JP2012176529A - Physical properties simulation method after vulcanization of laminated rubber - Google Patents

Physical properties simulation method after vulcanization of laminated rubber Download PDF

Info

Publication number
JP2012176529A
JP2012176529A JP2011040347A JP2011040347A JP2012176529A JP 2012176529 A JP2012176529 A JP 2012176529A JP 2011040347 A JP2011040347 A JP 2011040347A JP 2011040347 A JP2011040347 A JP 2011040347A JP 2012176529 A JP2012176529 A JP 2012176529A
Authority
JP
Japan
Prior art keywords
vulcanization
rubber
physical property
rubber member
laminated rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011040347A
Other languages
Japanese (ja)
Other versions
JP5722077B2 (en
Inventor
Takahiro Mori
隆浩 森
Nobuo Murota
伸夫 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011040347A priority Critical patent/JP5722077B2/en
Publication of JP2012176529A publication Critical patent/JP2012176529A/en
Application granted granted Critical
Publication of JP5722077B2 publication Critical patent/JP5722077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a simulation method that can forecast physical properties of the laminated rubber after the vulcanization at the large deformation.SOLUTION: There is provided a physical property parameter function in which the physical property parameters after the vulcanization of the rubber member are approximated and the temperature and the vulcanization degree are made parameters (106) by making a test body which holds the rubber member with two iron plates (100), and obtaining a vulcanization degree of the test body obtained by vulcanizing in various temperature histories and a shear elastic modulus after the vulcanization (102). A temperature of each element and the time change with the vulcanization degree are forecasted by giving the vulcanization condition to a three dimension FEM model and analyzing the heat transfer (110 and 112). The physical property parameter that is calculated by giving the predicted values of the temperature and the vulcanization degree of the element of the rubber member obtained to each element are given to each element that composes the rubber member of three dimension FEM model, (114), and the structure analysis is performed by giving a boundary condition and the physical property of each element of the rubber member is presumed (116).

Description

この発明は、有限要素法を用いて、ゴム部材と鉄板とを積層して成る積層ゴムの加硫後の物性をシミュレーションする方法に関する。   The present invention relates to a method for simulating physical properties after vulcanization of a laminated rubber formed by laminating a rubber member and an iron plate using a finite element method.

近年、制震・免震対策のため、建造物や橋桁などの上部構造物とこれを支承する基礎杭や橋脚などの下部構造物とを接合する方法として、従来の剛接合に代えて、ピン接合、転がり支承、すべり支承、あるいは、免震用積層ゴムなどを用いた接合方法が採用されてきている。上記免震用積層ゴムは、大型の工業用ゴム製品でありながら、剪断剛性や減衰定数等の性能について、防舷材や可撓継ぎなどのような他の大型ゴム製品に比べて相対的に高い精度が要求されている。   In recent years, as a method of joining superstructures such as buildings and bridge girders and substructures such as foundation piles and bridge piers to support them, instead of conventional rigid joints, in order to control earthquake and seismic isolation, Joining methods using joining, rolling bearings, sliding bearings or laminated rubber for seismic isolation have been adopted. Although the above-mentioned seismic isolation laminated rubber is a large industrial rubber product, its performance such as shear rigidity and damping constant is relatively higher than other large rubber products such as fenders and flexible joints. High accuracy is required.

また、上記免震用に用いられる積層ゴムのような、大型で厚肉なゴム製品を製造する際の技術的課題としては、加硫の最適化が挙げられる。すなわち、上記のような、金型を用いた加硫処理においては、熱源が外周に限られることから、大型ゴム製品では内部の加硫状態は不均一になりやすく、これが製品物性にも大きく影響してしまう。   Moreover, optimization of vulcanization is mentioned as a technical subject at the time of manufacturing a large-sized and thick rubber product like the laminated rubber used for the said seismic isolation. In other words, in the vulcanization process using a mold as described above, the heat source is limited to the outer periphery, so the internal vulcanization state tends to be uneven in large rubber products, which greatly affects the physical properties of the product. Resulting in.

そこで、弾性率や減衰係数などの、積層ゴムの性能に関係する加硫後のゴム材料の物性を予測して、適切な加硫条件を特定するためのシミュレーション方法を知られている(特許文献1)。   Therefore, a simulation method for predicting physical properties of a rubber material after vulcanization related to the performance of the laminated rubber, such as an elastic modulus and a damping coefficient, and identifying appropriate vulcanization conditions is known (Patent Document). 1).

特開2007−203591号公報JP 2007-203591 A

しかしながら、特許文献1に記載の方法では、単純変形とみなせる程度の変形領域での物性しか予測することが出来ない、という問題がある。   However, the method described in Patent Document 1 has a problem that only physical properties in a deformation region that can be regarded as simple deformation can be predicted.

本発明は、上記の問題点を解決するためになされたもので、大変形時の加硫後の積層ゴムの物性を予測することができる積層ゴムの加硫後物性シミュレーション方法を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a post-vulcanization physical property simulation method for a laminated rubber capable of predicting the physical properties of the laminated rubber after vulcanization during large deformation. Objective.

