.

複数の燃料前駆体32は適切なタイミングで反応をさせなければ、発生する燃料が過剰になり発電部2が高圧の状況を招いたり、発生する燃料が少ない為に燃料不足による発電性能の低下を招く。そこで燃料前駆体32の供給制御を行う必要があるが、供給制御には幾つかの種類が存在する。一つは燃料制御機構33は燃料供給空間25の内部圧力を検出し、反応部31の圧力が燃料供給空間25の圧力よりも低い場合には燃料前駆体32を反応部31へと移動し燃料を発生させる。逆に反応部31の圧力が高い場合には燃料前駆体32の反応部31への移動を停止させる。この制御方法であれば燃料供給空間25の内部圧力をほぼ一定に保ち発電部2の発電を行う事が出来る。なお本制御方法は電力を用いず、燃料供給空間25の内部圧力を検出する手段自体が燃料前駆体32の移動を行う構造も含む。   If the plurality of fuel precursors 32 do not react at an appropriate timing, the generated fuel will be excessive and the power generation unit 2 will be in a high pressure state, or the generated fuel will be low, so that the power generation performance will be reduced due to insufficient fuel. Invite. Therefore, it is necessary to control the supply of the fuel precursor 32, but there are several types of supply control. One is that the fuel control mechanism 33 detects the internal pressure of the fuel supply space 25, and if the pressure in the reaction unit 31 is lower than the pressure in the fuel supply space 25, the fuel precursor 32 is moved to the reaction unit 31 and the fuel is supplied. Is generated. Conversely, when the pressure in the reaction unit 31 is high, the movement of the fuel precursor 32 to the reaction unit 31 is stopped. With this control method, the internal pressure of the fuel supply space 25 can be kept substantially constant, and the power generation unit 2 can generate power. Note that this control method also includes a structure in which the means for detecting the internal pressure of the fuel supply space 25 itself moves the fuel precursor 32 without using electric power.

その他の制御方法としては、燃料制御機構33は発電部2の発電量を検出しており、発電量から消費される燃料の量を算出し、必要な量の燃料を発生させるべく燃料前駆体32を反応させるというものである。上記圧力を利用した制御方法であると、発電部2での発電による燃料の消費によって圧力が変動する為、供給制御と停止制御への移行には若干の遅延が生じる可能性がある。しかしながら燃料の消費量を算出する制御方法であれば上記遅延が生じる事がなく燃料供給空間25の内部圧力をほぼ一定に保ち発電部2の発電を行う事が可能である。   As another control method, the fuel control mechanism 33 detects the power generation amount of the power generation unit 2, calculates the amount of fuel consumed from the power generation amount, and generates the required amount of fuel as the fuel precursor 32. Is to react. In the control method using the pressure, since the pressure fluctuates due to the consumption of fuel by power generation in the power generation unit 2, there is a possibility that a slight delay occurs in the shift to the supply control and the stop control. However, with the control method for calculating the fuel consumption, the above-described delay does not occur, and the power generation unit 2 can generate power while keeping the internal pressure of the fuel supply space 25 substantially constant.

その他の制御方法としては、発電部2の発電量が一定である場合や発電電力の変動が予め詳細にわかっている場合に限られるが、発電部2を発電してからの発電電力の推移に併せて供給制御及び停止制御を行うものである。この制御方法によれば上述の発電量を検出する制御方法と同様に、遅延が生じる事がなく燃料供給空間25の内部圧力をほぼ一定に保ち発電部2の発電を行う事が可能である。   Other control methods are limited to cases where the amount of power generated by the power generation unit 2 is constant or when fluctuations in the generated power are known in detail. In addition, supply control and stop control are performed. According to this control method, similarly to the above-described control method for detecting the power generation amount, there is no delay, and it is possible to generate power in the power generation unit 2 while keeping the internal pressure of the fuel supply space 25 substantially constant.

上記制御方法によって燃料の発生流量は適切な値に制御されるが、発電部2の発電量に必要な燃料を発生させる制御方法であれば上記例には限らない。また本発明の燃料電池1において燃料を発生させるこれらの制御方法は単独で用いても良いし、複数の制御方法を組み合わせても利用しても良い。   Although the fuel generation flow rate is controlled to an appropriate value by the above control method, the control method is not limited to the above example as long as it is a control method for generating fuel necessary for the power generation amount of the power generation unit 2. In addition, these control methods for generating fuel in the fuel cell 1 of the present invention may be used alone or in combination with a plurality of control methods.

発電部2には、供給された燃料が発電部2の外部へ漏洩する事を防ぐ為に、燃料極23は外壁24によって囲われた燃料供給空間25を有する燃料極部26があり、燃料供給空間25は燃料極23の固体高分子電解質膜21が配置された面に対向するように設けられている。また同様の理由で固体高分子電解質膜21と外壁24が接する箇所には封止手段が備えられている事が好ましい。封止手段の例としてはパッキン・接着剤を利用したシール、固体高分子電解質膜21を外壁24へと熱融着させる等のシール方法があるが、固体高分子電解質膜21と外壁24の接触箇所の機密性が得られる方法であればこれに限らない。このように封止手段によって閉鎖空間になる燃料供給空間25に燃料供給源3から燃料が供給される。また図2に示すように発電部2と燃料供給源3が互いに距離を空けて備えられており燃料供給源3から発電部2に対して燃料を直接供給する事が難しい場合には、お互いを燃料が内部を移動する事が出来る配管やチューブ等の燃料供給路34を利用する事も可能である。   In order to prevent the supplied fuel from leaking to the outside of the power generation unit 2, the power generation unit 2 has a fuel electrode unit 26 having a fuel supply space 25 surrounded by an outer wall 24. The space 25 is provided so as to face the surface of the fuel electrode 23 on which the solid polymer electrolyte membrane 21 is disposed. For the same reason, it is preferable that a sealing means is provided at a location where the solid polymer electrolyte membrane 21 and the outer wall 24 are in contact with each other. Examples of the sealing means include a seal using packing / adhesive and a sealing method such as heat-sealing the solid polymer electrolyte membrane 21 to the outer wall 24. The contact between the solid polymer electrolyte membrane 21 and the outer wall 24 is available. The method is not limited to this as long as the confidentiality of the part can be obtained. Thus, the fuel is supplied from the fuel supply source 3 to the fuel supply space 25 that becomes a closed space by the sealing means. In addition, as shown in FIG. 2, when the power generation unit 2 and the fuel supply source 3 are provided at a distance from each other and it is difficult to supply fuel directly from the fuel supply source 3 to the power generation unit 2, It is also possible to use a fuel supply path 34 such as a pipe or tube through which the fuel can move.

次に酸化剤極22と燃料極23との詳細な構成と発電部2の発電動作を図3を用いて説明する。固体高分子電解質膜21は白金、ルテニウム、コバルトに代表される触媒が担持されたカーボン粒子が全面に塗布された層である触媒層をその表面に有している。触媒層は酸化剤極22側の触媒層221と燃料極23側の触媒層231というように両面に配置されている。更に両面の触媒層の表面には導電性と通気性を両立する酸化剤極22側と燃料極23側の両面にガス拡散層222・232を有している事が好ましい。ガス拡散層222・232は燃料を透過するために多孔質となっており、また導電性を得るべく金属やカーボン等の導電体によって形成される。   Next, the detailed configuration of the oxidant electrode 22 and the fuel electrode 23 and the power generation operation of the power generation unit 2 will be described with reference to FIG. The solid polymer electrolyte membrane 21 has a catalyst layer on its surface, which is a layer in which carbon particles carrying a catalyst typified by platinum, ruthenium, and cobalt are coated on the entire surface. The catalyst layers are arranged on both surfaces such as a catalyst layer 221 on the oxidant electrode 22 side and a catalyst layer 231 on the fuel electrode 23 side. Furthermore, it is preferable that the surfaces of the catalyst layers on both sides have gas diffusion layers 222 and 232 on both sides of the oxidant electrode 22 side and the fuel electrode 23 side, which have both conductivity and air permeability. The gas diffusion layers 222 and 232 are porous so as to permeate the fuel, and are formed of a conductor such as metal or carbon in order to obtain conductivity.

燃料供給空間25に与えられた燃料はガス拡散層232中の空孔を通して燃料極23側の触媒層231へと到達し、触媒上で以下に示す反応が生じプロトンと電子へと変わる。   The fuel given to the fuel supply space 25 reaches the catalyst layer 231 on the fuel electrode 23 side through the holes in the gas diffusion layer 232, and the following reaction occurs on the catalyst and changes into protons and electrons.

H 2 →2H ++2e - (式1)
触媒上で発生したプロトンは固体高分子電解質膜21中を移動して酸化剤極22側の触媒層221へと運搬される。また電子は触媒層よりも導電性の高いガス拡散層232中を移動して図示していない外部回路へと移動する。外部回路の先には燃料電池1で発電した電力により駆動する電子機器が接続されており、さらに電子機器の先には酸化剤極22側のガス拡散層222と接続される。
H 2 → 2H + + 2e (Formula 1)
Protons generated on the catalyst move through the solid polymer electrolyte membrane 21 and are transported to the catalyst layer 221 on the oxidant electrode 22 side. Further, the electrons move in the gas diffusion layer 232 having higher conductivity than the catalyst layer and move to an external circuit (not shown). An electronic device driven by the power generated by the fuel cell 1 is connected to the end of the external circuit, and further connected to the gas diffusion layer 222 on the oxidant electrode 22 side.

一方酸化剤極22側では空気中の酸素がガス拡散層222中の空孔を通して酸化剤極22側の触媒層221へと到達する。酸化剤極22側の触媒層221では固体高分子電解質膜21を通して運搬されたプロトンと酸素と外部回路を通して移動してきた電子と以下の反応を起こし水を生成する。   On the other hand, oxygen in the air reaches the catalyst layer 221 on the oxidant electrode 22 side through holes in the gas diffusion layer 222 on the oxidant electrode 22 side. The catalyst layer 221 on the oxidant electrode 22 side generates water by causing the following reaction with protons and oxygen transported through the solid polymer electrolyte membrane 21 and electrons moved through the external circuit.

(1/2)O2 +2H++2e -→H2 O (式2)
このような電気化学反応を経て燃料電池1は電力を発生し電子機器を駆動する事ができる。なお触媒の例を上に挙げたが、発電部2の発電反応においてプロトンを生成できるものであれば触媒の種類はこれには限らない。またガス拡散層222・232は触媒層221・231と比較すると電気抵抗は低いが、金属やカーボンに比べると電気抵抗は高い為に、固体高分子電解質膜21の面積が広い場合には外部回路へと移動する間に抵抗成分が加わり電圧が低下してしまう。このような電圧低下を改善する為に、ガス拡散層222・232の触媒層221・231と接する面と反対側の面に接するようにガス拡散層222・232よりも導電性の高いカーボン樹脂や金属で形成された電極板を設けても良い。
(1/2) O 2 + 2H + + 2e → H 2 O (Formula 2)
Through such an electrochemical reaction, the fuel cell 1 can generate electric power and drive an electronic device. In addition, although the example of the catalyst was mentioned above, the kind of catalyst will not be restricted to this if it can produce | generate a proton in the electric power generation reaction of the electric power generation part 2. FIG. The gas diffusion layers 222 and 232 have a lower electric resistance than the catalyst layers 221 and 231, but have a higher electric resistance than metals and carbon. Therefore, when the area of the solid polymer electrolyte membrane 21 is large, an external circuit is used. A resistance component is added while moving to the voltage, and the voltage drops. In order to improve such a voltage drop, a carbon resin having higher conductivity than the gas diffusion layers 222 and 232 so as to be in contact with the surface of the gas diffusion layers 222 and 232 opposite to the surface in contact with the catalyst layers 221 and 231 An electrode plate made of metal may be provided.

ここで酸化剤極22で発生した水の多くは酸化剤極22に面する空気中に蒸発するが、一部は固体高分子電解質膜21を通して燃料極23へと透過する。燃料極23へと移動した水は燃料供給空間25へと蒸発するが、燃料供給空間25は閉鎖空間である為に蒸気圧が運転状態の温度における飽和水蒸気圧に達すると水は液滴として燃料極部26に溜まり始める。また酸化剤極22が大気に面している場合には、空気中の気体が固体高分子電解質膜21を通して燃料供給空間25へと透過してくる。透過してくる気体の主成分のうち酸素は燃料極上でプロトン反応して水になるが、窒素は燃料供給空間25の内部に留まり続ける。本明細書においては上記水や窒素などを不純物としている。   Here, most of the water generated at the oxidant electrode 22 evaporates into the air facing the oxidant electrode 22, but part of the water permeates to the fuel electrode 23 through the solid polymer electrolyte membrane 21. The water that has moved to the fuel electrode 23 evaporates into the fuel supply space 25. However, since the fuel supply space 25 is a closed space, when the vapor pressure reaches the saturated water vapor pressure at the operating temperature, the water becomes fuel as droplets. It begins to accumulate in the pole part 26. Further, when the oxidant electrode 22 faces the atmosphere, gas in the air permeates through the solid polymer electrolyte membrane 21 to the fuel supply space 25. Of the main components of the permeating gas, oxygen undergoes a proton reaction on the fuel electrode to become water, but nitrogen continues to remain inside the fuel supply space 25. In this specification, the above water, nitrogen, and the like are used as impurities.

発電部2の発電における抵抗成分は、触媒上での反応に係る活性過電圧、構成部材の電気抵抗による抵抗過電圧、燃料の供給阻害による拡散過電圧の三種に大きく分けられる。拡散過電圧は不純物が燃料極23の表面を覆う事によって燃料極23に対して燃料の供給が阻害されたり、燃料不足で燃料が燃料極23に対する供給量が低下した場合等に上昇する。   The resistance component in the power generation of the power generation unit 2 can be broadly divided into three types: active overvoltage related to the reaction on the catalyst, resistance overvoltage due to the electrical resistance of the constituent members, and diffusion overvoltage due to fuel supply inhibition. The diffusion overvoltage increases when the supply of fuel to the fuel electrode 23 is hindered by impurities covering the surface of the fuel electrode 23, or when the amount of fuel supplied to the fuel electrode 23 decreases due to insufficient fuel.

次に図4を用いて本発明の燃料電池1の動作について説明を行う。通常運転時には燃料制御機構33は供給制御と停止制御を繰り返す事によってほぼ一定の圧力で燃料を燃料極23に対して供給している。この状態で発電部2を発電させると上述のように燃料極部26の面全体にほぼ一様に水が溜まり、溜まった水は燃料極23上を覆ってしまい触媒層231に対する燃料の供給を阻害して、図4に示すように発電部2の電圧が徐々に低下してくる(区間a)。そこで水が燃料極部26に所定量以上溜まったところで燃料制御機構33は区間aにおける燃料の消費量よりも多くの燃料を発生させるべく燃料前駆体32の移動速度を速くする増加供給制御へと移行する(t1)。増加供給制御を一定時間保持している状態の間に燃料供給源3が発生する燃料の量は該時間における燃料消費量よりも多く、通常運転時よりも多くの燃料が連続的に燃料供給空間25へと噴き付けられるように供給される。燃料極23を覆っている不純物は連続的な燃料の供給を受ける事によって燃料極23を覆っている不純物は飛ばされて燃料供給空間25の一部に集められる復帰動作が行われる(区間b)。またこのとき燃料供給空間の圧力は増加供給制御による消費よりも多い水素発生の為に通常運転で使用する圧力よりも高くなる。復帰動作の後に燃料制御機構33は停止制御へと移行し、燃料極23に対する燃料の供給を停止する(t2)。その後発電部2は発電を持続している為に燃料極23では燃料の消費が続けられ、燃料供給空間3の圧力は低下してくる。そして燃料供給空間3の圧力が通常運転時における圧力まで低下すると、燃料制御機構33は通常運転時の制御方法に戻る。そして再び水によって燃料極23への燃料の供給が阻害された時には復帰動作を行う事によって発電性能の回復を行う。   Next, the operation of the fuel cell 1 of the present invention will be described with reference to FIG. During normal operation, the fuel control mechanism 33 repeats supply control and stop control to supply fuel to the fuel electrode 23 at a substantially constant pressure. When the power generation unit 2 generates power in this state, water is collected almost uniformly on the entire surface of the fuel electrode part 26 as described above, and the accumulated water covers the fuel electrode 23 and supplies fuel to the catalyst layer 231. Inhibiting, the voltage of the power generation unit 2 gradually decreases as shown in FIG. 4 (section a). Therefore, when water accumulates at a predetermined amount or more in the fuel electrode portion 26, the fuel control mechanism 33 shifts to an increase supply control in which the moving speed of the fuel precursor 32 is increased to generate more fuel than the amount of fuel consumed in the section a. Transition (t1). The amount of fuel generated by the fuel supply source 3 while the increased supply control is maintained for a certain period of time is larger than the amount of fuel consumed at that time, and more fuel is continuously supplied to the fuel supply space than during normal operation. To be sprayed to 25. The impurities covering the fuel electrode 23 receive a continuous supply of fuel, so that the impurities covering the fuel electrode 23 are skipped and collected in a part of the fuel supply space 25 (section b). . Further, at this time, the pressure in the fuel supply space becomes higher than the pressure used in the normal operation for generating more hydrogen than the consumption by the increase supply control. After the return operation, the fuel control mechanism 33 shifts to stop control, and stops the supply of fuel to the fuel electrode 23 (t2). Thereafter, since the power generation unit 2 continues to generate power, the fuel electrode 23 continues to consume fuel, and the pressure in the fuel supply space 3 decreases. When the pressure in the fuel supply space 3 decreases to the pressure during normal operation, the fuel control mechanism 33 returns to the control method during normal operation. When the supply of fuel to the fuel electrode 23 is again hindered by water, the power generation performance is recovered by performing a return operation.

ここで本実施例において燃料制御機構33が通常運転から増加供給制御へ移行を適切に行う事が求められるが、それには以下に示すように幾つかの方法を挙げる事ができる。   Here, in the present embodiment, it is required that the fuel control mechanism 33 appropriately shift from the normal operation to the increase supply control, and there are several methods as shown below.

≪制御パターン1≫
燃料制御機構33は、酸化剤極22と燃料極23との間の電圧を検出する手段を備えており、発電部2の電圧が予め定められた所定圧以下となったときに燃料制御機構を通常運転状態から増加供給制御へと移行する。発電部2の動作電圧は使用機器の要求する電力の大きさによって変化するが、通常運転時には0.7V付近の電圧値で動作させる事が望ましい。そして通常運転を持続して行い、不純物が燃料極23を覆う事による拡散過電圧の増大により電圧値が第1所定値まで低下したときには、燃料制御機構33はその電圧情報を受けて燃料極部26に水が溜まったと判定し、通常運転の制御から増加供給制御へと移行する。また本発明において電圧値の第1所定値とは0V以上であればいかなる値に設定しても良いが固体高分子電解質膜21と触媒層221・231を含む膜電極接合体の劣化を防ぐという観点から0.2V以上に設定する事が望ましい。
≪Control pattern 1≫
The fuel control mechanism 33 includes means for detecting a voltage between the oxidant electrode 22 and the fuel electrode 23, and the fuel control mechanism is activated when the voltage of the power generation unit 2 becomes equal to or lower than a predetermined pressure. Transition from normal operation to increased supply control. The operating voltage of the power generation unit 2 varies depending on the amount of power required by the equipment used, but it is desirable to operate at a voltage value around 0.7 V during normal operation. When the normal operation is continued and the voltage value is reduced to the first predetermined value due to an increase in diffusion overvoltage caused by impurities covering the fuel electrode 23, the fuel control mechanism 33 receives the voltage information and receives the fuel electrode portion 26. It is determined that water has accumulated, and control is shifted from normal operation control to increased supply control. In the present invention, the first predetermined value of the voltage value may be set to any value as long as it is 0 V or more. However, the deterioration of the membrane electrode assembly including the solid polymer electrolyte membrane 21 and the catalyst layers 221 and 231 is prevented. It is desirable to set it to 0.2V or more from the viewpoint.

