JP2012176446A - Tool for polishing - Google Patents

Tool for polishing Download PDF

Info

Publication number
JP2012176446A
JP2012176446A JP2011039337A JP2011039337A JP2012176446A JP 2012176446 A JP2012176446 A JP 2012176446A JP 2011039337 A JP2011039337 A JP 2011039337A JP 2011039337 A JP2011039337 A JP 2011039337A JP 2012176446 A JP2012176446 A JP 2012176446A
Authority
JP
Japan
Prior art keywords
region
polishing
polishing tool
polished
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011039337A
Other languages
Japanese (ja)
Inventor
Kenei Narahara
賢英 楢原
Azuma Kunisato
東 救仁郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011039337A priority Critical patent/JP2012176446A/en
Publication of JP2012176446A publication Critical patent/JP2012176446A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To flatten a surface of a polishing object with accuracy.SOLUTION: A tool for polishing has a polishing face which includes: a first region which includes a rotating center position and satisfies L=0; a second region which comes into contact with the first region, between the first region and an outer circumferential line of the polishing face and satisfies 0.6≤L/R≤1; a third region which comes into contact with the second region, between the second region and the outer circumferential line and satisfies 0.4≤L/R<0.6; and a fourth region which comes into contact with the outer circumferential line, between the third region and the outer circumferential line and satisfies 0.8≤L/R≤1.

Description

本発明は、研磨用工具に関する。   The present invention relates to a polishing tool.

金属製品やセラミック製品等の製造過程では、表面の平坦化および鏡面化のために研磨加工が行われる。このような研磨加工では、例えば、特許文献1に示されているように、砥石等の研磨用工具と研磨対象物との間に研磨用の砥粒と液体とを有するスラリーを供給し、砥石を回転させて、研磨対象物の表面(以下、「被研磨面」ともいう。)を研磨する。特許文献1では、研磨対象物における研磨後の表面をより高精度に平坦化するため、研磨後の表面に凹溝を形成するとともに、この凹溝の少なくとも一部を研磨用工具の中心軸に対して深さ方向に傾斜させた構成が提案されている。   In the manufacturing process of metal products, ceramic products, etc., polishing is performed to flatten and mirror the surface. In such a polishing process, for example, as shown in Patent Document 1, a slurry having polishing abrasive grains and liquid is supplied between a polishing tool such as a grindstone and an object to be polished. Is rotated to polish the surface of the object to be polished (hereinafter also referred to as “surface to be polished”). In Patent Document 1, in order to flatten the polished surface of the object to be polished with higher accuracy, a groove is formed on the surface after polishing, and at least a part of the groove is used as a central axis of the polishing tool. On the other hand, the structure inclined in the depth direction is proposed.

特開2005−118996号公報JP-A-2005-118996

通常一般的に行われる研磨では、図10(a)に示すように、研磨対象物110の研磨する対象範囲(図10(a)のS1)を全て含む広い領域S2にわたって、研磨用工具120の研磨面122を摺接移動させて行われる。上記特許文献1も、このように、研磨対象物110の研磨する対象範囲S1を全て含む広い領域S2全体にわたって、研磨用工具120を摺接移動されて行われている。図11は、特許文献1に示されている研磨用工具の一例である研磨用工具120の研磨面122について示す平面図である。研磨用工具120では、研磨面122に格子状に配置された複数の溝123を備えている。   In the polishing that is generally performed in general, as shown in FIG. 10A, the polishing tool 120 is spread over a wide region S2 including the entire target range (S1 in FIG. 10A) of the polishing object 110. This is performed by moving the polishing surface 122 in sliding contact. The above-described Patent Document 1 is also performed by sliding the polishing tool 120 over the entire wide region S2 including the entire target range S1 of the polishing target 110 to be polished. FIG. 11 is a plan view showing a polishing surface 122 of a polishing tool 120 which is an example of a polishing tool disclosed in Patent Document 1. As shown in FIG. The polishing tool 120 includes a plurality of grooves 123 arranged in a grid pattern on the polishing surface 122.

特許文献1に記載された研磨用工具は、図10(a)に示すような場合には、比較的平坦度の高い研磨面を得ることができる。しかし、研磨工程は、図10(b)に示すように、研磨対象物の一面に凹部130を形成するように行われる場合もある。このような研磨工程では、研磨対象範囲S1が凹部130の底面132となる。この場合、研磨対象範囲S2より広い範囲で研磨用工具120を移動させて摺接させることができない。この場合、研磨用工具の移動範囲が凹部130の側面134によって制限されて、研磨用工具120の移動範囲S2は研磨対象範囲S1と一致して狭く、凹部130の底面132と、研磨用工具120の研磨面122との当接状態に分布が生じ易い。図10(c)は、図10(b)に示すような、特許文献1に記載された格子状の溝を研磨面に備える研磨用工具を用いて研磨した場合の、研磨対象範囲S2の実際の断面形状である。このように、従来の研磨用工具120を用いて研磨を行っても、図10(b)に示す場合では、図(c)に示すように研磨対象範囲S1(凹部120の底面122の平坦度は比較的低くなってしまうという課題があった。本願は、かかる課題を解決することを目的になされたものである。   The polishing tool described in Patent Document 1 can obtain a polished surface with relatively high flatness in the case shown in FIG. However, as shown in FIG. 10B, the polishing process may be performed so as to form a recess 130 on one surface of the object to be polished. In such a polishing process, the polishing target range S <b> 1 becomes the bottom surface 132 of the recess 130. In this case, the polishing tool 120 cannot be moved and brought into sliding contact within a range wider than the polishing target range S2. In this case, the movement range of the polishing tool is limited by the side surface 134 of the recess 130, and the movement range S <b> 2 of the polishing tool 120 is narrow to coincide with the polishing target range S <b> 1, and the bottom surface 132 of the recess 130 and the polishing tool 120. Distribution tends to occur in the contact state with the polishing surface 122. FIG. 10C shows the actual polishing target range S2 when polishing is performed using a polishing tool provided with a grid-like groove described in Patent Document 1 on the polishing surface as shown in FIG. 10B. It is the cross-sectional shape. Thus, even when polishing is performed using the conventional polishing tool 120, in the case shown in FIG. 10B, as shown in FIG. 10C, the polishing target range S1 (the flatness of the bottom surface 122 of the recess 120). The present application has been made for the purpose of solving such a problem.

上記課題を解決するために、本願は、研磨面を備え、前記研磨面の中央に位置する回転中心位置を通る回転軸の周りに前記研磨面が回転する研磨用工具であって、前記研磨面は、研磨する対象体に当接する当接部と、前記回転中心位置を含み、前記対象体と当接しない凹部とを備え、前記研磨面における任意位置から前記回転中心位置までの距離をx(m)とし、前記回転中心位置を中心とした、前記任意位置を通る仮想円の円周長をR(x)(m)とし、前記仮想円の円周のうち前記当接部を通る部分の、前記仮想円の合計円周長
をL(x)(m)としたとき、前記研磨面は、前記回転中心位置を含み、L(x)=0を満たす第1領域と、前記第1領域と前記研磨面の外周線との間で、かつ前記第1領域と接する、0.6≦L(x)/R(x)0.6≦1を満たす第2領域と、前記第2領域と前記外周線との間で、かつ前記第2領域と接する、0.4≦L(x)/R(x)<0.6を満たす第3領域と、前記第3領域と前記外周線との間で、かつ前記外周線と接する、0.8≦L(x)/R(x)≦1を満たす第4領域とを備えることを特徴とする研磨用工具を提供する。
In order to solve the above-mentioned problem, the present application is a polishing tool including a polishing surface, the polishing surface rotating around a rotation axis passing through a rotation center position positioned at the center of the polishing surface, and the polishing surface Includes a contact portion that contacts the object to be polished and a recess that includes the rotation center position and does not contact the object, and represents a distance from an arbitrary position on the polishing surface to the rotation center position as x ( m), and R (x) (m) is the circumference of the virtual circle that passes through the arbitrary position with the rotation center position as the center, and the portion of the circumference of the virtual circle that passes through the contact portion When the total circumference of the virtual circle is L (x) (m), the polishing surface includes the first region that includes the rotation center position and satisfies L (x) = 0, and the first region wherein between the peripheral line of the polishing surface, and contact with the first region and, 0.6 ≦ L (x) R (x) and a second region satisfying 0.6 ≦ 1, between the outer periphery line and the second region, and in contact with the second region, 0.4 ≦ L (x) / R (x) A third region satisfying <0.6, and a fourth region satisfying 0.8 ≦ L (x) / R (x) ≦ 1 between the third region and the outer peripheral line and in contact with the outer peripheral line And a polishing tool characterized by comprising a region.

本発明の一態様による研磨用工具によれば、研磨対象物の表面を高精度に平坦化することができる。   According to the polishing tool according to one aspect of the present invention, the surface of the object to be polished can be flattened with high accuracy.

本発明の研磨用工具の一実施形態について説明する図であり、(a)は研磨用工具の概略斜視図、(b)は研磨用工具を用いて研磨工程を行っている状態を示す概略斜視図、(c)は(b)に対応する概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining one Embodiment of the polishing tool of this invention, (a) is a schematic perspective view of a polishing tool, (b) is a schematic perspective view which shows the state which is performing the grinding | polishing process using the polishing tool. FIG. 4C is a schematic cross-sectional view corresponding to FIG. 図1に示す研磨用工具を研磨装置に装着して行う研磨工程の一例について説明する概略断面図である。It is a schematic sectional drawing explaining an example of the grinding | polishing process performed by mounting | wearing the grinding | polishing apparatus with the grinding | polishing tool shown in FIG. (a)および(b)は、被研磨面における研磨用工具の軌跡を示す概略上面図である。(a) And (b) is a schematic top view which shows the locus | trajectory of the grinding | polishing tool in a to-be-polished surface. (a)は図1に示す研磨用工具の研磨面を示す概略平面図であり、(b)は研磨用工具の研磨面近傍を拡大して示す断面図である。(A) is a schematic plan view which shows the grinding | polishing surface of the grinding | polishing tool shown in FIG. 1, (b) is sectional drawing which expands and shows the grinding | polishing surface vicinity of the grinding | polishing tool. (a)は、図4に示す研磨用工具を用いて研磨を行った後の、対象体の被研磨面近傍の断面形状について、計算によって求めた値を示すグラフである。(b)は、図4に示す研磨用工具を用いて研磨を行った際の、対象体の研磨面近傍の断面形状の実測値を示している。(A) is a graph which shows the value calculated | required by calculation about the cross-sectional shape of the to-be-polished surface of a target object after grind | polishing using the polishing tool shown in FIG. (B) has shown the measured value of the cross-sectional shape of the grinding | polishing surface vicinity of a target object at the time of grinding | polishing using the tool for grinding | polishing shown in FIG. (a)および(b)は、図5(a)に示す計算値の算出について説明するための図である。(A) And (b) is a figure for demonstrating calculation of the calculated value shown to Fig.5 (a). (a)〜(d)は、図6(a)の研磨用工具とは異なる形状の研磨用工具について、研磨後の被研磨面の形状を計算によって求めた結果を示すグラフである。(A)-(d) is a graph which shows the result of having calculated | required the shape of the to-be-polished surface after grinding | polishing about the polishing tool of a shape different from the polishing tool of Fig.6 (a). (a)〜(d)は、図6(a)の研磨用工具とは異なる形状の研磨用工具について、研磨後の被研磨面の形状を計算によって求めた結果を示すグラフである。(A)-(d) is a graph which shows the result of having calculated | required the shape of the to-be-polished surface after grinding | polishing about the polishing tool of a shape different from the polishing tool of Fig.6 (a). (a)〜(c)は、図6(a)の研磨用工具とは異なる形状の研磨用工具について、研磨後の被研磨面の形状を計算によって求めた結果を示すグラフである。(A)-(c) is a graph which shows the result of having calculated | required the shape of the to-be-polished surface after grinding | polishing about the polishing tool of a shape different from the polishing tool of Fig.6 (a). 研磨用工具を用いた研磨工程について説明する図である。It is a figure explaining the grinding | polishing process using the tool for grinding | polishing. 従来の研磨用工具の一例である研磨用工具の研磨面について説明する概略平面図である。It is a schematic plan view explaining the grinding | polishing surface of the grinding | polishing tool which is an example of the conventional grinding | polishing tool.

以下、図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の一実施形態に係る研磨用工具について説明する。図1は、本発明の研磨用工具1について説明する図であり、(a)は研磨用工具1の概略斜視図、(b)は研磨用工具1を用いて研磨工程を行っている状態を示す概略斜視図、(c)は(b)に対応する概略断面図である。   A polishing tool according to an embodiment of the present invention will be described. FIG. 1 is a diagram for explaining a polishing tool 1 according to the present invention, where (a) is a schematic perspective view of the polishing tool 1, and (b) is a state in which a polishing step is performed using the polishing tool 1. The schematic perspective view shown, (c) is a schematic sectional drawing corresponding to (b).

本実施形態の研磨用工具1は、対象体Tの表面を研磨する本体2を有する。本体2は、研磨する対象体Tの被研磨面に対向する円形状の研磨面4を有する。本体2は、回転軸3によって回転駆動力が伝えられ、回転軸3とともに回転する。本実施形態では、研磨用工具1は、研磨面4の中央に位置する回転中心位置Oを通る回転軸Cの周りに研磨面4が回
転するとともに、研磨面4を含む仮想面Iに沿って移動して、対象体Tを研磨する。図1(b),(c)では、対象体Tの表面に底面12を備えるホール部20を形成する状態について示している。
The polishing tool 1 of the present embodiment has a main body 2 that polishes the surface of the object T. The main body 2 has a circular polishing surface 4 facing the surface to be polished of the object T to be polished. The main body 2 is transmitted with the rotational driving force by the rotating shaft 3 and rotates together with the rotating shaft 3. In the present embodiment, the polishing tool 1 is rotated along a virtual surface I including the polishing surface 4 while the polishing surface 4 rotates around the rotation axis C passing through the rotation center position O positioned at the center of the polishing surface 4. Move and polish the object T. FIGS. 1B and 1C show a state in which the hole portion 20 having the bottom surface 12 is formed on the surface of the object T.

図2は、研磨用工具1を研磨装置50に装着して行う研磨工程について説明する概略断面図である。研磨装置50は、研磨用工具1と対象体Tを支持する支持台6と、対象体Tの被研磨面上に研磨用流体を供給する供給部Spと、回転軸3に回転駆動力を伝える駆動力伝達部Rtとを有する。   FIG. 2 is a schematic cross-sectional view illustrating a polishing process performed by attaching the polishing tool 1 to the polishing apparatus 50. The polishing apparatus 50 transmits a rotational driving force to the rotating shaft 3, a support base 6 that supports the polishing tool 1 and the object T, a supply unit Sp that supplies a polishing fluid onto the surface to be polished of the object T, and the rotating shaft 3. And a driving force transmission portion Rt.

上述の研磨用工具1を用いた研磨方法は、対象体Tの被研磨面上に本体2を設置する工程と、対象物Tの被研磨面上に研磨用流体Fを供給する工程と、研磨用流体Fを供給しながら本体2を回転させて研磨を行う工程とを有している。研磨用流体Fには、砥粒が分散している。研磨用治具1の研磨面4と、対象体Tの被研磨面は、研磨用流体Fを介して摺動し、被研磨面が研磨される。本体2は、回転軸3とともに回転すると共に、研磨面4の中央に位置する回転中心が例えば、図3(a)または図3(b)に示すように、被研磨面上を軌跡32として移動する。図3(a)では、研磨用工具1の本体2の回転中心は、始点22aから螺旋状の軌跡32を描きながら終点32bへ移動する。図3(b)では、本体2の回転中心は、始点32aから終点32bまで屈曲しながら移動する。   The polishing method using the polishing tool 1 described above includes a step of installing the main body 2 on the surface to be polished of the object T, a step of supplying the polishing fluid F onto the surface to be polished of the object T, and polishing. And polishing the main body 2 while supplying the working fluid F. Abrasive grains are dispersed in the polishing fluid F. The polishing surface 4 of the polishing jig 1 and the surface to be polished of the object T slide through the polishing fluid F, and the surface to be polished is polished. The main body 2 rotates with the rotation shaft 3 and the center of rotation located at the center of the polishing surface 4 moves on the surface to be polished as a locus 32 as shown in FIG. 3A or FIG. 3B, for example. To do. In FIG. 3A, the rotation center of the main body 2 of the polishing tool 1 moves from the start point 22a to the end point 32b while drawing a spiral trajectory 32. In FIG. 3B, the rotation center of the main body 2 moves while bending from the start point 32a to the end point 32b.

図4は、研磨用工具1についてより詳細に示す図である。図4(a)は研磨用工具1の研磨面4を示す図であり、図4(b)は研磨用工具1の研磨面4近傍を拡大して示す断面図である。   FIG. 4 is a diagram showing the polishing tool 1 in more detail. 4A is a view showing the polishing surface 4 of the polishing tool 1, and FIG. 4B is an enlarged sectional view showing the vicinity of the polishing surface 4 of the polishing tool 1. As shown in FIG.

研磨用工具1は、研磨面4に、対象体Tに当接する当接部30と、当接しない凹部34とを備えている。研磨用工具1では、回転中心位置を含む中央位置に配置された1つの凹部34に加え、それぞれ略同一形状の凹部34が、研磨面4の外周方向に沿って、等間隔で離間して4つ配置されている。研磨用工具1では、凹部34は複数に分離されているが、後述する下記条件を満たす範囲において、凹部34の個数、配置、形状等は、特に限定されない。研磨用工具1では、研磨面4における任意位置の回転中心位置Oからの距離をx(m)とし、回転中心位置Oを中心とした、任意位置を通る仮想円の円周長をR(x)(m)とし、仮想円Dの円周のうち当接部30を通る部分Pは、P1〜P4の4つ存在することになる。仮想円の全周にわたる合計の長さをL(x)(m)としたとき、本実施形態では、この合計長さL(x)(m)は、P1〜P4それぞれの周方向に沿った長さの合計となる。 The polishing tool 1 includes, on the polishing surface 4, a contact portion 30 that comes into contact with the object T and a recess portion 34 that does not come into contact. In the polishing tool 1, in addition to one recess 34 arranged at the center position including the rotation center position, each recess 34 having substantially the same shape is spaced apart at equal intervals along the outer peripheral direction of the polishing surface 4. One is arranged. In the polishing tool 1, the recess 34 is separated into a plurality of parts, but the number, arrangement, shape, and the like of the recesses 34 are not particularly limited as long as the following conditions described below are satisfied. In the polishing tool 1, the distance from the rotation center position O at an arbitrary position on the polishing surface 4 is x (m), and the circumferential length of a virtual circle passing through the arbitrary position centered on the rotation center position O is R (x ) (M), there are four portions P1 to P4 of the circumference of the virtual circle D passing through the contact portion 30. In this embodiment, when the total length over the entire circumference of the virtual circle is L (x) (m), the total length L (x) (m) is along the circumferential direction of each of P1 to P4. Total length.

研磨用工具1では、研磨面4が、回転中心位置Oを含み、L(x)=0を満たす第1領域A1と、第1領域A1よりも研磨面4の外周線Eに近い側に配置されて第1領域A1と接する、0.6≦L(x)/R(x)を満たす第2領域A2と、第2領域A2よりも外周線Eに近い側に配置されて第2領域A2と接する、0.4≦L(x)/R(x)<0.6を満たす第3領域A3と、第3領域A3よりも外周線Eに近い側に配置されて外周線Eと接する、0.8≦L(x)/R(x)≦1を満たす第4領域A4とを備えている。かかる特徴を備える研磨用工具1は、研磨した後のホール部20の底面12を、比較的高い平坦度とすることができる。なお、図4では、回転中心位置Oを中心とした研磨面4の内接円の半径をrとしたとき、距離x=0.5rを満たす仮想円E1を例として図示している。 In the polishing tool 1, the polishing surface 4 includes the rotation center position O, the first region A1 that satisfies L (x) = 0, and the side closer to the outer peripheral line E of the polishing surface 4 than the first region A1. The second region A2 that is in contact with the first region A1 and satisfies 0.6 ≦ L (x) / R (x), and the second region A2 that is disposed closer to the outer peripheral line E than the second region A2. The third region A3 satisfying 0.4 ≦ L (x) / R (x) <0.6, and the outer peripheral line E in contact with the outer peripheral line E from the third region A3. And a fourth region A4 that satisfies 0.8 ≦ L (x) / R (x) ≦ 1. The polishing tool 1 having such characteristics can make the bottom surface 12 of the hole portion 20 after polishing have a relatively high flatness. In FIG. 4, a virtual circle E1 that satisfies the distance x = 0.5r is illustrated as an example, where r is the radius of the inscribed circle of the polishing surface 4 with the rotation center position O as the center.

図4に示す例では、より詳しくは、第2領域A2および第4領域A4において、(L(x)/R(x))=1とされている。当接部が存在しない第1領域A1に接するように第2領域A2を設けることで、第2領域A2と第1領域A1との境界部分に、第2領域A2の当接部のエッジ部36が配置される。このエッジ部36は、研磨する対象であるホール部20の底面22の研磨速度を比較的高くするとともに、ホール部20の底面22に、ス
ラリーが部分的に滞留することを抑制し、底面22の研磨状態の分布を抑制する。このようにスラリーの滞留抑制効果を高くする点で、第2領域A2は、0.9≦L(x)/R(x)を満たすことが好ましい。なお、第4領域A4についても同様の効果を有し、第4領域A4の当接部のエッジ部38を備えることで、第4領域A4に対応する部分でのスラリーの滞留を抑制し、底面22の平坦性を高くすることができる。
In the example shown in FIG. 4, more specifically, (L (x) / R (x) ) = 1 in the second region A2 and the fourth region A4. By providing the second region A2 so as to be in contact with the first region A1 where no contact portion exists, the edge portion 36 of the contact portion of the second region A2 is formed at the boundary portion between the second region A2 and the first region A1. Is placed. The edge portion 36 relatively increases the polishing rate of the bottom surface 22 of the hole portion 20 to be polished, and suppresses the slurry from being partially retained on the bottom surface 22 of the hole portion 20. The distribution of the polishing state is suppressed. Thus, it is preferable that 2nd area | region A2 satisfy | fills 0.9 <= L (x) / R (x) at the point which makes the residence restraint effect of a slurry high. In addition, it has the same effect also about 4th area | region A4, and the residence of the slurry in the part corresponding to 4th area | region A4 is suppressed by providing the edge part 38 of the contact part of 4th area | region A4, and bottom face The flatness of 22 can be increased.

また、本実施形態の研磨用工具1では、第3領域A3と第4領域A4との間に配置された、L(x)/R(x)の値がxの増加に伴って増加する第5領域A5をさらに備えている。第5領域A5では、L(x)/R(x)の値がxの増加に伴って増加しているので、0.4≦L(x)/R(x)<0.6を満たす第3領域A3に溜まったスラリーは、第4領域A4の側へと比較的移動し易くなっている。研磨用工具1では、余分なスラリーに起因した研磨ムラが抑制されている。 Further, in the polishing tool 1 of the present embodiment, the value of L (x) / R (x) disposed between the third region A3 and the fourth region A4 increases as x increases. 5 area | region A5 is further provided. In the fifth region A5, since the value of L (x) / R (x) increases as x increases, the value satisfying 0.4 ≦ L (x) / R (x) <0.6 The slurry collected in the third region A3 is relatively easy to move to the fourth region A4 side. In the polishing tool 1, uneven polishing due to excess slurry is suppressed.

本実施形態の研磨用工具1では、研磨面の任意位置における上記仮想円において、上記仮想円と研磨面との交線が複数の部分円弧に分割されており、部分円弧それぞれがいずれも略同一の長さとされている。これにより、研磨面にかかる圧力の分布を、回転方向に沿って高精度に均一化することができ、研磨後の研磨面の平坦性をより高くすることができる。また、研磨用工具1では、各部分円弧同士の離間距離が、上記仮想円の全周にわたって略同一とされている。これによっても、研磨面にかかる圧力の分布が、回転方向に沿って高精度に均一化することが可能となっている。   In the polishing tool 1 of the present embodiment, in the virtual circle at an arbitrary position on the polishing surface, the intersection line of the virtual circle and the polishing surface is divided into a plurality of partial arcs, and each partial arc is substantially the same. It is said that the length. Thereby, the distribution of the pressure applied to the polished surface can be made uniform with high precision along the rotation direction, and the flatness of the polished surface after polishing can be further increased. In the polishing tool 1, the distance between the partial arcs is substantially the same over the entire circumference of the virtual circle. This also makes it possible to make the pressure distribution on the polished surface uniform with high precision along the rotational direction.

また、本実施形態の研磨用工具1では、第3領域A3の全体で、L(x)/R(x)の値が0.5と一定の値になっている。加えて、上述の各部分円弧それぞれがいずれも略同一の長さとされているとともに、各部分円弧同士の離間距離が、上記仮想円の全周にわたって略同一とされているので、第3領域における当接部30は凹部34との境界部分に、研磨面4の半径方向に沿った半径方向エッジ部35を備えている。この半径方向エッジ部35を被研磨面との当接部分では、被研磨面に対してした比較的高い圧力がかかり、この半径方向エッジ部35に垂直な方向に沿って半径方向エッジ部35が摺動することで、被研磨面が比較的高い研磨速度で研磨されるとともに、被研磨面の平坦度が比較的高くされている。すなわち、図4に示すとおり、研磨用工具1では、第3領域A3に、仮想円の円周に沿って分散した複数の凹部34を備え、凹部34の形状および配置が、回転中心位置に関して回転対称の関係にある。このため、回転中心軸周りに研磨面を回転させて行う研磨において、被研磨面に対する応力の分布等が円周方向に均等化され、安定した研磨状態を維持することができる。 Moreover, in the polishing tool 1 of the present embodiment, the value of L (x) / R (x) is a constant value of 0.5 in the entire third region A3. In addition, each of the partial arcs described above has substantially the same length, and the distance between the partial arcs is substantially the same over the entire circumference of the virtual circle. The contact portion 30 includes a radial edge portion 35 along the radial direction of the polishing surface 4 at a boundary portion with the concave portion 34. A relatively high pressure is applied to the surface to be polished at the portion where the radial edge portion 35 is in contact with the surface to be polished, and the radial edge portion 35 is formed along a direction perpendicular to the radial edge portion 35. By sliding, the surface to be polished is polished at a relatively high polishing rate, and the flatness of the surface to be polished is relatively high. That is, as shown in FIG. 4, in the polishing tool 1, the third region A3 includes a plurality of recesses 34 dispersed along the circumference of the virtual circle, and the shape and arrangement of the recesses 34 rotate with respect to the rotation center position. Symmetrical relationship. For this reason, in polishing performed by rotating the polishing surface about the rotation center axis, the stress distribution on the surface to be polished is equalized in the circumferential direction, and a stable polishing state can be maintained.

なお、本実施形態の研磨用工具1では、回転中心位置を中心とした研磨面の内接円の半径をrとしたとき、第1領域A1において、距離xが0<x≦0.2rを満たし、第2領域A2においては、前記距離xが0.2r<x≦0.3rを満たし、第3領域A3においては、距離xが0.85r<x≦1.0rを満たしている。距離xの範囲をこのような範囲に設定することで、研磨面の表面が高精度に平坦化されることを、シミュレーションによって本願発明者が確認している。   In the polishing tool 1 of the present embodiment, when the radius of the inscribed circle of the polishing surface centered on the rotation center position is r, the distance x is 0 <x ≦ 0.2r in the first region A1. In the second region A2, the distance x satisfies 0.2r <x ≦ 0.3r, and in the third region A3, the distance x satisfies 0.85r <x ≦ 1.0r. The inventors of the present application have confirmed through simulation that the surface of the polished surface is flattened with high accuracy by setting the range of the distance x to such a range.

図5(a)は、図4に示す研磨用工具1を用いて研磨を行った後の、対象体Tの被研磨面近傍の断面形状について、計算によって求めた値を示している。また、図5(b)は、図4に示す研磨用工具1を用いて研磨を行った際の、対象体Tの研磨面近傍の断面形状の実測値を示している。図5(a)に示す縦軸の数値は、数値シミュレーションにおいて用いた数値であり、図5(a)に示す縦軸の縮尺と、図5(b)に示す座標軸における縦軸の縮尺とは、ほぼ一致させて示している。   Fig.5 (a) has shown the value calculated | required by calculation about the cross-sectional shape of the to-be-polished surface of the target object T after grind | polishing using the tool 1 for grinding | polishing shown in FIG. FIG. 5B shows an actual measurement value of the cross-sectional shape in the vicinity of the polishing surface of the object T when polishing is performed using the polishing tool 1 shown in FIG. The numerical values on the vertical axis shown in FIG. 5A are the numerical values used in the numerical simulation, and the scale of the vertical axis shown in FIG. 5A and the scale of the vertical axis in the coordinate axes shown in FIG. , Almost matched.

図5(b)に示す断面形状は、以下の研磨条件で研磨した際の断面形状である。研磨用
工具1の本体2としては、密度が約0.78g/cm、ISO7619にて規定されているショア硬度Aが約93度のウレタン製の本体2を用い、本体2の研磨面4の直径は約40mmであった。また、研磨用流体Fに混ぜる砥粒として平均粒径が約3μmのアルミナを用いた。本体2の研磨面4の回転数を約213rpmで回転させながら、約2kg重の荷重をかけた状態で、研磨用工具1を直線状に往復運動させた。この直線運動における研磨用工具1の移動速度は500mm/minとし、加工時間、すなわち移動させている時間を計28分間とした。
The cross-sectional shape shown in FIG. 5B is a cross-sectional shape when polished under the following polishing conditions. As the main body 2 of the polishing tool 1, a urethane main body 2 having a density of about 0.78 g / cm 3 and a Shore hardness A defined by ISO 7619 of about 93 degrees is used. The diameter was about 40 mm. Further, alumina having an average particle diameter of about 3 μm was used as the abrasive grains mixed with the polishing fluid F. While rotating the polishing surface 4 of the main body 2 at about 213 rpm, the polishing tool 1 was reciprocated linearly while a load of about 2 kg was applied. The moving speed of the polishing tool 1 in this linear motion was 500 mm / min, and the machining time, that is, the moving time was 28 minutes in total.

なお、図5(a)に示す断面形状の計算値は、いわゆるプレストンの式を用いて計算している。図6(a)および(b)は、図5(a)に示す計算値の算出について説明する図である。図6(a)は、研磨用工具1の研磨面4における、上記L(x)/R(x)の値の分布を示している。図6(b)は、研磨用工具1の回転軸Cを移動させることなく、回転軸C周りに研磨用工具1を回転させたのみの状態における、被研磨面Tsの研磨量の計算方法について説明するための図である。図6(b)に示すように、研磨面4における回転中心Oに対応する被研磨面Tsを原点とし、被研磨面Tsの座標位置(x,y)における研磨量G(x,y)は、下記式(1)で表されたプレストンの式によって求めることができる。 The calculated value of the cross-sectional shape shown in FIG. 5A is calculated using a so-called Preston equation. 6 (a) and 6 (b) are diagrams for explaining calculation of the calculated values shown in FIG. 5 (a). FIG. 6A shows the distribution of the values of L (x) / R (x) on the polishing surface 4 of the polishing tool 1. FIG. 6B shows a calculation method of the polishing amount of the surface to be polished Ts in a state in which the polishing tool 1 is only rotated around the rotation axis C without moving the rotation axis C of the polishing tool 1. It is a figure for demonstrating. As shown in FIG. 6B, the polished surface Ts corresponding to the rotation center O of the polishing surface 4 is the origin, and the polishing amount G (x, y) at the coordinate position (x, y) of the polished surface Ts is It can be obtained by the Preston equation represented by the following equation (1).

Figure 2012176446
Figure 2012176446

ここで、A:比例定数、F:単位面積当りの加圧力、S:回転速度、である。Aの比例定数は、研磨用工具1の本体2の材質や、被研磨面の材質等によって決まる定数である。回転軸C周りに回転しながら、回転軸CをY軸方向に沿って移動させて往復直線運動させた際の研磨量G(x)を求めるには、このプレストンの式について、下記式(2)に、Y軸方向に沿った移動量に対応する分だけY方向に積分することで求めることができる。   Here, A: proportionality constant, F: pressure applied per unit area, S: rotational speed. The proportional constant of A is a constant determined by the material of the main body 2 of the polishing tool 1, the material of the surface to be polished, and the like. In order to obtain the polishing amount G (x) when the rotary shaft C is moved along the Y-axis direction and reciprocated linearly while rotating around the rotary shaft C, the following equation (2) ) And integrating in the Y direction by the amount corresponding to the amount of movement along the Y-axis direction.

Figure 2012176446
Figure 2012176446

ここで、G(x):回転軸C周りに回転しながら、回転軸CをY軸方向に沿って移動させて往復直線運動させた場合の研磨量である。   Here, G (x) is a polishing amount when the rotary shaft C is moved around the rotary axis C and moved along the Y-axis direction to reciprocate linearly.

図5(a)と図5(b)とを比較してわかるように、プレストンの式に基いた研磨形状の計算値は、実際の研磨後の形状データによく対応しており、従来の研磨用工具を用いた場合の研磨後形状(図10参照)と比較して、ホール部22の底面の形状が平坦となっている。研磨用工具1を用いることで、研磨面の形状を高精度に平坦化することができる。   As can be seen by comparing FIG. 5 (a) and FIG. 5 (b), the calculated value of the polished shape based on the Preston equation corresponds well to the shape data after actual polishing, and the conventional polishing is performed. The shape of the bottom surface of the hole portion 22 is flat compared to the shape after polishing (see FIG. 10) in the case where the tool for use is used. By using the polishing tool 1, the shape of the polishing surface can be flattened with high accuracy.

本願記載の研磨用工具は、上記計算による本願発明者の試行錯誤によって、研磨後の形状を平坦化できる条件を本願発明者が全く新たに見出すことでなされたものである。   The polishing tool described in the present application was made by the inventor of the present invention who found a new condition for flattening the shape after polishing by trial and error of the present inventor based on the above calculation.

図7(a)〜(d)は、上記実施形態の研磨用工具とは異なる形状の研磨用工具について、研磨後の被研磨面の形状を計算によって求めた結果である。なお、図7〜図9に示す各グラフにおける縦軸の数値は、計算に用いたパラメータの値であり、各図における縦軸の縮尺は、図3(b)に示す実測値の縮尺に対応している。図7(a)〜(d)に示す計算結果では、研磨用工具の形状のうち、上記第3領域A3におけるL(x)/R(x)の値が異なっている。図7(a)では第3領域A3におけるL(x)/R(x)の値は0.3であり、図7(b)では第3領域A3におけるL(x)/R(x)の値は0.4であり
、図7(c)では第3領域A4におけるL(x)/R(x)の値は0.6であり、図7(d)では第3領域A3におけるL(x)/R(x)の値は0.7である。図7に示すように、第3領域A3におけるL(x)/R(x)の値は、研磨後の形状に影響を与える。この第3領域A3におけるL(x)/R(x)の値が、0.4以上0.6以下の範囲では、研磨面の平坦度が充分に高い。
FIGS. 7A to 7D are results obtained by calculating the shape of the polished surface after polishing for a polishing tool having a shape different from the polishing tool of the above embodiment. In addition, the numerical value of the vertical axis | shaft in each graph shown to FIGS. 7-9 is the value of the parameter used for calculation, and the scale of the vertical axis | shaft in each figure respond | corresponds to the reduced scale of the actual value shown in FIG.3 (b). is doing. In the calculation results shown in FIGS. 7A to 7D, the values of L (x) / R (x) in the third region A3 are different among the shapes of the polishing tool. In FIG. 7A, the value of L (x) / R (x) in the third region A3 is 0.3, and in FIG. 7B, L (x) / R (x) in the third region A3. value is 0.4, the value of L (x) / R (x ) in the third region A4 in FIG. 7 (c) is 0.6, L in the third region A3 in FIG. 7 (d) ( x) The value of / R (x) is 0.7. As shown in FIG. 7, the value of L (x) / R (x) in the third region A3 affects the shape after polishing. When the value of L (x) / R (x) in the third region A3 is in the range of 0.4 to 0.6, the flatness of the polished surface is sufficiently high.

また、図8(a)〜(d)は、上記実施形態の研磨用工具とは異なる形状の研磨用工具について、研磨後の被研磨面の形状を計算によって求めた結果である。まず、図8(a)〜(d)に示す計算結果では、上記第5領域A5を有していない点で、上記実施形態の研磨用工具1とは異なっている。図8(a)〜(d)では、第5領域A5に対応する範囲では、L(x)/R(x)の値が、第4領域A4と同じ値となっている。図8(d)に示す計算結果は、この第5領域A5を有しないという点のみで、上記研磨用工具1の形状とは異なっておいる。また、図8(a)〜(c)に示す計算結果では、研磨用工具の形状のうち、上記第4領域A4におけるL(x)/R(x)の値についても、研磨用工具1とは異なっている。図8(a)では第4領域A4におけるL(x)/R(x)の値は0.7であり、図8(b)では第4領域A4におけるL(x)/R(x)の値は0.8であり、図8(c)では第4領域A4におけるL(x)/R(x)の値は0.9である。 FIGS. 8A to 8D are results obtained by calculating the shape of the polished surface after polishing for a polishing tool having a shape different from the polishing tool of the above embodiment. First, the calculation results shown in FIGS. 8A to 8D are different from the polishing tool 1 of the above embodiment in that the fifth area A5 is not provided. 8A to 8D, in the range corresponding to the fifth region A5, the value of L (x) / R (x) is the same value as the fourth region A4. The calculation result shown in FIG. 8D is different from the shape of the polishing tool 1 only in that it does not have the fifth region A5. Further, in the calculation results shown in FIGS. 8A to 8C, among the shapes of the polishing tool, the value of L (x) / R (x) in the fourth region A4 is also the same as that of the polishing tool 1. Is different. In FIG. 8A, the value of L (x) / R (x) in the fourth region A4 is 0.7, and in FIG. 8B, the value of L (x) / R (x) in the fourth region A4. The value is 0.8. In FIG. 8C, the value of L (x) / R (x) in the fourth region A4 is 0.9.

図8に示すように、第4領域A4におけるL(x)/R(x)の値は、計算上は、研磨後の形状に大きな影響を与えていない。しかしながら、第4領域におけるL(x)/R(x)の値が1.0に近い部分では、余分なスラリーが被研磨面と研磨面との間隙に浸入し難く、研磨後の被研磨面の平坦性を高いことを本願発明者は確認している。第4領域においては、L(x)/R(x)の値が0.9以上であることが好ましい。また、特に図8(d)と図5(a)とを比較すると明らかなように、第3領域A3と第4領域A4との間に、L(x)/R(x)の値がxの増加に伴って増加する第5領域A5をさらに備えることが、被研磨面の平坦度を高くする上で好ましい。 As shown in FIG. 8, the value of L (x) / R (x) in the fourth region A4 does not greatly affect the shape after polishing in the calculation. However, in a portion where the value of L (x) / R (x) in the fourth region is close to 1.0, it is difficult for excess slurry to enter the gap between the polished surface and the polished surface. The present inventors have confirmed that the flatness of the film is high. In the fourth region, it is preferable that the value of L (x) / R (x) is 0.9 or more. In addition, as is clear when comparing FIG. 8D and FIG. 5A in particular, the value of L (x) / R (x) is x between the third region A3 and the fourth region A4. In order to increase the flatness of the surface to be polished, it is preferable to further include a fifth region A5 that increases with an increase in the thickness.

また、図9(a)〜(c)は、上記実施形態の研磨用工具とは異なる形状の研磨用工具について、研磨後の被研磨面の形状を計算によって求めた結果である。図9(a)〜(c)に示す計算結果では、研磨用工具の形状のうち、上記第2領域A2におけるL(x)/R(x)の値が異なっている。図9(a)では第2領域A2におけるL(x)/R(x)の値は0.7であり、図9(b)では第2領域A2におけるL(x)/R(x)の値は0.8であり、図9(c)では第2領域A2におけるL(x)/R(x)の値は0.9である。図9に示すように、計算上では、第2領域A2におけるL(x)/R(x)の値は、研磨後の形状に大きく影響を与えない。しかしながら、この第2領域A2は、上述したスラリー排除の効果を有しており、この第2領域A2におけるL(x)/R(x)の値が0.9以上の場合、実際の研磨におけるスラリー滞留抑制の効果が大きく、平坦度を高められることを、本願発明者が確認している。 9A to 9C show the results of calculating the shape of the polished surface after polishing for a polishing tool having a shape different from the polishing tool of the above embodiment. In the calculation results shown in FIGS. 9A to 9C, the values of L (x) / R (x) in the second region A2 are different among the shapes of the polishing tool. In FIG. 9A, the value of L (x) / R (x) in the second region A2 is 0.7, and in FIG. 9B, the value of L (x) / R (x) in the second region A2 The value is 0.8, and in FIG. 9C, the value of L (x) / R (x) in the second region A2 is 0.9. As shown in FIG. 9, in the calculation, the value of L (x) / R (x) in the second region A2 does not greatly affect the shape after polishing. However, the second region A2 has the effect of removing the slurry described above. When the value of L (x) / R (x) in the second region A2 is 0.9 or more, the actual polishing is performed. The inventor of the present application has confirmed that the effect of suppressing the slurry retention is great and the flatness can be increased.

第2領域A2におけるL(x)/R(x)の値が0.9以上である研磨用工具を用いることで、研磨を行う際に、研磨用工具1の研磨面4と対象体Tの被研磨面Tsとの間に研磨用流体Fが滞留することを抑制することができる。よって、研磨用流体F中の砥粒Gが沈降して被研磨面に不均一に堆積するといったことを抑制することができる。従って、砥粒Gが枯渇せず、砥粒Gが滞留することも抑制され、砥粒Gが被研磨面Ts上により均一に広がるために、被研磨面Ts全体をより高い精度で平坦化することができる。 By using a polishing tool having a value of L (x) / R (x) of 0.9 or more in the second region A2, when polishing, the polishing surface 4 of the polishing tool 1 and the object T It is possible to prevent the polishing fluid F from staying between the surface to be polished Ts. Therefore, it is possible to suppress the abrasive grains G in the polishing fluid F from being settled and depositing unevenly on the surface to be polished. Accordingly, the abrasive grains G are not depleted and the abrasive grains G are also prevented from staying, and the abrasive grains G spread more uniformly on the surface to be polished Ts, so that the entire surface to be polished Ts is flattened with higher accuracy. be able to.

本実施形態では、研磨対象面に研磨用工具を部分的に摺接させて対象体を研磨する、いわゆるポットホールを例に説明しているが、本発明の研磨用工具を用いた研磨は、いわゆるポットホール研磨のみに限定されない。また、上記実施形態ではウレタンを用いたが、研磨用工具1の本体の材質についても特に限定はされず、研磨用工具の形状や大きさ、対
象体の材質等も特に限定はされない。本発明は上記実施例に限定されるものでなく、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよいのはもちろんである。
In the present embodiment, a so-called pothole is described as an example in which a polishing tool is partially slidably brought into contact with the surface to be polished, and polishing is performed using the polishing tool of the present invention. It is not limited only to so-called pothole polishing. In the above embodiment, urethane is used. However, the material of the main body of the polishing tool 1 is not particularly limited, and the shape and size of the polishing tool, the material of the object, and the like are not particularly limited. Of course, the present invention is not limited to the above-described embodiments, and various improvements and modifications may be made without departing from the scope of the present invention.

1、120 研磨用工具
2 本体
3 回転軸
4 研磨面
12 底面
20 ホール部
30 当接部
32 軌跡
32a 始点
32b 終点
34 凹部
35、36 エッジ部
110 研磨対象物
122 研磨面
130 凹部
132 底面
DESCRIPTION OF SYMBOLS 1,120 Polishing tool 2 Main body 3 Rotating shaft 4 Polishing surface 12 Bottom surface 20 Hole portion 30 Contact portion 32 Trajectory 32a Start point 32b End point 34 Recess 35, 36 Edge portion 110 Object to be polished 122 Polishing surface 130 Recess 132 Bottom surface

Claims (7)

研磨面を備え、前記研磨面の中央に位置する回転中心位置を通る回転軸の周りに前記研磨面が回転する研磨用工具であって、
前記研磨面は、研磨する対象体に当接する当接部と、前記回転中心位置を含み、前記対象体と当接しない凹部とを備え、
前記研磨面における任意位置から前記回転中心位置までの距離をx(m)とし、
前記回転中心位置を中心とした、前記任意位置を通る仮想円の円周長をR(x)(m)とし、
前記仮想円の円周のうち前記当接部を通る部分の、前記仮想円の合計円周長をL(x)(m)としたとき、
前記研磨面は、
前記回転中心位置を含み、L(x)=0を満たす第1領域と、
前記第1領域と前記研磨面の外周線との間で、かつ前記第1領域と接する、0.6≦L(x)/R(x)0.6≦1を満たす第2領域と、
前記第2領域と前記外周線との間で、かつ前記第2領域と接する、0.4≦L(x)/R(x)<0.6を満たす第3領域と、
前記第3領域と前記外周線との間で、かつ前記外周線と接する、0.8≦L(x)/R(x)≦1を満たす第4領域とを備えることを特徴とする研磨用工具。
A polishing tool comprising a polishing surface, wherein the polishing surface rotates about a rotation axis passing through a rotation center position located at the center of the polishing surface,
The polishing surface includes a contact portion that contacts a target object to be polished, and a concave portion that includes the rotation center position and does not contact the target object.
X (m) is a distance from an arbitrary position on the polishing surface to the rotation center position;
R (x) (m) is the circumferential length of the virtual circle that passes through the arbitrary position with the rotation center position as the center,
When the total circumference of the imaginary circle of the circumference of the imaginary circle passing through the contact portion is L (x) (m),
The polished surface is
A first region including the rotation center position and satisfying L (x) = 0;
A second region satisfying 0.6 ≦ L (x) / R (x) 0.6 ≦ 1 between the first region and the outer peripheral line of the polishing surface and in contact with the first region;
A third region satisfying 0.4 ≦ L (x) / R (x) <0.6 between the second region and the outer peripheral line and in contact with the second region;
A fourth region satisfying 0.8 ≦ L (x) / R (x) ≦ 1 between the third region and the outer peripheral line and in contact with the outer peripheral line. tool.
前記第3領域と前記第4領域との間で、かつL(x)/R(x)の値がxの増加に伴って増加する第5領域をさらに備えることを特徴とする請求項1記載の研磨用工具。 The fifth region is further provided between the third region and the fourth region, and a value of L (x) / R (x) increases as x increases. Polishing tool. 前記第2領域が、0.9≦L(x)/R(x)≦1を満たすことを特徴とする請求項1または2記載の研磨用工具。 The polishing tool according to claim 1, wherein the second region satisfies 0.9 ≦ L (x) / R (x) ≦ 1. 前記第3領域に、前記仮想円の円周に沿って分散した複数の凹部を備えることを特徴とする請求項1〜3のいずれかに記載の研磨用工具。   The polishing tool according to any one of claims 1 to 3, wherein the third region includes a plurality of concave portions dispersed along the circumference of the virtual circle. 前記第2領域がL(x)/R(x)≦1を満たし、前記第1領域の前記凹部と、前記第3領域の前記凹部とが、前記第2領域を介して分離されていることを特徴とする請求項4記載の研磨用工具。 The second region satisfies L (x) / R (x) ≦ 1, and the concave portion of the first region and the concave portion of the third region are separated via the second region. The polishing tool according to claim 4. 前記凹部の形状および配置が、前記回転中心位置に関して回転対称の関係にあることを特徴とする請求項1〜5のいずれかに記載の研磨用工具。   The polishing tool according to claim 1, wherein the shape and arrangement of the recesses are rotationally symmetric with respect to the rotation center position. 前記回転中心位置を中心とした前記研磨面の半径をrとしたとき、
前記第1領域における前記距離xは0<x≦0.2rであり、
前記第2領域における前記距離xは0.2r<x≦0.3rであり、
前記第3領域における前記距離xは0.85r<x≦rであることを特徴とする請求項1〜6のいずれかに記載の研磨用工具。
When the radius of the polishing surface centered on the rotation center position is r,
The distance x in the first region is 0 <x ≦ 0.2r,
The distance x in the second region is 0.2r <x ≦ 0.3r,
The polishing tool according to claim 1, wherein the distance x in the third region is 0.85r <x ≦ r.
JP2011039337A 2011-02-25 2011-02-25 Tool for polishing Withdrawn JP2012176446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039337A JP2012176446A (en) 2011-02-25 2011-02-25 Tool for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039337A JP2012176446A (en) 2011-02-25 2011-02-25 Tool for polishing

Publications (1)

Publication Number Publication Date
JP2012176446A true JP2012176446A (en) 2012-09-13

Family

ID=46978684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039337A Withdrawn JP2012176446A (en) 2011-02-25 2011-02-25 Tool for polishing

Country Status (1)

Country Link
JP (1) JP2012176446A (en)

Similar Documents

Publication Publication Date Title
US8398464B2 (en) Grinding wheel truing tool and manufacturing method thereof, and truing apparatus, method for manufacturing grinding wheel and wafer edge grinding apparatus using the same
JP5635957B2 (en) Polishing method of polishing object and polishing pad
EP2351630A1 (en) Apparatus for polishing spherical body, method for polishing spherical body and method for manufacturing spherical member
JP2014156006A (en) Method for conditioning polishing pads for simultaneous double-side polishing of semiconductor wafer
JP4624293B2 (en) CMP pad conditioner
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
JP6280355B2 (en) Manufacturing method of magnetic disk substrate and carrier for polishing treatment
JP6394569B2 (en) Wafer polishing method and polishing apparatus
TWI622461B (en) Carrier ring, grinding device, and grinding method
JPWO2015190189A1 (en) Polishing tool, polishing method and polishing apparatus
JP4749700B2 (en) Polishing cloth, wafer polishing apparatus and wafer manufacturing method
JP2012176446A (en) Tool for polishing
TW201600229A (en) Scribing wheel and method of manufacturing same
JP2011036974A (en) Polishing method and polishing device
JP5206194B2 (en) Truing method and truing device for grinding wheel
JP2017124460A (en) Method and apparatus for continuously processing non-spherical shape of workpiece by cup shaped grind stone
JP6627634B2 (en) Grinding equipment
CN107427985B (en) The grinding method of diamond surface and the device for implementing the grinding method
JP2003205459A (en) Polishing machining device and method
JP3466880B2 (en) Processing method of spherical shape such as lens
EP3217143B1 (en) Stylus and measurement method
JP4194563B2 (en) CMP pad conditioner
JP5239843B2 (en) Cutting tool re-polishing equipment
JP4370743B2 (en) Polishing wheel dressing equipment
JP2015009293A (en) Dress-processing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513