JP2012178237A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012178237A
JP2012178237A JP2011039467A JP2011039467A JP2012178237A JP 2012178237 A JP2012178237 A JP 2012178237A JP 2011039467 A JP2011039467 A JP 2011039467A JP 2011039467 A JP2011039467 A JP 2011039467A JP 2012178237 A JP2012178237 A JP 2012178237A
Authority
JP
Japan
Prior art keywords
negative electrode
core
secondary battery
negative
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011039467A
Other languages
Japanese (ja)
Inventor
Hideki Morishima
秀樹 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011039467A priority Critical patent/JP2012178237A/en
Publication of JP2012178237A publication Critical patent/JP2012178237A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is excellent in safety while achieving high capacity or high energy density by structuring an electrode group in which the diffusion of short-circuit currents or heat is turned to be beneficial to safety.SOLUTION: This nonaqueous electrolyte secondary battery A includes: a negative pole 10: a positive pole 20; a separator 30 for isolating those negative pole and positive pole; and nonaqueous electrolyte. Then, at least a part of the outermost peripheral section of the negative pole 10 is formed with an unapplied section to which any negative pole active material is not applied, and from which a negative pole core body is exposed, and a negative pole collector tab 10a is welded to the outside of roll of the unapplied section, and the unapplied section is bent to the inside of roll so as to be positioned at the back side of the welding surface of the negative collector tab 10a with the negative pole core body, and the negative pole core bodies are arranged so as to be overlapped with each other so that an overlapped section 11a of the negative pole core bodies can be formed.

Description

本発明は、負極芯体に負極活物質が塗布された負極と、正極芯体に正極活物質が塗布された正極と、これらの負極と正極を隔離するセパレータと、非水電解質とを備えた非水電解質二次電池に関する。   The present invention includes a negative electrode in which a negative electrode active material is applied to a negative electrode core, a positive electrode in which a positive electrode active material is applied to a positive electrode core, a separator that separates the negative electrode and the positive electrode, and a nonaqueous electrolyte. The present invention relates to a non-aqueous electrolyte secondary battery.

近年、非水電解質二次電池は、各種の電源としての用途が拡大するに伴い、さらなる高安全性化が求められるようになった。ここで、高容量化や高エネルギー密度化を行った場合に、何らかの原因により、この種の非水電解質二次電池に異常発熱が生じると、その瞬間的な爆発エネルギーは大きなものとなり、破裂や発火といった現象を抑制することが困難になってきた。このような背景にあって、パーソナルコンピュータ(PC)や電動工具や電動二輪車などの非水電解質二次電池の用途においては、非水電解質二次電池の外部からの衝撃などによる安全性が重要視されるようになった。   In recent years, non-aqueous electrolyte secondary batteries have been required to have higher safety as their use as various power sources expands. Here, when the capacity is increased or the energy density is increased, if this type of non-aqueous electrolyte secondary battery generates abnormal heat for some reason, the instantaneous explosion energy becomes large, causing explosion or It has become difficult to suppress phenomena such as ignition. Against this background, in applications of non-aqueous electrolyte secondary batteries such as personal computers (PCs), electric tools, and electric motorcycles, safety due to impact from the outside of the non-aqueous electrolyte secondary battery is regarded as important. It came to be.

この場合、非水電解質二次電池の安全性試験において、釘刺し試験(貫通試験)や衝撃試験がある。ここで、釘刺し試験は、満充電された非水電解質二次電池の側面から鋭利な細長い金属棒(釘)を、ある一定のスピードで貫通させて強制的に短絡させる試験である。また、衝撃試験は、所定の質量を有する「重り」を非水電解質二次電池の真上から垂直に落下させて、非水電解質二次電池に衝撃力を与える試験である。これらのいずれの試験においても、当然のことではあるが、破裂や発火などの異常が起こらないことが望ましいとされている。   In this case, there are a nail penetration test (penetration test) and an impact test in the safety test of the nonaqueous electrolyte secondary battery. Here, the nail penetration test is a test in which a sharp elongated metal rod (nail) is penetrated from a side surface of a fully charged nonaqueous electrolyte secondary battery at a certain speed to forcibly short-circuit. The impact test is a test in which a “weight” having a predetermined mass is dropped vertically from right above the nonaqueous electrolyte secondary battery to give an impact force to the nonaqueous electrolyte secondary battery. In any of these tests, as a matter of course, it is desirable that abnormalities such as rupture and ignition do not occur.

そこで、外部からの圧力により電池が押し潰されたり、過充電されたり、釘などが刺さったり、外部から異常加熱されたりする等の異常事態が生じても、この種の非水電解質二次電池の急激な温度上昇を抑制して、安全性を確保することができる非水電解質二次電池が、例えば、特許文献1(特開平8−153542)にて提案されるようになった。この特許文献1にて提案された非水電解質二次電池においては、異常事態が生じた場合に、電気抵抗の十分に小さい金属同士を短絡させるようにしている。具体的には、正極の端部に正極活物質層を有さない正極等電位露呈金属部分と、負極の端部に負極活物質層を有さない負極等電位露呈金属部分とをそれぞれ設けるようにしている。   Therefore, this kind of non-aqueous electrolyte secondary battery can be used even if an abnormal situation occurs, such as when the battery is crushed, overcharged, pierced by a nail, or abnormally heated from the outside. A non-aqueous electrolyte secondary battery that can ensure safety by suppressing the rapid temperature rise is proposed in, for example, Patent Document 1 (Japanese Patent Laid-Open No. Hei 8-153542). In the nonaqueous electrolyte secondary battery proposed in Patent Document 1, when an abnormal situation occurs, metals having sufficiently small electrical resistance are short-circuited. Specifically, a positive electrode equipotential exposed metal portion that does not have a positive electrode active material layer at the end of the positive electrode and a negative electrode equipotential exposed metal portion that does not have a negative electrode active material layer at the end of the negative electrode are provided. I have to.