復帰動作によって発電部2の電圧は通常運転時の電圧と同等まで回復する事が望ましいが、ガス拡散層232の微細な孔の中に詰まっている不純物は完全に除去する事が難しい為、少なくとも復帰動作後に電圧が回復していれば通常運転時の電圧よりも低い状態でも増加供給制御を終了して通常運転の制御に移行しても良い。
≪制御パターン2≫
燃料制御機構33は、発電部2の発電状態の電流値を検出する手段を備えており、発電部2の電流が予め定められた所定値以上となったときに燃料制御機構33を通常運転の制御から増加供給制御へと移行する。発電部2の通常発電時の電流は固体高分子電解質膜21と酸化剤極22と燃料極23によって決定される発電有効面積の大きさによるため、一概にその大きさを述べる事はできないが、制御パターン1に示すように通常運転時に0.7V付近の電圧値に対応する電流値である事が望ましい。また増加供給制御を終了するタイミングも制御パターン1と同様に、少なくとも復帰動作後に電圧が回復した時に、その電圧に対応する値まで電流値が低下していれば、通常運転時の電流よりも低くても良い。
≪制御パターン3≫
燃料制御機構33は、発電部2の発電時間を検出する手段を備えており、発電部2の発電時間が予め定められた所定時間を経過した時に燃料制御機構33を通常運転の制御から増加供給制御へと移行する。発電を行う環境温度及び湿度によって変化するが、使用する電子機器での要求電力が一定である場合、時間の経過と共にどれだけの不純物が燃料極23の表面を覆ってしまったかを予測する事ができる。その為予め燃料極部26に不純物が溜まり復帰動作が必要になる時間を設定しておき、その燃料制御機構33において発電部2の発電時間情報を受けて燃料極部23の表面を不純物が覆ったことを判定し通常運転から増加供給制御への移行を行う。また増加供給制御を終了する際には、増加供給制御を開始してからの時間を検出し、不純物を除去するのに十分な時間が経過した事を検出した段階で増加供給制御の終了を実行する。
Although it is desirable that the voltage of the power generation unit 2 be restored to the same level as that during normal operation by the returning operation, it is difficult to completely remove impurities clogged in the fine holes of the gas diffusion layer 232. If the voltage is recovered after the return operation, the increase supply control may be ended and the control may be shifted to the normal operation control even in a state lower than the voltage during the normal operation.
≪Control pattern 2≫
The fuel control mechanism 33 includes means for detecting a current value of the power generation state of the power generation unit 2, and when the current of the power generation unit 2 exceeds a predetermined value, the fuel control mechanism 33 performs normal operation. Shift from control to increased supply control. Since the current during normal power generation of the power generation unit 2 depends on the size of the power generation effective area determined by the solid polymer electrolyte membrane 21, the oxidant electrode 22, and the fuel electrode 23, the size cannot be generally described. As shown in control pattern 1, it is desirable that the current value corresponds to a voltage value in the vicinity of 0.7 V during normal operation. Similarly to the control pattern 1, the timing for ending the increased supply control is lower than the current during normal operation if the current value is reduced to a value corresponding to the voltage when the voltage recovers at least after the return operation. May be.
<< Control pattern 3 >>
The fuel control mechanism 33 is provided with means for detecting the power generation time of the power generation unit 2, and when the power generation time of the power generation unit 2 has passed a predetermined time, the fuel control mechanism 33 is increased from normal operation control. Transition to control. Although it varies depending on the environmental temperature and humidity at which power generation is performed, when the required power in the electronic device used is constant, it is possible to predict how much impurities have covered the surface of the fuel electrode 23 over time. it can. For this reason, a time during which impurities accumulate in the fuel electrode portion 26 and a return operation is necessary is set in advance, and the fuel control mechanism 33 receives the power generation time information of the power generation portion 2 to cover the surface of the fuel electrode portion 23 with the impurities. And the transition from normal operation to increased supply control is performed. When the increase supply control is terminated, the time after the start of the increase supply control is detected, and the increase supply control is terminated when it is detected that a sufficient time has passed for removing impurities. To do.

通常運転制御から増加供給制御への移行、及び増加供給制御の終了への制御には以上のような制御パターンを適用する事ができる。しかしながら燃料極部26に溜まった不純物量を検出できる手段であればこれに限らない。また上記の制御パターンにおいては発電部2の発電状況に応じて燃料制御機構33が動作をする為、燃料制御機構33には電磁弁が適用される。   The above control pattern can be applied to the transition from the normal operation control to the increase supply control and the control to the end of the increase supply control. However, the present invention is not limited to this as long as it can detect the amount of impurities accumulated in the fuel electrode portion 26. Further, in the above control pattern, the fuel control mechanism 33 operates in accordance with the power generation status of the power generation unit 2, so that an electromagnetic valve is applied to the fuel control mechanism 33.

またすべての制御パターンに適用できるが、増加供給制御を終了するタイミングについては圧力値によって制御されても良い。燃料制御機構33は燃料極部26の燃料の圧力を検出する手段を備えており、停止制御を開始してから燃料極部26の燃料の圧力が所定値以上になったときに燃料制御機構33は増加供給制御から停止制御へと移行する。燃料極部26内の燃料が高圧になりすぎて燃料電池1の破損を防ぐ為に、所定値は燃料電池1が破損する圧力よりも低く設定される。   Although applicable to all control patterns, the timing for ending the increased supply control may be controlled by the pressure value. The fuel control mechanism 33 is provided with means for detecting the fuel pressure of the fuel electrode part 26, and when the fuel pressure of the fuel electrode part 26 becomes equal to or higher than a predetermined value after the stop control is started, the fuel control mechanism 33. Shift from increased supply control to stop control. The predetermined value is set lower than the pressure at which the fuel cell 1 is damaged in order to prevent the fuel in the fuel electrode portion 26 from becoming too high and damaging the fuel cell 1.

なお通常運転から増加供給制御への移行と、増加供給制御から通常運転への移行は異なるトリガーにより行なわれても良い。例えば通常運転から増加供給制御への移行は電圧の検出を利用した制御パターン1によって行い、増加供給制御から通常運転への移行は圧力の検出によって行われても良い。   The transition from the normal operation to the increase supply control and the shift from the increase supply control to the normal operation may be performed by different triggers. For example, the shift from the normal operation to the increase supply control may be performed by the control pattern 1 using the detection of the voltage, and the shift from the increase supply control to the normal operation may be performed by the detection of the pressure.

上述のように燃料極23を不純物が覆ってしまい触媒層231に対する燃料の阻害が生じて発電部2の発電性能が低下した場合でも、燃料極23に対して通常運転時よりも速い速度で燃料を供給する事で、不純物を適切なタイミングで除去する事によって発電部2の発電性能を回復する事が出来る。
(実施の形態2)
本発明の実施の形態2における発電部2を動作したときの発電部2の電圧と燃料の圧力の遷移図を図5に示す。なお、本実施の形態1と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図5を用いて本実施の形態2について説明する。
As described above, even when the fuel electrode 23 is covered with impurities and the fuel is inhibited by the catalyst layer 231 and the power generation performance of the power generation unit 2 is reduced, the fuel electrode 23 is fueled at a higher speed than during normal operation. The power generation performance of the power generation unit 2 can be recovered by removing impurities at an appropriate timing.
(Embodiment 2)
FIG. 5 shows a transition diagram of the voltage of the power generation unit 2 and the pressure of the fuel when the power generation unit 2 according to Embodiment 2 of the present invention is operated. Note that the same parts as those in the first embodiment are denoted by the same reference numerals, and description of similar configurations and operations is omitted. Hereinafter, the second embodiment will be described with reference to FIG.

本発明の実施の形態2における発電部2は、実施の形態1の発電部2と同様の構成であるが、燃料制御機構33の燃料前駆体32の供給制御方法が異なる。燃料制御機構32は発電部2の通常運転時における燃料の消費量よりも少ない燃料を発生させるべく燃料前駆体32の移動を行う減少供給制御を行った後に、通常運転時における燃料の消費量よりも多くの燃料を発生させるべく燃料前駆体32の移動を行う増加供給制御を行う。   The power generation unit 2 according to the second embodiment of the present invention has the same configuration as that of the power generation unit 2 according to the first embodiment, except that the method for controlling the supply of the fuel precursor 32 of the fuel control mechanism 33 is different. The fuel control mechanism 32 performs a reduction supply control for moving the fuel precursor 32 to generate a fuel that is smaller than the fuel consumption during the normal operation of the power generation unit 2, and then the fuel control mechanism 32 determines the fuel consumption during the normal operation. In order to generate a large amount of fuel, an increase supply control for moving the fuel precursor 32 is performed.

