JP2012175738A - Permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2012175738A
JP2012175738A JP2011032664A JP2011032664A JP2012175738A JP 2012175738 A JP2012175738 A JP 2012175738A JP 2011032664 A JP2011032664 A JP 2011032664A JP 2011032664 A JP2011032664 A JP 2011032664A JP 2012175738 A JP2012175738 A JP 2012175738A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
magnet
magnetized
recoil permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011032664A
Other languages
Japanese (ja)
Inventor
Tadashi Tokumasu
正 徳増
Yutaka Hashiba
豊 橋場
Norio Takahashi
則雄 高橋
Masanori Shin
政憲 新
Kazuaki Yuki
和明 結城
Daisuke Misu
大輔 三須
Shinya Sakurada
新哉 桜田
Yosuke Horiuchi
陽介 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011032664A priority Critical patent/JP2012175738A/en
Publication of JP2012175738A publication Critical patent/JP2012175738A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet type rotary electric machine which can operate at a variable speed over a wide range from a low speed to a high speed, have high efficiency in the whole operation range from the low speed to the high speed, and reduce the capacity of a power element of an inverter.SOLUTION: The permanent magnet type rotary electric machine is characterized in: forming magnetic poles of a rotor using two or more kinds of permanent magnet differing in recoil magnetic permeability; forming the rotor by arranging the plurality of magnetic poles in a rotor icon core; arranging a stator at an outer periphery of the rotor across an air gap; providing the stator with an armature icon core and an armature winding; and reversibly changing a magnetic flux amount of the permanent magnets constituting the magnetic poles of the rotor with a magnetic field produced by the armature winding. Consequently, a reverse magnetic field operates on the respective permanent magnets in a weak field magnetic region of high-speed rotation, but permanent magnets having small recoil magnetic permeability do not have large change of magnetic flux because of their characteristics. Permanent magnets having large recoil magnetic permeability, however, have great decrease of magnetic flux as the reverse magnetic field operates on them.

Description

本発明の本実施形態は、2種類以上の永久磁石を使用し、そのうちの少なくとも1つの永久磁石の磁束量を可逆的に変化させて、低速から高速までの広範囲での可変速運転を可能とした永久磁石式回転電機に関する。   In this embodiment of the present invention, two or more types of permanent magnets are used, and the amount of magnetic flux of at least one of the permanent magnets is reversibly changed to enable variable speed operation in a wide range from low speed to high speed. The present invention relates to a permanent magnet type rotating electrical machine.

回転子内に永久磁石を内蔵した永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部晶に印加されてその耐電圧以上になると、電子部晶が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。   In a permanent magnet type rotating electrical machine in which a permanent magnet is built in a rotor, the interlinkage magnetic flux of the permanent magnet is always generated with a constant strength, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation. When the induced voltage by the permanent magnet is applied to the electronic part crystal of the inverter and exceeds the withstand voltage, the electronic part crystal breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage, but in that case, the output and efficiency in the low speed region of the permanent magnet type rotating electrical machine are reduced.

すなわち、低速から高速まで走出力に近い可変速運転を行う場合、永久磁石の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転までの広範囲で駆動できなくなる。   In other words, when performing variable speed operation close to running output from low speed to high speed, the flux linkage of the permanent magnet is constant, so in the high speed rotation range, the voltage of the rotating electrical machine reaches the upper limit of the power supply voltage and the current required for output is It stops flowing. As a result, the output is greatly reduced in the high-speed rotation region, and further, it cannot be driven in a wide range up to the high-speed rotation.

特開2006−280195号公報JP 2006-280195 A 特願2008−296080号公報Japanese Patent Application No. 2008-296080

埋込磁石同期モータの設計と制御,武田洋次・他,オーム社Design and control of embedded magnet synchronous motor, Yoji Takeda et al., Ohm

本発明は上述した課題を解決するためになされたものであり、低速から高速までの広範囲で可変速運転を可能とし、低速から高速までの全運転範囲で高効率にでき、インバータのパワー素子容量も低減できる永久磁石式型回転電機を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, enables variable speed operation in a wide range from low speed to high speed, and can achieve high efficiency in the entire operation range from low speed to high speed. An object of the present invention is to obtain a permanent magnet type rotating electrical machine that can also reduce the amount of electric power.

前記の目的を達成するために、本発明の実施形態の永久磁石式回転電機によれば、リコイル透磁率の異なる2種類以上の永久磁石を用いて回転子の磁極を形成し、この磁極を回転子鉄心内に複数個配置して回転子を形成し、この回転子の外周にエアギャップを介して固定子を配置し、この固定子に電機子鉄心と電機子巻線を設け、この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の磁束量を可逆的に変化させることを特徴とする。   In order to achieve the above object, according to the permanent magnet type rotating electric machine of the embodiment of the present invention, the magnetic pole of the rotor is formed by using two or more kinds of permanent magnets having different recoil permeability, and this magnetic pole is rotated. A plurality of rotors are arranged in the core of the rotor to form a rotor, and a stator is disposed on the outer periphery of the rotor via an air gap. The stator is provided with an armature core and an armature winding. The magnetic flux amount of the permanent magnet constituting the magnetic pole of the rotor is reversibly changed by the magnetic field generated by the winding.

本発明の実施例1の回転子の1極分の断面図Sectional drawing for 1 pole of the rotor of Example 1 of this invention 本発明の実施例1のリコイル透磁率が異なる2種類の磁石の磁気特性を示すグラフThe graph which shows the magnetic characteristic of two types of magnets from which the recoil permeability of Example 1 of this invention differs 本発明の実施例1の変形例の回転子1極分の断面図Sectional drawing for 1 pole of the rotor of the modification of Example 1 of this invention 本発明の実施例2の回転子斜視図The rotor perspective view of Example 2 of the present invention. 本発明の実施例3の永久磁石配列と低速回転時の磁束波形の概念図Conceptual diagram of permanent magnet arrangement and magnetic flux waveform during low-speed rotation in Example 3 of the present invention 本発明の実施例3の永久磁石配列と高速回転時の磁束波形の概念図Conceptual diagram of permanent magnet arrangement and magnetic flux waveform at high speed rotation of Example 3 of the present invention 本発明の実施例4の回転子1極分の断面図Sectional drawing for 1 pole of rotor of Example 4 of this invention 本発明の実施例5の回転子1極分の断面図Sectional drawing for 1 pole of rotor of Example 5 of this invention 本発明の実施例5の変形例の回転子1極分の断面図Sectional drawing for 1 pole of the rotor of the modification of Example 5 of this invention 本発明の実施例6の回転子1極分の断面図Sectional drawing for 1 pole of rotor of Example 6 of this invention 本発明の実施例6の永久磁石を得るための着磁時の着磁ヨーク構造断面図Cross-sectional view of a magnetized yoke structure during magnetization to obtain a permanent magnet of Example 6 of the present invention 本発明の実施例6の永久磁石を得るための着磁時の着磁ヨークの変形例の構造断面図Structural sectional drawing of the modification of the magnetizing yoke at the time of magnetization for obtaining the permanent magnet of Example 6 of the present invention

以下、本発明に係る永久磁石式回転電機の実施例について、図面を参照して説明する。本実施例の回転電機は8極の場合で説明しているが、他の極数でも同様に適用できる。   Embodiments of a permanent magnet type rotating electrical machine according to the present invention will be described below with reference to the drawings. Although the rotating electrical machine of the present embodiment has been described with eight poles, the present invention can be similarly applied to other numbers of poles.

(実施例1)
[1−1.基本的な構成]
本発明の本実施例1の構成について、図1〜図3を用いて説明する。
Example 1
[1-1. Basic configuration]
The configuration of the first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の実施例1の回転子1の1極分の断面図である。本実施例1は、図1に示すように、回転子鉄心2、固定子3、リコイル透磁率が小となる永久磁石4、リコイル透磁率が大となる永久磁石5から構成する。リコイル透磁率が小となる永久磁石4及びリコイル透磁率が大となる永久磁石5は、リコイル透磁率がそれぞれ異なる磁石であれば良く、その材質や製造方法及び磁石の磁気特性の付与の仕方などは自由である。   FIG. 1 is a cross-sectional view of one pole of a rotor 1 according to a first embodiment of the present invention. As shown in FIG. 1, the first embodiment is composed of a rotor core 2, a stator 3, a permanent magnet 4 having a small recoil permeability, and a permanent magnet 5 having a large recoil permeability. The permanent magnet 4 having a small recoil permeability and the permanent magnet 5 having a large recoil permeability may be magnets having different recoil permeability, such as a material, a manufacturing method, and a method of imparting magnetic characteristics of the magnet. Is free.

回転子鉄心2においては、リコイル透磁率が小となる永久磁石4及びリコイル透磁率が大となる永久磁石5を、磁極部の磁極中心に対し直角をなす方向に、一直線上に配置する。すなわち、リコイル透磁率が大となる永久磁石4とリコイル透磁率が小となる永久磁石5は磁気回路上で並列になるように配置する。同時に、リコイル透磁率が大となる永久磁石5は磁極部の磁極中心を基準として、回転子2の回転方向進み側に配置される共に、リコイル透磁率が小となる永久磁石4は磁極部の磁極中心を基準として、回転子2の回転方向遅れ側に配置する。この時、磁極部における磁極中心軸方向がd軸、磁極部の磁極間における中心軸方向がq軸となる。   In the rotor core 2, the permanent magnet 4 having a small recoil permeability and the permanent magnet 5 having a large recoil permeability are arranged in a straight line in a direction perpendicular to the magnetic pole center of the magnetic pole portion. That is, the permanent magnet 4 having a large recoil permeability and the permanent magnet 5 having a small recoil permeability are arranged in parallel on the magnetic circuit. At the same time, the permanent magnet 5 having a large recoil permeability is disposed on the side of the rotor 2 in the rotation direction with respect to the magnetic pole center of the magnetic pole portion, and the permanent magnet 4 having a small recoil permeability is the magnetic pole portion. It arrange | positions on the rotation direction delay side of the rotor 2 on the basis of the magnetic pole center. At this time, the magnetic pole central axis direction in the magnetic pole part is d-axis, and the central axis direction between the magnetic poles in the magnetic pole part is q-axis.

磁極部を形成するリコイル透磁率が小となる永久磁石4及びリコイル透磁率が大となる永久磁石5は、磁極部の磁極中心に対し直角をなす方向に一直線上に配置する以外に、V字状あるいはU字状に配置してもよい。また、図1では、リコイル透磁率が小となる永久磁石4及びリコイル透磁率が大となる永久磁石5は1個ずつであるが、それぞれ2個以上使用することもできる。   The permanent magnet 4 forming the magnetic pole part with a small recoil permeability and the permanent magnet 5 with a large recoil permeability arranged in a straight line in a direction perpendicular to the magnetic pole center of the magnetic pole part. You may arrange in a shape or U shape. In FIG. 1, the number of permanent magnets 4 having a small recoil permeability and the number of permanent magnets 5 having a large recoil permeability are one, but two or more can be used.

リコイル透磁率が小となる永久磁石4の周囲には導電性部材を配置する。図1に示すように、導電性部材としては、リコイル透磁率が大となる永久磁石5の表面を導電性材料によりコーティングすることに得られる導電性コーティング層8を設けても良い。また、本実施例の変形例としては、導電性部材として導電性コーティング層8の代わりに、図2に示すように、リコイル透磁率が大となる永久磁石5の磁化方向に導電性部材からなる短絡コイル9を設けることもできる。   A conductive member is disposed around the permanent magnet 4 having a small recoil permeability. As shown in FIG. 1, as the conductive member, a conductive coating layer 8 obtained by coating the surface of the permanent magnet 5 having a large recoil permeability with a conductive material may be provided. As a modification of the present embodiment, instead of the conductive coating layer 8 as a conductive member, as shown in FIG. 2, the conductive member is made of a conductive member in the magnetization direction of the permanent magnet 5 having a large recoil permeability. A short-circuit coil 9 can also be provided.

また、回転子鉄心2の外周には、エアギャップを介して固定子3を設ける。図示していないが、この固定子は、電機子鉄心と電機子巻線とを有する。この電機子巻線に流れる電流により、磁界を発生させるものである。また、この電機子巻線は、永久磁石式回転電機の外部に設けられた電源システムに接続される。電源システムでは、インバータを利用して、永久磁石式回転電機が駆動するのに必要な電力を供給する。このインバータに利用する電子部品の耐電圧は、回転子の磁極の磁石を可逆変化させて鎖交磁束を最小にした状態で、回転子が最高回転になった時の誘導起電圧に耐えることができるものとする。   A stator 3 is provided on the outer periphery of the rotor core 2 through an air gap. Although not shown, this stator has an armature core and an armature winding. A magnetic field is generated by the current flowing through the armature winding. The armature winding is connected to a power supply system provided outside the permanent magnet type rotating electric machine. In the power supply system, an electric power necessary for driving the permanent magnet type rotating electric machine is supplied using an inverter. The withstand voltage of the electronic components used in this inverter can withstand the induced electromotive voltage when the rotor reaches maximum rotation with the linkage magnetic flux minimized by reversibly changing the magnetic pole of the rotor. It shall be possible.

[1−2.リコイル透磁率が異なる永久磁石の特徴]
リコイル透磁率が異なる2種類の永久磁石の特徴について説明する。図3は、リコイル透磁率が異なる2種類の磁石A,Bの磁気特性を示すグラフである。
[1-2. Characteristics of permanent magnets with different recoil permeability]
The characteristics of two types of permanent magnets having different recoil permeability will be described. FIG. 3 is a graph showing the magnetic characteristics of two types of magnets A and B having different recoil permeability.

図3において、リコイル透磁率は、磁石のB−H曲線の傾きで表される。理想的な角型のI−H曲線を有する磁石Aでは、リコイル透磁率は1となる。また、傾きのあるI−H曲線を有する磁石Bでは、リコイル透磁率は1より大きくなる。従って、磁石Aの磁気特性を示す永久磁石をリコイル透磁率が小となる永久磁石4として使用すると共に、磁石Bの磁気特性を示す永久磁石をリコイル透磁率が大となる永久磁石5として使用することができる。   In FIG. 3, the recoil permeability is represented by the slope of the BH curve of the magnet. In the magnet A having an ideal square IH curve, the recoil permeability is 1. Further, in the magnet B having an inclined IH curve, the recoil permeability is larger than 1. Therefore, the permanent magnet showing the magnetic characteristics of the magnet A is used as the permanent magnet 4 having a small recoil permeability, and the permanent magnet showing the magnetic characteristics of the magnet B is used as the permanent magnet 5 having a large recoil permeability. be able to.

一般的な磁石材料に対して完全に着磁した磁石のリコイル透磁率は、概ね1であり、リコイル透磁率の大きな特性の磁石を得ることは、難しい。しかしながら、アルニコ磁石は完全着磁状態でリコイル透磁率は概ね3程度であるので、図3の磁石Bの特性を示す。従って、リコイル透磁率が大となる永久磁石5としては、アルニコ磁石等の完全着磁した状態でリコイル透磁率が1より大きくなる磁石を用いても同様の効果が得られる。   The recoil permeability of a magnet that is completely magnetized with respect to a general magnet material is approximately 1, and it is difficult to obtain a magnet having a large recoil permeability characteristic. However, since the alnico magnet is in a fully magnetized state and the recoil permeability is about 3 or so, the characteristics of the magnet B in FIG. 3 are shown. Therefore, the same effect can be obtained even if a permanent magnet 5 having a large recoil permeability, such as an alnico magnet, having a recoil permeability larger than 1 is used as the permanent magnet 5 having a large recoil permeability.

また、リコイル透磁率が大となる永久磁石5としては、高保磁力のハード磁性相と高残留磁束密度のソフト磁性相と有するナノコンポジット磁石粉末を含むボンド磁石が用いることができる。このようなボンド磁石では、ナノコンポジット磁石粉末におけるソフト磁性相の体積比率を調整することによってリコイル透磁率を容易に大きくできるため、リコイル透磁率が大となる永久磁石5と同様の効果を得ることができる。   Further, as the permanent magnet 5 having a large recoil permeability, a bonded magnet including a nanocomposite magnet powder having a hard magnetic phase having a high coercive force and a soft magnetic phase having a high residual magnetic flux density can be used. In such a bond magnet, the recoil permeability can be easily increased by adjusting the volume ratio of the soft magnetic phase in the nanocomposite magnet powder, so that the same effect as that of the permanent magnet 5 having a large recoil permeability can be obtained. Can do.

[1−3.完全着磁磁石及び不完全着磁磁石の特徴]
完全着磁磁石及び不完全着磁磁石について説明する。
[1-3. Features of fully magnetized magnets and incompletely magnetized magnets]
The fully magnetized magnet and the incompletely magnetized magnet will be described.

磁石材料の中でネオジウム(NdFeB)磁石などの一般的な磁性材料の磁石においては、磁性材料に対して完全に着磁した状態では、図3の磁石Aの磁気特性を示す。一方、磁性材料において不完全に着磁した状態では、図3の磁石Bの特性を示す。従って、リコイル透磁率が小となる永久磁石4としては完全に着磁した磁石(以下、完全着磁磁石)とし、リコイル透磁率が大となる永久磁石5は不完全に着磁した磁石(以下、不完全着磁磁石)とすることができる。   A magnet of a general magnetic material such as a neodymium (NdFeB) magnet among the magnet materials shows the magnetic characteristics of the magnet A of FIG. 3 when the magnet is completely magnetized. On the other hand, when the magnetic material is incompletely magnetized, the characteristics of the magnet B in FIG. 3 are shown. Therefore, the permanent magnet 4 having a small recoil permeability is a completely magnetized magnet (hereinafter referred to as a fully magnetized magnet), and the permanent magnet 5 having a large recoil permeability is an incompletely magnetized magnet (hereinafter referred to as a magnet). , Incompletely magnetized magnets).

このような完全着磁磁石及び不完全着磁磁石は、磁石に所定の磁力を着磁した後に回転子1に組み込むことも可能であるが、着磁後に完全着磁磁石及び不完全着磁磁石となる磁石を回転子鉄心2に組み込んで回転子を構成し、その後、着磁(後着磁)を行うこともできる。この後着磁を行うことにより、着磁前の磁石を回転子に組み込むことができ、着磁後の磁石を挿入することと比較して作業効率を大幅に改善することができる。   Such a fully magnetized magnet and an incompletely magnetized magnet can be incorporated into the rotor 1 after magnetizing a magnet with a predetermined magnetic force. It is also possible to construct a rotor by incorporating a magnet to become the rotor core 2 and thereafter perform magnetization (post-magnetization). By performing this post-magnetization, the magnet before magnetization can be incorporated into the rotor, and the working efficiency can be greatly improved as compared with inserting the magnet after magnetization.

[1−4.基本的な作用]
つぎに、実施例1において、作用について説明する。
本実施例の様な構成を有する永久磁石式回転電機は、回転子の回転速度により、不完全着磁磁石の磁束量を変化させる。回転子1における総鎖交磁束数は、リコイル透磁率が小となる永久磁石4から生じる磁束とリコイル透磁率が大となる永久磁石5とから生じる磁束との総和となる。
[1-4. Basic action]
Next, the operation of the first embodiment will be described.
The permanent magnet type rotating electrical machine having the configuration as in this embodiment changes the amount of magnetic flux of the incompletely magnetized magnet according to the rotational speed of the rotor. The total number of flux linkages in the rotor 1 is the sum of the magnetic flux generated from the permanent magnet 4 having a small recoil permeability and the magnetic flux generated from the permanent magnet 5 having a large recoil permeability.

低速回転領域時には、各磁石の動作点は、図3の磁石A(リコイル透磁率が小となる永久磁石の動作点)の動作点Aと磁石B(リコイル透磁率が大となる永久磁石の動作点)の動作点Aとからなる。すなわち、磁石A,BのB−H曲線において、磁束密度が高い動作点となり、大きなトルクを得ることが可能になる。   In the low-speed rotation region, the operating points of the magnets are the operating points A and B of the magnet A (the operating point of the permanent magnet having a small recoil permeability) and the operating of the magnet B (the permanent magnet having a large recoil permeability) in FIG. Point) operating point A. That is, in the BH curves of the magnets A and B, the operating point has a high magnetic flux density, and a large torque can be obtained.

一方、高速回転領域では、誘起電圧を抑えるために、弱め磁界制御を行う。弱め磁界制御は、必要なトルクを得るための電流位相よりもさらに位相を進めた電流を流し磁界を発生させるものである。この磁界は、回転子1のリコイル透磁率が小となる永久磁石4及びリコイル透磁率が大となる永久磁石5に対して、逆磁界として作用する。従って、完全着磁磁石3及び不完全着磁磁石4の動作点は、夫々動作点Aから動作点Bに移動する。すなわち、磁石A,BのB−H曲線において、磁束密度が低い動作点となり、鎖交磁束数を少なくすることができる。よって、固定子のコイルによって誘起される誘起電圧を抑えることができる。   On the other hand, in the high-speed rotation region, a weak magnetic field control is performed to suppress the induced voltage. In the weak magnetic field control, a magnetic field is generated by passing a current whose phase is further advanced than the current phase for obtaining a necessary torque. This magnetic field acts as a reverse magnetic field on the permanent magnet 4 having a small recoil permeability of the rotor 1 and the permanent magnet 5 having a large recoil permeability. Accordingly, the operating points of the fully magnetized magnet 3 and the incompletely magnetized magnet 4 move from the operating point A to the operating point B, respectively. That is, in the BH curves of the magnets A and B, the operating point has a low magnetic flux density, and the number of flux linkages can be reduced. Therefore, the induced voltage induced by the stator coil can be suppressed.

[1−5.リコイル透磁率が大となる永久磁石5の作用]
弱め磁界制御による磁界によりリコイル透磁率が大となる永久磁石5の磁束密度は、リコイル透磁率が小となる永久磁石4の磁束密度と比較して大幅に低下する。すなわち、リコイル透磁率が大となる永久磁石5を使用することにより、弱め磁界制御を行う際の電流を少なくすることができるため、弱め磁界制御を行う際の銅損を低減することができる。
[1-5. Action of permanent magnet 5 with large recoil permeability]
The magnetic flux density of the permanent magnet 5 in which the recoil permeability is increased by the magnetic field by the weakening magnetic field control is significantly lower than the magnetic flux density of the permanent magnet 4 in which the recoil permeability is decreased. That is, by using the permanent magnet 5 having a large recoil permeability, it is possible to reduce the current when performing the weakening magnetic field control, and therefore it is possible to reduce the copper loss when performing the weakening magnetic field control.

また、弱め磁界制御の減磁界は高調波磁束を生じ、この高調波磁束で生じる電圧の増加は弱め磁束制御による電圧の低減の限界を作る。しかしながら、リコイル透磁率が小となる永久磁石4は、弱め磁界制御を行う際の電流が少なく済むので、高調波磁束の増加を抑制することができる。また、高調波磁束による鉄損の増加、中・高速域での効率の低下、または、高調波磁束による振動の発生を抑えることができる。   Further, the demagnetizing field of the weak magnetic field control generates a harmonic magnetic flux, and an increase in the voltage generated by the harmonic magnetic flux creates a limit of the voltage reduction by the weak magnetic flux control. However, since the permanent magnet 4 having a small recoil permeability requires less current when performing weakening magnetic field control, an increase in harmonic magnetic flux can be suppressed. Further, it is possible to suppress an increase in iron loss due to the harmonic magnetic flux, a decrease in efficiency in the middle / high speed range, or a vibration due to the harmonic magnetic flux.

[1−6.導電性部材の作用]
次に、導電性部材の作用について述べる。一般的には、インバータではスイッチングの際に短時間のパルス電流が生ずる恐れがある。そのような場合に予期しない不可逆的な減磁または増磁がおき、リコイル透磁率が変化してしまい、前記のような効果が得られなくなる場合もある。特に、リコイル透磁率が大となる永久磁石5はリコイル透磁率が小となる永久磁石4に比べ、小さな逆磁界で不可逆減磁を生ずる。
[1-6. Action of conductive member]
Next, the operation of the conductive member will be described. In general, in an inverter, a short-time pulse current may occur during switching. In such a case, unexpected irreversible demagnetization or magnetization may occur, the recoil permeability may change, and the above effects may not be obtained. In particular, the permanent magnet 5 having a large recoil permeability causes irreversible demagnetization with a small reverse magnetic field as compared with the permanent magnet 4 having a small recoil permeability.

これに対して、リコイル透磁率が大となる永久磁石5の周囲に導電性部材を配置することにより、前記のようなパルス状の電流によって生じた、パルス状の磁束がリコイル透磁率が大となる永久磁石5を通過しようとすると、その磁束の変化を妨げるように導電性コーティングに電流が流れる。これにより、リコイル透磁率が大となる永久磁石5の不可逆的な増磁または減磁を妨げることができる。   On the other hand, by arranging a conductive member around the permanent magnet 5 having a large recoil permeability, the pulsed magnetic flux generated by the pulsed current as described above has a large recoil permeability. When trying to pass through the permanent magnet 5, a current flows through the conductive coating so as to prevent the magnetic flux from changing. Thereby, the irreversible magnetizing or demagnetizing of the permanent magnet 5 having a large recoil permeability can be prevented.

[1−7.効果]
以上のような実施例1の効果としては、リコイル透磁率が大の完全着磁磁石3とリコイル透磁率が小の不完全着磁磁石とを合わせた総鎖交磁束量を、少ない弱め磁界電流によって減じることができる。これにより、高速回転における弱め界電制御による損失増加を最小限にすることができ、高効率に運転ができる。また、低速回転時には、逆磁界を小さくすることができるので、総鎖交磁束量は元に戻る。
[1-7. effect]
The effect of the first embodiment as described above is that the total interlinkage magnetic flux amount of the fully magnetized magnet 3 having a large recoil permeability and the incompletely magnetized magnet having a small recoil permeability is reduced by a weak magnetic field current. Can be reduced by. As a result, an increase in loss due to field weakening control at high speed rotation can be minimized, and operation can be performed with high efficiency. Moreover, since the reverse magnetic field can be reduced during low-speed rotation, the total flux linkage returns to the original.

このように、運転状況に応じて、総鎖交磁束量を調整することができるので、低速から高速域までの広範囲で高効率に運転することができる。同時に、リコイル透磁率が低い磁石を使用することにより、鎖交磁束を変化させるときに要するd軸磁化電流を小さくできるので、回転電機を運転するパワー素子や電源容量を小さくできる。   Thus, since the total flux linkage can be adjusted according to the operating conditions, it is possible to operate with high efficiency over a wide range from low speed to high speed. At the same time, by using a magnet having a low recoil permeability, the d-axis magnetization current required for changing the flux linkage can be reduced, so that the power element and power supply capacity for operating the rotating electrical machine can be reduced.

(実施例2)
[2−1.構成]
本発明の本実施例2の構成について、図4を用いて説明する。図4は、本発明の実施例2を示す回転子1の斜傾図である。
(Example 2)
[2-1. Constitution]
The configuration of the second embodiment of the present invention will be described with reference to FIG. FIG. 4 is an oblique view of the rotor 1 showing Embodiment 2 of the present invention.

実施例2では、回転子1の半径方向断面は図1と同じであるが、回転子鉄芯2は軸方向に2分割されて構成されている。すなわち、回転子鉄心2は、回転子鉄心2Aと回転子鉄心2Bとから構成される。   In Example 2, the radial cross section of the rotor 1 is the same as that in FIG. 1, but the rotor iron core 2 is divided into two in the axial direction. That is, the rotor core 2 is composed of a rotor core 2A and a rotor core 2B.

このように構成した回転子1で、回転子鉄心2Aの磁石位置は回転方向に対して進み角側にリコイル透磁率が大となる永久磁石5を配置し、遅れ側にリコイル透磁率が小となる永久磁石4を配置する。もう一方の回転子鉄心2Bの磁石位置は回転方向に対して進み角側にリコイル透磁率が小となる永久磁石4を配置し、遅れ側にリコイル透磁率が大となる永久磁石5を配置する。   In the rotor 1 configured as described above, the magnet position of the rotor core 2A is arranged such that the permanent magnet 5 having a large recoil permeability is arranged on the angle side with respect to the rotation direction, and the recoil permeability is small on the delay side. The permanent magnet 4 is arranged. As for the magnet position of the other rotor core 2B, the permanent magnet 4 having a small recoil permeability is arranged on the angle side with respect to the rotation direction, and the permanent magnet 5 having a large recoil permeability is arranged on the delay side. .

[2−2.作用効果]
このように構成された永久磁石型回転電機では、実施例1の効果に加えて、スキュー効果が得られる。すなわち、磁束分布が異なる2つの回転子鉄心2Aと回転子鉄心2Bを組み合わせることにより、回転子1表面上の磁束分布がより正弦波に近い波形となる。これにより、本実施例の永久磁石型回転電機では、高調波鉄損が減少し、高効率な運転が可能になる。
[2-2. Effect]
In the permanent magnet type rotating electrical machine configured as described above, a skew effect can be obtained in addition to the effects of the first embodiment. That is, by combining two rotor cores 2A and 2B having different magnetic flux distributions, the magnetic flux distribution on the surface of the rotor 1 becomes a waveform closer to a sine wave. Thereby, in the permanent magnet type rotating electrical machine of the present embodiment, the harmonic iron loss is reduced, and high-efficiency operation becomes possible.

(実施例3)
[3−1.構成]
本実施例3について、図5及び図6を用いて説明する。図5は、本発明の実施例3の永久磁石配列と低速回転時の磁束波形の概念図であり、図6は、本発明の実施例3の永久磁石配列と高速回転時の磁束波形の概念図である。
(Example 3)
[3-1. Constitution]
Example 3 will be described with reference to FIGS. 5 and 6. FIG. 5 is a conceptual diagram of the permanent magnet arrangement of Example 3 of the present invention and the magnetic flux waveform at low speed rotation, and FIG. 6 is the concept of the permanent magnet arrangement of Example 3 of the present invention and the magnetic flux waveform at high speed rotation. FIG.

実施例3は、実施例1のリコイル透磁率が小となる永久磁石4とリコイル透磁率が大となる永久磁石5の位置を変更したものである。実施例3においては、リコイル透磁率が小となる永久磁石4を磁極部の回転方向中央部に配置し、リコイル透磁率が大となる永久磁石5をリコイル透磁率が小となる永久磁石4の回転方向前後に配置する。   In the third embodiment, the positions of the permanent magnet 4 having a small recoil permeability and the permanent magnet 5 having a large recoil permeability in the first embodiment are changed. In the third embodiment, the permanent magnet 4 having a small recoil permeability is disposed in the central portion in the rotation direction of the magnetic pole part, and the permanent magnet 5 having a large recoil permeability is formed of the permanent magnet 4 having a small recoil permeability. Arrange before and after the rotation direction.

[3−2.作用効果]
このように構成された永久磁石回転電機では、低回転時は各磁石に対して大きな逆磁界はかからないので、各磁石てば図3の動作点Aに相当する磁束Aを発生する。従って、その磁束波形は、概ね図5の上部に示すように概ね矩形状の磁束波形となる。一方、高速回転時に時には、弱め磁界制御になると、各磁石には逆磁界が掛かるようになり、各磁石の動作点は図3の動作点Bの位置となり、両サイドに配置したリコイル透磁率が大となる永久磁石5の磁束が急激に減少し、磁束波形は図6の上部に示すように矩形波よりも正弦波に近い磁束波形となる、
[3-2. Effect]
In the permanent magnet rotating electric machine configured as described above, since a large reverse magnetic field is not applied to each magnet during low rotation, each magnet generates a magnetic flux A corresponding to the operating point A in FIG. Therefore, the magnetic flux waveform is a substantially rectangular magnetic flux waveform as shown in the upper part of FIG. On the other hand, at the time of high-speed rotation, when a weak magnetic field control is performed, a reverse magnetic field is applied to each magnet, the operating point of each magnet is the position of the operating point B in FIG. 3, and the recoil permeability arranged on both sides is The magnetic flux of the permanent magnet 5 that becomes large suddenly decreases, and the magnetic flux waveform becomes a magnetic flux waveform closer to a sine wave than a rectangular wave, as shown in the upper part of FIG.

従って、高速回転の弱め界磁領域では、弱め界磁を行なうことにより、両側の不完全着磁磁石が可逆減磁し矩形波よりも正弦波に近い磁束分布波形となり、高調波鉄損が減少するので、高効率な運転が可能となる。   Therefore, in the field weakening region of high-speed rotation, by performing field weakening, the incompletely magnetized magnets on both sides reversibly demagnetize, resulting in a magnetic flux distribution waveform that is closer to a sine wave than a rectangular wave, and harmonic iron loss is reduced. Therefore, highly efficient operation is possible.

(実施例4)
[4−1.構成]
本実施例4について、図7を用いて説明する。図7は、本発明の実施例4の回転子1極分の断面図である。
Example 4
[4-1. Constitution]
Example 4 will be described with reference to FIG. FIG. 7 is a cross-sectional view of one rotor pole according to the fourth embodiment of the present invention.

実施例4の構成は、回転子鉄心2の1つの磁極において、磁極の回転方向中央部にリコイル透磁率が小となる永久磁石4とリコイル透磁率が大となる永久磁石5とを半径方向に重ねて配置することにより、1つの磁極を形成している。すなわち、リコイル透磁率が小となる永久磁石4とリコイル透磁率が大となる永久磁石5とを直列に配置することにより、磁極を形成する。また、回転子1の外周には隙間を介して、コイルを有する固定子鉄心から成る固定子3が配置されており、前記固定子コイルを通電して形成される磁界で前記回転子1を回転させる。   In the configuration of the fourth embodiment, in one magnetic pole of the rotor core 2, a permanent magnet 4 having a small recoil permeability and a permanent magnet 5 having a large recoil permeability are arranged in the radial direction in the central portion in the rotation direction of the magnetic pole. One magnetic pole is formed by arranging them in an overlapping manner. That is, the magnetic pole is formed by arranging the permanent magnet 4 having a small recoil permeability and the permanent magnet 5 having a large recoil permeability in series. Further, a stator 3 composed of a stator iron core having a coil is disposed on the outer periphery of the rotor 1 through a gap, and the rotor 1 is rotated by a magnetic field formed by energizing the stator coil. Let

[4−2.作用効果]
このように構成された実施例5の回転電機では、他の実施例同様、回転数が高速回転領域に達すると回転子1内永久磁石による誘起電圧の増大を抑えるため、弱め界磁制御つまり電流位相を進めた電流を重畳する制御を行う。この弱め界磁制御は回転子1内の永久磁石には逆磁界として作用する。
[4-2. Effect]
In the rotating electric machine according to the fifth embodiment configured as described above, as in the other embodiments, when the rotational speed reaches the high speed rotation region, the field weakening control, that is, the current phase is set to suppress an increase in the induced voltage due to the permanent magnet in the rotor 1. Control to superimpose the advanced current is performed. This field weakening control acts on the permanent magnet in the rotor 1 as a reverse magnetic field.

この作用は、本実施例5においても同様で、不完全着磁磁石4は弱め界磁制御による逆磁界で磁力が弱まり、回転子1から発せられる鎖交磁束量は減少するので、弱め界磁電流が少なくて済み、損失が低減されて高効率運転が可能なことは他の実施例と同じであるが、完全着磁磁石5と不完全着磁磁石4を半径方向に重ねて、磁極の回転方向中央に配置することにより、磁石の周方向寸法を小さくすることができ、多極化が可能となる。   This effect is the same as in the fifth embodiment, and the incompletely magnetized magnet 4 is weakened by a reverse magnetic field by field weakening control, and the amount of flux linkage generated from the rotor 1 is reduced. As in the other embodiments, it is possible to reduce the loss, reduce the loss, and enable high-efficiency operation. However, the fully magnetized magnet 5 and the incompletely magnetized magnet 4 are overlapped in the radial direction to rotate the magnetic pole By disposing in the center, the circumferential dimension of the magnet can be reduced, and multipolarization is possible.

(実施例5)
[5−1.構成]
本発明の実施例5について図8を用いて説明する。図8は、本発明の実施例5の回転子1極分の半径方向断面図である。
(Example 5)
[5-1. Constitution]
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a radial cross-sectional view of one rotor pole according to the fifth embodiment of the present invention.

実施例5の構成は、回転子鉄心2の1つの磁極において、回転方向磁極中央にリコイル透磁率が大となる永久磁石5とリコイル透磁率が小となる永久磁石4とを半径方向に重ね合わせて配置し、その回転方向進み側と遅れ側の両方にリコイル透磁率が小となる永久磁石4を配置して磁極を構成している。また、回転子1の外周には隙間を介して、コイルを有する固定子鉄心から成る固定子3が配置されており、前記固定子コイルを通電して形成される磁界で前記回転子1を回転させる。   In the configuration of the fifth embodiment, in one magnetic pole of the rotor core 2, a permanent magnet 5 having a large recoil permeability and a permanent magnet 4 having a small recoil permeability are overlapped in the radial direction at the center of the magnetic pole in the rotation direction. The permanent magnet 4 having a small recoil permeability is arranged on both the advance side and the delay side in the rotational direction to constitute a magnetic pole. Further, a stator 3 composed of a stator iron core having a coil is disposed on the outer periphery of the rotor 1 through a gap, and the rotor 1 is rotated by a magnetic field formed by energizing the stator coil. Let

また図9は、本発明の実施例5のもう一つの回転電機の構成を示す回転子1極分の半径方向断面図である。回転方向磁極中央にリコイル透磁率が小となる永久磁石4を配置し、その回転方向進み側と遅れ側の両方にリコイル透磁率が小となる永久磁石4とリコイル透磁率が大となる永久磁石5を半径方向に重ねて配置して磁極を構成している。また、回転子1の外周には隙間を介して、コイルを有する固定子鉄心から成る固定子3が配置されており、前記固定子コイルを通電して形成される磁界で前記回転子1を回転させる。   FIG. 9 is a radial cross-sectional view of one rotor pole showing the configuration of another rotating electrical machine according to the fifth embodiment of the present invention. A permanent magnet 4 having a small recoil permeability is arranged in the center of the magnetic pole in the rotational direction, and a permanent magnet 4 having a small recoil permeability and a permanent magnet having a large recoil permeability on both the forward side and the delayed side in the rotational direction. The magnetic poles are configured by overlapping 5 in the radial direction. Further, a stator 3 composed of a stator iron core having a coil is disposed on the outer periphery of the rotor 1 through a gap, and the rotor 1 is rotated by a magnetic field formed by energizing the stator coil. Let

[5−2.作用効果]
このように構成された実施例5の回転電機では、他の実施例同様、回転数が高速回転領域に達すると回転子1内永久磁石による誘起電圧の増大を抑えるため、弱め界磁制御つまり電流位相を進めた電流を重畳する制御を行う。この弱め界磁制御は回転子1内の永久磁石には逆磁界として作用する。本実施例5においても同様で、不完全着磁磁石4は弱め界磁制御による逆磁界で磁力が弱まり、回転子1から発せられる鎖交磁束量は減少するので、弱め界磁電流が少なくて済み、損失が低減されて高効率運転が可能なことは他の実施例と同じである。
[5-2. Effect]
In the rotating electric machine according to the fifth embodiment configured as described above, as in the other embodiments, when the rotational speed reaches the high speed rotation region, the field weakening control, that is, the current phase is set to suppress an increase in the induced voltage due to the permanent magnet in the rotor 1. Control to superimpose the advanced current is performed. This field weakening control acts on the permanent magnet in the rotor 1 as a reverse magnetic field. Similarly in the fifth embodiment, the incompletely magnetized magnet 4 is weakened by a reverse magnetic field by field weakening control, and the amount of interlinkage magnetic flux generated from the rotor 1 is reduced, so that the field weakening current is small. The loss is reduced and high-efficiency operation is possible as in the other embodiments.

さらに、リコイル透磁率が大となる永久磁石5を磁極の中央に配置した場合には、低速回転の最大トルクを発生するときの逆磁界の影響を受けにくくなり、最大トルクを大きく維持できる。また、リコイル透磁率が大となる永久磁石5を磁極回転方向中央ではなく、回転子1の回転方向進み側と遅れ側に配置した場合には、総鎖交磁束量の変化幅を大きくすることが可能であり、高速回転領域での損失低減効果が大きくなる。   Furthermore, when the permanent magnet 5 having a large recoil permeability is arranged at the center of the magnetic pole, it is less susceptible to the reverse magnetic field when generating the maximum torque for low-speed rotation, and the maximum torque can be maintained large. In addition, when the permanent magnet 5 having a large recoil permeability is arranged not at the center of the magnetic pole rotation direction but at the rotation side advance side and the delay side of the rotor 1, the change width of the total interlinkage magnetic flux amount should be increased. Therefore, the loss reduction effect in the high-speed rotation region is increased.

(実施例6)
[6−1.構成]
本発明の実施例6について図10を用いて説明する。図10は、本発明の実施例6の回転電機の回転子1極分の磁極の半径方向断面図である。
(Example 6)
[6-1. Constitution]
A sixth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a radial cross-sectional view of the magnetic poles for one pole of the rotor of the rotating electrical machine according to the sixth embodiment of the present invention.

実施例6は、回転子鉄心2の1つの磁極において、磁極は一体の永久磁石6で構成される。この一体の永久磁石6は、部分的に不完全着磁部分6Aと完全着磁部分6Bを有し、リコイル透磁率が場所によって異なる。不完全着磁石6Aとなる部分の磁化方向と直角を成す面の片側または両側に、導電性の板11を配置する。   In the sixth embodiment, in one magnetic pole of the rotor core 2, the magnetic pole is composed of an integral permanent magnet 6. This integral permanent magnet 6 has a partially incompletely magnetized portion 6A and a completely magnetized portion 6B, and the recoil permeability varies depending on the location. The conductive plate 11 is disposed on one side or both sides of the surface perpendicular to the magnetization direction of the portion to be the incompletely magnetized magnet 6A.

リコイル透磁率が場所によって異なる永久磁石6は、部分的に磁石素材を変えたり、粒堺または磁気方位などを操作したりして、永久磁石を構成してもよい。その後、この永久磁石を着磁して、部分的に不完全着磁部分及び完全着磁部分を有することにより、リコイル透磁率が場所によって変えることもできる。   The permanent magnet 6 having a different recoil permeability depending on the location may constitute a permanent magnet by partially changing the magnet material or operating the particle or magnetic orientation. Thereafter, the permanent magnet is magnetized to partially have an incompletely magnetized portion and a completely magnetized portion, whereby the recoil permeability can be changed depending on the location.

[6−2.永久磁石6の着磁方法]
図11は、実施例6の不完全着磁部分6Aと完全着磁部分6Bを有する永久磁石6を着磁するための着磁方法を説明する図である。
[6-2. Method of magnetizing permanent magnet 6]
FIG. 11 is a diagram illustrating a magnetizing method for magnetizing the permanent magnet 6 having the incompletely magnetized portion 6A and the fully magnetized portion 6B according to the sixth embodiment.

部分的に不完全着磁部分6Aと完全着磁部分6Bを有する永久磁石6に対する着磁方法、台形状の着磁ヨーク7Aと平面を有する着磁ヨーク7Bとに永久磁石6を挟んで着磁を行う。この場合、着磁ヨーク7Aは台形状の形状をしているので、永久磁石6と台形状ヨーク7Aおよびヨーク7Bが密着に接触している部分は完全着磁部分6Bとなり、台形状ヨーク7Aと接触していない部分は不完全着磁部分6Aとなる。   Magnetization method for permanent magnet 6 having partially incompletely magnetized portion 6A and fully magnetized portion 6B, magnetizing sandwiching permanent magnet 6 between trapezoidal magnetized yoke 7A and planar magnetized yoke 7B I do. In this case, since the magnetizing yoke 7A has a trapezoidal shape, the portion where the permanent magnet 6 and the trapezoidal yoke 7A and the yoke 7B are in close contact with each other becomes a completely magnetized portion 6B, and the trapezoidal yoke 7A The portion that is not in contact becomes the incompletely magnetized portion 6A.

また図12は、同じく実施例6の不完全着磁部分6Aと完全着磁部分6Bを有する永久磁石6を着磁するためのもう一つの着磁方法を説明する図である。永久磁石6に対する着磁方法としては、着磁ヨークの中央部が凸で端部が一段低くなっている着磁ヨーク7Cと平面を有するヨーク7Dとで永久磁石6を挟んで着磁を行う。このとき、着磁ヨーク7Aとヨーク7Dの一段低くなった部分に銅板11を配置した構成とすることにより、銅板11が配置された部分には着磁のための磁界が減少して掛り、その部分が不完全着磁部分6Aとなる。   FIG. 12 is a diagram for explaining another magnetizing method for magnetizing the permanent magnet 6 having the incompletely magnetized portion 6A and the fully magnetized portion 6B of the sixth embodiment. As a method for magnetizing the permanent magnet 6, the magnetizing yoke 7 </ b> C is magnetized by sandwiching the permanent magnet 6 between the magnetizing yoke 7 </ b> C having a convex central portion and a lower end and a flat yoke 7 </ b> D. At this time, by adopting a configuration in which the copper plate 11 is arranged in the lower portion of the magnetized yoke 7A and the yoke 7D, the magnetic field for magnetization is reduced and applied to the portion where the copper plate 11 is arranged. The portion becomes the incompletely magnetized portion 6A.

[6−3.作用効果]
このように構成された実施例6の回転電機では、他の実施例同様、回転数が高速回転領域に達すると回転子1内永久磁石による誘起電圧の増大を抑えるため、弱め界磁制御つまり電流位相を進めた電流を重畳する制御を行う。この弱め界磁制御は回転子1内の永久磁石には逆磁界として作用する。本実施例6においても同様で、不完全着磁磁石4は弱め界磁制御による逆磁界で磁力が弱まり、回転子1から発せられる鎖交磁束量は減少するので、弱め界磁電流が少なくて済み、損失が低減されて高効率運転が可能なことは他の実施例と同じである。
[6-3. Effect]
In the rotating electric machine according to the sixth embodiment configured as described above, as in the other embodiments, when the rotational speed reaches the high speed rotation region, the field weakening control, that is, the current phase is set to suppress an increase in the induced voltage due to the permanent magnet in the rotor 1. Control to superimpose the advanced current is performed. This field weakening control acts on the permanent magnet in the rotor 1 as a reverse magnetic field. Similarly in the sixth embodiment, the incompletely magnetized magnet 4 is weakened by a reverse magnetic field by field weakening control, and the amount of interlinkage magnetic flux generated from the rotor 1 is reduced, so that the field weakening current is small. The loss is reduced and high-efficiency operation is possible as in the other embodiments.

実施例6においては、一様な磁石材料からなる一体型の永久磁石6の内、不完全着磁としたい部分に銅板11を配置しているので、回転子1の回転子鉄心2に永久磁石6を組み込んだ後での着磁が可能となり、製造性が簡素化される。   In the sixth embodiment, since the copper plate 11 is disposed in a portion of the integral permanent magnet 6 made of a uniform magnet material in a portion where incomplete magnetization is desired, the permanent magnet is disposed on the rotor core 2 of the rotor 1. Magnetization after incorporating 6 is possible, and manufacturability is simplified.

(他の実施例)
なお、前記実施例1から実施例7では8極の回転電機を示したが、4極や12極等の他の極数の回転電機も本発明を適用できるのは当然である。極数に応じて永久磁石の配置位置、形状が幾分変ることは勿論であり、作用と効果は同様に得られる。
また、磁極を形成する永久磁石において、リコイル透磁率をもって永久磁石を区別する定義をしている。従って、リコイル透磁率が異なる磁石であれば、その材質や製造方法、磁気特性の得られ方などに関係なく、同様な作用と効果が得られる。
(Other examples)
Although the eight-pole rotating electric machine is shown in the first to seventh embodiments, the present invention is naturally applicable to rotating electric machines having other numbers of poles such as four poles and twelve poles. It goes without saying that the position and shape of the permanent magnets change somewhat depending on the number of poles, and the operation and effect can be obtained in the same manner.
Moreover, in the permanent magnet which forms a magnetic pole, the definition which distinguishes a permanent magnet with recoil permeability is made. Therefore, if the magnet has a different recoil permeability, the same operation and effect can be obtained regardless of the material, the manufacturing method, how to obtain the magnetic characteristics, and the like.

1…回転子
2…回転子鉄心
2A…回転子鉄心A
2B…回転子鉄心B
3…固定子
4…リコイル透磁率が小となる永久磁石
5…リコイル透磁率が大となる永久磁石
6…不完全着磁部分を有する永久磁石
6A…不完全着磁部分を有する磁石の不完全着磁部分
6B…不完全着磁部分を有する磁石の完全着磁部分
7…着磁ヨーク
7A…着磁ヨーク
7B…着磁ヨーク
7C…着磁ヨーク
7D…着磁ヨーク
8…導電性コーティング
9…短絡コイル
10…永久磁石
11…銅板
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor core 2A ... Rotor core A
2B ... Rotor core B
DESCRIPTION OF SYMBOLS 3 ... Stator 4 ... Permanent magnet with which recoil permeability becomes small 5 ... Permanent magnet with which recoil permeability becomes large 6 ... Permanent magnet 6A which has incompletely magnetized part ... Incomplete magnet with incompletely magnetized part Magnetized portion 6B ... Completely magnetized portion of magnet having incompletely magnetized portion 7 ... Magnetized yoke 7A ... Magnetized yoke 7B ... Magnetized yoke 7C ... Magnetized yoke 7D ... Magnetized yoke 8 ... Conductive coating 9 ... Short-circuit coil 10 ... Permanent magnet 11 ... Copper plate

Claims (20)

リコイル透磁率の異なる2種類以上の永久磁石を用いて回転子の磁極を形成し、
この磁極を回転子鉄心内に複数個配置して回転子を形成し、
この回転子の外周にエアギャップを介して固定子を配置し、
この固定子に電機子鉄心と電機子巻線を設け、
この電機子巻線が作る磁界により前記回転子の磁極を構成する永久磁石の磁束量を可逆的に変化させる永久磁石式回転電機。
The rotor magnetic pole is formed using two or more types of permanent magnets having different recoil permeability,
A plurality of these magnetic poles are arranged in the rotor core to form a rotor,
Place the stator through the air gap on the outer periphery of this rotor,
This stator is provided with an armature core and an armature winding,
A permanent magnet type rotating electrical machine that reversibly changes the amount of magnetic flux of a permanent magnet constituting the magnetic pole of the rotor by a magnetic field generated by the armature winding.
前記リコイル透磁率の異なる2種類以上の永久磁石が、磁気回路上で直列及び/または並列に配置されて回転子の磁極を形成することを特徴とする請求項1に記載の永久磁石式回転電機。   2. The permanent magnet type rotating electric machine according to claim 1, wherein two or more types of permanent magnets having different recoil permeability are arranged in series and / or in parallel on a magnetic circuit to form a magnetic pole of a rotor. . 磁気回路上で並列に配置する前記永久磁石は、ほぼ一直線上か、V字状あるいはU字状に配置されて回転子の磁極を形成することを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。   The said permanent magnet arrange | positioned in parallel on a magnetic circuit is substantially linear, arrange | positioned in V shape or U shape, and forms the magnetic pole of a rotor, The Claim 1 or Claim 2 characterized by the above-mentioned. Permanent magnet type rotating electric machine. 回転方向進み側に位置する永久磁石をリコイル透磁率の大きな永久磁石とし、回転方向遅れ側の永久磁石をリコイル透磁率の小さな永久磁石としたことを特徴とする請求項1〜3のいずれか1項に記載の永久磁石型回転電機。   The permanent magnet located on the rotation direction advance side is a permanent magnet having a large recoil permeability, and the permanent magnet on the rotation direction delay side is a permanent magnet having a small recoil permeability. The permanent magnet type rotating electric machine according to the item. 軸方向に2分割以上分割されて構成する回転子鉄心を有する請求項1から請求項4の永久磁石型回転電機において、
リコイル透磁率の異なる磁石の配置を軸方向に分割された回転子鉄心で異なる配置とすることを特徴とする永久磁石回転電機。
In the permanent magnet type rotating electric machine according to any one of claims 1 to 4, having a rotor core that is divided into two or more parts in the axial direction.
A permanent magnet rotating electrical machine characterized in that magnets having different recoil permeability are arranged differently in a rotor core divided in the axial direction.
回転子の1極当たりの永久磁石が、3分割以上に分割され、磁極中央に配置した永久磁石をリコイル透磁率の小さな永久磁石、その両側に配置した永久磁石をリコイル透磁率の大きな永久磁石としたことを特徴とする請求項1〜3のいずれか1項に記載の永久磁石型回転電機。   The permanent magnet per pole of the rotor is divided into three or more parts, the permanent magnet arranged in the center of the magnetic pole is a permanent magnet having a small recoil permeability, and the permanent magnets arranged on both sides thereof are a permanent magnet having a large recoil permeability. The permanent magnet type rotating electric machine according to any one of claims 1 to 3, wherein the permanent magnet type rotating electric machine is provided. 回転子の1極当たりの永久磁石が、リコイル透磁率の異なる永久磁石を重ねて構成し配置したことを特徴とする請求項1または請求項2に記載の永久磁石型回転電機。   The permanent magnet type rotating electric machine according to claim 1 or 2, wherein the permanent magnet per pole of the rotor is configured and arranged by superposing permanent magnets having different recoil permeability. 回転子の1極当たりの永久磁石において、1つの磁極において直列回路と並列回路の両方が構成されることを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to claim 1 or 2, wherein in the permanent magnet per one pole of the rotor, both a series circuit and a parallel circuit are formed in one magnetic pole. 磁極の回転方向中央にリコイル透磁率が大きな磁石とリコイル透磁率が小さな磁石を磁化方向に重ねて配置し、その回転方向進み側と遅れ側の両方にリコイル透磁率が小さい磁石を配置したことを特徴とする請求項8に記載の永久磁石型回転電機。   A magnet with a large recoil permeability and a magnet with a small recoil permeability are arranged in the direction of magnetization in the center of the rotation direction of the magnetic pole, and a magnet with a small recoil permeability is arranged on both the advance side and the lag side of the rotation direction. The permanent magnet type rotating electric machine according to claim 8, wherein 磁極の回転方向中央にリコイル透磁率が小さな永久磁石を配置し、その回転方向進み側と遅れ側の両方にリコイル透磁率が大きな磁石とリコイル透磁率が小さな磁石を磁化方向に重ねて配置したことを特徴とする請求項8に記載の永久磁石型回転電機。   A permanent magnet with a small recoil permeability is placed in the center of the magnetic pole in the rotation direction, and a magnet with a large recoil permeability and a magnet with a small recoil permeability are placed in the magnetization direction on both the forward and backward sides in the rotational direction. The permanent magnet type rotating electric machine according to claim 8. リコイル透磁率の異なる永久磁石は、NdFeB系永久磁石を用い、完全着磁した永久磁石と不完全着磁した永久磁石により構成することを特徴とする請求項1〜8のいずれか1項に記載の永久磁石型回転電機。   The permanent magnets having different recoil permeability are NdFeB-based permanent magnets, and are composed of a completely magnetized permanent magnet and an incompletely magnetized permanent magnet. Permanent magnet type rotating electric machine. 前記不完全着磁永久磁石は、導電性の部材でコーティングまたは、不完全着磁磁石を囲うように短絡コイルを配置したことを特徴とする請求項1〜請求項9のいずれか1項に記載の永久磁石型回転電機。   The incompletely magnetized permanent magnet is coated with a conductive member, or a short-circuit coil is disposed so as to surround the incompletely magnetized magnet. Permanent magnet type rotating electric machine. 表面に導電性の板またはコイルを配置した着磁後に不完全着磁磁石となる磁石と、着磁後に完全着磁磁石となる磁石とを回転子鉄心に組み込んで回転子を構成して、不完全着磁磁石及び完全着磁磁石を後着磁することを特徴とする請求項12に記載の永久磁石型回転電機。   A rotor is constructed by incorporating a magnet that becomes an incompletely magnetized magnet after magnetizing with a conductive plate or coil on the surface and a magnet that becomes a fully magnetized magnet after magnetizing into the rotor core. The permanent magnet type rotating electric machine according to claim 12, wherein the fully magnetized magnet and the fully magnetized magnet are post-magnetized. 磁極に配置する永久磁石は、リコイル透磁率が場所によって異なる一体型の永久磁石とすることを特徴とする請求項1〜10のいずれか1項に記載の永久磁石型回転電機。   The permanent magnet type rotating electric machine according to any one of claims 1 to 10, wherein the permanent magnets arranged on the magnetic poles are integrated permanent magnets having different recoil permeability depending on locations. リコイル透磁率が場所によって異なる一体型の請求磁石は、部分的に不完全着磁となるように着磁された磁石で構成されることを特徴とする請求項14に記載の永久磁石型回転電機。   15. The permanent magnet type rotating electric machine according to claim 14, wherein the integrated billing magnet having different recoil permeability depending on the location is composed of a magnet magnetized so as to be partially incompletely magnetized. . 前記一体型の永久磁石のうち、不完全着磁石となる部分の磁化方向と直角を成す面の片側または両側に、導電性のコーティングまたは導電性の板または短絡コイルを配置し、前記導電性コーティングまたは導電性の板または短絡コイルを配置しない磁石と共に回転子鉄心内に配置して回転子を構成し、後着磁することを特徴とする請求項15に記載の永久磁石型回転電機。   A conductive coating or a conductive plate or a short-circuit coil is arranged on one side or both sides of a surface perpendicular to the magnetization direction of the part of the integral permanent magnet that becomes an incompletely magnetized magnet, and the conductive coating The permanent magnet type rotating electrical machine according to claim 15, wherein the rotor is configured by being arranged in a rotor core together with a magnet not provided with a conductive plate or a short-circuited coil, and is subsequently magnetized. リコイル透磁率が場所によって異なる一体型の永久磁石は、部分的に磁石素材を変えるまたは粒界または磁気方位などを操作して永久磁石を構成し着磁して、部分的に不完全着磁部分を有する磁石を構成し、配置して構成したことを特徴とする請求項14に記載の永久磁石型回転電機。   Integrated permanent magnets with different recoil permeability depending on the location are partially magnetized by partially changing the magnet material or by manipulating the grain boundary or magnetic orientation to form a permanent magnet. The permanent magnet type rotating electric machine according to claim 14, wherein a magnet having a magnet is configured and arranged. 前記永久磁石は、中央部の形状が凸の台形状あるいは段付状のヨークを用いて、永久磁石の片側もしくは両側より着磁を行うことにより、着磁する部分的に不完全着磁部分を形成したものであることを特徴とする請求項15に記載の永久磁石型回転電機。   The permanent magnet is magnetized from one side or both sides of the permanent magnet using a trapezoidal or stepped yoke with a convex center shape, thereby partially magnetizing the partially magnetized portion. The permanent magnet type rotating electric machine according to claim 15, wherein the permanent magnet type rotating electric machine is formed. 前記永久磁石は、着磁する際に不完全着磁としたい部分に導電性の板またはコイルを配置した状態で磁化する部分的に不完全着磁部分を形成したものであることを特徴とする請求項15に記載の永久磁石型回転電機。   The permanent magnet has a partially incompletely magnetized portion that is magnetized in a state where a conductive plate or coil is disposed in a portion that is to be incompletely magnetized when magnetized. The permanent magnet type rotating electrical machine according to claim 15. 磁極の磁石を可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧が、回転電機の電源であるインバータ電子部品の耐電圧以下とすることを特徴とする請求項1〜請求項11のいずれか1項に記載の永久磁石式回転電機。
When the rotor reaches the maximum rotation speed while reversibly changing the magnetic pole magnet to minimize the flux linkage, the induced electromotive force generated by the permanent magnet is less than the withstand voltage of the inverter electronic component that is the power supply for the rotating electrical machine. The permanent magnet type rotating electrical machine according to any one of claims 1 to 11, wherein
JP2011032664A 2011-02-17 2011-02-17 Permanent magnet type rotary electric machine Withdrawn JP2012175738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032664A JP2012175738A (en) 2011-02-17 2011-02-17 Permanent magnet type rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032664A JP2012175738A (en) 2011-02-17 2011-02-17 Permanent magnet type rotary electric machine

Publications (1)

Publication Number Publication Date
JP2012175738A true JP2012175738A (en) 2012-09-10

Family

ID=46978117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032664A Withdrawn JP2012175738A (en) 2011-02-17 2011-02-17 Permanent magnet type rotary electric machine

Country Status (1)

Country Link
JP (1) JP2012175738A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118971A1 (en) 2015-07-14 2017-01-18 Kabushiki Kaisha Toshiba Rotary electrical machine and vehicle
EP3118863A1 (en) 2015-07-14 2017-01-18 Kabushiki Kaisha Toshiba Permanent magnet
JP2017022977A (en) * 2015-07-14 2017-01-26 株式会社東芝 Rotary electric machine and vehicle
WO2017163450A1 (en) 2016-03-22 2017-09-28 株式会社 東芝 Rotating electrical machine system, driving device for rotating electrical machine, driving method thereof, and vehicle
CN107302284A (en) * 2017-06-23 2017-10-27 濮阳市京濮惠臣新技术开发有限公司 The outer driving power device of wushu high-torque
EP3239994A1 (en) 2016-03-17 2017-11-01 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
WO2018051526A1 (en) 2016-09-16 2018-03-22 株式会社東芝 Rotating electric machine and vehicle
EP3333859A1 (en) 2016-11-21 2018-06-13 Kabushiki Kaisha Toshiba Permanent magnet, rotary electric machine, and vehicle
JP2019180119A (en) * 2018-03-30 2019-10-17 ダイキン工業株式会社 Compressor
CN110915104A (en) * 2017-09-11 2020-03-24 株式会社东芝 Rotor and rotating electrical machine
US11177060B2 (en) 2018-09-18 2021-11-16 Kabushiki Kaisha Toshiba Permanent magnet, rotary electric machine, and vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118863A1 (en) 2015-07-14 2017-01-18 Kabushiki Kaisha Toshiba Permanent magnet
JP2017022977A (en) * 2015-07-14 2017-01-26 株式会社東芝 Rotary electric machine and vehicle
EP3118971A1 (en) 2015-07-14 2017-01-18 Kabushiki Kaisha Toshiba Rotary electrical machine and vehicle
EP3355440A1 (en) 2015-07-14 2018-08-01 Kabushiki Kaisha Toshiba Rotary electrical machine and vehicle
EP3239994A1 (en) 2016-03-17 2017-11-01 Kabushiki Kaisha Toshiba Permanent magnet, rotary electrical machine, and vehicle
US10103655B2 (en) 2016-03-22 2018-10-16 Kabushiki Kaisha Toshiba Rotary electrical machine system, drive unit for rotary electrical machine, method for driving rotary electrical machine and vehicle
WO2017163450A1 (en) 2016-03-22 2017-09-28 株式会社 東芝 Rotating electrical machine system, driving device for rotating electrical machine, driving method thereof, and vehicle
WO2018051526A1 (en) 2016-09-16 2018-03-22 株式会社東芝 Rotating electric machine and vehicle
EP3333859A1 (en) 2016-11-21 2018-06-13 Kabushiki Kaisha Toshiba Permanent magnet, rotary electric machine, and vehicle
CN107302284A (en) * 2017-06-23 2017-10-27 濮阳市京濮惠臣新技术开发有限公司 The outer driving power device of wushu high-torque
CN110915104A (en) * 2017-09-11 2020-03-24 株式会社东芝 Rotor and rotating electrical machine
CN110915104B (en) * 2017-09-11 2022-07-12 株式会社东芝 Rotor and rotating electrical machine
JP2019180119A (en) * 2018-03-30 2019-10-17 ダイキン工業株式会社 Compressor
JP7104307B2 (en) 2018-03-30 2022-07-21 ダイキン工業株式会社 Compressor
US11177060B2 (en) 2018-09-18 2021-11-16 Kabushiki Kaisha Toshiba Permanent magnet, rotary electric machine, and vehicle

Similar Documents

Publication Publication Date Title
JP2012175738A (en) Permanent magnet type rotary electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5472254B2 (en) Double stator type motor
JP5305887B2 (en) Permanent magnet rotating electric machine
JP5159577B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
JP5061207B2 (en) Permanent magnet synchronous machine
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP2011223742A (en) Permanent magnet type rotary machine
JP6539004B1 (en) Rotor and rotating electric machine
JP5355055B2 (en) Permanent magnet rotating electric machine
JP5708750B2 (en) Double stator type motor
JP2010172046A (en) Magnetic flux amount variable rotating electric machine system excited by magnet
JP2010279215A (en) Rotor of embedded magnet type synchronous motor
JP6083307B2 (en) Rotating machine
JP5750987B2 (en) Permanent magnet rotating electric machine
Yang et al. A novel stator-consequent-pole memory machine
JP5802487B2 (en) Permanent magnet rotating electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
JPH07298587A (en) Permanent-magnet rotating electric machine
JP2011172323A (en) Permanent magnet type rotary electric machine
JP5390314B2 (en) Permanent magnet rotating electric machine
JP2014180085A (en) Switched reluctance motor
KR102164960B1 (en) A field winding motor generator using permanent magnet assist structure and its fabrication method
JP2013183515A (en) Permanent magnet motor and operational method for the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513