特開平8−153542号公報JP-A-8-153542

しかしながら、釘刺し試験を行う場合、非水電解質二次電池のどの位置に釘を刺すかにより、安全性に差がでることがある。このため、上述した特許文献1にて提案されたような電極群構成を採用しても、安全性を十分に確保することができないという問題を生じた。例えば、釘が刺さる位置に負極集電タブがある場合、通常、釘が貫通していく箇所に硬い物がない時は、そのまま電極群を釘が貫通して短絡すると考えられる。ところが、釘が貫通していく箇所に負極集電タブがある場合は、釘が負極集電タブを貫通することができないために、負極集電タブが押し潰されていくこととなる。このため、非水電解質二次電池のどの位置に釘を刺すかにより、安全性に差がでることとなる。   However, when performing a nail penetration test, safety may differ depending on where the nail is inserted in the nonaqueous electrolyte secondary battery. For this reason, even if it employ | adopted the electrode group structure which was proposed by the patent document 1 mentioned above, the problem that safety | security cannot be ensured enough occurred. For example, when there is a negative electrode current collecting tab at a position where the nail is pierced, it is usually considered that the nail penetrates the electrode group as it is and is short-circuited when there is no hard object in the place where the nail penetrates. However, when there is a negative electrode current collecting tab at a location where the nail penetrates, the negative electrode current collecting tab is crushed because the nail cannot penetrate the negative electrode current collecting tab. For this reason, a safety | security difference will come out by which position of a nonaqueous electrolyte secondary battery pierces a nail.

また、釘が電極群をゆっくり貫通するか、あるいは一気に貫通するかによっても、安全性に差がでることがある。この場合、釘が電極群を一気に貫通すると、短絡面積が広くなって短絡電流が大きくなるため、短絡した非水電解質二次電池が速やかに放電されることとなる。このため、短絡箇所が高温に至った時点において、既に、電池容量が低下しているため、電池の破裂や発火が起こり難くなっているものと考えられる。一方、釘を電極群に突き刺すスピードが遅いほど、より微小な短絡になるため、短絡電流は小さいこととなる。これにより、短絡箇所が高温に至った時点であっても、電池容量は十分に保持されており、電池の破裂や発火などが生じて、安全性が低下する傾向になる。   In addition, there may be a difference in safety depending on whether the nail penetrates the electrode group slowly or at a stroke. In this case, when the nail penetrates the electrode group at once, the short-circuit area is increased and the short-circuit current is increased, so that the short-circuited nonaqueous electrolyte secondary battery is quickly discharged. For this reason, since the battery capacity has already decreased at the time when the short-circuited part reaches a high temperature, it is considered that the battery is unlikely to burst or ignite. On the other hand, the shorter the speed at which the nail is pierced into the electrode group, the smaller the short circuit, so the short circuit current is small. Thereby, even when the short-circuited part reaches a high temperature, the battery capacity is sufficiently maintained, and the battery tends to rupture or ignite, resulting in a decrease in safety.

また、釘が負極集電タブに当たった場合、釘が負極集電タブを貫通せずに負極集電タブを押し込むこととなる。このとき、負極集電タブのエッジが負極芯体やセパレータを破って正極に接触して微小短絡すると考えられる。この場合も、微小短絡であるために短絡電流は小さいこととなる。これにより、短絡箇所が高温に至った時点においては、電池容量は十分に保持されているため、電池の破裂や発火などに繋がる恐れが生じることとなる。   In addition, when the nail hits the negative electrode current collecting tab, the nail pushes the negative electrode current collecting tab without penetrating the negative electrode current collecting tab. At this time, it is considered that the edge of the negative electrode current collecting tab breaks the negative electrode core or the separator and contacts the positive electrode to cause a short circuit. Also in this case, the short circuit current is small due to the minute short circuit. As a result, when the short-circuited part reaches a high temperature, the battery capacity is sufficiently maintained, which may lead to battery rupture or ignition.

さらに、衝撃試験おいても、所定の質量を有する「重り」を落下させる際において、「重り」が落下する位置に負極集電タブがある場合は、負極集電タブが傾いたりあるいは変形して電極群内に食い込むことが予想される。このため、微小な短絡が発生しやすくなって、結果として、電池の破裂や発火などに繋がるといった問題が生じることとなる。
そこで、本発明は上記の如き問題を解決するためになされたものであって、電池内で短絡が発生しても、短絡電流や熱の拡散が安全性に有利な方向に向くような電極群の構造にして、電池の高容量化や高エネルギー密度化を達成しつつ、同時に、安全性に優れた非水電解質二次電池を提供することを目的としてなされたものである。
Furthermore, even in the impact test, when the “weight” having a predetermined mass is dropped, if the negative current collector tab is at the position where the “weight” falls, the negative current collector tab is tilted or deformed. It is expected to bite into the electrode group. For this reason, a minute short circuit easily occurs, and as a result, there arises a problem that the battery is ruptured or ignited.
Therefore, the present invention has been made to solve the above problems, and even if a short circuit occurs in the battery, the electrode group is such that the short circuit current and heat diffusion are in a direction advantageous to safety. This structure is intended to provide a non-aqueous electrolyte secondary battery that is excellent in safety while at the same time achieving high capacity and high energy density of the battery.

本発明の非水電解質二次電池は、負極芯体に負極活物質が塗布された負極と、正極芯体に正極活物質が塗布された正極と、これらの負極と正極を隔離するセパレータと、非水電解質とを備えている。そして、上記課題を解決するため、正極と負極がセパレータを間にして渦巻状に巻回されており、負極の最外周部の一部に負極活物質が塗布されていなくて負極芯体が露出した未塗布部が形成されており、未塗布部の負極芯体の巻外側に負極集電タブが溶接されているとともに、未塗布部の負極芯体が負極集電タブの当該負極芯体との溶接面の裏側に位置するように巻内側に折り返されていて、当該未塗布部の負極芯体同士が重なるように配置されて負極芯体の重ね合せ部が形成されていることを特徴とする。   The nonaqueous electrolyte secondary battery of the present invention includes a negative electrode in which a negative electrode active material is applied to a negative electrode core, a positive electrode in which a positive electrode active material is applied to a positive electrode core, a separator that separates the negative electrode and the positive electrode, A non-aqueous electrolyte. In order to solve the above problem, the positive electrode and the negative electrode are spirally wound with a separator interposed therebetween, and the negative electrode active material is not applied to a part of the outermost peripheral portion of the negative electrode, and the negative electrode core is exposed. And the negative electrode current collecting tab is welded to the outer side of the negative electrode core of the uncoated part, and the negative electrode core of the uncoated part is connected to the negative electrode core of the negative electrode current collecting tab. It is folded back inside the winding so as to be located on the back side of the welding surface, and is arranged so that the negative electrode cores of the uncoated part are overlapped to form an overlapping part of the negative electrode cores. To do.

ここで、負極の最外周部に形成された負極活物質の未塗布部の負極芯体を、負極集電タブの当該負極芯体との溶接面の裏側に位置するように巻内側に折り返されて、未塗布部の負極芯体の重ね合せ部が形成されていると、負極集電タブに釘を刺した場合であっても、電池の破裂や発火に至ることがなく、安全性に優れた非水電解質二次電池を得ることができた。その原因は明らかではないが、負極活物質の未塗布部の負極芯体が負極集電タブの当該負極芯体との溶接面の裏側に位置するように巻内側に折り返されて、未塗布部の負極芯体の重ね合せ部が形成されていることで、当該重ね合せ部で短絡が発生した際の短絡電流や熱拡散が安全性に有利な方向に変化したものと考えられる。   Here, the negative electrode core in the non-coated portion of the negative electrode active material formed on the outermost peripheral portion of the negative electrode is folded back inside the winding so as to be located on the back side of the welding surface of the negative electrode current collecting tab with the negative electrode core. In addition, when the overlapped part of the negative electrode core in the uncoated part is formed, even if the nail is inserted into the negative electrode current collecting tab, the battery does not rupture or ignite, which is excellent in safety. In addition, a non-aqueous electrolyte secondary battery could be obtained. The cause is not clear, but the negative electrode core of the non-coated portion of the negative electrode active material is folded back inside the winding so that the negative electrode current collector tab is located on the back side of the welding surface with the negative electrode core, and the uncoated portion It is considered that the short-circuit current and the thermal diffusion when the short-circuit occurs in the overlapped portion are changed in a direction advantageous for safety.

この場合、未塗布部の負極芯体の重ね合せ部は、負極集電タブの当該負極芯体との溶接面の裏側に位置するように巻内側に折り返されて当該負極芯体同士が二重に重なるように配置された後、さらに巻内側に折り返されて当該負極芯体同士が三重に重なるように配置されて形成されていると、当該重ね合せ部で短絡が発生した際の短絡電流や熱拡散がさらに安全性に有利な方向に変化して、さらに好ましいということができる。   In this case, the overlapping portion of the negative electrode cores in the uncoated portion is folded back to the inner side so as to be located on the back side of the welding surface with the negative electrode core of the negative electrode current collecting tab, and the negative electrode cores are doubled. After being arranged so as to overlap with each other, it is further folded back to the inside of the winding so that the negative electrode cores are arranged so as to overlap with each other, and when a short circuit occurs at the overlapping portion, It can be said that the thermal diffusion is further preferred by changing in a direction that is more advantageous for safety.

本発明においては、負極集電タブに釘を刺した場合であっても、電池の破裂や発火に至ることがないため、電池の高容量化や高エネルギー密度化を達成しつつ、安全性に優れた非水電解質二次電池を提供することが可能となる。   In the present invention, even when a nail is inserted into the negative electrode current collecting tab, the battery does not rupture or ignite, so that the battery has a high capacity and a high energy density, while ensuring safety. An excellent nonaqueous electrolyte secondary battery can be provided.

本発明の実施例1の非水電解質二次電池の横断面の最外周側の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the outermost periphery side of the cross section of the nonaqueous electrolyte secondary battery of Example 1 of this invention. 本発明の実施例2の非水電解質二次電池の横断面の最外周側の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the outermost periphery side of the cross section of the nonaqueous electrolyte secondary battery of Example 2 of this invention. 本発明の比較例1の非水電解質二次電池の横断面の最外周側の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of the outermost periphery side of the cross section of the nonaqueous electrolyte secondary battery of the comparative example 1 of this invention.

1.負極
負極10は、負極芯体(この場合は、厚みが8μmの銅製の箔とした)11と、この負極芯体11の両面に形成された負極合剤層12からなるものである。この場合、負極合剤層12は、天然黒鉛(この場合は、平均粒径が20μmのものとした)からなる負極活物質が97質量部で、結着剤としてのポリビニリデンフルオライド(PVdF)が3質量部とからなるものである。
1. Negative Electrode The negative electrode 10 is composed of a negative electrode core (in this case, a copper foil having a thickness of 8 μm) 11 and a negative electrode mixture layer 12 formed on both surfaces of the negative electrode core 11. In this case, the negative electrode mixture layer 12 is composed of 97 parts by mass of a negative electrode active material made of natural graphite (in this case, having an average particle diameter of 20 μm), and polyvinylidene fluoride (PVdF) as a binder. Is composed of 3 parts by mass.

そして、このような負極10は、以下のようにして作製した。まず、天然黒鉛よりなる負極活物質を97質量部と、結着剤としてのポリビニリデンフルオライド(PVdF)を3質量部となるよう混合した後、これをN−メチルピロリドン(NMP)溶液と混合して負極スラリーを調製した。得られた負極スラリーを負極芯体(例えば、厚みが8μmの銅製の箔)の両面にドクターブレード法により塗布し、乾燥して、負極芯体11上に負極合剤層12を形成させた。この後、圧縮ローラーを用いて圧延して、所定の寸法(この場合は、短辺の長さが59mmで、長辺の長さが650mmになるようにした)に切断するとともに負極集電タブ10aを形成して負極10を作製した。   And such a negative electrode 10 was produced as follows. First, 97 parts by mass of a negative electrode active material made of natural graphite and 3 parts by mass of polyvinylidene fluoride (PVdF) as a binder were mixed and then mixed with an N-methylpyrrolidone (NMP) solution. Thus, a negative electrode slurry was prepared. The obtained negative electrode slurry was applied to both surfaces of a negative electrode core (for example, a copper foil having a thickness of 8 μm) by a doctor blade method and dried to form a negative electrode mixture layer 12 on the negative electrode core 11. After that, it is rolled using a compression roller and cut into predetermined dimensions (in this case, the length of the short side is 59 mm and the length of the long side is 650 mm) and the negative electrode current collecting tab The negative electrode 10 was produced by forming 10a.

2.正極
正極20は、正極芯体(この場合は、厚みが15μmのアルミニウム製の箔とした)21と、この正極芯体21の両面に形成された正極合剤層22からなるものである。この場合、正極合剤層22は、リチウム−コバルト複合酸化物(LiCoO2)からなる正極活物質が94質量部で、導電剤としての炭素粉末が3質量部で、結着剤としてのポリビニリデンフルオライド(PVdF)が3質量部とからなるものである。
2. Positive electrode The positive electrode 20 includes a positive electrode core body (in this case, an aluminum foil having a thickness of 15 μm) 21 and a positive electrode mixture layer 22 formed on both surfaces of the positive electrode core body 21. In this case, the positive electrode mixture layer 22 is composed of 94 parts by mass of a positive electrode active material made of lithium-cobalt composite oxide (LiCoO 2 ), 3 parts by mass of carbon powder as a conductive agent, and polyvinylidene as a binder. Fluoride (PVdF) consists of 3 parts by mass.

そして、このような正極20は、以下のようにして作製した。即ち、まず、所定量のリチウム−コバルト複合酸化物(LiCoO2)からなる正極活物質を94質量部と、導電剤としての炭素粉末を3質量部と、結着剤としてのポリフッ化ビニリデン粉末を3質量部となるよう混合した後、これをN−メチルピロリドン(NMP)溶液と混合して正極スラリーを調製した。 And such a positive electrode 20 was produced as follows. That is, first, 94 parts by mass of a positive electrode active material made of a predetermined amount of lithium-cobalt composite oxide (LiCoO 2 ), 3 parts by mass of carbon powder as a conductive agent, and polyvinylidene fluoride powder as a binder. After mixing to 3 parts by mass, this was mixed with an N-methylpyrrolidone (NMP) solution to prepare a positive electrode slurry.

得られた正極スラリーを正極芯体(この場合は、厚みが15μmのアルミニウム製の箔)21の両面にドクターブレード法により塗布し、乾燥して、正極芯体21上に正極合剤層22を形成させた。この後、圧縮ローラーを用いて圧延して、所定の寸法(この場合は、短辺の長さが56mmで、長辺の長さが620mmになるようにした)に切断するとともに正極集電タブ(図示せず)を形成して正極20を作製した。   The obtained positive electrode slurry is applied to both surfaces of a positive electrode core (in this case, an aluminum foil having a thickness of 15 μm) 21 by a doctor blade method and dried to form a positive electrode mixture layer 22 on the positive electrode core 21. Formed. After that, it is rolled using a compression roller and cut into predetermined dimensions (in this case, the length of the short side is 56 mm and the length of the long side is 620 mm) and the positive electrode current collecting tab (Not shown) was formed, and the positive electrode 20 was produced.

3.渦巻状電極群
ついで、上述のようにして作製された負極10と正極20とをポリエチレン製微多孔膜からなるセパレータ30を間にして重ね合わせた後、巻き取り機により渦巻状に巻回して、実施例1の渦巻状電極群a、実施例2の渦巻状電極群b、および比較例1の渦巻状電極群xをそれぞれ作製した。
3. The spiral electrode group Next, the negative electrode 10 and the positive electrode 20 produced as described above were overlapped with a separator 30 made of a polyethylene microporous film interposed therebetween, and then wound in a spiral shape by a winder, The spiral electrode group a of Example 1, the spiral electrode group b of Example 2, and the spiral electrode group x of Comparative Example 1 were produced.

この場合、実施例1の渦巻状電極群aにおいては、図1に示すように、負極10の最外周部には負極合剤層12のない負極芯体11のみの部分(未塗布部分)がある状態となされている。そして、この未塗布部の負極芯体11の巻外側に負極集電タブ10aが溶接されている。また、未塗布部の負極芯体11が負極集電タブ10aの溶接面の裏側に位置するように巻内側に折り返されていて、未塗布部の負極芯体11同士が二重重ねになるように配置されて未塗布部の重ね合せ部11aが形成されている。   In this case, in the spiral electrode group a of Example 1, as shown in FIG. 1, only the negative electrode core 11 without the negative electrode mixture layer 12 (uncoated portion) is present on the outermost peripheral portion of the negative electrode 10. It is in a certain state. And the negative electrode current collection tab 10a is welded to the winding outer side of the negative electrode core 11 of this uncoated part. Further, the negative core 11 in the uncoated portion is folded back inside the winding so as to be located on the back side of the welding surface of the negative current collecting tab 10a, so that the negative cores 11 in the uncoated portion are double stacked. And an overlapped portion 11a of an uncoated portion is formed.

また、実施例2の渦巻状電極群bにおいては、図2に示すように、実施例1の渦巻状電極群aと同様に、負極10の最外周部には負極合剤層12のない負極芯体11のみの部分(未塗布部分)がある状態となされていて、この未塗布部の負極芯体11の巻外側に負極集電タブ10aが溶接されている。そして、未塗布部の負極芯体11が負極集電タブ10aの溶接面の裏側に位置するように巻内側に折り返されていて、未塗布部の負極芯体11同士が二重に重なるように配置された後、さらに巻内側に折り返されて未塗布部の負極芯体11同士が三重重ねになるように配置されて未塗布部の重ね合せ部11bが形成されている。   Further, in the spiral electrode group b of Example 2, as shown in FIG. 2, as in the spiral electrode group a of Example 1, the negative electrode without the negative electrode mixture layer 12 in the outermost peripheral portion of the negative electrode 10. There is a state in which only the core body 11 (uncoated part) is present, and the negative electrode current collecting tab 10a is welded to the outer side of the negative electrode core body 11 in the uncoated part. And the negative electrode core 11 of the uncoated part is folded back inside the winding so that it is located on the back side of the welding surface of the negative electrode current collecting tab 10a, and the negative electrode cores 11 of the uncoated part overlap each other. After the arrangement, the non-coated portion 11b is formed by folding back to the inside of the winding so that the uncoated portions of the negative electrode cores 11 are arranged in a triple layer.

さらに、比較例1の渦巻状電極群xにおいては、図3に示すように、実施例1の渦巻状電極群aと同様に、負極10の最外周部には負極合剤層12のない負極芯体11のみの部分(未塗布部分)がある状態となされていて、この未塗布部の負極芯体11の巻外側に負極集電タブ10aが溶接されている。そして、この場合は、未塗布部の負極芯体11は巻内側に折り返されることなくそのままの状態になされている。   Furthermore, in the spiral electrode group x of Comparative Example 1, as shown in FIG. 3, the negative electrode without the negative electrode mixture layer 12 at the outermost peripheral portion of the negative electrode 10, as in the spiral electrode group a of Example 1. There is a state in which only the core body 11 (uncoated part) is present, and the negative electrode current collecting tab 10a is welded to the outer side of the negative electrode core body 11 in the uncoated part. In this case, the negative electrode core 11 of the uncoated part is left as it is without being folded back to the inner side.

4.非水電解液二次電池
ついで、表面にニッケルメッキを施した鉄製の外装缶(この場合は、直径が18mmで、高さが650mmとした)40を用意した。この後、この外装缶40内に上述のようにして作製された渦巻状電極群(a,b,x)を挿入するとともに正極集電タブ(図示せず)を外装缶に底部(正極端子)に溶接するとともに負極集電タブ10aを図示しない封口体の底部(負極端子)に溶接した。ついで、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を体積比が3:7(25℃)となるように混合された混合溶媒に、電解質塩としての六フッ化リン酸リチウム(LiPF6)を1.2モル/リットルとなるように溶解させた非水電解質を注液した。この後、外装缶40の開口部を封口体で密封して、設計容量が3000mAhの非水電解質二次電池A、B、Xをそれぞれ作製した。
4). Nonaqueous electrolyte secondary battery Next, an iron outer can (in this case, having a diameter of 18 mm and a height of 650 mm) 40 was prepared. Thereafter, the spiral electrode group (a, b, x) produced as described above is inserted into the outer can 40 and a positive current collecting tab (not shown) is attached to the outer can (bottom terminal). And the negative electrode current collecting tab 10a was welded to the bottom (negative electrode terminal) of a sealing body (not shown). Next, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt was added to a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed so that the volume ratio was 3: 7 (25 ° C.). A nonaqueous electrolyte in which was dissolved to 1.2 mol / liter was injected. Then, the opening part of the armored can 40 was sealed with the sealing body, and the nonaqueous electrolyte secondary batteries A, B, and X each having a design capacity of 3000 mAh were produced.

ここで、実施例1の渦巻状電極群aを用いた非水電解質二次電池を電池Aとした。同様に、実施例2の渦巻状電極群bを用いた非水電解質二次電池を電池Bとし、比較例1の渦巻状電極群xを用いた非水電解質二次電池を電池Xとした。   Here, a non-aqueous electrolyte secondary battery using the spiral electrode group a of Example 1 was designated as battery A. Similarly, a non-aqueous electrolyte secondary battery using the spiral electrode group b of Example 2 was designated as battery B, and a non-aqueous electrolyte secondary battery using the spiral electrode group x of Comparative Example 1 was designated as battery X.

5.非水電解液二次電池の試験
(1)釘刺し試験
ついで、上述のように作製した各電池(A,B,X)を、室温(約25℃)で、1500mAの定電流で電池電圧が4.40Vに達するまで充電した。さらに、4.40Vの定電圧で電流値が60mAになるまで充電した。この後、各電池(A,B,X)を負極集電タブ10aがある位置を真上にして水平に載置した。ついで、直径が3.0mmのSUS製の釘を負極集電タブ10aがある位置に合わせて垂直に一定速度で落下させて、各電池(A,B,X)を強制的に短絡させて、電池に破裂や発火などの異常な状態が生じたか否かを目視により確認する釘刺し試験を行った。この場合、釘の落下速度を、l00mm/secとしたものと、50mm/secとしたものとの2パターンでそれぞれ2セルずつ行い、電池に破裂や発火がない場合はOKと判定し、電池に破裂や発火が生じた場合はNGと判定して、それらの個数を求めると、下記の表1に示すような結果となった。
5. Non-aqueous electrolyte secondary battery test (1) Nail penetration test Next, each battery (A, B, X) produced as described above was charged at a constant current of 1500 mA at room temperature (about 25 ° C). 4. Charged to reach 40V. Further, the battery was charged at a constant voltage of 4.40 V until the current value reached 60 mA. Thereafter, each battery (A, B, X) was placed horizontally with the position where the negative electrode current collecting tab 10a is located directly above. Next, a SUS nail having a diameter of 3.0 mm is vertically dropped at a constant speed in accordance with the position of the negative electrode current collecting tab 10a, and each battery (A, B, X) is forcibly short-circuited, A nail penetration test was conducted to visually confirm whether or not an abnormal state such as rupture or ignition occurred in the battery. In this case, the nail drop speed was set to 100 mm / sec and 50 mm / sec each for two cells, and if the battery did not rupture or ignite, it was determined OK and the battery When rupture or ignition occurred, it was determined as NG, and the number of them was determined, and the results shown in Table 1 below were obtained.

(2)衝撃試験
また、上述のように作製した各電池(A,B,X)を、室温(約25℃)で、1500mAの定電流で電池電圧が4.40Vに達するまで充電した。さらに、4.40Vの定電圧で電流値が60mAになるまで充電した。この後、各電池(A,B,X)を水平に載置した後、この上に直径が16mmのSUS製の円柱状の棒を各電池(A,B,X)に直角に交差するように載置し、固定させた。ついで、9.8kgの質量を有するSUS製の重りを、高さが60cmの位置から垂直に自由落下させて電池に衝撃を与えるという衝撃試験を行った。この場合、2セルずつ行い、電池に破裂や発火がない場合はOKと判定し、電池に破裂や発火が生じた場合はNGと判定して、それらの個数を求めると、下記の表1に示すような結果となった。
(2) Impact test Each battery (A, B, X) produced as described above was charged at room temperature (about 25 ° C) with a constant current of 1500 mA until the battery voltage reached 4.40V. Further, the battery was charged at a constant voltage of 4.40 V until the current value reached 60 mA. After that, after each battery (A, B, X) is placed horizontally, a SUS cylindrical rod having a diameter of 16 mm is crossed perpendicularly to each battery (A, B, X). And fixed. Next, an impact test was performed in which a SUS weight having a mass of 9.8 kg was freely dropped vertically from a position having a height of 60 cm to give an impact to the battery. In this case, two cells are performed, and if the battery does not rupture or ignite, it is determined to be OK, and if the battery ruptures or ignites, it is determined to be NG. The result was as shown.

Figure 2012178237
Figure 2012178237

上記表1の結果から明らかなように、釘刺し試験に関して、電池Xのように負極10の巻き終わり部の未塗布部における負極集電タブ10aが溶接された裏面での負極芯体11の重ね合せがない場合は、釘の落下速度に係わらず釘刺し試験がNGとなっていることが分かる。これは、釘が負極集電タブ10aに当たった場合、釘が負極集電タブ10aを貫通せずに負極集電タブ10aを押し込むこととなって、負極集電タブ10aのエッジが負極芯体11やセパレータ30を破って正極20に接触して微小短絡するためと考えられる。この場合、微小短絡であるために短絡電流は小さいこととなり、短絡箇所が高温に至った時点であっても、電池容量は十分に保持されることとなる。これにより、電池に破裂や発火が生じたと考えられる。   As is clear from the results of Table 1 above, regarding the nail penetration test, the overlap of the negative electrode core 11 on the back surface where the negative electrode current collecting tab 10a is welded at the uncoated portion of the negative electrode 10 as in the battery X When there is no alignment, it can be seen that the nail penetration test is NG regardless of the drop speed of the nail. This is because when the nail hits the negative electrode current collecting tab 10a, the nail pushes the negative electrode current collecting tab 10a without penetrating the negative electrode current collecting tab 10a, and the edge of the negative electrode current collecting tab 10a becomes the negative electrode core. 11 or the separator 30 is contacted with the positive electrode 20 to cause a short circuit. In this case, the short-circuit current is small due to the minute short-circuit, and the battery capacity is sufficiently maintained even when the short-circuit portion reaches a high temperature. This is considered to have caused the battery to burst or ignite.

一方、電池Aのように、負極10の巻き終わり部の未塗布部における負極集電タブ10aが溶接された裏面での芯体11の重ね合せ部(二重重ね部)11aがある場合は、釘の落下速度が速い(100mm/sec)場合は釘刺し試験がOKとなっていることが分かる。これは、釘が負極集電タブ10aに当たった場合、釘が負極集電タブ10aを貫通せずに負極集電タブ10aを押し込むこととなって、負極集電タブ10aのエッジが負極芯体11やセパレータ30を破って正極20に接触すると、負極芯体11の重ね合せ部(二重重ね部)11aにより放電が速やかに行われるためと考えられる。   On the other hand, when there is an overlapping portion (double overlapping portion) 11a of the core body 11 on the back surface where the negative electrode current collecting tab 10a in the uncoated portion at the winding end portion of the negative electrode 10 is welded as in the battery A, It can be seen that the nail penetration test is OK when the nail drop speed is fast (100 mm / sec). This is because when the nail hits the negative electrode current collecting tab 10a, the nail pushes the negative electrode current collecting tab 10a without penetrating the negative electrode current collecting tab 10a, and the edge of the negative electrode current collecting tab 10a becomes the negative electrode core. It is considered that when the electrode 11 and the separator 30 are broken to come into contact with the positive electrode 20, the discharge is quickly performed by the overlapping portion (double overlapping portion) 11 a of the negative electrode core 11.

これにより、負極芯体11の重ね合せ部(二重重ね部)11aで短絡が発生した際の短絡電流や熱の拡散がスムーズに行われる結果、短絡箇所が高温に至った時点において、既に電池容量が低下しているため、電池に破裂や発火が生じにくくなり、安全性が向上したと考えられる。なお、釘の落下速度が遅い(50mm/sec)場合は釘刺し試験がNGとなっているが、これは、釘の落下速度が遅い(50mm/sec)と、微小短絡となって短絡電流が小さくなるためと考えられる。これにより、短絡箇所が高温に至った時点であっても、電池容量は十分に保持されることとなり、電池に破裂や発火が生じたと考えられる。   As a result of the smooth diffusion of short circuit current and heat when a short circuit occurs in the overlapping part (double overlapping part) 11a of the negative electrode core 11, the battery is already at the time when the short circuit point has reached a high temperature. Since the capacity is reduced, it is considered that the battery is less likely to burst or ignite, and the safety is improved. When the nail drop speed is slow (50 mm / sec), the nail penetration test is NG. However, when the nail drop speed is slow (50 mm / sec), a short circuit occurs due to a short circuit. This is considered to be smaller. Thereby, even when the short-circuited part reaches a high temperature, the battery capacity is sufficiently maintained, and it is considered that the battery has ruptured or ignited.

さらに、電池Bのように、負極10の巻き終わり部の未塗布部における負極集電タブ10aが溶接された裏面での負極芯体11の重ね合せ部(三重重ね部)11bがある場合は、釘の落下速度が遅くても速くても釘刺し試験がOKとなっていることが分かる。これは、釘が負極集電タブ10aに当たった場合、釘が負極集電タブ10aを貫通せずに負極集電タブ10aを押し込むこととなって、負極集電タブ10aのエッジが負極芯体11やセパレータ30を破って正極20に接触すると、負極芯体11の重ね合せ部(三重重ね部)11bにより放電が速やかに行われるためと考えられる。これにより、負極芯体11の重ね合せ部(三重重ね部)11bで短絡が発生した際の短絡電流や熱の拡散がスムーズに行われる結果、短絡箇所が高温に至った時点において、既に電池容量が低下しているため、電池に破裂や発火が生じにくくなり、安全性が向上したと考えられる。   Furthermore, as in the case of battery B, when there is an overlapping portion (triple overlapping portion) 11b of the negative electrode core 11 on the back surface where the negative electrode current collecting tab 10a is welded at the uncoated portion of the winding end portion of the negative electrode 10, It can be seen that the nail penetration test is OK whether the nail drop speed is slow or fast. This is because when the nail hits the negative electrode current collecting tab 10a, the nail pushes the negative electrode current collecting tab 10a without penetrating the negative electrode current collecting tab 10a, and the edge of the negative electrode current collecting tab 10a becomes the negative electrode core. It is considered that when the electrode 11 is broken and contacted with the positive electrode 20, the discharge is rapidly performed by the overlapping portion (triple overlapping portion) 11 b of the negative electrode core 11. Thereby, as a result of smooth diffusion of short-circuit current and heat when a short circuit occurs in the overlapping part (triple overlapping part) 11b of the negative electrode core 11, the battery capacity has already been reached when the short-circuited part reaches a high temperature. Therefore, it is considered that the battery is less likely to rupture or ignite, improving safety.

また、衝撃試験に関しては、電池Xのように負極10の巻き終わり部の未塗布部における負極集電タブ10aが溶接された裏面での負極芯体11の重ね合せがない場合は、衝撃試験がNGとなっているのに対して、電池A,Bのように、負極10の巻き終わり部の未塗布部における負極集電タブ10aが溶接された裏面での負極芯体11の重ね合せ部(二重重ね部)11aや負極芯体11の重ね合せ部(三重重ね部)11bがある場合は、衝撃試験がOKとなっていることが分かる。   As for the impact test, when there is no overlap of the negative electrode core 11 on the back surface where the negative electrode current collecting tab 10a is welded at the uncoated portion at the winding end portion of the negative electrode 10 as in the battery X, the impact test is performed. Whereas it is NG, like the batteries A and B, the overlapping portion of the negative electrode core 11 on the back surface where the negative electrode current collecting tab 10a is welded in the uncoated portion of the winding end portion of the negative electrode 10 ( It can be seen that the impact test is OK when there is a double overlap portion) 11a and an overlap portion (triple overlap portion) 11b of the negative electrode core 11.

これは、負極集電タブ10aが溶接された裏面での負極芯体11の重ね合せ部(二重重ね部)11aや負極芯体11の重ね合せ部(三重重ね部)11bがあると、これらの重ね合せ部(二重重ね部)11aや重ね合せ部(三重重ね部)11bで短絡が発生した際の短絡電流や熱の拡散がスムーズに行われる結果、短絡箇所が高温に至った時点において、既に電池容量が低下しているため、電池に破裂や発火が生じにくくなり、安全性が向上したと考えられる。   This is because when there is an overlap portion (double overlap portion) 11a of the negative electrode core body 11a and an overlap portion (triple overlap portion) 11b of the negative electrode core body 11 on the back surface where the negative electrode current collecting tab 10a is welded, As a result of smooth diffusion of short-circuit current and heat when a short circuit occurs in the overlapping part (double overlapping part) 11a and the overlapping part (triple overlapping part) 11b, the short-circuited part reaches a high temperature. Since the battery capacity has already decreased, it is considered that the battery is less likely to rupture or ignite and the safety is improved.

なお、上述した実施の形態においては、負極活物質として天然黒鉛を用いた例について説明したが、天然黒鉛以外に、リチウムイオンを吸蔵・放出し得るカーボン系材料、例えば、カーボンブラック、コークス、ガラス状炭素、炭素繊維等の公知のものを用いてもよい。また、正極活物質としてリチウム−コバルト複合酸化物(LiCoO2)を用いた例について説明したが、リチウム−コバルト複合酸化物(LiCoO2)に限らず、他のリチウム含有複合酸化物を用いてもよい。 In the above-described embodiment, an example in which natural graphite is used as the negative electrode active material has been described. However, in addition to natural graphite, a carbon-based material capable of occluding and releasing lithium ions, such as carbon black, coke, and glass. Known carbon or carbon fiber may be used. Further, the lithium as a positive electrode active material - cobalt composite oxide has been described example using (LiCoO 2), lithium - not limited to cobalt composite oxide (LiCoO 2), also using other lithium-containing composite oxide Good.

A,B…非水電解質二次電池、10…負極、10a…負極集電タブ、11…負極芯体、11a…負極芯体の重ね合せ部(二重重ね部)、11b…負極芯体の重ね合せ部(三重重ね部)、12…負極合剤層、20…正極、21…正極芯体、22…正極合剤層、30…セパレータ、40…外装缶 A, B: non-aqueous electrolyte secondary battery, 10: negative electrode, 10a: negative electrode current collecting tab, 11: negative electrode core, 11a: overlapping portion (double overlapping portion) of negative electrode core, 11b: negative electrode core Overlapping part (triple overlapping part), 12 ... negative electrode mixture layer, 20 ... positive electrode, 21 ... positive electrode core, 22 ... positive electrode mixture layer, 30 ... separator, 40 ... outer can

Claims (2)

負極芯体に負極活物質が塗布された負極と、正極芯体に正極活物質が塗布された正極と、これらの負極と正極を隔離するセパレータと、非水電解質とを備えた非水電解質二次電池であって、
前記正極と前記負極がセパレータを間にして渦巻状に巻回されており、
前記負極の最外周部の一部に前記負極活物質が塗布されていなくて負極芯体が露出した未塗布部が形成されており、
前記未塗布部の負極芯体の巻外側に負極集電タブが溶接されているとともに、
前記未塗布部の負極芯体が前記負極集電タブの当該負極芯体との溶接面の裏側に位置するように巻内側に折り返されていて、当該未塗布部の負極芯体同士が重なるように配置されて負極芯体の重ね合せ部が形成されていることを特徴とする非水電解質二次電池。
A nonaqueous electrolyte comprising: a negative electrode having a negative electrode core coated with a negative electrode active material; a positive electrode having a positive electrode core coated with a positive electrode active material; a separator separating the negative electrode and the positive electrode; and a nonaqueous electrolyte. A secondary battery,
The positive electrode and the negative electrode are spirally wound with a separator in between,
The negative electrode active material is not applied to a part of the outermost peripheral part of the negative electrode, and an uncoated part where the negative electrode core is exposed is formed,
A negative electrode current collector tab is welded to the outer side of the negative electrode core of the uncoated part,
The negative core of the uncoated part is folded back to the inner side so as to be positioned on the back side of the welding surface of the negative current collecting tab with the negative core, so that the negative cores of the uncoated part overlap each other. The non-aqueous electrolyte secondary battery is characterized in that an overlapping portion of the negative electrode core is formed.
前記負極芯体の重ね合せ部は、前記負極集電タブの当該負極芯体との溶接面の裏側に位置するように巻内側に折り返されて当該負極芯体同士が二重に重なるように配置された後、さらに巻内側に折り返されて当該負極芯体同士が三重に重なるように配置されて形成されていることを特徴とする請求項1に記載の非水電解質二次電池。   The overlapping portion of the negative electrode core is folded back to the inside of the winding so as to be positioned on the back side of the welding surface of the negative electrode current collecting tab with the negative electrode core, and the negative electrode cores are disposed so as to overlap each other. 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is formed so as to be further folded back to the inner side of the winding and arranged so that the negative electrode cores overlap in triplicate.
JP2011039467A 2011-02-25 2011-02-25 Nonaqueous electrolyte secondary battery Withdrawn JP2012178237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039467A JP2012178237A (en) 2011-02-25 2011-02-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039467A JP2012178237A (en) 2011-02-25 2011-02-25 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2012178237A true JP2012178237A (en) 2012-09-13

Family

ID=46979965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039467A Withdrawn JP2012178237A (en) 2011-02-25 2011-02-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2012178237A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064806A1 (en) * 2017-09-29 2019-04-04 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US10333175B2 (en) 2014-09-30 2019-06-25 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333175B2 (en) 2014-09-30 2019-06-25 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2019064806A1 (en) * 2017-09-29 2019-04-04 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JPWO2019064806A1 (en) * 2017-09-29 2020-11-26 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP7064270B2 (en) 2017-09-29 2022-05-10 パナソニックホールディングス株式会社 Non-aqueous electrolyte secondary battery
US11456460B2 (en) 2017-09-29 2022-09-27 Panasonic Holdings Corporation Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
WO2015146077A1 (en) Cylindrical hermetically sealed battery
WO2009144919A1 (en) Cylindrical nonaqueous electrolytic secondary battery
WO2005067080A1 (en) Lithium ion secondary cell
WO2010125755A1 (en) Assembled sealing body and battery using same
JP6661485B2 (en) Non-aqueous electrolyte secondary battery
JP2009272085A (en) Nonaqueous electrolyte battery
CN102683739A (en) Lithium ion battery
JP2009059572A (en) Nonaqueous electrolyte secondary battery
JP2013254561A (en) Cylindrical nonaqueous electrolyte secondary battery
JP2007200795A (en) Lithium ion secondary battery
JP2009218013A (en) Sealed battery
WO2010116590A1 (en) Cylindrical battery
JPH11176470A (en) Organic electrolyte secondary battery
JP2011187241A (en) Nonaqueous electrolyte secondary battery
JP2006222077A (en) Nonaqueous electrolyte solution secondary battery
WO2013038702A1 (en) Nonaqueous electrolyte secondary cell
JP2019016482A (en) Nonaqueous electrolyte secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2012178237A (en) Nonaqueous electrolyte secondary battery
JPH09129241A (en) Nonaqueous electrolytic secondary battery
JP2003331924A (en) Nonaqueous secondary cell
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP2019153388A (en) Nonaqueous electrolyte secondary battery
JP5945148B2 (en) Aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513