図5の発電部2の電圧及び圧力の遷移図に従って本実施の形態2の説明を行う。発電部2が通常発電を長時間継続すると不純物が燃料極部26に溜まって燃料極23が覆われる事により拡散過電圧が上昇し発電部2の発電電圧が低下する。不純物が燃料極部26に所定量以上溜まったところで燃料制御機構33は減少供給制御へと移行する(t3)。減少供給制御において燃料の発生量を減少させるには、燃料前駆体32の供給速度を通常運転時よりも遅くする事や、燃料前駆体32の供給を完全に停止する事で実現される。燃料供給空間25に対する燃料の供給量が減少するために燃料供給空間25の燃料の分圧は徐々に低下する。燃料の分圧の低下は拡散過電圧の増大を引き起こす為、燃料の分圧低下に伴って発電部2の発電電圧が低下する(区間c)。減少供給制御での発電を続け、燃料供給空間25の燃料の分圧が予め決められた所定圧まで低下した時に、燃料制御機構33は増加供給制御状態へと移行する(t4)。増加供給制御を一定時間保持している状態において燃料供給源3が発生する燃料の量は該時間における燃料消費量よりも多く、通常運転時よりも多くの燃料が連続的に燃料供給空間25へと噴き付けられるように供給される。また減少供給制御での発電を行っていた為に燃料供給空間25の内部圧力は低下しており、実施の形態1または2で示す発電部の構成よりも燃料供給空間25に対する燃料の供給がより長時間行われる。燃料極23を覆っている不純物は連続的な燃料の供給を受ける事によって燃料極23を覆っている不純物は飛ばされて燃料供給空間25の一部に集められる復帰動作が行われる(区間b)。またこのとき燃料供給空間25の圧力は増加供給制御による消費よりも多い水素発生の為に通常運転で使用する圧力よりも高くなる。復帰動作の後に燃料制御機構33は停止制御へと移行し、燃料極23に対する燃料の供給を停止する(t5)。その後発電部2は発電を持続している為に燃料極23では燃料の消費が続けられ、燃料供給空間25の圧力は低下してくる。そして燃料供給空間25の圧力が通常運転時における圧力まで低下すると、燃料制御機構33は通常運転時の制御方法に戻る。そして再び水によって燃料極23への燃料の供給が阻害された時には復帰動作を行う事によって発電性能の回復を行う。   The second embodiment will be described in accordance with the voltage and pressure transition diagram of the power generation unit 2 in FIG. When the power generation unit 2 continues normal power generation for a long time, impurities accumulate in the fuel electrode portion 26 and the fuel electrode 23 is covered, so that the diffusion overvoltage increases and the power generation voltage of the power generation unit 2 decreases. The fuel control mechanism 33 shifts to the decrease supply control when the impurities are accumulated in the fuel electrode portion 26 by a predetermined amount or more (t3). In order to reduce the amount of fuel generated in the decrease supply control, the supply rate of the fuel precursor 32 is made slower than that during normal operation, or the supply of the fuel precursor 32 is completely stopped. Since the amount of fuel supplied to the fuel supply space 25 decreases, the partial pressure of the fuel in the fuel supply space 25 gradually decreases. Since the decrease in the fuel partial pressure causes an increase in the diffusion overvoltage, the power generation voltage of the power generation unit 2 decreases as the fuel partial pressure decreases (section c). When power generation in the decrease supply control is continued and the partial pressure of the fuel in the fuel supply space 25 decreases to a predetermined pressure, the fuel control mechanism 33 shifts to the increase supply control state (t4). The amount of fuel generated by the fuel supply source 3 is larger than the amount of fuel consumed at the time when the increased supply control is maintained for a certain time, and more fuel is continuously supplied to the fuel supply space 25 than during normal operation. Supplied to be sprayed with. In addition, since the power generation is performed under the reduced supply control, the internal pressure of the fuel supply space 25 is reduced, and the fuel is supplied to the fuel supply space 25 more than the configuration of the power generation unit shown in the first or second embodiment. Done for a long time. The impurities covering the fuel electrode 23 receive a continuous supply of fuel, so that the impurities covering the fuel electrode 23 are skipped and collected in a part of the fuel supply space 25 (section b). . Further, at this time, the pressure in the fuel supply space 25 becomes higher than the pressure used in the normal operation for generating more hydrogen than the consumption by the increase supply control. After the return operation, the fuel control mechanism 33 shifts to stop control and stops the supply of fuel to the fuel electrode 23 (t5). Thereafter, since the power generation unit 2 continues to generate power, the fuel electrode 23 continues to consume fuel, and the pressure in the fuel supply space 25 decreases. When the pressure in the fuel supply space 25 decreases to the pressure during normal operation, the fuel control mechanism 33 returns to the control method during normal operation. When the supply of fuel to the fuel electrode 23 is again hindered by water, the power generation performance is recovered by performing a return operation.

本実施の形態において燃料制御機構33が通常運転の制御から減少供給制御への切替制御方法は本実施の形態1における制御パターン1から3における通常運転から増加供給制御の切替方法を、及び増加供給制御から通常運転の制御への切替制御方法は本実施の形態1における制御パターン1から3における通常運転から増加供給制御の切替方法を適用できる。
≪制御パターン4≫
燃料制御機構33は、酸化剤極22と燃料極23との間の電圧を検出する手段を備えており、発電部2の電圧が予め定められた所定圧以下となったときに燃料制御機構33を通常運転状態から減少供給制御へと移行する。発電部2の動作電圧は使用機器の要求する電力の大きさによって変化するが、通常運転時には0.7V付近の電圧値で動作させる事が望ましい。そして通常運転を持続して行い、不純物が燃料極23を覆う事による拡散過電圧の増大により電圧値が第2所定値まで低下したときには、燃料制御機構33はその電圧情報を受けて燃料極部26に水が溜まったと判定し、通常運転の制御から減少供給制御へと移行する。その後、減少供給制御から増加供給制御へ移行する際には、第1所定値まで電圧が低下した時に行うのが好ましい。第2所定値は第1所定値以下あれば良いが、固体高分子電解質膜21の保護の観点から0.2V以上で設定する事が好ましい。その為第2所定圧は通常運転における電圧よりも低く、第1所定圧よりも高い値で設定される。
In the present embodiment, the fuel control mechanism 33 is switched from the normal operation control to the decrease supply control in the control pattern 1 to 3 in the first embodiment, and is switched from the normal operation to the increase supply control. As a switching control method from control to normal operation control, the switching method from normal operation to increase supply control in the control patterns 1 to 3 in the first embodiment can be applied.
<< Control pattern 4 >>
The fuel control mechanism 33 includes means for detecting a voltage between the oxidant electrode 22 and the fuel electrode 23, and the fuel control mechanism 33 when the voltage of the power generation unit 2 becomes a predetermined pressure or less. Is shifted from the normal operation state to the reduced supply control. The operating voltage of the power generation unit 2 varies depending on the amount of power required by the equipment used, but it is desirable to operate at a voltage value around 0.7 V during normal operation. When the normal operation is continued and the voltage value decreases to the second predetermined value due to an increase in diffusion overvoltage caused by impurities covering the fuel electrode 23, the fuel control mechanism 33 receives the voltage information and receives the fuel electrode portion 26. It is determined that water has accumulated, and control is shifted from normal operation control to reduced supply control. Thereafter, the transition from the decrease supply control to the increase supply control is preferably performed when the voltage drops to the first predetermined value. The second predetermined value may be equal to or less than the first predetermined value, but is preferably set to 0.2 V or more from the viewpoint of protecting the solid polymer electrolyte membrane 21. Therefore, the second predetermined pressure is set to a value lower than the voltage in normal operation and higher than the first predetermined pressure.

増加供給制御に移行してからの挙動は制御パターン1と同様の制御方法である。   The behavior after the shift to the increased supply control is the same control method as in the control pattern 1.

≪制御パターン5≫
燃料制御機構33は、発電部2の発電状態の電流値を検出する手段を備えており、発電部2の電流が予め定められた所定値以上となったときに燃料制御機構33を通常運転の制御から減少制御へと移行する。発電部2の通常発電時の電流は固体高分子電解質膜21と酸化剤極22と燃料極23によって決定される発電有効面積の大きさによるため、一概にその大きさを述べる事はできないが、制御パターン4に示すように通常運転時に0.7V付近の電圧値に対応する電流値である事が望ましい。通常運転を持続して行い、不純物が燃料極23を覆う事による拡散過電圧の増大によって電圧値が低下する。電力は電圧と電流の積で与えられる事から、使用機器の要求電力が一定であるとした場合に上述の電圧低下が生じた時にはそれに伴って電流値が増大する。制御パターン4と同様第2所定値に対応する電流値になったときに通常運転から減少供給制御への移行、第1所定値に対応する電流値になったときに減少供給制御を終了し、増加供給制御へと移行する。
<< Control pattern 5 >>
The fuel control mechanism 33 includes means for detecting a current value of the power generation state of the power generation unit 2, and when the current of the power generation unit 2 exceeds a predetermined value, the fuel control mechanism 33 performs normal operation. Shift from control to decrease control. Since the current during normal power generation of the power generation unit 2 depends on the size of the power generation effective area determined by the solid polymer electrolyte membrane 21, the oxidant electrode 22, and the fuel electrode 23, the size cannot be generally described. As shown in control pattern 4, it is desirable that the current value corresponds to a voltage value in the vicinity of 0.7 V during normal operation. The normal operation is continued, and the voltage value decreases due to an increase in diffusion overvoltage caused by impurities covering the fuel electrode 23. Since power is given by the product of voltage and current, when the above-mentioned voltage drop occurs when the required power of the equipment used is constant, the current value increases accordingly. Similarly to the control pattern 4, when the current value corresponding to the second predetermined value is reached, the shift from the normal operation to the reduced supply control is completed, and when the current value corresponding to the first predetermined value is reached, the reduction supply control is terminated. Shift to increased supply control.

増加供給制御に移行してからの挙動は制御パターン2と同様の制御方法である。
≪制御パターン6≫
燃料制御機構33は、発電部2の発電時間を検出する手段を備えており、発電部2の発電時間が予め定められた所定時間を経過した時に燃料制御機構33を通常運転の制御から減少制御へと移行する。予め燃料極部26に不純物が溜まり復帰動作が必要になる時間を設定しておき、その燃料制御機構33において発電部2の発電時間情報を受けて燃料極部23の表面を不純物が覆ったことを判定し通常運転から減少供給制御への移行を行う。減少供給制御から増加供給制御への切替は、膜電極接合体の劣化を防ぐ為に発電に必要な燃料の圧力が燃料極に残っている間に行う事が好ましい。減少供給制御における燃料の発生量がわかっている為に、減少供給制御に移行してからの時間と、発電における燃料の使用量と、燃料極部26の内部容積から、燃料極部26の内部の燃料残量を計算できる。そこで減少供給制御で燃料極26の内部の燃料を消費しきる前に増加供給制御へと移行を行う。
The behavior after the shift to the increased supply control is the same control method as in the control pattern 2.
<< Control pattern 6 >>
The fuel control mechanism 33 is provided with means for detecting the power generation time of the power generation unit 2, and when the power generation time of the power generation unit 2 has passed a predetermined time, the fuel control mechanism 33 is controlled to decrease from normal operation control. Migrate to The time during which impurities accumulate in the fuel electrode portion 26 and the return operation is required is set in advance, and the fuel control mechanism 33 receives the power generation time information of the power generation portion 2 to cover the surface of the fuel electrode portion 23 with impurities. And shift from normal operation to reduced supply control. The switching from the decrease supply control to the increase supply control is preferably performed while the fuel pressure necessary for power generation remains in the fuel electrode in order to prevent deterioration of the membrane electrode assembly. Since the amount of fuel generated in the reduction supply control is known, the time after the shift to the reduction supply control, the amount of fuel used in power generation, and the internal volume of the fuel electrode portion 26 are used. The remaining amount of fuel can be calculated. Therefore, the shift to the increase supply control is performed before the fuel in the fuel electrode 26 is completely consumed by the decrease supply control.

増加供給制御に移行してからの挙動は制御パターン3と同様の制御方法である。   The behavior after the shift to the increased supply control is the same control method as in the control pattern 3.

またすべての制御パターンに適用できるが、減少供給制御を終了するタイミングについては圧力値によって制御されても良い。燃料制御機構33は燃料極部26の燃料の圧力を検出する手段を備えており、停止制御を開始してから燃料極部26の燃料の圧力が所定値以上になったときに燃料制御機構33は減少供給制御から増加供給制御へと移行する。なお所定の圧力は通常運転における燃料極部26の内部圧力よりも低ければ良いが、燃料極部26への不純物の過度な燃料の不足状態を避ける為に、40kPa以上に設定されるとより良い。
なお制御パターン1から3と同様に制御状態の切替はそれぞれ異なるトリガーにより行なわれても良い。
Although applicable to all control patterns, the timing for ending the reduction supply control may be controlled by the pressure value. The fuel control mechanism 33 is provided with means for detecting the fuel pressure of the fuel electrode part 26, and when the fuel pressure of the fuel electrode part 26 becomes equal to or higher than a predetermined value after the stop control is started, the fuel control mechanism 33. Shift from decreasing supply control to increasing supply control. The predetermined pressure may be lower than the internal pressure of the fuel electrode portion 26 in normal operation, but it is better to set the pressure to 40 kPa or more in order to avoid excessive fuel shortage of impurities in the fuel electrode portion 26. .
Note that, similarly to the control patterns 1 to 3, switching of the control state may be performed by different triggers.

本実施の形態に示す燃料電池1の構成及び制御方法によれば、燃料は通常運転よりも高速度で燃料供給空間25に対して、より長い時間供給される為、燃料極23を覆っている不純物の除去をさらに効率よく行う事が出来る。
(実施の形態3)
本発明の実施の形態3における燃料電池1の概略構成図を図6に示す。なお、本実施の形態1または2と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図6を用いて本実施の形態4について説明する。
According to the configuration and the control method of the fuel cell 1 shown in the present embodiment, the fuel is supplied to the fuel supply space 25 at a higher speed than the normal operation for a longer time, and thus covers the fuel electrode 23. Impurities can be removed more efficiently.
(Embodiment 3)
FIG. 6 shows a schematic configuration diagram of the fuel cell 1 according to Embodiment 3 of the present invention. The same parts as those in the first or second embodiment are denoted by the same reference numerals, and description of similar configurations and operations is omitted. Hereinafter, the fourth embodiment will be described with reference to FIG.

本発明の実施の形態4における燃料電池1は実施の形態1または3における燃料電池1において、発電部2と燃料供給源3との間に燃料弁35を設けている。燃料弁35は弁体の開閉状態により、燃料供給源3から発電部2への燃料の移動が可能である開状態と、燃料の移動が出来ない閉状態を有しており、燃料弁35の開閉動作は燃料制御機構33の制御と連動して動作する。また燃料弁35が備えられている場所は燃料供給空間25の入口から燃料供給源3の出口までの間であればどこであってもよく、図6に示すように発電部2と燃料供給源3が互いに距離があり燃料供給路34によって接続されている場合には燃料供給路34に備えられていても良い。   In the fuel cell 1 according to Embodiment 4 of the present invention, a fuel valve 35 is provided between the power generation unit 2 and the fuel supply source 3 in the fuel cell 1 according to Embodiment 1 or 3. The fuel valve 35 has an open state in which the fuel can be moved from the fuel supply source 3 to the power generation unit 2 and a closed state in which the fuel cannot be moved depending on the open / close state of the valve body. The opening / closing operation operates in conjunction with the control of the fuel control mechanism 33. Further, the place where the fuel valve 35 is provided may be anywhere between the inlet of the fuel supply space 25 and the outlet of the fuel supply source 3, and as shown in FIG. May be provided in the fuel supply path 34 when they are connected to each other by the fuel supply path 34.

燃料電池1が通常運転において発電をしているときには燃料弁35は開状態となっている。この状態で発電部2が発電を続けていると、不純物が燃料極部26に溜まって燃料極23が覆われる事により拡散過電圧が上昇し発電部2の発電電圧が低下する。不純物が燃料極部26に所定量以上溜まったところで燃料制御機構33は減少供給制御へと移行するが、この時同時に燃料弁35も閉状態へと移行し、燃料弁35によって発電部2と燃料供給源3の内部空間は遮断された状態となる。この状態で発電部2が発電をする為、燃料供給空間25の燃料を含む気体の圧力は低下していき、一方で燃料供給源3は発電部2に対して燃料を供給しない為に燃料供給源3の内部圧力は保持、若しくは緩やかに上昇する。そして発電部2の電圧が所定値まで低下し、燃料制御機構33が第1制御を終了した際に燃料弁35は開状態へと移行する。このとき発電部2と燃料供給源3の内部空間には上述のように圧力差が生じているために、燃料弁35が開状態になる事によって燃料は燃料供給部25に対して勢いよく流入する。このため燃料極23を覆っている不純物は燃料によって飛ばされやすくなる。   When the fuel cell 1 is generating electric power during normal operation, the fuel valve 35 is open. If the power generation unit 2 continues to generate power in this state, impurities accumulate in the fuel electrode portion 26 and the fuel electrode 23 is covered, so that the diffusion overvoltage increases and the power generation voltage of the power generation unit 2 decreases. The fuel control mechanism 33 shifts to reduction supply control when impurities accumulate in the fuel electrode portion 26 at a predetermined amount or more. At this time, the fuel valve 35 also shifts to the closed state. The internal space of the supply source 3 is blocked. Since the power generation unit 2 generates power in this state, the pressure of the gas containing the fuel in the fuel supply space 25 decreases, while the fuel supply source 3 does not supply fuel to the power generation unit 2 and supplies fuel. The internal pressure of the source 3 is maintained or rises slowly. And when the voltage of the electric power generation part 2 falls to a predetermined value and the fuel control mechanism 33 complete | finishes 1st control, the fuel valve 35 will transfer to an open state. At this time, since the pressure difference is generated in the internal space between the power generation unit 2 and the fuel supply source 3 as described above, the fuel flows into the fuel supply unit 25 vigorously when the fuel valve 35 is opened. To do. For this reason, the impurities covering the fuel electrode 23 are easily blown away by the fuel.

燃料弁35の開閉動作は燃料電池1の使用者によって制御されても良いが、図6に示すように燃料弁35は燃料制御機構33と動作を連動する為に、信号線36によって燃料制御機構33の制御情報に関する信号を受けて開閉動作を行う電磁弁であると良い。   The opening / closing operation of the fuel valve 35 may be controlled by the user of the fuel cell 1, but the fuel valve 35 is linked with the fuel control mechanism 33 as shown in FIG. It is good to be a solenoid valve that opens and closes in response to a signal related to control information 33.

また燃料供給源3は内部の燃料前駆体32の残量がなくなり燃料が発電部2に供給できない場合に、燃料前駆体32が入った別の燃料供給源3を使用できるように、着脱可能なカートリッジ構造であってもよい。その場合、燃料弁35は発電部2と燃料供給源3を切り離した時に発電部2側に備えられていると良い。このような構成であれば、交換部材である燃料供給源3に余分な機構を設ける必要事がないので、燃料供給源3の製造コストを低く抑えることができる。また発電部2と燃料供給源3を切り離した際に、切り離した箇所の流路断面を塞ぐ弁機能を備えていれば燃料の漏洩を防ぐ事が出来るが、この弁機能を燃料制御機構33がもっていても良い。   The fuel supply source 3 is detachable so that another fuel supply source 3 containing the fuel precursor 32 can be used when the remaining amount of the fuel precursor 32 in the interior is exhausted and fuel cannot be supplied to the power generation unit 2. A cartridge structure may be used. In that case, the fuel valve 35 is preferably provided on the power generation unit 2 side when the power generation unit 2 and the fuel supply source 3 are separated. With such a configuration, it is not necessary to provide an extra mechanism for the fuel supply source 3 that is an exchange member, so that the manufacturing cost of the fuel supply source 3 can be kept low. In addition, when the power generation unit 2 and the fuel supply source 3 are separated, it is possible to prevent fuel leakage if a valve function is provided to block the flow path cross section of the separated part. You may have.

本実施の形態によれば燃料弁35によって発電部2と燃料供給源3の間に圧力差が得られる為、復帰動作における燃料供給空間25に対する燃料の供給速度が上昇し、不純物の除去をより確実に行う事が可能である。
(実施の形態4)
本発明の実施の形態4における燃料電池1の概略図を図7に示す。なお、本実施の形態1から3と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図7を用いて本実施の形態4について説明する。
According to the present embodiment, since a pressure difference is obtained between the power generation unit 2 and the fuel supply source 3 by the fuel valve 35, the fuel supply speed to the fuel supply space 25 in the return operation is increased, and impurities are further removed. It can be done reliably.
(Embodiment 4)
A schematic diagram of a fuel cell 1 according to Embodiment 4 of the present invention is shown in FIG. The same parts as those in the first to third embodiments are denoted by the same reference numerals, and the description of the same configuration and operation is omitted. Hereinafter, the fourth embodiment will be described with reference to FIG.

図7に示すように本発明の実施の形態5における燃料電池1は実施の形態4における燃料電池1に加え、燃料極部26と接続される排出部4と、燃料極部26と排出部4の間に排出弁41を備えている。   As shown in FIG. 7, in addition to the fuel cell 1 in the fourth embodiment, the fuel cell 1 in the fifth embodiment of the present invention includes a discharge part 4 connected to the fuel electrode part 26, a fuel electrode part 26 and a discharge part 4. A discharge valve 41 is provided between the two.

排出部4は燃料極部26の燃料供給空間25と接続されており、燃料供給空間25に溜まった不純物は排出部4へと移動する事が出来る。この構成における発電部2では、燃料極部26の内部容積が排出部4によって拡張される為、燃料制御機構33を減少供給制御から通常運転状態にした場合、燃料極部26の燃料の内圧が通常運転時で使用される圧力と同等に上昇するまでにより多くの燃料を供給する必要がある。その為、燃料供給空間25に対して燃料を噴きつける供給をより長時間持続する事が出来る。また実施の形態1から4においては、復帰動作を行った場合、不純物は燃料供給空間25に留まる為、複数回復帰動作を行い燃料供給空間25に溜まった不純物の量が増えたとしても不純物の行き場がないが、本実施の形態5においては、排出部4が燃料供給空間25とは別の箇所に備えられており不純物は排出部4へと移動するためにより多くの復帰動作を行う事が出来る。   The discharge part 4 is connected to the fuel supply space 25 of the fuel electrode part 26, and impurities accumulated in the fuel supply space 25 can move to the discharge part 4. In the power generation unit 2 in this configuration, since the internal volume of the fuel electrode part 26 is expanded by the discharge part 4, when the fuel control mechanism 33 is changed from the reduced supply control to the normal operation state, the internal pressure of the fuel in the fuel electrode part 26 is increased. It is necessary to supply more fuel until the pressure rises to the same level as that used during normal operation. For this reason, the supply of fuel to the fuel supply space 25 can be continued for a longer time. In the first to fourth embodiments, when the return operation is performed, the impurities remain in the fuel supply space 25. Therefore, even if the return operation is performed a plurality of times and the amount of impurities accumulated in the fuel supply space 25 increases, Although there is no place to go, in the fifth embodiment, the discharge unit 4 is provided at a location different from the fuel supply space 25, and the impurities move to the discharge unit 4 so that more return operations can be performed. I can do it.

また、排出部4への不純物の移動をより確実に行う為には、排出部4は燃料供給空間25の燃料制御機構33と離れた箇所、即ち水素流の下流側に備えられている事が望ましい。また発電部2と排出部4との距離がある場合、両構成を配管やチューブ等の排出路42で接続しても良い。   In order to move impurities to the discharge part 4 more reliably, the discharge part 4 is provided at a location away from the fuel control mechanism 33 in the fuel supply space 25, that is, downstream of the hydrogen flow. desirable. When there is a distance between the power generation unit 2 and the discharge unit 4, both components may be connected by a discharge path 42 such as a pipe or a tube.

また、排出部4は取り外しできる構成であるとなお良い。このような構成においては排出部4の内部に不純物がいっぱいに溜まってしまった場合には、排出部4を発電部2から取り外し、排出部4の内部に溜まった不純物を廃棄した後に再び発電部2に取り付ける事で、繰り返し復帰動作が行えるようになる。その場合、排出部4と燃料供給空間25との間に排出部41が発電部2側に備えられている事が好ましい。排出部41は図5に示すように排出路42上にあってもよいし、発電部2に備えられていても良い。排出部41は燃料極部26の内部不純物を排出部4に排出する開状態と、燃料極部26の内部の不純物を排出部4に排出しない閉状態のいずれか一方の状態をとる弁体である。復帰動作時を含む通常運転時には排出部41は開状態であり、排出部4を取り外した際に排出部41を閉状態にする事で燃料供給空間25と排出部4の接続流路からの燃料の漏洩を防ぐ事が可能となる。   Moreover, it is further preferable that the discharge unit 4 is configured to be removable. In such a configuration, when the impurities are fully accumulated in the discharge unit 4, the discharge unit 4 is detached from the power generation unit 2, and after the impurities accumulated in the discharge unit 4 are discarded, the power generation unit again By attaching to 2, it becomes possible to perform the return operation repeatedly. In that case, it is preferable that a discharge unit 41 is provided on the power generation unit 2 side between the discharge unit 4 and the fuel supply space 25. As shown in FIG. 5, the discharge unit 41 may be on the discharge path 42 or may be provided in the power generation unit 2. The discharge part 41 is a valve body that takes one of an open state in which the impurities inside the fuel electrode part 26 are discharged to the discharge part 4 and a closed state in which the impurities inside the fuel electrode part 26 are not discharged to the discharge part 4. is there. During normal operation including the return operation, the discharge part 41 is in an open state, and when the discharge part 4 is removed, the discharge part 41 is closed so that fuel from the connection flow path between the fuel supply space 25 and the discharge part 4 can be obtained. It becomes possible to prevent leakage.

また図7に示すように排出部4が燃料供給源3と同一の交換体に備えられていても良い。このような構成であれば燃料供給源3がカートリッジ構造になっている場合に、交換体の内部の燃料前駆体32の残量が無くなり新しい交換体と付け変える事で、不純物が排出部4を満たさないような適切なタイミングで排出部4も新しいものと取り替える事が出来る。   Further, as shown in FIG. 7, the discharge unit 4 may be provided in the same exchanger as the fuel supply source 3. In such a configuration, when the fuel supply source 3 has a cartridge structure, the remaining amount of the fuel precursor 32 in the exchange body disappears and is replaced with a new exchange body. The discharge unit 4 can be replaced with a new one at an appropriate timing not satisfying.

本実施の形態によれば復帰動作によって燃料極部26の内部の不純物をより確実に除去できる事に加え、不純物が排出部4に移動する事で復帰動作をより多くの回数行う事が可能である。
(実施の形態5)
本発明の実施の形態5における発電部2の燃料極部26の拡大断面図を図8に示す。なお、本実施の形態1から4と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図8を用いて本実施の形態5について説明する。
According to the present embodiment, the impurities in the fuel electrode portion 26 can be more reliably removed by the return operation, and the return operation can be performed more times by the impurities moving to the discharge portion 4. is there.
(Embodiment 5)
FIG. 8 shows an enlarged cross-sectional view of the fuel electrode portion 26 of the power generation unit 2 according to Embodiment 5 of the present invention. The same parts as those in Embodiments 1 to 4 are denoted by the same reference numerals, and description of similar configurations and operations is omitted. Hereinafter, the fifth embodiment will be described with reference to FIG.

図8に示すように本発明の実施の形態6における発電部2は実施の形態1から5における発電部2に加え、燃料極部26に燃料流路261を有している。燃料供給源3から供給された燃料は燃料極部26の内部に備えられた燃料流路261中を通して燃料極23へと到達する。燃料流路261は燃料極23に対して燃料を垂直に供給するように備えられている。これにより燃料は燃料極23に直接噴きつけられる為、燃料極23を覆っている不純物をより確実に飛ばして除去できる。   As shown in FIG. 8, the power generation unit 2 according to the sixth embodiment of the present invention has a fuel flow path 261 in the fuel electrode portion 26 in addition to the power generation unit 2 according to the first to fifth embodiments. The fuel supplied from the fuel supply source 3 reaches the fuel electrode 23 through the fuel flow path 261 provided inside the fuel electrode portion 26. The fuel flow path 261 is provided so as to supply fuel vertically to the fuel electrode 23. As a result, the fuel is directly sprayed onto the fuel electrode 23, so that impurities covering the fuel electrode 23 can be removed more reliably.

また本実施の形態5の変更例の発電部2の燃料極部26の拡大断面図を図9に示す。図9に示すように本変更例における発電部2は複数の燃料流路261を備えている。特に燃料極23の面積が広い場合には図9に示すような単一の燃料流路261では触媒層231の全体を覆う不純物は除去する事が難しい。そこで図9に示すように燃料極23の面に対して複数の燃料流路261を備える事により、広い面積を有する触媒層23の全体を覆うように不純物が存在していた場合も、不純物を確実に除去する事が可能である。また複数の燃料流路261の保持と、複数の燃料流路261への燃料の分配を行う為に、燃料極部26を2層に隔離するように隔壁262を設けることが望ましい。隔壁262を設ける事で燃料は燃料供給源3から燃料制御機構33を通して、隔壁262によって燃料供給空間25と隔てられた分配空間251に行き渡り、その後複数の燃料流路261から燃料極23に対して供給される。   Further, FIG. 9 shows an enlarged cross-sectional view of the fuel electrode portion 26 of the power generation unit 2 according to the modification of the fifth embodiment. As shown in FIG. 9, the power generation unit 2 in the present modification includes a plurality of fuel flow paths 261. In particular, when the area of the fuel electrode 23 is large, it is difficult to remove impurities covering the entire catalyst layer 231 with a single fuel flow path 261 as shown in FIG. Therefore, by providing a plurality of fuel flow paths 261 with respect to the surface of the fuel electrode 23 as shown in FIG. 9, even if impurities exist so as to cover the entire catalyst layer 23 having a large area, the impurities are removed. It is possible to remove it reliably. Further, in order to hold the plurality of fuel flow paths 261 and distribute the fuel to the plurality of fuel flow paths 261, it is desirable to provide a partition wall 262 so that the fuel electrode portion 26 is separated into two layers. By providing the partition wall 262, the fuel passes from the fuel supply source 3 through the fuel control mechanism 33 to the distribution space 251 separated from the fuel supply space 25 by the partition wall 262, and then from the plurality of fuel flow paths 261 to the fuel electrode 23. Supplied.

また一つの燃料流路261の燃料極23を覆う不純物の除去範囲を更に広げる為に拡散部263を設けても良い。拡散部263は燃料流路261の燃料極23と接する箇所から、燃料極23の面方向に沿うように延伸した部材である。拡散部263をさらに備える事によって燃料流路261を通ってきた燃料は、拡散部263と固体高分子電解質膜21との間の燃料極23の中を通って燃料供給空間25に供給される為、拡散部263が設けられた範囲の燃料極23を覆った不純物を確実に燃料供給空間25の一部へと移動をする事が出来る。   Further, a diffusion portion 263 may be provided in order to further expand the removal range of impurities covering the fuel electrode 23 of one fuel flow path 261. The diffusion portion 263 is a member that extends from a position in contact with the fuel electrode 23 of the fuel flow path 261 along the surface direction of the fuel electrode 23. By providing the diffusion part 263 further, the fuel that has passed through the fuel flow path 261 is supplied to the fuel supply space 25 through the fuel electrode 23 between the diffusion part 263 and the solid polymer electrolyte membrane 21. The impurities covering the fuel electrode 23 in the range where the diffusion portion 263 is provided can be reliably moved to a part of the fuel supply space 25.

本実施例によれば復帰動作による燃料極23を覆う不純物の除去を、より確実に広い範囲で行う事が出来る。
(実施の形態6)
本発明の実施の形態6における発電部2の燃料極部26の分解斜視図を図10に示す。なお、本実施の形態1から5と同一の部分については同一の符号を付し、同様な構成、動作については説明を省略する。以下図10を用いて本実施の形態6について説明する。
According to the present embodiment, the removal of impurities covering the fuel electrode 23 by the return operation can be performed more reliably in a wide range.
(Embodiment 6)
FIG. 10 shows an exploded perspective view of the fuel electrode portion 26 of the power generation unit 2 according to Embodiment 6 of the present invention. The same parts as those in the first to fifth embodiments are denoted by the same reference numerals, and the description of the same configuration and operation is omitted. Hereinafter, the sixth embodiment will be described with reference to FIG.

本発明の実施の形態6における発電部2は実施の形態5における発電部2の燃料極部26に加えて、図10に示すように外壁24に対して燃料供給空間25が溝状に設けられている。燃料供給空間25は蛇行して燃料極23の面全体に燃料が行き渡るように配置される。また燃料供給空間25の溝が切られる基面252は燃料極23と接し、外壁24はステンレスに代表される金属やカーボン等の導電性を有する材料で作られる事が望ましい。上記構成であれば燃料極23の面全体から集電をする事ができ電気抵抗が低くなるので、より効率の高い発電を行う事が可能である。   In addition to the fuel electrode portion 26 of the power generation section 2 in the fifth embodiment, the power generation section 2 in the sixth embodiment of the present invention is provided with a fuel supply space 25 in a groove shape with respect to the outer wall 24 as shown in FIG. ing. The fuel supply space 25 is arranged to meander and the fuel spreads over the entire surface of the fuel electrode 23. The base surface 252 in which the groove of the fuel supply space 25 is cut is in contact with the fuel electrode 23, and the outer wall 24 is preferably made of a conductive material such as metal represented by stainless steel or carbon. If it is the said structure, since it can collect electric current from the whole surface of the fuel electrode 23 and an electrical resistance becomes low, it is possible to perform more efficient electric power generation.

また燃料供給空間25の両端には燃料極部26の外部と接続される貫通孔が設けられる。貫通孔の一方は燃料供給源3から供給された燃料を燃料供給空間25へと取り入れる為の供給口253であり、もう一方は排出部4へと接続される排出口254である。   In addition, through holes connected to the outside of the fuel electrode portion 26 are provided at both ends of the fuel supply space 25. One of the through holes is a supply port 253 for taking the fuel supplied from the fuel supply source 3 into the fuel supply space 25, and the other is a discharge port 254 connected to the discharge unit 4.

本実施例における燃料極部26で発電を持続した時にも燃料供給空間25に不純物が溜まってしまい燃料3の触媒層231への供給が阻害されるが、燃料供給空間25が溝状であり不純物の導通流路が確保されている為に、復帰動作を行う事によって不純物をより確実に排出部4へと移動する事が出来る。   Even when power generation is continued at the fuel electrode portion 26 in the present embodiment, impurities are accumulated in the fuel supply space 25 and the supply of the fuel 3 to the catalyst layer 231 is obstructed. However, the fuel supply space 25 is grooved and has impurities. Since the conducting flow path is secured, the impurities can be more reliably moved to the discharge section 4 by performing the return operation.

以上、本発明の一例を説明したが、具体例を説明したに過ぎない。特に本発明を限定するものではなく、各部の具体的構成等は適宜変更可能である。また、各実施の形態及び変更例の作用効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、各実施の形態及び変更例に記載されたものに限定されるものではない。また明細書においては説明の便宜上、燃料電池は単一のセルによって構成されているが、本発明は支持体に挟持された発電セルを複数有する構造の燃料電池においても適用可能である。   Although an example of the present invention has been described above, only a specific example has been described. The present invention is not particularly limited, and the specific configuration and the like of each part can be changed as appropriate. In addition, the operation and effect of each embodiment and the modification only enumerate the most preferable operation and effect resulting from the present invention, and the operation and the effect of the present invention are described in each embodiment and modification. It is not limited to things. Further, in the specification, for convenience of explanation, the fuel cell is constituted by a single cell, but the present invention can also be applied to a fuel cell having a structure having a plurality of power generation cells sandwiched between supports.

本発明は、燃料電池及び燃料電池装置の産業分野で利用することができる。   The present invention can be used in the industrial field of fuel cells and fuel cell devices.

1 燃料電池
2 発電部
3 燃料供給源
4 排出部
21 固体高分子電解質膜
22 酸化剤極
23 燃料極
24 外壁
25 燃料供給空間
26 燃料極部
31 反応部
32 燃料前駆体
33 燃料制御機構
34 供給路
35 燃料弁
36 信号線
41 排出弁
42 排出路
221 触媒層(酸化剤極)
222 ガス拡散層(酸化剤極)
231 触媒層(燃料極)
232 ガス拡散層(燃料極)
251 分配空間
252 基面
253 供給口
254 排出口
261 燃料流路
262 隔壁
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Power generation part 3 Fuel supply source 4 Discharge part 21 Solid polymer electrolyte membrane 22 Oxidant electrode 23 Fuel electrode 24 Outer wall 25 Fuel supply space 26 Fuel electrode part 31 Reaction part 32 Fuel precursor 33 Fuel control mechanism 34 Supply path 35 Fuel valve 36 Signal line 41 Discharge valve 42 Discharge path 221 Catalyst layer (oxidant electrode)
222 Gas diffusion layer (oxidizer electrode)
231 Catalyst layer (fuel electrode)
232 Gas diffusion layer (fuel electrode)
251 Distribution space 252 Base surface 253 Supply port 254 Discharge port 261 Fuel flow path 262 Partition

Claims (13)

燃料が供給される燃料極と酸化剤が供給される酸化剤極と前記燃料極及び前記酸化剤極に挟持された固体高分子電解質膜を備える発電部と、
前記発電部に、前記燃料極の前記電解質膜が配置された面に対向するように設けられ燃料が供給される燃料供給空間を有する燃料極部と、
複数の燃料前駆体を接触させ化学反応を行うことによって前記燃料を発生させ、前記燃料極部に対して前記燃料を供給する燃料供給源とを有し、
前記燃料供給源は、
複数の燃料前駆体をそれぞれ貯蔵する複数の貯蔵部と、
前記複数の燃料前駆体のうち、少なくともいずれかの前記貯蔵部に貯蔵された前記燃料前駆体を他方の前記貯蔵部へ移動させる燃料制御機構とを有し、
前記燃料制御機構は、前記燃料と前記酸化剤との反応により前記燃料極に蓄積する不純物に関する物理量に基づいて前記燃料前駆体の移動を制御する供給制御を行い、
前記不純物の少なくとも一部は、前記供給制御によって発生した前記燃料の圧力で除去されるものであることを特徴とする燃料電池。
A power generation unit including a fuel electrode supplied with fuel, an oxidant electrode supplied with an oxidant, and a solid polymer electrolyte membrane sandwiched between the fuel electrode and the oxidant electrode;
A fuel electrode part having a fuel supply space provided in the power generation part so as to be opposed to a surface of the fuel electrode on which the electrolyte membrane is disposed;
A fuel supply source that generates a fuel by contacting a plurality of fuel precursors to perform a chemical reaction, and supplies the fuel to the fuel electrode portion;
The fuel supply source is:
A plurality of reservoirs each storing a plurality of fuel precursors;
A fuel control mechanism that moves the fuel precursor stored in at least one of the plurality of fuel precursors to the other storage unit, and
The fuel control mechanism performs supply control for controlling movement of the fuel precursor based on a physical quantity related to impurities accumulated in the fuel electrode due to a reaction between the fuel and the oxidant,
At least a part of the impurities is removed by the pressure of the fuel generated by the supply control.
前記燃料制御機構は、前記不純物に関する物理量を検出する物理量検出部を備え、
前記物理量検出部が、前記不純物が前記燃料極に所定量以上蓄積した事を示す前記物理量を検出したときに前記燃料前駆体の移動を通常運転時よりも増加させる増加供給制御を行う事を特徴とする請求項1に記載の燃料電池。
The fuel control mechanism includes a physical quantity detection unit that detects a physical quantity related to the impurities,
When the physical quantity detection unit detects the physical quantity indicating that the impurity has accumulated a predetermined amount or more in the fuel electrode, the physical quantity detection unit performs an increase supply control for increasing the movement of the fuel precursor as compared with that during normal operation. The fuel cell according to claim 1.
前記燃料制御機構は、前記不純物に関する物理量を検出する物理量検出部を備え、
前記物理量検出部が、前記不純物が前記燃料極に所定量以上蓄積した事を示す前記物理量を検出したときに前記燃料前駆体の移動を減少させる減少供給制御と、前記減少供給制御の後に前記燃料前駆体の移動を増加させる増加供給制御とを行う事を特徴とする請求項2に記載の燃料電池。
The fuel control mechanism includes a physical quantity detection unit that detects a physical quantity related to the impurities,
A decrease supply control for reducing movement of the fuel precursor when the physical quantity detection unit detects the physical quantity indicating that the impurity has accumulated a predetermined amount or more in the fuel electrode; and the fuel after the decrease supply control. The fuel cell according to claim 2, wherein an increase supply control for increasing the movement of the precursor is performed.
前記燃料供給源と前記発電部との間には、前記燃料を前記燃料極部に供給する開状態と、前記燃料を前記燃料極部に供給しない閉状態とのどちらかを維持する燃料弁を備え、
前記燃料弁は、減少供給制御を行っているときに、前記閉状態となることを特徴とする請求項3に記載の燃料電池。
Between the fuel supply source and the power generation unit, there is provided a fuel valve that maintains either an open state in which the fuel is supplied to the fuel electrode part or a closed state in which the fuel is not supplied to the fuel electrode part. Prepared,
The fuel cell according to claim 3, wherein the fuel valve is in the closed state when performing a decrease supply control.
前記燃料極部は、前記燃料極部の内部の不純物を排出する排出部と連結することを特徴とする請求項1から4のいずれか一項に記載の燃料電池。   5. The fuel cell according to claim 1, wherein the fuel electrode part is connected to a discharge part that discharges impurities inside the fuel electrode part. 6. 前記燃料極部と前記排出部とは着脱可能であり、
前記燃料極部と前記排出部との間には、前記燃料極部の内部の不純物を前記排出部に排出する開状態と、前記燃料極部の内部の不純物を前記排出部に排出しない閉状態とのどちらかを維持する排出弁を備え、
前記排出弁は、前記燃料極部に備えられている事を特徴とする請求項5に記載の燃料電池。
The fuel electrode part and the discharge part are detachable,
Between the fuel electrode portion and the discharge portion, an open state in which impurities inside the fuel electrode portion are discharged to the discharge portion, and a closed state in which impurities inside the fuel electrode portion are not discharged to the discharge portion With a discharge valve that maintains either
The fuel cell according to claim 5, wherein the discharge valve is provided in the fuel electrode portion.
前記燃料極部は、前記燃料が前記燃料極の面方向に対して垂直方向に供給される燃料流路を備えることを特徴とする請求項1から6のいずれか一項に記載の燃料電池。   The fuel cell according to any one of claims 1 to 6, wherein the fuel electrode portion includes a fuel flow path in which the fuel is supplied in a direction perpendicular to a surface direction of the fuel electrode. 前記燃料流路は、前記燃料が前記燃料極の面方向に拡散する拡散部を備えることを特徴とする請求項7に記載の燃料電池。   The fuel cell according to claim 7, wherein the fuel flow path includes a diffusion portion that diffuses the fuel in a surface direction of the fuel electrode. 前記燃料供給空間は、前記燃料極に対して設けられた溝であることを特徴とする請求項5または6に記載の燃料電池。   The fuel cell according to claim 5, wherein the fuel supply space is a groove provided for the fuel electrode. 前記物理量は、前記発電部の電圧値であり、前記物理量検出部は前記電圧値が所定値以下となる状態を検出することを特徴とする請求項2から9のいずれか一項に記載の燃料電池。   The fuel according to any one of claims 2 to 9, wherein the physical quantity is a voltage value of the power generation unit, and the physical quantity detection unit detects a state in which the voltage value is equal to or less than a predetermined value. battery. 前記物理量は、前記発電部の電流値であり、前記物理量検出部は前記電流値が所定値以上となる状態を検出することを特徴とする請求項2から9のいずれか一項に記載の燃料電池。   The fuel according to any one of claims 2 to 9, wherein the physical quantity is a current value of the power generation unit, and the physical quantity detection unit detects a state where the current value is equal to or greater than a predetermined value. battery. 前記物理量は、前記燃料電池が発電を開始してからの時間であり、前記物理量検出部は前記時間が所定時間を経過した状態を検出することを特徴とする請求項2から9のいずれかに記載の燃料電池。   10. The physical quantity is a time after the fuel cell starts power generation, and the physical quantity detection unit detects a state in which the predetermined time has elapsed. The fuel cell as described. 前記貯蔵部と前記排出部とは、前記発電部から着脱可能なカートリッジ構造である事を特徴とする請求項4から12のいずれかに記載の燃料電池。   The fuel cell according to any one of claims 4 to 12, wherein the storage unit and the discharge unit have a cartridge structure that is detachable from the power generation unit.
JP2011040774A 2011-02-25 2011-02-25 Fuel cell Expired - Fee Related JP5723175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040774A JP5723175B2 (en) 2011-02-25 2011-02-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040774A JP5723175B2 (en) 2011-02-25 2011-02-25 Fuel cell

Publications (2)

Publication Number Publication Date
JP2012178282A true JP2012178282A (en) 2012-09-13
JP5723175B2 JP5723175B2 (en) 2015-05-27

Family

ID=46980003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040774A Expired - Fee Related JP5723175B2 (en) 2011-02-25 2011-02-25 Fuel cell

Country Status (1)

Country Link
JP (1) JP5723175B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203668A (en) * 2002-01-08 2003-07-18 Sony Corp Produced water collecting device and produced water collecting method, electricity generating body, produced water discharging device and produced water discharging method, and produced water collecting system
JP2004259477A (en) * 2003-02-24 2004-09-16 Tama Tlo Kk Fuel cell system
JP2004319276A (en) * 2003-04-16 2004-11-11 Honda Motor Co Ltd Hydrogen supply device and hydrogen supply method of fuel cell
JP2005019304A (en) * 2003-06-27 2005-01-20 Honda Motor Co Ltd Water draining method of fuel cell system
JP2005302596A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Fuel cell
JP2007063113A (en) * 2005-08-03 2007-03-15 Seiko Instruments Inc Hydrogen generation apparatus and fuel cell system
JP2007112406A (en) * 2005-10-19 2007-05-10 Masashi Sato Electric vehicle
JP2008041647A (en) * 2006-07-11 2008-02-21 Canon Inc Fuel cell system and purging method for fuel cell system
JP2008097966A (en) * 2006-10-11 2008-04-24 Toyota Motor Corp Fuel cell system and its control method
JP2008146877A (en) * 2006-12-06 2008-06-26 Toyota Motor Corp Fuel cell system, and impurities accumulation amount estimation method of fuel cell system
JP2008538095A (en) * 2005-02-25 2008-10-09 ソシエテ ビック Hydrogen generating fuel cell cartridge
JP2009048812A (en) * 2007-08-16 2009-03-05 Seiko Instruments Inc Liquid-feeding device
JP2009259779A (en) * 2008-03-28 2009-11-05 Sanyo Electric Co Ltd Fuel cell and fuel cell system
JP2010044869A (en) * 2008-08-08 2010-02-25 Honda Motor Co Ltd Fuel cell system
JP2012064385A (en) * 2010-09-15 2012-03-29 Seiko Instruments Inc Fuel cell and fuel cell system

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203668A (en) * 2002-01-08 2003-07-18 Sony Corp Produced water collecting device and produced water collecting method, electricity generating body, produced water discharging device and produced water discharging method, and produced water collecting system
JP2004259477A (en) * 2003-02-24 2004-09-16 Tama Tlo Kk Fuel cell system
JP2004319276A (en) * 2003-04-16 2004-11-11 Honda Motor Co Ltd Hydrogen supply device and hydrogen supply method of fuel cell
JP2005019304A (en) * 2003-06-27 2005-01-20 Honda Motor Co Ltd Water draining method of fuel cell system
JP2005302596A (en) * 2004-04-14 2005-10-27 Toyota Motor Corp Fuel cell
JP2008538095A (en) * 2005-02-25 2008-10-09 ソシエテ ビック Hydrogen generating fuel cell cartridge
JP2007063113A (en) * 2005-08-03 2007-03-15 Seiko Instruments Inc Hydrogen generation apparatus and fuel cell system
JP2007112406A (en) * 2005-10-19 2007-05-10 Masashi Sato Electric vehicle
JP2008041647A (en) * 2006-07-11 2008-02-21 Canon Inc Fuel cell system and purging method for fuel cell system
JP2008097966A (en) * 2006-10-11 2008-04-24 Toyota Motor Corp Fuel cell system and its control method
JP2008146877A (en) * 2006-12-06 2008-06-26 Toyota Motor Corp Fuel cell system, and impurities accumulation amount estimation method of fuel cell system
JP2009048812A (en) * 2007-08-16 2009-03-05 Seiko Instruments Inc Liquid-feeding device
JP2009259779A (en) * 2008-03-28 2009-11-05 Sanyo Electric Co Ltd Fuel cell and fuel cell system
JP2010044869A (en) * 2008-08-08 2010-02-25 Honda Motor Co Ltd Fuel cell system
JP2012064385A (en) * 2010-09-15 2012-03-29 Seiko Instruments Inc Fuel cell and fuel cell system

Also Published As

Publication number Publication date
JP5723175B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
CA2316380C (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JP5052776B2 (en) Stop storage start method and stop storage start program of fuel cell system
JP4996493B2 (en) Measures to mitigate battery deterioration during start and stop by storing H2 / N2
JP5188027B2 (en) FUEL CELL AND METHOD OF OPERATING FUEL CELL
JP5129479B2 (en) Method of operating a fuel cell having a closed reactant supply system
US20070184314A1 (en) Fuel cell system
US8697302B2 (en) Fuel cell system with purge valve and actuator for controlling purge valve with electromotive force of sub-power generation part
WO2007102609A1 (en) Fuel cell and method of operating fuel cell
JP2005222707A (en) Fuel cell system and operation method
KR101252839B1 (en) fuel cell with recycle apparatus
JP5723175B2 (en) Fuel cell
JP2005085662A (en) Fuel cell system and its operation method
JP5687521B2 (en) Fuel cell
JP2011034837A (en) Method for starting fuel cell system in below freezing point
JP5494799B2 (en) Fuel cell device
JP5897858B2 (en) Fuel cell
JP2008047316A (en) Fuel cell system
JP5158407B2 (en) Fuel cell system and control method thereof
JP5169004B2 (en) Fuel cell cartridge, liquid fuel storage unit for fuel cell, and fuel cell system
JP2007109555A (en) Fuel cell system and fuel cell vehicle
JP5389705B2 (en) Fuel cell
JP2006085931A (en) Fuel cell
JP2008078102A (en) Fuel cell and fuel supply method of fuel cell
JP2007073351A (en) Fuel cell system
JP2007317634A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150327

R150 Certificate of patent or registration of utility model

Ref document number: 5723175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees