JP2012177811A - Method for evaluating temporal stability of electric resistance of electrophotographic belt - Google Patents

Method for evaluating temporal stability of electric resistance of electrophotographic belt Download PDF

Info

Publication number
JP2012177811A
JP2012177811A JP2011040974A JP2011040974A JP2012177811A JP 2012177811 A JP2012177811 A JP 2012177811A JP 2011040974 A JP2011040974 A JP 2011040974A JP 2011040974 A JP2011040974 A JP 2011040974A JP 2012177811 A JP2012177811 A JP 2012177811A
Authority
JP
Japan
Prior art keywords
function
carbon black
belt
statistic
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011040974A
Other languages
Japanese (ja)
Inventor
Naoki Fuei
直喜 笛井
Soichiro Kawakami
総一郎 川上
Kenji Onuma
健次 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011040974A priority Critical patent/JP2012177811A/en
Publication of JP2012177811A publication Critical patent/JP2012177811A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cleaning In Electrography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating the temporal stability of electric resistance of an electrophotographic belt including a polyether ether ketone and a carbon black.SOLUTION: The method for evaluating the temporal stability of electric resistance of an electrophotographic belt including a polyether ether ketone and a carbon black dispersed in the polyether ether ketone includes a step of obtaining a number-average particle size of the carbon black observed from a cut surface of the belt, obtaining Ripley's L function in a circular range having a radius of 1.2 μm with coordinate values of a plane's center of gravity as the center, and determining a distribution pattern of the Ripley's L function.

Description

本発明は、電子写真用ベルトの電気抵抗の経時安定性の評価方法に関するものである。 The present invention relates to a method for evaluating the stability over time of the electrical resistance of an electrophotographic belt.

従来、電子写真方式や静電記録方式等でいわゆる中間転写方式の画像形成装置が知られている。中間転写方式の画像形成装置においては、第一の像担持体としての感光体上に形成された静電潜像を現像装置で現像して現像剤像(トナー像)を形成し、第二の像担持体である中間転写体に、このトナー像を一次転写し、その後に用紙等の記録材に二次転写する。中間転写体を構成する材料として、ポリイミド樹脂、ポリカーボネート樹脂、ポリフッ化ビニリデン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂等が用いられている。また、中間転写体は前記の樹脂材料をシームレスベルト形状に成形した、いわゆる中間転写ベルトが広く用いられている。 2. Description of the Related Art Conventionally, an image forming apparatus of a so-called intermediate transfer method is known by an electrophotographic method or an electrostatic recording method. In the intermediate transfer type image forming apparatus, the electrostatic latent image formed on the photosensitive member as the first image carrier is developed by a developing device to form a developer image (toner image). The toner image is primarily transferred onto an intermediate transfer member that is an image carrier, and then secondarily transferred onto a recording material such as paper. As a material constituting the intermediate transfer member, polyimide resin, polycarbonate resin, polyvinylidene fluoride resin, polyether ether ketone resin, polyphenylene sulfide resin, and the like are used. As the intermediate transfer member, a so-called intermediate transfer belt in which the resin material is molded into a seamless belt shape is widely used.

従来より、ポリエーテルエーテルケトン樹脂(PEEK樹脂)と導電性フィラーを含有する樹脂組成物から形成された半導電性フィルムとその製造方法が開示されている(特許文献1)。しかし、ポリエーテルエーテルケトン樹脂に導電性フィラーを添加した樹脂組成物を用いて、均一な厚みを有し、場所による体積抵抗率のバラツキが小さく、機械的強度にも優れた半導電性フィルムを製造することは容易ではなかった。特許文献1では、混合樹脂の溶融押出と冷却固化の際の温度制御を厳密に行うことにより、上記問題点を解決している。 Conventionally, a semiconductive film formed from a resin composition containing a polyether ether ketone resin (PEEK resin) and a conductive filler and a method for producing the same have been disclosed (Patent Document 1). However, by using a resin composition obtained by adding a conductive filler to a polyether ether ketone resin, a semiconductive film having a uniform thickness, small variation in volume resistivity depending on location, and excellent mechanical strength. It was not easy to manufacture. In Patent Document 1, the above problem is solved by strictly controlling the temperature at the time of melt extrusion of the mixed resin and cooling and solidification.

特開2005−112942号公報JP 2005-112942 A

しかし、ポリエーテルエーテルケトン樹脂とカーボンブラックを含有してなる中間転写ベルトは、継続使用によって体積抵抗率が低下する場合がある。この継続使用による体積抵抗率の低下については、以下のようなメカニズムによるものと考えられる。すなわち、一次転写および二次転写時の転写電界が中間転写ベルトに繰り返し長時間かかることによりポリエーテルエーテルケトン樹脂の部分的な絶縁破壊が起こり、内部に導電パスが形成されることで、中間転写ベルトの体積抵抗が低下するというメカニズムである。この現象は、ポリエーテルエーテルケトン樹脂中のカーボンブラックの凝集体の近傍や大きいサイズの凝集体同士の微小な隙間に電界が集中することによって、樹脂の部分的な絶縁破壊が起こるものと考えられる。そこで、絶縁破壊の直接的な原因となるカーボンブラックの分散性を評価することが、電気抵抗の経時安定性評価として有効であると考えられる。 However, an intermediate transfer belt containing a polyether ether ketone resin and carbon black may have a reduced volume resistivity due to continued use. This decrease in volume resistivity due to continued use is considered to be due to the following mechanism. That is, the transfer electric field at the time of primary transfer and secondary transfer is repeatedly applied to the intermediate transfer belt for a long time, resulting in partial insulation breakdown of the polyetheretherketone resin and the formation of a conductive path inside the intermediate transfer belt. This is a mechanism in which the volume resistance of the belt decreases. This phenomenon is thought to be caused by partial dielectric breakdown of the resin due to the concentration of the electric field in the vicinity of the carbon black aggregates in the polyether ether ketone resin and in the minute gaps between the large-sized aggregates. . Therefore, it is considered that evaluating the dispersibility of carbon black, which is a direct cause of dielectric breakdown, is effective for evaluating the temporal stability of electrical resistance.

従来、樹脂中のカーボンブラックの分散性の評価方法としては、カーボンブラックの粒子サイズ(粒子径)や最近接粒子間距離、区画法などの指標が用いられてきた。
しかし、粒子サイズ(粒子径)の評価だけでは、粒子間の位置情報が反映されないため、粒子の空間的な分布は不明である。また、最近接粒子粒間距離の評価では、最接近している粒子だけに着目しているため、粒子全体の分散性を正確には評価できていない。また、区画内粒子数を数えて分布様式を知る方法(区画法)も知られているが、区画の区切り方(区画サイズや形)によって分布様式が異なり、分布の判定が困難であった。
Conventionally, as a method for evaluating the dispersibility of carbon black in a resin, indices such as the particle size (particle diameter) of carbon black, the distance between nearest particles, and the partition method have been used.
However, the spatial distribution of the particles is unknown because the positional information between the particles is not reflected only by the evaluation of the particle size (particle diameter). Moreover, in the evaluation of the distance between the closest particles, attention is paid only to the closest particle, and therefore the dispersibility of the whole particle cannot be accurately evaluated. In addition, a method (compartment method) is known in which the number of particles in a compartment is counted to know the distribution mode (compartment method). However, the distribution mode differs depending on how the compartments are divided (compartment size and shape), making it difficult to determine the distribution.

そこで本発明の目的は、カーボンブラックの分散状態をより正確に判定し、電子写真用のベルトの電気抵抗の経時安定性を評価する方法の提供にある。   Accordingly, an object of the present invention is to provide a method for more accurately determining the dispersion state of carbon black and evaluating the temporal stability of the electrical resistance of an electrophotographic belt.

上記の目的に対して本発明者等が鋭意検討した結果、カーボンブラックの個数平均粒子径に加えて、RipleyのL関数およびGearyのC統計量を用いることで、カーボンブラックの分散状態をより定量的かつ正確に示す評価方法を見出した。 なお、RipleyのL関数は、カーボンブラック粒子の空間分布様式を示し、GearyのC統計量は、近接するカーボンブラックの粒子サイズの空間的自己相関を示す。
すなわち、本発明に係る電子写真用のベルトの電気抵抗の経時安定性の評価方法は、ポリエーテルエーテルケトンとポリエーテルエーテルケトンに分散されてなるカーボンブラックとを含む電子写真用のベルトの電気抵抗の経時安定性の評価方法であって、該ベルトの切断面から観察されるカーボンブラックの平面重心座標値を中心として半径1.2μmの円形の範囲におけるRipleyのL関数を求め、該L関数の分布様式を判定する工程を含むことを特徴とするものである。
As a result of intensive studies by the present inventors for the above purpose, the dispersion state of carbon black is further quantified by using Ripley's L function and Geary's C statistic in addition to the number average particle diameter of carbon black. We have found an evaluation method that shows accurate and accurate results. Ripley's L function indicates the spatial distribution pattern of carbon black particles, and Geary's C statistic indicates the spatial autocorrelation of the particle sizes of adjacent carbon blacks.
That is, the method for evaluating the stability over time of the electric resistance of the electrophotographic belt according to the present invention is an electric resistance of an electrophotographic belt containing polyether ether ketone and carbon black dispersed in the polyether ether ketone. The Ripley L function in a circular range having a radius of 1.2 μm centered on the plane barycentric coordinate value of the carbon black observed from the cut surface of the belt is obtained. The method includes a step of determining a distribution pattern.

本発明によれば、ポリエーテルエーテルケトン樹脂とカーボンブラックを含有してなる電子写真用ベルトの電気抵抗の経時安定性を、より客観的かつ定量的に予測することができる。   According to the present invention, it is possible to more objectively and quantitatively predict the temporal stability of the electrical resistance of an electrophotographic belt containing a polyether ether ketone resin and carbon black.

本発明の評価方法に用いたRipleyのL関数の一例を示す図。The figure which shows an example of Ripley's L function used for the evaluation method of this invention. 本発明の評価方法を示すフロー図。The flowchart which shows the evaluation method of this invention.

空間統計学の分野では点の空間分布様式をランダム分布、集中分布、規則分布(一定間隔型分布)の3つの分布に分けて考える。ランダム分布は各点が互いに他の点と無関係に、そしてどの地域のどの場所にも同じ確率で置かれたときに実現される点の空間分布である。集中分布は点が特定の地域にかたまっている空間分布である。また、規則分布(一定間隔型分布)は点が互いにある程度の間隔を保ちながら分布している空間分布である。   In the field of spatial statistics, the spatial distribution of points is divided into three distributions: random distribution, concentrated distribution, and regular distribution (constant interval distribution). A random distribution is a spatial distribution of points that is realized when each point is placed independently of each other and with the same probability anywhere in any region. The concentrated distribution is a spatial distribution in which points are clustered in a specific area. Further, the regular distribution (constant interval distribution) is a spatial distribution in which points are distributed while maintaining a certain distance from each other.

RipleyのL関数について以下に説明する。まず始めに、RipleyのK関数は次のように定義される。
K(d)=
E[ランダムに選んだ点を中心とした半径dの円内に含まれる他の点の数]/ρ
つまりK関数であるK(d)はランダムに選んだ点を中心とした半径dの円内に含まれる他の点数の平均を、全地域の点の密度ρ(平均密度)で除した値である。有限の平面に点をランダムに散布するとポアソン分布に従うことが知られている。もし点がポアソン分布にしたがってランダムに分布していれば、半径dの円内に存在する他の点の数の期待値は、平均密度ρに円の面積πdを掛けた値なので、数式1で表される。
The Ripley L function is described below. First, Ripley's K function is defined as follows:
K (d) =
E [number of other points contained in a circle with radius d centered at a randomly selected point] / ρ
In other words, K (d), which is a K function, is a value obtained by dividing the average of other points contained in a circle with a radius d centered on a randomly selected point by the density ρ (average density) of points in all regions. is there. It is known that random distribution of points on a finite plane follows a Poisson distribution. If the points are randomly distributed according to the Poisson distribution, the expected value of the number of other points present in the circle of radius d is the value obtained by multiplying the average density ρ by the area of the circle πd 2 , so that It is represented by

ここで、K関数を標準化して、一次関数にしたものがL関数である。L関数であるL(d)は、数式2で表される。 Here, the L function is a standardized function of the K function. L (d), which is an L function, is expressed by Equation 2.

L関数という指数を考えると、半径dにかかわらず点がランダムに分布しているときには、L(d)=0となる。また、空間分布が集中分布のときにはL(d)は正の値をとり、規則型分布(一定間隔型分布)のときには負の値をとる。 Considering the exponent of the L function, L (d) = 0 when the points are randomly distributed regardless of the radius d. Further, L (d) takes a positive value when the spatial distribution is a concentrated distribution, and takes a negative value when the spatial distribution is a regular distribution (constant interval distribution).

次にGearyのC統計量について説明する。
空間に分布する属性の値が地理的近さ(隣接関係)に基づいて一定の傾向をとるとき、空間的自己相関があるという。
GearyのC統計量は数式3で表される。
Next, Geary's C statistic will be described.
There is spatial autocorrelation when attribute values distributed in space have a certain tendency based on geographical proximity (adjacency).
Geary's C statistic is expressed by Equation 3.

ここで、Nは全粒子数、Xi、Xjは隣接する粒子の粒子径(円相当径)であり、Wijは2進的重み係数である。0〜2の範囲の値をとる。同じような属性値(例えば粒子径)が並ぶときC統計量は0に近づき、これを正の空間的自己相関という。異なった属性値(例えば粒子径)が併置されるとき2に近づき、これを負の空間的自己相関という。属性値がランダムに分布するときC統計量は1となる。 Here, N is the total number of particles, Xi and Xj are the particle sizes (equivalent circle diameters) of adjacent particles, and Wij is a binary weighting factor. It takes a value in the range of 0-2. When similar attribute values (for example, particle diameters) are arranged, the C statistic approaches 0, which is referred to as positive spatial autocorrelation. When different attribute values (for example, particle diameter) are juxtaposed, they approach 2 and this is called negative spatial autocorrelation. The C statistic is 1 when attribute values are randomly distributed.

GearyのC統計量を用いれば、ある粒子の粒子径とその近傍に存在する粒子の粒子径に関する空間的自己相関を正確に評価することができる。C統計量がランダムを示せば、ある粒子の粒子径とその近傍粒子の粒子径の関係がランダムになっているから、分散性が「良好」という判断ができる。一方、C統計量が正の自己相関を示せば、同程度の粒子径をもった粒子同士が近接している場合を検出できるので、分散性が「不良」という判断ができる。また、C統計量が負の自己相関を示せば、大きなサイズの粒子の近傍に小さいサイズの粒子が多く存在することや小さなサイズの粒子の近傍に大きなサイズの粒子が多く存在することを検出できるので、分散性が「不良」という判断ができる。 By using Geary's C statistic, it is possible to accurately evaluate the spatial autocorrelation between the particle size of a particle and the particle size of a particle existing in the vicinity thereof. If the C statistic shows random, the relationship between the particle size of a certain particle and the particle size of its neighboring particles is random, so that it can be judged that the dispersibility is “good”. On the other hand, if the C statistic shows a positive autocorrelation, it is possible to detect the case where particles having similar particle diameters are close to each other, so that the dispersibility can be determined to be “bad”. If the C statistic shows a negative autocorrelation, it can be detected that there are many small sized particles in the vicinity of large sized particles and many large sized particles in the vicinity of small sized particles. Therefore, it can be determined that the dispersibility is “bad”.

以下、実施例をもって本発明をさらに詳細に説明するが、本発明の技術的範囲はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the technical scope of this invention is not limited to these.

(実施例1)
<カーボンブラック含有PEEK樹脂ペレットの作製>
ポリエーテルエーテルケトン樹脂ペレット(ビクトレックス社製、「VICTREX PEEK 450G」)を凍結機械粉砕して、平均粒度200μmのPEEK樹脂粉末1を作製した。さらにポリエーテルエーテルケトン樹脂ペレット(ビクトレックス社製、「VICTREX PEEK 151G」)を凍結機械粉砕して、平均粒度200μmのPEEK樹脂粉末2を作製した。
PEEK樹脂粉末1とPEEK樹脂粉末2を重量比で60対40で混合し、円筒回転型ブレンダーにより5分間混合して、PEEK樹脂粉末3を作製した。
次に、ホッパーと定量供給器を備えた二軸押出機を用い、定量供給器からホッパー中にPEEK樹脂粉末3を100質量部とカーボンブラック(電気化学工業製、商品名「デンカブラック粒状品」)を表3に記載の所定質量部供給し、溶融混練した。このとき押出機のシリンダー設定温度は330℃〜370℃とした。溶融混練物はストランドダイから紐状に押出し、冷却水槽で冷却した後、ペレタイザーで切断して外径約2mm、長さ約3mmのカーボンブラック含有PEEK樹脂ペレットを作製した。
Example 1
<Preparation of carbon black-containing PEEK resin pellets>
Polyetheretherketone resin pellets (VICTREX PEEK 450G, manufactured by Victrex Co., Ltd.) were freeze-machined to produce PEEK resin powder 1 having an average particle size of 200 μm. Furthermore, the polyether ether ketone resin pellets (“VICTREX PEEK 151G” manufactured by Victrex Co., Ltd.) were freeze-machined to prepare PEEK resin powder 2 having an average particle size of 200 μm.
PEEK resin powder 1 and PEEK resin powder 2 were mixed at a weight ratio of 60:40 and mixed for 5 minutes with a cylindrical rotary blender to prepare PEEK resin powder 3.
Next, using a twin screw extruder equipped with a hopper and a quantitative feeder, 100 parts by mass of PEEK resin powder 3 and carbon black (made by Denki Kagaku Kogyo, trade name “Denka Black granular product”) from the quantitative feeder into the hopper ) Was supplied in a predetermined amount as shown in Table 3 and melt-kneaded. At this time, the cylinder set temperature of the extruder was set to 330 ° C to 370 ° C. The melt-kneaded product was extruded from a strand die into a string shape, cooled in a cooling water tank, and then cut with a pelletizer to prepare carbon black-containing PEEK resin pellets having an outer diameter of about 2 mm and a length of about 3 mm.

<繰り返し混練>
得られたカーボンブラック含有PEEK樹脂ペレットを温度120℃で8時間、熱風循環型乾燥器内で乾燥したのち再度、二軸押出機に供給して、繰り返し溶融混練を行った後、前記と同じ工程でカーボンブラック含有PEEK樹脂ペレットを作製した。繰り返し溶融混練回数は表3に記載した回数(2〜6回)とした。
<Repeated kneading>
The obtained carbon black-containing PEEK resin pellets were dried in a hot-air circulating dryer for 8 hours at a temperature of 120 ° C., then supplied again to the twin-screw extruder, repeatedly melt-kneaded, and the same steps as above To produce carbon black-containing PEEK resin pellets. The number of times of repeated melt-kneading was the number of times described in Table 3 (2 to 6 times).

<シームレスベルトの作製>
前記カーボンブラック含有PEEK樹脂ペレットを成形材料として、環状ダイとギヤポンプを備えた単軸押出機を用いて、表3に記載の所定の厚みの円筒状のフィルムを成形した。このとき押出機のシリンダー設定温度は350℃〜400℃とした。
次いで、得られた円筒状フィルムをスリッターを用いて所定の幅にカットし、PEEK樹脂製シームレスベルトを作製した。
さらに、シームレスベルトの内周面の両方の縁部分には、内側に突出して中間転写ベルト(電子写真用のベルト)の軸方向の移動を制限するウレタンゴム製のリブ(幅5mm、高さ1mm)を内面の一周に連続して取り付けた。
<Preparation of seamless belt>
Using the carbon black-containing PEEK resin pellets as a molding material, a cylindrical film having a predetermined thickness shown in Table 3 was molded using a single screw extruder equipped with an annular die and a gear pump. At this time, the cylinder set temperature of the extruder was set to 350 ° C to 400 ° C.
Next, the obtained cylindrical film was cut into a predetermined width using a slitter to produce a PEEK resin seamless belt.
Furthermore, ribs made of urethane rubber (width 5 mm, height 1 mm) projecting inward and restricting the axial movement of the intermediate transfer belt (electrophotographic belt) are formed on both edge portions of the inner peripheral surface of the seamless belt. ) Was continuously attached around the inner surface.

<体積抵抗率の測定>
PEEK樹脂製シームレスベルトの体積抵抗率は、超高抵抗用抵抗計(エーディーシー製、商品名「R8340A」)、および測定電極(主電極(外径25mm、高さ10mm、ステンレス製)、ガード電極(内径35mm、外径40mm、高さ10mm、ステンレス製)および対向電極(外径80mm、厚み5mm、ステンレス製))を用いて測定した。測定条件は、印加電圧100V、測定時間10秒とした(測定雰囲気:温度23℃、相対湿度55%)。
<Measurement of volume resistivity>
The volume resistivity of the PEEK resin seamless belt is as follows: resistance meter for ultra-high resistance (made by ADC, trade name “R8340A”), measurement electrode (main electrode (outer diameter 25 mm, height 10 mm, stainless steel), guard electrode (Inner diameter 35 mm, outer diameter 40 mm, height 10 mm, made of stainless steel) and counter electrode (outer diameter 80 mm, thickness 5 mm, made of stainless steel)). The measurement conditions were an applied voltage of 100 V and a measurement time of 10 seconds (measuring atmosphere: temperature 23 ° C., relative humidity 55%).

<耐久性評価試験>
作製したシームレスベルトを中間転写ベルトとして、画像形成装置(キヤノン製カラー複写機「iR−ADV C2030」)に組み込んだ。
温度23℃、相対湿度10%(常温・低湿環境)の条件で、A4サイズの紙(キヤノンCLC用紙、秤量80g/m)を使用し、画像比率5%の評価用画像をA4横送りで200K枚連続で出力し、耐久試験終了時点で中間転写ベルトを取り出した。中間転写ベルト表面をシルボン紙で軽く空拭きしたのち、耐久試験中と同じ常温・低湿環境条件下で耐久試験後の中間転写ベルトの体積抵抗率を測定した。体積抵抗率は中間転写ベルトの周長方向に10個所測定して平均値を求めた。耐久試験前に同じ常温・低湿環境条件下で測定した体積抵抗率と、耐久試験後の中間転写ベルトの体積抵抗率を比較し、抵抗低下特性を表1のようにランク分けした。
<Durability evaluation test>
The produced seamless belt was incorporated as an intermediate transfer belt into an image forming apparatus (Canon color copier “iR-ADV C2030”).
A4 size paper (Canon CLC paper, weighing 80 g / m 2 ) was used under the conditions of a temperature of 23 ° C. and a relative humidity of 10% (normal temperature / low humidity environment), and an evaluation image with an image ratio of 5% was sent in A4 horizontal feed. 200K sheets were output continuously, and the intermediate transfer belt was taken out at the end of the durability test. After lightly wiping the surface of the intermediate transfer belt with Silbon paper, the volume resistivity of the intermediate transfer belt after the durability test was measured under the same normal temperature and low humidity environment conditions as in the durability test. The volume resistivity was measured at 10 points in the circumferential direction of the intermediate transfer belt, and an average value was obtained. The volume resistivity measured under the same normal temperature and low humidity conditions before the durability test was compared with the volume resistivity of the intermediate transfer belt after the durability test, and the resistance reduction characteristics were ranked as shown in Table 1.

<絶縁破壊強さの測定>
中間転写ベルトの絶縁破壊強さは、JIS規格C2110−1に準拠して、絶縁破壊試験装置(多摩電測製、商品名「TP−516UZ」)、および先端が外径20mmの球形プローブを用いて、温度23±1℃、相対湿度50±5%の空気雰囲気中で測定した。平均10秒から20数秒程度で絶縁破壊が起こるような一定速度でシームレスベルトの厚み方向に直流電圧を印加し、絶縁破壊を生じたときの電圧(KV)を測定した。その電圧(KV)をベルトの厚み(mm)で除して、絶縁破壊強さ(KV/mm)を求めた。
<Measurement of dielectric breakdown strength>
As for the dielectric breakdown strength of the intermediate transfer belt, in accordance with JIS standard C2110-1, a dielectric breakdown test device (manufactured by Tama Denso Co., Ltd., trade name “TP-516UZ”) and a spherical probe having a tip of 20 mm in outer diameter The measurement was performed in an air atmosphere at a temperature of 23 ± 1 ° C. and a relative humidity of 50 ± 5%. A DC voltage was applied in the thickness direction of the seamless belt at a constant speed at which dielectric breakdown occurred in an average of about 10 to 20 seconds, and the voltage (KV) when dielectric breakdown occurred was measured. The voltage (KV) was divided by the belt thickness (mm) to determine the dielectric breakdown strength (KV / mm).

<中間転写ベルト断面の観察>
中間転写ベルトから約5×5mmの試料を切り出し、ベルト断面が上面になるようにエポキシ樹脂で包埋した後、断面をバフ研磨器により平滑になるように研磨した。さらに試料の研磨面を真空中アルゴンイオンでイオンミリングして、中間転写ベルトの断面観察用試料を作製した。観察面に白金を真空蒸着した後、電子顕微鏡(日立ハイテクノロジーズ製 走査型電子顕微鏡S4800)を用いて試料断面を観察した。観察倍率は20000倍とした。また、断面の観察は中間転写ベルト1本あたり10ヵ所から試料を切り出して行った。
<Observation of cross section of intermediate transfer belt>
A sample of about 5 × 5 mm was cut out from the intermediate transfer belt, embedded in an epoxy resin so that the belt cross-section became the upper surface, and then polished by a buff grinder to make the cross-section smooth. Further, the ground surface of the sample was ion milled with argon ions in a vacuum to prepare a sample for observing the cross section of the intermediate transfer belt. After vacuum-depositing platinum on the observation surface, the sample cross section was observed using an electron microscope (Hitachi High-Technologies scanning electron microscope S4800). The observation magnification was 20000 times. Further, the cross section was observed by cutting out samples from 10 locations per intermediate transfer belt.

<個数平均粒子径の算出>
走査型電子顕微鏡で得られた断面の画像を、画像解析装置(ニレコ製、「ルーゼックスAP」)を用いて2値化画像処理をした。
まず、2値化画像から求めた各粒子の断面積Aから、次式により各粒子の円相当径Dを算出した。
D=√(4A/π)
ついで全観察粒子の円相当径Dの合計を全観察粒子数で除した値(算術平均値)を、個数平均粒子径とした。
<Calculation of number average particle diameter>
The image of the cross section obtained with the scanning electron microscope was subjected to binarization image processing using an image analysis apparatus (manufactured by Nireco, “Luzex AP”).
First, the equivalent circle diameter D of each particle was calculated from the cross-sectional area A of each particle obtained from the binarized image by the following formula.
D = √ (4A / π)
Next, a value (arithmetic average value) obtained by dividing the total of the equivalent circle diameter D of all the observed particles by the total number of observed particles was defined as the number average particle size.

<RipleyのL関数による分散性評価>
前記2値化画像をもとにPEEK樹脂中のカーボンブラック粒子の個数平均粒子径およびカーボンブラック粒子の平面重心座標値(X座標、Y座標)を求めた。次に数値解析用フリーソフト「R」のパッケージspatstatを用いて、カーボンブラック粒子の平面重心座標値(X座標、Y座標)から、半径1.2μmの円形の範囲におけるRipleyのL関数を求めた。L関数の分布様式が、「ランダム分布」あるいは「規則分布」(「一定間隔型分布」)を示すものは分散性が良好で、集中分布を示すものは分散性が不良とすることができる。
<Dispersibility evaluation by Ripley's L function>
Based on the binarized image, the number average particle diameter of carbon black particles in the PEEK resin and the plane barycentric coordinate value (X coordinate, Y coordinate) of the carbon black particles were determined. Next, Ripley's L function in a circular range with a radius of 1.2 μm was obtained from the plane barycentric coordinate value (X coordinate, Y coordinate) of the carbon black particles using the package spatstat of free software “R” for numerical analysis . When the distribution pattern of the L function is “random distribution” or “regular distribution” (“constant interval distribution”), the dispersibility is good, and when the L function distribution is a concentration distribution, the dispersibility is poor.

それぞれの分布様式の判定は、フリーソフト「R」の一様乱数を用いて、観察領域と同一範囲内に解析粒子数と同数の点座標をランダムに発生させ、ランダム分布の範囲を求めることで行った。具体的には、一様乱数を1000回試行して、それぞれL関数を算出し、ランダム分布の上下限(範囲)を求めた。観察サンプルのL関数が、乱数から求めたランダム分布の上下限の範囲に入れば「ランダム分布」、上限を超えれば「集中分布」、下限を下回れば「規則分布」(あるいは「一定間隔型分布」)とした。L関数の一例を図1に示す。図1のグラフ中のグレーの部分が一様乱数を1000回試行して求めたランダム分布の範囲である。横軸が距離(半径d:μm)、縦軸がL関数(L(d))を示す。また、2値化画像の周縁部において、ある粒子の平面重心座標値(X座標、Y座標)から半径d内に存在する他の粒子数が、2値化画像の中央部に比べて減る傾向があることから、L関数の算出にはエッジ補正としてRipleyのエッジ補正法を用いた。 Each distribution pattern is determined by using the random number of the free software “R” to generate the same number of point coordinates as the number of analysis particles in the same range as the observation region, and obtain the range of the random distribution. went. Specifically, uniform random numbers were tried 1000 times, L functions were calculated for each, and upper and lower limits (ranges) of the random distribution were obtained. If the L function of the observation sample falls within the upper and lower limits of the random distribution obtained from random numbers, it will be "random distribution", if it exceeds the upper limit, it will be "concentrated distribution", and if it falls below the lower limit, it will be "regular distribution" ]). An example of the L function is shown in FIG. The gray portion in the graph of FIG. 1 is a range of random distribution obtained by trying uniform random numbers 1000 times. The horizontal axis represents the distance (radius d: μm), and the vertical axis represents the L function (L (d)). Further, in the peripheral portion of the binarized image, the number of other particles existing within the radius d from the plane center-of-gravity coordinate value (X coordinate, Y coordinate) of a certain particle tends to decrease compared to the central portion of the binarized image. Therefore, Ripley's edge correction method was used as the edge correction for the calculation of the L function.

<GearyのC統計量による分散性評価>
さらに、上記のRipleyのL関数算出結果において、分散性が「良好」の結果が得られたサンプルについて、GearyのC統計量を求めた。GearyのC統計量は、数値解析用フリーソフト「R」のパッケージspdepを用いて、カーボンブラック粒子の平面重心座標値(X座標、Y座標)と個数平均粒子径(円相当径)から求めた。カーボンブラック粒子の平面重心座標値において、任意のカーボンブラック粒子から見て距離から見て近接している順に選択された4粒子を隣接粒子として定義して、C統計量を算出した。また、各粒子の位置座標はそのままで、粒子径を一様分布の乱数(一様乱数)を用いてランダムに与えた場合、C統計量の範囲が0.85〜1.15となったので、実際の粒子から算出したC統計量に応じて表2のようにランク分けした。
<Dispersibility evaluation by Geary's C statistic>
Further, in the above Ripley's L function calculation result, the Geary C statistic was obtained for a sample in which the result of “good” dispersibility was obtained. Geary's C statistic was calculated from the plane center of gravity coordinates (X coordinate, Y coordinate) and number average particle diameter (equivalent circle diameter) of carbon black particles using the package spdep of the numerical analysis free software “R”. . In the plane barycentric coordinate value of the carbon black particles, four particles selected in the order of approaching from a distance as viewed from any carbon black particle were defined as adjacent particles, and the C statistic was calculated. In addition, when the particle coordinates are randomly given using a uniformly distributed random number (uniform random number) without changing the position coordinates of each particle, the range of the C statistic becomes 0.85 to 1.15. The results were ranked as shown in Table 2 according to the C statistic calculated from the actual particles.

本発明の中間転写ベルトの評価方法の評価フローの例を図2に示す。
図2に示す例では、まず絶縁破壊強さを測定し、該絶縁破壊強さが7KV/mm(第1の閾値)以上であるかを判定し(ステップS11)、7KV/mm未満の場合は、不良と評価する(ステップS12)。7KV/mm以上の場合は、ステップS21へ進む。
ステップS21では、個数平均粒子径を測定し、該個数平均粒子径が115nm(第2の閾値)以下であるかを判定する。個数平均粒子径が115nm未満の場合は、不良と評価する(ステップS22)。個数平均粒子径が115nm以上の場合は、ステップS31へ進む。
An example of an evaluation flow of the evaluation method for the intermediate transfer belt of the present invention is shown in FIG.
In the example shown in FIG. 2, first, the dielectric breakdown strength is measured to determine whether the dielectric breakdown strength is 7 KV / mm (first threshold) or more (step S11). And evaluated as defective (step S12). In the case of 7 KV / mm or more, the process proceeds to step S21.
In step S21, the number average particle diameter is measured to determine whether the number average particle diameter is 115 nm (second threshold) or less. If the number average particle diameter is less than 115 nm, it is evaluated as defective (step S22). When the number average particle diameter is 115 nm or more, the process proceeds to step S31.

ステップS31では、中間転写ベルトサンプルから求めたL関数が、一様乱数を用いて解析粒子数と同数の点座標をランダムに発生させた場合のL関数の上下限内(範囲内)に入るかに基づいて分布様式を判定する。一様乱数を用いた場合のL関数の上限を超えた場合は、集中分布(すなわち、「不良」)と判定する(ステップS32)。一様乱数を用いた場合のL関数の下限以上かつ上限以下の場合は、「ランダム分布」と評価する。一様乱数を用いた場合のL関数の下限を下回った場合は「規則分布」と評価する。「ランダム分布」又は「規則分布」の場合は、ステップS41へ進む。   In step S31, whether the L function obtained from the intermediate transfer belt sample falls within the upper and lower limits (within range) of the L function when the same number of point coordinates as the number of analyzed particles is randomly generated using a uniform random number. The distribution pattern is determined based on the above. If the upper limit of the L function when the uniform random number is used is exceeded, it is determined as a concentrated distribution (ie, “defective”) (step S32). When a uniform random number is used and the L function is lower than the lower limit and lower than the upper limit, it is evaluated as “random distribution”. When the value is below the lower limit of the L function when uniform random numbers are used, it is evaluated as “regular distribution”. In the case of “random distribution” or “regular distribution”, the process proceeds to step S41.

ステップS41では、中間転写ベルトサンプルから求めたC統計量が、ベルトの切断面から観察されるカーボンブラック粒子の平面重心座標値はそのままで一様乱数を用いて粒子径をランダムに与えた場合のC統計量の範囲内に入るかを判定する。一様乱数を用いた場合のC統計量の上限を超えた場合は、「正の自己相関あり」と評価する。一様乱数を用いた場合のC統計量の下限を下回った場合は、「負の自己相関あり」と評価する。「正の自己相関あり」又は「負の自己相関あり」の場合は、「良好」と判定する(ステップS42)。一様乱数を用いた場合のC統計量の下限以上かつ上限以下の場合は、「ランダム(自己相関なし)」と評価し、「最良」と判定する(ステップS51)。
実施例の結果を表3に示す。
In step S41, the C statistic obtained from the intermediate transfer belt sample is obtained when the particle diameter is randomly given using a uniform random number with the plane barycentric coordinate value of the carbon black particle observed from the cut surface of the belt as it is. Determine whether it falls within the range of the C statistic. If the upper limit of the C statistic when using a uniform random number is exceeded, it is evaluated as “with positive autocorrelation”. When the value is below the lower limit of the C statistic when using uniform random numbers, it is evaluated as “with negative autocorrelation”. In the case of “with positive autocorrelation” or “with negative autocorrelation”, it is determined as “good” (step S42). When the C statistic is equal to or higher than the lower limit and lower than the upper limit when using uniform random numbers, it is evaluated as “random (no autocorrelation)” and determined as “best” (step S51).
The results of the examples are shown in Table 3.

表中の「1μm以上粒子」は、個数平均粒子径1μm以上の粒子の割合(%)を示す。 The “particles of 1 μm or more” in the table indicates the ratio (%) of particles having a number average particle diameter of 1 μm or more.

<実施例1−2、1−3、1−5、1−6、1−8、1−9、1−11、1−12>
絶縁破壊電圧が7KV/mm以上であり、個数平均粒子径が115nm以下であり、L関数がランダム分布であり、かつC統計量がランダムであるという条件を全て満たす中間転写ベルトは、画像耐久試験による体積抵抗率の低下が半桁未満であった。
<実施例1−1、1−4、1−7、1−10>
絶縁破壊電圧が7KV/mm以上であり、個数平均粒子径が115nm以下であり、かつL関数がランダム分布であるという条件は満たすが、C統計量がランダムであるという条件は満たさない中間転写ベルトは、体積抵抗率の低下が半桁以上1桁未満であった。
<Examples 1-2, 1-3, 1-5, 1-6, 1-8, 1-9, 1-11, 1-12>
An intermediate transfer belt satisfying all the conditions that the dielectric breakdown voltage is 7 KV / mm or more, the number average particle diameter is 115 nm or less, the L function is a random distribution, and the C statistic is random is an image durability test. The decrease in volume resistivity due to was less than half an order of magnitude.
<Examples 1-1, 1-4, 1-7, 1-10>
An intermediate transfer belt that satisfies the conditions that the dielectric breakdown voltage is 7 KV / mm or more, the number average particle diameter is 115 nm or less, and the L function is a random distribution, but the condition that the C statistic is random is not satisfied. The volume resistivity decreased by more than half digit and less than one digit.

(比較例1)
<カーボンブラック含有PEEK樹脂ペレットの作製>
実施例1と同様の方法で、ポリエーテルエーテルケトン樹脂ペレット(ビクトレックス製、「VICTREX PEEK 450G」)を凍結機械粉砕して、平均粒度200μmのPEEK樹脂粉末1を作製した。さらに同様にポリエーテルエーテルケトン樹脂ペレット(ビクトレックス製、「VICTREX PEEK 151G」)を凍結機械粉砕して、平均粒度200μmのPEEK樹脂粉末2を作製した。
実施例1と同様の方法でPEEK樹脂粉末1とPEEK樹脂粉末2を重量比で60対40で混合し、円筒回転型ブレンダーにより5分間混合して、PEEK樹脂粉末3を作製した。
(Comparative Example 1)
<Preparation of carbon black-containing PEEK resin pellets>
In the same manner as in Example 1, polyether ether ketone resin pellets (Victrex PEEK 450G, manufactured by Victrex) were freeze-machined to produce PEEK resin powder 1 having an average particle size of 200 μm. Similarly, polyether ether ketone resin pellets (Victrex PEEK 151G, manufactured by Victrex) were freeze-machined to produce PEEK resin powder 2 having an average particle size of 200 μm.
In the same manner as in Example 1, PEEK resin powder 1 and PEEK resin powder 2 were mixed at a weight ratio of 60:40, and mixed for 5 minutes by a cylindrical rotary blender to prepare PEEK resin powder 3.

次に、実施例1と同様の方法で、ホッパーと定量供給器を備えた二軸押出機を用い、定量供給器からホッパー中にPEEK樹脂粉末3とカーボンブラックが表4に記載の材料混合比になるように供給し、溶融混練した。このとき押出機のシリンダー設定温度は330℃〜370℃とした。溶融混練物はストランドダイから紐状に押出し、冷却水槽で冷却した後、ペレタイザーで切断して外径約2mm、長さ約3mmのカーボンブラック含有PEEK樹脂ペレットを作製した。比較例1では二軸押出機による溶融混練は1回とした。また、シームレスベルトの作製および評価は実施例1と同様の方法で行った。
比較例の結果を表4に示す。
Next, in the same manner as in Example 1, using a twin screw extruder equipped with a hopper and a quantitative feeder, the PEEK resin powder 3 and the carbon black were mixed in the hopper from the quantitative feeder into the material mixing ratio described in Table 4. The mixture was melted and kneaded. At this time, the cylinder set temperature of the extruder was set to 330 ° C to 370 ° C. The melt-kneaded product was extruded from a strand die into a string shape, cooled in a cooling water tank, and then cut with a pelletizer to prepare carbon black-containing PEEK resin pellets having an outer diameter of about 2 mm and a length of about 3 mm. In Comparative Example 1, the melt kneading by the twin screw extruder was performed once. The seamless belt was produced and evaluated in the same manner as in Example 1.
Table 4 shows the results of the comparative example.

表中の「1μm以上粒子」は、個数平均粒子径1μm以上の粒子の割合(%)を示す。 The “particles of 1 μm or more” in the table indicates the ratio (%) of particles having a number average particle diameter of 1 μm or more.

<比較例1−1、1−2、1−4>
L関数がランダム分布であるという条件を満たさない中間転写ベルトは、画像耐久試験による体積抵抗率の低下が1桁以上であった。
<比較例1−3>
絶縁破壊電圧が7KV/mm以上であり、L関数がランダム分布であり、かつC統計量がランダムであるという条件は満たすが、個数平均粒子径が115nm以下である、という条件は満たさない中間転写ベルトも、体積抵抗率の低下が1桁以上であった。
<Comparative Examples 1-1, 1-2, 1-4>
In the intermediate transfer belt that does not satisfy the condition that the L function has a random distribution, the decrease in volume resistivity by an image durability test is one digit or more.
<Comparative Example 1-3>
Intermediate transfer not satisfying the condition that the dielectric breakdown voltage is 7 KV / mm or more, the L function is a random distribution, and the C statistic is random, but the number average particle diameter is 115 nm or less The belt also had a volume resistivity decrease of more than an order of magnitude.

Claims (2)

ポリエーテルエーテルケトンとポリエーテルエーテルケトンに分散されてなるカーボンブラックとを含む電子写真用のベルトの電気抵抗の経時安定性の評価方法であって、
該ベルトの切断面から観察されるカーボンブラック粒子の個数平均粒子径を求め、
カーボンブラック粒子の平面重心座標値を中心として半径1.2μmの円形の範囲におけるRipleyのL関数を求め、該L関数の分布様式を判定する工程を含むことを特徴とする電子写真用のベルトの電気抵抗の経時安定性の評価方法。
A method for evaluating the temporal stability of the electrical resistance of an electrophotographic belt comprising polyether ether ketone and carbon black dispersed in polyether ether ketone,
Obtain the number average particle size of the carbon black particles observed from the cut surface of the belt,
An electrophotographic belt comprising: a step of obtaining a Ripley L function in a circular range having a radius of 1.2 μm centered on a plane barycentric coordinate value of carbon black particles and determining a distribution mode of the L function. Evaluation method of electrical resistance over time.
絶縁破壊強さを測定し、該絶縁破壊強さが第1の閾値以上であるかを判定する工程と、
個数平均粒子径を測定し、該個数平均粒子径が第2の閾値以下であるかを判定する工程と、をさらに含み、
前記L関数の分布様式を判定する工程において、前記L関数が、一様乱数を用いて解析粒子数と同数の点座標をランダムに発生させた場合のL関数の上限以下であるかを判定し、
GearyのC統計量を求め、該C統計量が、前記ベルトの切断面から観察されるカーボンブラック粒子の平面重心座標値はそのままで一様乱数を用いて粒子径をランダムに与えた場合のC統計量の範囲内に入るかを判定する工程を、さらに含む
ことを特徴とする請求項1に記載の電子写真用のベルトの電気抵抗の経時安定性の評価方法。
Measuring breakdown strength and determining whether the breakdown strength is greater than or equal to a first threshold;
Measuring the number average particle size and determining whether the number average particle size is less than or equal to a second threshold,
In the step of determining the distribution pattern of the L function, it is determined whether the L function is equal to or lower than the upper limit of the L function when the same number of point coordinates as the number of analyzed particles are randomly generated using a uniform random number. ,
Geary's C statistic is obtained, and this C statistic is obtained when the particle diameter is randomly given using a uniform random number while maintaining the plane barycentric coordinate value of the carbon black particle observed from the cut surface of the belt. 2. The method for evaluating stability over time of electric resistance of an electrophotographic belt according to claim 1, further comprising a step of determining whether the value falls within the range of the statistic.
JP2011040974A 2011-02-25 2011-02-25 Method for evaluating temporal stability of electric resistance of electrophotographic belt Withdrawn JP2012177811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040974A JP2012177811A (en) 2011-02-25 2011-02-25 Method for evaluating temporal stability of electric resistance of electrophotographic belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040974A JP2012177811A (en) 2011-02-25 2011-02-25 Method for evaluating temporal stability of electric resistance of electrophotographic belt

Publications (1)

Publication Number Publication Date
JP2012177811A true JP2012177811A (en) 2012-09-13

Family

ID=46979689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040974A Withdrawn JP2012177811A (en) 2011-02-25 2011-02-25 Method for evaluating temporal stability of electric resistance of electrophotographic belt

Country Status (1)

Country Link
JP (1) JP2012177811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057525A (en) * 2014-09-11 2016-04-21 富士ゼロックス株式会社 Semiconductive film, intermediate transfer body, sheet conveying belt, and image forming apparatus
JP2021092597A (en) * 2019-12-06 2021-06-17 富士フイルムビジネスイノベーション株式会社 Transfer unit, transfer device, and image forming apparatus
JP2021092599A (en) * 2019-12-06 2021-06-17 富士フイルムビジネスイノベーション株式会社 Transfer device and image forming apparatus
JP2021092598A (en) * 2019-12-06 2021-06-17 富士フイルムビジネスイノベーション株式会社 Endless belt, method for manufacturing endless belt, transfer device, and image forming apparatus
US11841651B2 (en) 2022-01-31 2023-12-12 Fujifilm Business Innovation Corp. Endless belt, belt unit, and image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057525A (en) * 2014-09-11 2016-04-21 富士ゼロックス株式会社 Semiconductive film, intermediate transfer body, sheet conveying belt, and image forming apparatus
JP2021092597A (en) * 2019-12-06 2021-06-17 富士フイルムビジネスイノベーション株式会社 Transfer unit, transfer device, and image forming apparatus
JP2021092599A (en) * 2019-12-06 2021-06-17 富士フイルムビジネスイノベーション株式会社 Transfer device and image forming apparatus
JP2021092598A (en) * 2019-12-06 2021-06-17 富士フイルムビジネスイノベーション株式会社 Endless belt, method for manufacturing endless belt, transfer device, and image forming apparatus
JP7367501B2 (en) 2019-12-06 2023-10-24 富士フイルムビジネスイノベーション株式会社 Transfer device and image forming device
JP7367500B2 (en) 2019-12-06 2023-10-24 富士フイルムビジネスイノベーション株式会社 Transfer unit, transfer device, and image forming device
JP7447451B2 (en) 2019-12-06 2024-03-12 富士フイルムビジネスイノベーション株式会社 Endless belt, endless belt manufacturing method, transfer device, and image forming device
US11841651B2 (en) 2022-01-31 2023-12-12 Fujifilm Business Innovation Corp. Endless belt, belt unit, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2012177811A (en) Method for evaluating temporal stability of electric resistance of electrophotographic belt
CN107430368A (en) Conductive member for electrophotography, handle box and electronic photographing device
US20210048759A1 (en) Electro-conductive member, method for producing same, process cartridge and electrophotographic image forming apparatus
CN105579914A (en) Electro-conductive member for electrophotography, process cartridge, and electrophotographic device
JP2011013495A (en) Electroconductive roll, charging device, process cartridge, and image forming apparatus
US20220026825A1 (en) Electroconductive member, process cartridge, and electrophotographic image forming apparatus
JP6305224B2 (en) Conductive belt and electrophotographic apparatus
JP2008122446A (en) Image forming apparatus
US9891558B2 (en) Semiconductive resin composition, member for electrophotography and image forming apparatus
JP6724554B2 (en) Intermediate transfer member and image forming apparatus
JP2022076465A (en) Electrifying roller, process cartridge, and electrophotographic image forming apparatus
JP5736888B2 (en) Roll member, charging device, process cartridge, and image forming apparatus
JP2022049675A (en) Intermediate transfer body and image forming apparatus
US9095999B2 (en) Charging member, charging unit, process cartridge, image forming apparatus, and method of manufacturing charging member
EP3043215B1 (en) Semiconductive resin composition, member for electrophotography and image forming apparatus
JP2004170713A (en) Rubber roller for electrophotography device and manufacturing method thereof
JP2023172549A (en) Resin member and image forming apparatus
US20220206426A1 (en) Electrophotographic electro-conductive member, electrophotographic image forming apparatus, and process cartridge
JP2017058642A (en) Charging member, charging device, image forming apparatus, and process cartridge
JP2011053260A (en) Conductive rubber roll, process cartridge and image forming apparatus
JP7046598B2 (en) Manufacturing method of charged member
KR101498573B1 (en) Charging member, process unit cartridge, and image forming apparatus
JP7225005B2 (en) Conductive member and manufacturing method thereof, process cartridge and electrophotographic image forming apparatus
JP2012133220A (en) Semiconductive film and electrophotographic image forming apparatus
JP2018004719A (en) Conductive resin belt, conductive resin belt manufacturing method, and image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513