上記の目的を達成するために本発明に係る積層ゴムの加硫後物性シミュレーション方法は、複数のゴム部材と鉄板とを積層して成る積層ゴムの加硫後の物性値をシミュレーションする方法であって、前記鉄板を構成する鋼材で前記積層ゴムを構成するゴム部材を挟持した試験体を作製し、これを種々の温度履歴で加硫して得られた前記試験体の加硫度と加硫後の物性値とを求める第1のステップと、前記求められた試験体のデータを用いて、前記ゴム部材の加硫後の物性パラメータを近似した、温度と加硫度とをパラメータとする物性パラメータ関数を作成する第2のステップと、前記積層ゴムを有限個の要素に分割した第1の数値解析モデルに加硫条件を与えて伝熱解析して、前記第1の数値解析モデルの各ゴム部材を構成する各要素の温度と加硫度との時間変化をそれぞれ予測する第3のステップと、前記第3のステップで各要素について求められたゴム部材の要素の温度と加硫度の予測値をパラメータとして、前記第2のステップで作成された物性パラメータ関数に与えて算出される物性パラメータを、前記積層ゴムを有限個の要素に分割した第2の数値解析モデルの前記ゴム部材を構成する各要素に与えると共に、前記第2の数値解析モデルに境界条件を与えて構造解析を行って、前記ゴム部材の各要素の物性値を推定する第4のステップと、を備えたことを特徴としている。   In order to achieve the above object, the post-vulcanization physical property simulation method for laminated rubber according to the present invention is a method for simulating physical property values after vulcanization of a laminated rubber formed by laminating a plurality of rubber members and iron plates. The test body obtained by sandwiching the rubber member constituting the laminated rubber with the steel material constituting the iron plate and vulcanizing it with various temperature histories was obtained. The first step of determining the physical property value later, and the physical property parameters obtained by approximating the physical property parameters after vulcanization of the rubber member using the data of the obtained specimen, and using the temperature and the degree of vulcanization as parameters A second step of creating a parameter function; and a heat transfer analysis by applying a vulcanization condition to a first numerical analysis model obtained by dividing the laminated rubber into a finite number of elements, and each of the first numerical analysis models Temperature of each element constituting the rubber member And a second step of predicting the time change of the degree of vulcanization and the degree of vulcanization, and the predicted value of the temperature of the rubber member element and the degree of vulcanization obtained for each element in the third step as parameters. The physical property parameter calculated by giving to the physical property parameter function created in the step is given to each element constituting the rubber member of the second numerical analysis model obtained by dividing the laminated rubber into a finite number of elements, and And a fourth step of estimating a physical property value of each element of the rubber member by performing a structural analysis by giving boundary conditions to the second numerical analysis model.

本発明に係る積層ゴムの加硫物性シミュレーション方法は、前記第4のステップで推定された前記ゴム部材の各要素の物性値に基づいて前記積層ゴムの製品性能値を算出する第5のステップと、前記第5のステップで求められた製品性能値と予め設定された目標性能値とを比較して、前記目標性能値と前記算出された製品性能値との差が所定の範囲内にあるかどうかを判定する第6のステップとを更に備え、前記差が所定の範囲を超えた場合には、前記第3のステップに戻って加硫条件を変更すると共に、前記第3のステップから前記第6のステップまでを繰り返して、前記目標性能値を与える加硫条件を特定するようにすることができる。   The method for simulating vulcanized physical properties of a laminated rubber according to the present invention includes a fifth step of calculating a product performance value of the laminated rubber based on physical properties of each element of the rubber member estimated in the fourth step. Whether the difference between the target performance value and the calculated product performance value is within a predetermined range by comparing the product performance value obtained in the fifth step with a preset target performance value. A sixth step of determining whether or not, and when the difference exceeds a predetermined range, the process returns to the third step to change the vulcanization condition, and from the third step to the third step. Steps up to step 6 can be repeated to specify the vulcanization condition that gives the target performance value.

本発明に係る物性値をゴム材料の剪断弾性率とすることができる。   The physical property value according to the present invention can be the shear modulus of the rubber material.

本発明に係る第2の数値解析モデルを、第1の数値解析モデルと共通のものとすることができる。   The second numerical analysis model according to the present invention can be common to the first numerical analysis model.

以上説明したように、本発明の積層ゴムの加硫後物性シミュレーション方法によれば、第1の数値解析モデルに加硫条件を与えて伝熱解析して、加硫後のゴム部材の各要素の温度と加硫度とを予測した後に、予測された温度と加硫度とを用いて算出される物性パラメータを第2の数値解析モデルの各要素に与えると共に第2の数値解析モデルに境界条件を与えて構造解析を行って、ゴム部材の各要素の物性値を推定することにより、大変形時の加硫後の積層ゴムの物性を予測することができる、という効果が得られる。   As described above, according to the post-vulcanization physical property simulation method for laminated rubber of the present invention, the first numerical analysis model is subjected to heat transfer analysis by giving vulcanization conditions, and each element of the rubber member after vulcanization is analyzed. After predicting the temperature and the degree of vulcanization, physical property parameters calculated using the predicted temperature and the degree of vulcanization are given to each element of the second numerical analysis model, and the second numerical analysis model is bounded. By performing structural analysis under conditions and estimating the physical property value of each element of the rubber member, it is possible to predict the physical property of the laminated rubber after vulcanization at the time of large deformation.

本発明の実施の形態に係るシミュレーション装置を示した概略図である。It is the schematic which showed the simulation apparatus which concerns on embodiment of this invention. 免震用積層ゴムの概略構成を示す図である。It is a figure which shows schematic structure of the laminated rubber for seismic isolation. 免震用積層ゴムの加硫処理を説明するための図である。It is a figure for explaining vulcanization processing of laminated rubber for seismic isolation. 本発明の実施の形態に係る免震用積層ゴムの加硫後物性シミュレーション方法を示すフローチャートである。It is a flowchart which shows the physical property simulation method after vulcanization | cure of the laminated rubber for seismic isolation which concerns on embodiment of this invention. 本発明の実施の形態に係る加硫後特性測定用の試験体の模式図である。It is a schematic diagram of the test body for the post-vulcanization characteristic measurement which concerns on embodiment of this invention. 加硫物性関数の一例を示す図である。It is a figure which shows an example of a vulcanization physical property function. モデルに単純せん断を与えた様子を示す図である。It is a figure which shows a mode that the simple shear was given to the model. せん断ひずみとせん断応力との関係を示すグラフである。It is a graph which shows the relationship between a shear strain and a shear stress. 3次元FEMモデルを示す図である。It is a figure which shows a three-dimensional FEM model. 免震用積層ゴム内の温度分布の計算例を示す図である。It is a figure which shows the example of calculation of the temperature distribution in the laminated rubber for seismic isolation. (A)免震用積層ゴムの各要素の温度の時系列変化の計算例を示す図、及び(B)免震用積層ゴムの各要素の剪断弾性率の時系列変化の計算例を示す図である。(A) The figure which shows the example of calculation of the time series change of each element of the laminated rubber for seismic isolation, The figure which shows the example of calculation of the time series change of the shear elastic modulus of each element of the (B) laminated rubber for seismic isolation It is. 免震用積層ゴムの各要素を示す図である。It is a figure which shows each element of the laminated rubber for seismic isolation. 免震用積層ゴム内の剪断弾性率分布の計算例を示す図である。It is a figure which shows the example of calculation of the shear elastic modulus distribution in the laminated rubber for seismic isolation. 剪断変形400%時の免震用積層ゴム内のせん断応力の分布を示すコンター図である。It is a contour figure which shows distribution of the shear stress in the laminated rubber for seismic isolation at the time of 400% shear deformation.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の実施の形態に係る積層ゴムの加硫後物性シミュレーションを実行するシミュレーション装置50は、積層ゴムの加硫後物性シミュレーションを実行するためのシミュレーションプログラムにより後述する処理を実行するコンピュータ演算処理システムにより構成されている。なお、この様なコンピュータシステムは、例えば、CPU、ROM、RAM、ハードデイスク、入出力端末、その他所要のユニット等を備えている。上記のシミュレーションプログラムは、予めハードデイスク等に記憶されている。   As shown in FIG. 1, a simulation device 50 that executes a post-vulcanization physical property simulation of a laminated rubber according to an embodiment of the present invention is a process described later by a simulation program for executing the post-vulcanization physical property simulation of the laminated rubber. It is comprised by the computer arithmetic processing system which performs. Such a computer system includes, for example, a CPU, a ROM, a RAM, a hard disk, an input / output terminal, and other necessary units. The simulation program is stored in advance on a hard disk or the like.

図2は、本実施の形態に係る積層ゴムの加硫後物性シミュレーション方法により解析する免震用積層ゴム10の概略構成を示す図である。この免震用積層ゴム10は複数のゴム部材11と鉄板12とを交互に積層したもので、図3に示すように、未加硫のゴム部材11と接着処理済の鉄板12とを積層したものを、円環状のモールド21と上、下のモールド22,23とから成る加硫金型20内に投入し、この加硫金型20の上、下面及び側面から加熱して上記ゴム部材11のゴム分子と硫黄との間に架橋反応を起こさせるとともに、上記ゴム部材11と上記鉄板12とを接着する加硫処理を行って得られる。この加硫処理により、剪断弾性率などの上記免震用積層ゴム10を構成するゴム部材11に所望の物性値を与えることができるとともに、上記ゴム部材11と鉄板12との接着強度を確保することができる。なお、実際の上記免震用積層ゴム10では、更に、全体をEPDM系ゴムから成る外皮ゴムで覆った構成であるが、説明を簡単にするため、上記外皮ゴムについては省略した。   FIG. 2 is a diagram showing a schematic configuration of the seismic isolation laminated rubber 10 analyzed by the post-vulcanization physical property simulation method of the laminated rubber according to the present embodiment. The seismic isolation laminated rubber 10 is obtained by alternately laminating a plurality of rubber members 11 and iron plates 12, and as shown in FIG. 3, the unvulcanized rubber member 11 and the iron plate 12 having been subjected to adhesion treatment are laminated. The product is put into a vulcanizing mold 20 comprising an annular mold 21 and upper and lower molds 22 and 23, and heated from above, underside and side surfaces of the vulcanizing mold 20, and the rubber member 11 is heated. It is obtained by causing a crosslinking reaction between the rubber molecules and sulfur and performing a vulcanization treatment for bonding the rubber member 11 and the iron plate 12 together. By this vulcanization treatment, desired physical property values can be given to the rubber member 11 constituting the seismic isolation laminated rubber 10 such as shear modulus, and the adhesive strength between the rubber member 11 and the iron plate 12 is ensured. be able to. The actual seismic isolation laminated rubber 10 has a configuration in which the whole is further covered with an outer rubber made of EPDM rubber, but the outer rubber is omitted for the sake of simplicity.

次に、上記免震用積層ゴム10の加硫後の物性をシミュレーションする方法について、図4のフローチャートに基づき説明する。   Next, a method of simulating the physical properties after vulcanization of the seismic isolation laminated rubber 10 will be described based on the flowchart of FIG.

まず、設計者が、図5に示すような、上記鉄板12と同一の鋼材から成る2枚の鉄板31の間に、上記ゴム部材11と同一成分から成るゴム部材32を挟持した試験体30を多数作製し(ステップ100)、設計者が、これらの試験体30を様々な加硫条件で加硫処理し、上記ゴム部材の加硫度を求めるととともに、上記試験体30の剪断試験を行って、加硫後の剪断弾性率を求める(ステップ102)。   First, a test body 30 in which a designer holds a rubber member 32 made of the same component as the rubber member 11 between two iron plates 31 made of the same steel material as the iron plate 12 as shown in FIG. Many are prepared (step 100), and the designer vulcanizes these specimens 30 under various vulcanization conditions to obtain the degree of vulcanization of the rubber member, and performs a shear test on the specimen 30. Thus, the shear modulus after vulcanization is obtained (step 102).

そして、シミュレーション装置50が、上記の加硫条件と求められた加硫度のデータと剪断弾性率の測定データとから、上記ゴム部材32の加硫後の剪断弾性率を近似した加硫関数Geq(C,T)を作成する(ステップ104)。この加硫関数Geq(C,T)は、以下の(1)式のように温度Tと加硫度Cとをパラメータとする2変数の関数で表わされ、図6の模式図に示すように3次元座標上では曲面で表わされる。 The simulation device 50 then uses a vulcanization function G that approximates the vulcanization shear modulus of the rubber member 32 from the vulcanization conditions, the obtained vulcanization degree data, and the measured shear modulus data. eq (C d , T) is created (step 104). This vulcanization function G eq (C d , T) is expressed by a function of two variables having the temperature T and the vulcanization degree C d as parameters as shown in the following equation (1), and is a schematic diagram of FIG. As shown in FIG. 3, the surface is represented by a curved surface on three-dimensional coordinates.

なお、本例では、加硫関数Geq(C,T)として、剪断弾性率Gそのものではなく、s所定の加硫条件で加硫したときの剪断弾性率G0を1として規格化したもの(G/G0)を用いた。また、同図の色分けした領域の境界が剪断弾性率の等高線を表わしている。 In this example, the vulcanization function G eq (C d , T) is normalized not to the shear modulus G itself but to the shear modulus G 0 when vulcanized under predetermined vulcanization conditions as 1. (G / G 0 ) was used. In addition, the boundary of the color-coded region in the figure represents the contour line of the shear modulus.

次に、シミュレーション装置50が、上記の加硫条件と求められた加硫度のデータと剪断弾性率の測定データとから、単純剪断γを与えたときの上記ゴム部材32の加硫後の剪断弾性率G(γ)を表わす曲線の式における物性パラメータを近似した物性パラメータ関数a(C,T)、b(C,T)を作成する(ステップ106)。 Next, the simulation apparatus 50 performs shearing after vulcanization of the rubber member 32 when a simple shear γ is given from the above vulcanization conditions, the obtained degree of vulcanization data and the measured shear modulus data. Physical property parameter functions a (C d , T) and b (C d , T) approximating the physical property parameters in the equation of the curve representing the elastic modulus G (γ) are created (step 106).

ここで、ゴムの超弾性を、以下の(2)式で表わされるモデルとする。   Here, the superelasticity of the rubber is a model represented by the following equation (2).

上記(2)式で与えられるモデルに図7に示すような単純せん断γを与えた時、ひずみエネルギー関数は、以下の(3)式で表され、上記の曲線としての図8に示すようなτ−γ曲線は以下の(4)式で表わされる。   When a simple shear γ as shown in FIG. 7 is given to the model given by the above equation (2), the strain energy function is expressed by the following equation (3), as shown in FIG. The τ-γ curve is expressed by the following equation (4).

上記(1)式を基に、G(γ=100%)=Geqとなるように、物性パラメータa、bを到達温度Tと加硫度Cdの関数として定義して、a(C,T)、b(C,T)を作成する。 Based on the above equation (1), the physical property parameters a and b are defined as a function of the ultimate temperature T and the degree of vulcanization C d so that G (γ = 100%) = G eq, and a (C d , T), b (C d , T).

次に、設計者が、熱伝導解析及び大変形構造解析のための3次元FEMモデルを作成する(ステップ108)。3次元FEMモデルとしては、図9に示すような、上記免震用積層ゴム10を、それぞれ、多数の8節点四角柱要素に分割した3次元モデル40を用いるとともに、上記3次元モデル40のゴム要素41と鉄板要素42と外皮ゴムの要素43とに熱伝導率あるいは熱拡散係数を与え、上記ゴム要素41には、更に、加硫反応による発熱を考慮するための加硫反応活性化エネルギーを与える。   Next, the designer creates a three-dimensional FEM model for heat conduction analysis and large deformation structure analysis (step 108). As the three-dimensional FEM model, a three-dimensional model 40 obtained by dividing the seismic isolation laminated rubber 10 into a large number of 8-node quadrangular prism elements as shown in FIG. 9 is used, and the rubber of the three-dimensional model 40 is used. A thermal conductivity or a thermal diffusion coefficient is given to the element 41, the iron plate element 42, and the outer rubber element 43, and the rubber element 41 is further provided with a vulcanization reaction activation energy for considering the heat generated by the vulcanization reaction. give.

そして、設計者が、加硫条件(温度履歴)を設定して(ステップ110)、シミュレーション装置50が、熱伝導解析を行い、上記各ゴム要素41の温度と加硫度とを時間ステップ毎に算出して、上記各ゴム要素41の温度上昇と加硫度の変化を予測すると共に、上記ステップ104で作成した加硫関数G(C,T)のC及びTに、予測された各要素の加硫度と到達温度をそれぞれ代入して、当該ゴム要素41の物性である剪断弾性率を推定する(ステップ112)。 Then, the designer sets the vulcanization conditions (temperature history) (step 110), the simulation device 50 performs the heat conduction analysis, and sets the temperature and the degree of vulcanization of each rubber element 41 for each time step. Calculate and predict the temperature rise of each rubber element 41 and the change in the degree of vulcanization, and the predicted C d and T of the vulcanization function G (C d , T) created in step 104 above. Substituting the vulcanization degree and the ultimate temperature of the element, respectively, the shear elastic modulus which is the physical property of the rubber element 41 is estimated (step 112).

次に、シミュレーション装置50が、上記ステップ106で作成した物性パラメータ関数a(C,T)、b(C,T)のC及びTに、予測された各ゴム要素41の加硫度と到達温度をそれぞれ代入して、各ゴム要素41の物性パラメータa,bを算出し、算出した物性パラメータa,bを適用した上記(4)式を、ひずみエネルギー関数として、対応する各ゴム要素41に与える(ステップ114)。 Next, the simulation apparatus 50 calculates the vulcanization degree of each rubber element 41 to C d and T of the physical property parameter functions a (C d , T) and b (C d , T) created in step 106. And the temperature reached, the physical property parameters a and b of each rubber element 41 are calculated, and the above equation (4), to which the calculated physical property parameters a and b are applied, is used as a strain energy function to correspond to each rubber element. 41 (step 114).

そして、境界条件(荷重条件)を設定して、シミュレーション装置50が、大変形構造解析を行い、上記各ゴム要素41の剪断弾性率を時間ステップ毎に算出して、各ゴム要素41の物性である剪断弾性率を推定する(ステップ116)。   Then, the boundary condition (load condition) is set, and the simulation apparatus 50 performs a large deformation structure analysis, calculates the shear elastic modulus of each rubber element 41 for each time step, and determines the physical properties of each rubber element 41. A certain shear modulus is estimated (step 116).

そして、シミュレーション装置50が、上記推定された上記各ゴム要素41の剪断弾性率に基づいて、積層ゴムの製品性能を表わす数値を算出する(ステップ118)。上記製品性能を表わす数値は、上記ステップ110で設定した加硫条件が適切であるかどうかを判定するために利用され、例えば、剪断弾性率の体積平均を示す数値又は剪断弾性率の分布の均一性を示す数値である。   Then, the simulation apparatus 50 calculates a numerical value representing the product performance of the laminated rubber based on the estimated shear modulus of each rubber element 41 (step 118). The numerical value representing the product performance is used to determine whether the vulcanization conditions set in step 110 are appropriate. For example, the numerical value indicating the volume average of the shear modulus or the uniform distribution of the shear modulus It is a numerical value indicating sex.

製品性能を表わす数値の算出後には、設計者が、加硫条件を変更するかどうかを検討し(ステップ120)、変更する場合には、ステップ110に戻って新たな加硫条件を設定して再度熱伝導解析及び大変形構造解析を行い、上記製品性能を表わす数値を求める。また、加硫条件を変更しない場合には、本シミュレーション処理を終了する。   After calculating the numerical value representing the product performance, the designer examines whether or not to change the vulcanization conditions (step 120), and if so, return to step 110 to set new vulcanization conditions. A heat conduction analysis and a large deformation structure analysis are performed again to obtain a numerical value representing the product performance. If the vulcanization conditions are not changed, this simulation process is terminated.

このように、本実施の形態によれば、3次元FEMモデルに加硫条件を与えて熱伝導解析して、加硫後のゴム部材の各要素の温度と加硫度とを予測した後に、予測された温度と加硫度とを用いて算出される物性パラメータを当該3次元FEMモデルの各要素に与えると共に当該3次元FEMモデルに境界条件を与えて大変形構造解析を行って、ゴム部材の各要素の物性値を推定することにより、大変形時の加硫後の積層ゴムの物性を予測することができる。   As described above, according to the present embodiment, the vulcanization conditions are given to the three-dimensional FEM model, the heat conduction analysis is performed, and the temperature and the degree of vulcanization of each element of the rubber member after vulcanization are predicted. A physical property parameter calculated using the predicted temperature and degree of vulcanization is given to each element of the three-dimensional FEM model, and boundary conditions are given to the three-dimensional FEM model to perform a large deformation structure analysis, and a rubber member By estimating the physical property values of each element, the physical properties of the laminated rubber after vulcanization at the time of large deformation can be predicted.

また、加硫条件を与えて行った熱伝導解析から物性パラメータを予測し、大変形構造解析を連続して行うことで、様々な加力条件下での積層ゴムの特性値を予測することが可能となる。   In addition, physical property parameters can be predicted from heat conduction analysis performed with vulcanization conditions, and large deformation structure analysis can be performed continuously to predict the characteristic values of laminated rubber under various force conditions. It becomes possible.

なお、上記の実施の形態では、加硫後の物性値を剪断弾性率とした場合を例に説明したが、これに限定されるものではなく、加硫後の物性値として、等価減衰係数など他の物性値を用いてもよい。この場合には、上記剪断弾性率と同様に、別個試験体を作成して推定する加硫後の物性値を測定するとともに、単純剪断γを与えたときのゴム部材の加硫後のその物性値を表わす曲線の式における物性パラメータを近似した物性パラメータ関数a(C,T)、b(C,T)を作成すればよい。 In the above embodiment, the case where the physical property value after vulcanization is the shear modulus has been described as an example. However, the present invention is not limited to this, and the physical property value after vulcanization includes an equivalent damping coefficient and the like. Other physical property values may be used. In this case, similarly to the above-mentioned shear modulus, the physical property value after vulcanization estimated by creating a separate specimen is measured, and the physical property after vulcanization of the rubber member when simple shear γ is given. What is necessary is just to create the physical property parameter functions a (C d , T) and b (C d , T) that approximate the physical property parameters in the equation of the curve representing the values.

また、上記ステップ120において、加硫条件を変更する基準を特に設けず、設計者が加硫条件の変更を判断したが、製品性能値を予め設定するとともに、複数の加硫条件を設定しておき、上記ステップ120で求めた製品性能値と予め設定された目標性能値とを比較する。そして、その差が所定の範囲内にあるかどうかを判定し、上記差が所定の範囲を超えた場合には、上記ステップ110に戻って加硫条件を変更するようにしてもよい。あるいは、単に、複数の加硫条件を設定しておき、それぞれの加硫条件での製品性能値を全て求めるようにしてもよい。   Further, in step 120, a standard for changing the vulcanization condition is not particularly provided, and the designer has determined the change of the vulcanization condition. The product performance value obtained in step 120 is compared with a preset target performance value. Then, it is determined whether or not the difference is within a predetermined range, and when the difference exceeds the predetermined range, the process may return to step 110 to change the vulcanization conditions. Alternatively, a plurality of vulcanization conditions may be simply set, and all product performance values under each vulcanization condition may be obtained.

また、ひずみエネルギー関数として種々のものを用いることができる。例えば、ゴムの材料モデルとして提案されている、Neo−Hookeanモデル、Mooney−Rivlinモデル、Yeohモデル、Ogdenモデル等のひずみエネルギー関数を用いることができる。   Various strain energy functions can be used. For example, strain energy functions such as Neo-Hookean model, Mooney-Rivlin model, Yeoh model, Ogden model and the like proposed as a material model of rubber can be used.

また、熱伝導解析のための第1の数値解析モデル、及び大変形構造解析のための第2の数値解析モデルとして、単一の3次元FEMモデルを用いた場合を例に説明したが、これに限定されるものではなく、熱伝導解析のための第1の数値解析モデル、及び大変形構造解析のための第2の数値解析モデルとして、別々のモデルを用いてもよい。   In addition, the case where a single three-dimensional FEM model is used as an example has been described as the first numerical analysis model for heat conduction analysis and the second numerical analysis model for large deformation structure analysis. However, the first numerical analysis model for heat conduction analysis and the second numerical analysis model for large deformation structure analysis may be used separately.

また、上記ステップ104での加硫関数の作成、及び上記ステップ112の熱伝導解析における物性値の算出を省略してもよい。   In addition, the creation of the vulcanization function in step 104 and the calculation of the physical property values in the heat conduction analysis in step 112 may be omitted.

外径がφ1600mm、内径が0、単層厚さが6.0mmの円柱状のゴム部材層と、同じ平面形状で厚さが4.4mmの鋼板(材質;SPHC)層とを積層した免震用積層ゴムの内部温度、加硫度、剪断弾性率の温度変化、及び様々な境界条件下での積層ゴムの物性値を、有限要素法を用いてシミュレーションした。   Seismic isolation with a cylindrical rubber member layer with an outer diameter of φ1600mm, an inner diameter of 0, and a single layer thickness of 6.0mm, and a steel plate (material: SPHC) layer with the same planar shape and a thickness of 4.4mm The internal temperature, degree of vulcanization, temperature change of shear modulus, and physical properties of the laminated rubber under various boundary conditions were simulated using a finite element method.

モデルの寸法を以下の表1に表わす。   The model dimensions are shown in Table 1 below.


また、計算に必要なパラメータは以下の通りである。

The parameters necessary for the calculation are as follows.

(1)ゴム及び鋼板の特性
・ゴム部材のゴム質
内部ゴム:高減衰ゴム材料
外皮ゴム:EPDM系ゴム
・ゴム(内部ゴム、外皮ゴム共通)、鋼板の熱拡散係数 κ
・ゴム(内部ゴム、外皮ゴム共通)の加硫反応活性化エネルギー
・ゴム(内部ゴム、外皮ゴム共通)の標準加硫条件(ベストキュアタイム)
・ゴム(内部ゴム、外皮ゴム共通)の体積弾性率
・鋼板のヤング率
・鋼板のポアソン比
(2)加硫条件
初期温度と、積層ゴムの上下端ゴムおよび外皮ゴム端部に所定時間の加硫条件を設定した。
(3)境界条件
大変形構造解析で用いた境界条件を下記の表2に示す。
(1) Properties of rubber and steel plate ・ Rubber quality of rubber member Internal rubber: High damping rubber material Outer rubber: EPDM rubber ・ Rubber (common to inner rubber and outer rubber), thermal diffusion coefficient of steel plate κ
・ Vulcanization reaction activation energy for rubber (common to inner rubber and outer rubber) ・ Standard vulcanization conditions for rubber (common to inner rubber and outer rubber) (best cure time)
・ Volume elastic modulus of rubber (common to inner rubber and outer rubber) ・ Young's modulus of steel sheet ・ Poisson's ratio of steel sheet (2) Vulcanization conditions Initial temperature and upper and lower ends of laminated rubber and end of outer rubber for a predetermined time Sulfur conditions were set.
(3) Boundary conditions Table 2 below shows the boundary conditions used in the large deformation structure analysis.


加硫開始から1.5時間後の温度分布を図10に示す。また、10時間までの免震用積層ゴムの内部の温度及び剪断弾性率の時系列変化を図11(A)、(B)に示す。なお、同図において、実線は熱源に近い箇所に位置するゴム要素Aの時系列変化、細かな破線は、熱源から最も遠い箇所に位置するゴム要素Cの時系列変化、破線は、A,Cのほぼ中間に位置するゴム要素Bの時系列変化である(図12参照)。

The temperature distribution 1.5 hours after the start of vulcanization is shown in FIG. 11A and 11B show time series changes in the temperature and shear modulus of the seismic isolation laminated rubber up to 10 hours. In the figure, the solid line represents the time series change of the rubber element A located near the heat source, the fine broken line represents the time series change of the rubber element C located farthest from the heat source, and the broken lines represent A and C. Is a time-series change of the rubber element B located approximately in the middle (see FIG. 12).

また、加硫終了直後の剪断弾性率の分布を図13に示す。また、剪断変形400%時のせん断応力の分布を示すコンター図を図14に示す。   In addition, FIG. 13 shows the distribution of the shear modulus immediately after the end of vulcanization. Further, FIG. 14 shows a contour diagram showing the distribution of the shear stress when the shear deformation is 400%.

上記図14のように、大変形時の免震用積層ゴムの物性の分布を予測できるので、本発明によるシミュレーションを行うことにより、免震用積層ゴムの加硫後の物性を容易に予測できることが確認された。   Since the distribution of physical properties of the seismic isolation laminated rubber during large deformation can be predicted as shown in FIG. 14 above, the physical properties after vulcanization of the seismic isolation laminated rubber can be easily predicted by performing the simulation according to the present invention. Was confirmed.

10 免震用積層ゴム
11 ゴム部材
12 鉄板
20 加硫金型
30 試験体
31 鉄板
32 ゴム部材
40 3次元モデル
41 ゴム要素
42 鉄板要素
43 外皮ゴム要素
50 シミュレーション装置
DESCRIPTION OF SYMBOLS 10 Seismic isolation laminated rubber 11 Rubber member 12 Iron plate 20 Vulcanization mold 30 Specimen 31 Iron plate 32 Rubber member 40 Three-dimensional model 41 Rubber element 42 Iron plate element 43 Skin rubber element 50 Simulation device

Claims (4)

複数のゴム部材と鉄板とを積層して成る積層ゴムの加硫後の物性値をシミュレーションする方法であって、
前記鉄板を構成する鋼材で前記積層ゴムを構成するゴム部材を挟持した試験体を作製し、これを種々の温度履歴で加硫して得られた前記試験体の加硫度と加硫後の物性値とを求める第1のステップと、
前記求められた試験体のデータを用いて、前記ゴム部材の加硫後の物性パラメータを近似した、温度と加硫度とをパラメータとする物性パラメータ関数を作成する第2のステップと、
前記積層ゴムを有限個の要素に分割した第1の数値解析モデルに加硫条件を与えて伝熱解析して、前記第1の数値解析モデルの各ゴム部材を構成する各要素の温度と加硫度との時間変化をそれぞれ予測する第3のステップと、
前記第3のステップで各要素について求められたゴム部材の要素の温度と加硫度の予測値をパラメータとして、前記第2のステップで作成された物性パラメータ関数に与えて算出される物性パラメータを、前記積層ゴムを有限個の要素に分割した第2の数値解析モデルの前記ゴム部材を構成する各要素に与えると共に、前記第2の数値解析モデルに境界条件を与えて構造解析を行って、前記ゴム部材の各要素の物性値を推定する第4のステップと、
を備えたことを特徴とする積層ゴムの加硫後物性シミュレーション方法。
A method for simulating physical property values after vulcanization of a laminated rubber formed by laminating a plurality of rubber members and an iron plate,
A test body in which a rubber member constituting the laminated rubber is sandwiched between steel members constituting the iron plate is produced, and the degree of vulcanization and vulcanization of the test body obtained by vulcanizing the specimen at various temperature histories. A first step for obtaining physical property values;
A second step of creating a physical property parameter function using temperature and degree of vulcanization as parameters, approximating physical property parameters after vulcanization of the rubber member, using the data of the obtained specimen;
The first numerical analysis model obtained by dividing the laminated rubber into a finite number of elements is subjected to heat transfer analysis by giving vulcanization conditions, and the temperature and the temperature of each element constituting each rubber member of the first numerical analysis model are added. A third step of predicting the time change of the sulfur content,
The physical property parameters calculated by giving to the physical property parameter function created in the second step, using as parameters the predicted values of the temperature and the degree of vulcanization of the element of the rubber member obtained for each component in the third step , The laminated rubber is divided into a finite number of elements to each element constituting the rubber member of the second numerical analysis model, and the structural analysis is performed by giving boundary conditions to the second numerical analysis model, A fourth step of estimating a physical property value of each element of the rubber member;
A method for simulating physical properties of a laminated rubber after vulcanization.
前記第4のステップで推定された前記ゴム部材の各要素の物性値に基づいて前記積層ゴムの製品性能値を算出する第5のステップと、
前記第5のステップで求められた製品性能値と予め設定された目標性能値とを比較して、前記目標性能値と前記算出された製品性能値との差が所定の範囲内にあるかどうかを判定する第6のステップとを更に備え、
前記差が所定の範囲を超えた場合には、前記第3のステップに戻って加硫条件を変更すると共に、前記第3のステップから前記第6のステップまでを繰り返して、前記目標性能値を与える加硫条件を特定するようにしたことを特徴とする請求項1に記載の積層ゴムの加硫物性シミュレーション方法。
A fifth step of calculating a product performance value of the laminated rubber based on a physical property value of each element of the rubber member estimated in the fourth step;
Whether the difference between the target performance value and the calculated product performance value is within a predetermined range by comparing the product performance value obtained in the fifth step with a preset target performance value And a sixth step of determining
When the difference exceeds a predetermined range, the process returns to the third step to change the vulcanization condition, and repeats the third step to the sixth step to obtain the target performance value. 2. The method for simulating vulcanized physical properties of a laminated rubber according to claim 1, wherein the vulcanizing conditions to be given are specified.
前記物性値をゴム材料の剪断弾性率としたことを特徴とする請求項1又は2記載の積層ゴムの加硫物性シミュレーション方法。   The method for simulating vulcanized physical properties of laminated rubber according to claim 1 or 2, wherein the physical property value is a shear modulus of the rubber material. 前記第2の数値解析モデルを、前記第1の数値解析モデルと共通のものとした請求項1〜請求項3の何れか1項記載の加硫物性シミュレーション方法。   The vulcanization physical property simulation method according to any one of claims 1 to 3, wherein the second numerical analysis model is common to the first numerical analysis model.
JP2011040347A 2011-02-25 2011-02-25 Post-vulcanization physical property simulation method for laminated rubber Expired - Fee Related JP5722077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040347A JP5722077B2 (en) 2011-02-25 2011-02-25 Post-vulcanization physical property simulation method for laminated rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040347A JP5722077B2 (en) 2011-02-25 2011-02-25 Post-vulcanization physical property simulation method for laminated rubber

Publications (2)

Publication Number Publication Date
JP2012176529A true JP2012176529A (en) 2012-09-13
JP5722077B2 JP5722077B2 (en) 2015-05-20

Family

ID=46978745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040347A Expired - Fee Related JP5722077B2 (en) 2011-02-25 2011-02-25 Post-vulcanization physical property simulation method for laminated rubber

Country Status (1)

Country Link
JP (1) JP5722077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176530A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Steam hole arrangement determination method of laminated rubber
CN105538564A (en) * 2016-02-26 2016-05-04 清华大学 Control system for intelligent vulcanization of tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206533A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Computer simulation model parameter adjusting device
JPH08323775A (en) * 1995-03-20 1996-12-10 Pirelli Coordinamento Pneumatici Spa Method for preparing data base of vulcanization constant optimizing vulcanization of rubber compound
JP2004058453A (en) * 2002-07-29 2004-02-26 Hitachi Ltd Design assisting apparatus and method for resin molded product
JP2007203591A (en) * 2006-02-01 2007-08-16 Bridgestone Corp Physical property simulation method of laminated rubber after vulcanization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206533A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Computer simulation model parameter adjusting device
JPH08323775A (en) * 1995-03-20 1996-12-10 Pirelli Coordinamento Pneumatici Spa Method for preparing data base of vulcanization constant optimizing vulcanization of rubber compound
JP2004058453A (en) * 2002-07-29 2004-02-26 Hitachi Ltd Design assisting apparatus and method for resin molded product
JP2007203591A (en) * 2006-02-01 2007-08-16 Bridgestone Corp Physical property simulation method of laminated rubber after vulcanization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176530A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Steam hole arrangement determination method of laminated rubber
CN105538564A (en) * 2016-02-26 2016-05-04 清华大学 Control system for intelligent vulcanization of tire

Also Published As

Publication number Publication date
JP5722077B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
CN110222439B (en) Fatigue damage and life evaluation method based on Abaqus platform
Kim et al. A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets
Firat et al. Numerical modeling and simulation of wheel radial fatigue tests
Noroozi et al. Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains
Coelho et al. Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies
JP5445381B2 (en) Method and apparatus for predicting bending fracture of material, program, and recording medium
CN106354898B (en) A kind of weld fatigue Life Calculating Methods based on total strain energy metric density
Huang et al. Fatigue behavior and life prediction of self-piercing riveted joint
Liljedahl et al. Modelling the environmental degradation of the interface in adhesively bonded joints using a cohesive zone approach
JP4621217B2 (en) Fracture prediction method and apparatus, program, and recording medium
JP7110976B2 (en) Formability evaluation method, program and recording medium
Zhang et al. Dedicated linear–Voce model and its application in investigating temperature and strain rate effects on sheet formability of aluminum alloys
Khamneh et al. Optimization of spring-back in creep age forming process of 7075 Al-Alclad alloy using D-optimal design of experiment method
JP5722077B2 (en) Post-vulcanization physical property simulation method for laminated rubber
JP2008273796A (en) Method, apparatus and program for press-forming simulation of optical element
JP6747410B2 (en) Elastic adhesive behavior analysis method
JP4995052B2 (en) Strength prediction evaluation method and apparatus, program, and recording medium
Firat A numerical analysis of sheet metal formability for automotive stamping applications
KR101207869B1 (en) Prediction method of delamination initiation and growth of adhesives by fem
Wang et al. Fretting fatigue lifetime estimation for heterogeneous material using critical distance with mesh control
JP2007203591A (en) Physical property simulation method of laminated rubber after vulcanization
US9791356B2 (en) Joint analyzing method, product designing method, and joint analyzing system
JP7206902B2 (en) Formability evaluation method, program and recording medium
JP5680443B2 (en) Method for determining the arrangement of steam holes in laminated rubber
Qi et al. Failure of high density polyethylene under cyclic loading: Mechanism analysis and mode prediction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150325

R150 Certificate of patent or registration of utility model

Ref document number: 5722077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees