JP2012175722A - Charge-discharge controller - Google Patents

Charge-discharge controller Download PDF

Info

Publication number
JP2012175722A
JP2012175722A JP2011032005A JP2011032005A JP2012175722A JP 2012175722 A JP2012175722 A JP 2012175722A JP 2011032005 A JP2011032005 A JP 2011032005A JP 2011032005 A JP2011032005 A JP 2011032005A JP 2012175722 A JP2012175722 A JP 2012175722A
Authority
JP
Japan
Prior art keywords
power
schedule
charge
vehicle
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011032005A
Other languages
Japanese (ja)
Inventor
Hisayo Kobayashi
美佐世 小林
Susumu Iida
享 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011032005A priority Critical patent/JP2012175722A/en
Publication of JP2012175722A publication Critical patent/JP2012175722A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charge-discharge controller which achieves leveling of peaks of power consumption in an electric power system while reserving amount of charge required for travelling a vehicle.SOLUTION: In a charge-discharge controller, a power network is connected with an external system 2, loads (AC load 3 and DC load 9), and a vehicle EVr through power supply paths (an AC power supply path 4A and a DC power supply path 4B). Time-sequence exchange of power in the power network is represented by use of a space-time network. A charge/discharge schedule is generated by configuring an objective function that has a minimum peak value of power supplied by the external circuit 2 and by obtaining an optimum solution of a determination variable. As a result, leveling of peaks of power consumption in the power system 2 is achieved while reserving amount of charge required for travelling a vehicle.

Description

本発明は、電気自動車などの車両に搭載される蓄電池の充電と、当該蓄電池から車両外の負荷への放電とを制御する充放電制御装置に関する。   The present invention relates to a charge / discharge control device that controls charging of a storage battery mounted on a vehicle such as an electric vehicle and discharging from the storage battery to a load outside the vehicle.

近年、蓄電池とモータを搭載した電気自動車やプラグインハイブリッド自動車などの車両が普及しつつある。そして、集合住宅や事業所などにおいては、多数の車両が同時に充電されるため、他の電気機器と合わせた電力消費のピークが特定の時間帯(例えば、夕方)で大幅に増えてしまう虞がある。   In recent years, vehicles such as electric vehicles and plug-in hybrid vehicles equipped with storage batteries and motors are becoming popular. And in apartment houses and business establishments, many vehicles are charged at the same time, so there is a risk that the peak of power consumption combined with other electric devices will increase significantly in a specific time zone (for example, in the evening). is there.

これに対して特許文献1に記載されている従来例では、商用の電力系統(電力会社)の電気料金が相対的に安価になる時間帯(深夜電力時間帯)において、複数の車両の充電開始時刻を分散させることで電力消費のピークを平準化するようにしている。   On the other hand, in the conventional example described in Patent Document 1, charging of a plurality of vehicles is started in a time zone (midnight power time zone) in which the electricity charge of a commercial power system (electric power company) is relatively inexpensive. By distributing the time, the peak of power consumption is leveled.

特開平10−80071号公報Japanese Patent Laid-Open No. 10-80071

ところで、充電済の車両が使用されていない場合、当該車両の蓄電池に蓄えられている電力を放電して負荷に供給すれば、電力系統の電力消費のピークを平準化することに寄与することができる。ただし、車両が使用されるときには、走行に必要な電力が蓄電池に充電されていることが望ましい。   By the way, when the charged vehicle is not used, if the electric power stored in the storage battery of the vehicle is discharged and supplied to the load, it can contribute to leveling the power consumption peak of the power system. it can. However, when the vehicle is used, it is desirable that the electric power necessary for traveling is charged in the storage battery.

本発明は、上記課題に鑑みて為されたものであり、車両の走行に必要な充電量を確保しつつ電力系統における電力消費のピークの平準化を図ることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to achieve leveling of power consumption peaks in an electric power system while securing a charge amount necessary for traveling of a vehicle.

本発明の充放電制御装置は、電力系統から各車両に搭載された蓄電池への充電と当該蓄電池から車両外の負荷への放電のスケジュールを生成するスケジュール生成手段と、前記スケジュールに従って前記蓄電池の充電と放電を制御する制御手段とを備え、前記スケジュール生成手段は、前記電力系統から供給される電力のピークを低下させるようにスケジュールを生成することを特徴とする。   The charging / discharging control device of the present invention includes a schedule generation means for generating a schedule for charging a storage battery mounted on each vehicle from an electric power system and discharging from the storage battery to a load outside the vehicle, and charging the storage battery according to the schedule. And a control means for controlling discharge, wherein the schedule generation means generates a schedule so as to reduce a peak of power supplied from the power system.

この充放電制御装置において、前記スケジュール生成手段は、太陽電池や燃料電池などの発電設備から前記蓄電池の充電及び前記負荷への給電に使用される電力を考慮して前記スケジュールを生成することが好ましい。   In this charging / discharging control device, it is preferable that the schedule generation unit generates the schedule in consideration of electric power used for charging the storage battery and supplying power to the load from a power generation facility such as a solar cell or a fuel cell. .

この充放電制御装置において、前記電力系統及び前記蓄電池から前記負荷に供給される電力が電力変換装置によって電力変換される場合、前記スケジュール生成手段は、前記電力変換装置における電力変換の損失を考慮して前記スケジュールを生成することが好ましい。   In the charge / discharge control device, when power supplied from the power system and the storage battery to the load is converted by the power conversion device, the schedule generation unit takes into account a loss of power conversion in the power conversion device. Preferably, the schedule is generated.

この充放電制御装置において、前記スケジュール生成手段は、前記車両が使用されるときに必要とされる前記蓄電池の要求充電量に対して、当該蓄電池への充電量が大きくなるように前記スケジュールを生成することが好ましい。   In this charge / discharge control device, the schedule generation means generates the schedule so that a charge amount to the storage battery is larger than a required charge amount of the storage battery required when the vehicle is used. It is preferable to do.

本発明の充放電制御装置は、車両の走行に必要な充電量を確保しつつ電力系統における電力消費のピークの平準化を図ることができるという効果がある。   The charge / discharge control device of the present invention has an effect that it is possible to level the peak of power consumption in the power system while securing the amount of charge necessary for traveling of the vehicle.

本発明に係る充放電制御装置の実施形態を含む充放電システムのシステム構成図である。1 is a system configuration diagram of a charge / discharge system including an embodiment of a charge / discharge control device according to the present invention. 同上におけるスケジュール生成に使用されるパラメータや決定変数の説明図である。It is explanatory drawing of the parameter and decision variable which are used for the schedule production | generation in the same as the above. 同上におけるスケジュール生成に使用される目的関数及び制約条件の説明図である。It is explanatory drawing of the objective function and constraint conditions used for the schedule production | generation same as the above. 同上におけるスケジュール生成に使用されるパラメータや目的関数、制約条件の説明図である。It is explanatory drawing of the parameter used for the schedule production | generation in the same as the above, an objective function, and constraint conditions. 同上において、発電設備の発電量やDC/DCコンバータの損失を考慮したスケジュール生成に使用されるパラメータや目的関数、制約条件の説明図である。In the same as above, it is an explanatory diagram of parameters, objective functions, and constraint conditions used for schedule generation in consideration of the power generation amount of the power generation facility and the loss of the DC / DC converter.

本実施形態の充放電制御装置1を含む充放電システムのシステム構成を図1に示す。この充放電システムは、集合住宅や事業所などの建物において、複数台の車両(電気自動車やプラグインハイブリッド自動車など)EVr(r=1,2,…,n)にそれぞれ搭載されている蓄電池(図示せず)を充電するとともに当該蓄電池から建物内の負荷へ放電(給電)するためのものである。ここで、本実施形態における車両EVrは、蓄電池、外部(車両外)から供給される電力(直流電力)で当該蓄電池を充電する充電器、当該蓄電池から放電される直流電力を外部に出力する放電器、充放電制御装置1からの指令に応じて充電器及び放電器を制御する制御装置(ECU)などが搭載されている。   FIG. 1 shows a system configuration of a charge / discharge system including the charge / discharge control apparatus 1 of the present embodiment. This charging / discharging system is installed in multiple vehicles (such as electric vehicles and plug-in hybrid vehicles) EVr (r = 1, 2, ..., n) in buildings such as apartment buildings and business establishments ( (Not shown) for charging and discharging (power feeding) from the storage battery to a load in the building. Here, the vehicle EVr in the present embodiment is a storage battery, a charger that charges the storage battery with power (DC power) supplied from the outside (outside the vehicle), and a discharge that outputs DC power discharged from the storage battery to the outside. A control device (ECU) for controlling the charger and the discharger in accordance with a command from the electric device and the charge / discharge control device 1 is mounted.

建物においては、商用の電力系統(以下、外部系統と呼ぶ。)2から交流負荷(AC負荷)3へ交流給電路4Aを介して交流電力が供給される。また、交流給電路4AにはDC/ACインバータ(電力変換装置)5とAC/DCコンバータ(電力変換装置)6が接続されている。AC/DCコンバータ6は外部系統2から供給される交流電力を直流電力に変換してDC/DCコンバータ(電力変換装置)7に出力する。DC/ACインバータ6は、DC/DCコンバータ7から出力される直流電力を交流電力に変換して交流給電路4Aへ出力する。   In a building, AC power is supplied from a commercial power system (hereinafter referred to as an external system) 2 to an AC load (AC load) 3 via an AC power supply path 4A. A DC / AC inverter (power converter) 5 and an AC / DC converter (power converter) 6 are connected to the AC power supply path 4A. The AC / DC converter 6 converts AC power supplied from the external system 2 into DC power and outputs it to a DC / DC converter (power converter) 7. The DC / AC inverter 6 converts the DC power output from the DC / DC converter 7 into AC power and outputs the AC power to the AC power supply path 4A.

DC/DCコンバータ7は、太陽電池や燃料電池などの発電設備8から供給される直流電力やAC/DCコンバータ5から出力される直流電力を所望の直流電力に変換して直流給電路4Bへ出力する。直流給電路4Bには直流負荷(DC負荷)9とともに1乃至複数台の車両EVrが接続され、DC/DCコンバータ7から出力される直流電力が直流給電路4Bを介して直流負荷9と車両EVrにそれぞれ供給される。また、車両EVrの蓄電池から放電される直流電力が直流給電路4Bを介してDC負荷9やDC/DCコンバータ7に供給される。そして、DC/DCコンバータ7は、車両EVrの蓄電池から放電される直流電力を所望の直流電力に変換してDC/ACインバータ6に出力する。   The DC / DC converter 7 converts the DC power supplied from the power generation facility 8 such as a solar cell or a fuel cell or the DC power output from the AC / DC converter 5 into desired DC power and outputs it to the DC power supply path 4B. To do. One or more vehicles EVr are connected to the DC power supply path 4B together with a DC load (DC load) 9, and DC power output from the DC / DC converter 7 is connected to the DC load 9 and the vehicle EVr via the DC power supply path 4B. Are supplied respectively. Further, the DC power discharged from the storage battery of the vehicle EVr is supplied to the DC load 9 and the DC / DC converter 7 through the DC power supply path 4B. The DC / DC converter 7 converts the DC power discharged from the storage battery of the vehicle EVr into desired DC power and outputs it to the DC / AC inverter 6.

充放電制御装置1は、スケジュール生成部10、制御部13、電力計測部12、記憶部11、操作入力受付部14を備えている。電力計測部12は、外部系統2から交流給電路4Aを介して供給される電力(交流電力)及び発電設備8から直流給電路4Bを介して供給される電力(直流電力)を計測する。但し、電力計測部12の計測結果はスケジュール生成部10を通じて記憶部11に記憶される。   The charge / discharge control device 1 includes a schedule generation unit 10, a control unit 13, a power measurement unit 12, a storage unit 11, and an operation input reception unit 14. The power measuring unit 12 measures power (AC power) supplied from the external system 2 via the AC power supply path 4A and power (DC power) supplied from the power generation facility 8 via the DC power supply path 4B. However, the measurement result of the power measurement unit 12 is stored in the storage unit 11 through the schedule generation unit 10.

記憶部11は、フラッシュメモリなどの電気的に書換可能な不揮発性の半導体メモリからなり、電力計測部12の計測結果の他にも、後述するスケジュールや車両EVrに関する種々の情報などを記憶している。操作入力受付部14は、キーボードやタッチパネル、あるいはICカードリーダなどの入力デバイスを有し、当該入力デバイスによって入力される種々の操作入力を受け付けてスケジュール生成部10に渡すものである。なお、各車両EVr毎の使用予定に関する情報、例えば、入庫時刻や出庫時刻、充電の要求量、走行距離など(以下、予約情報と呼ぶ。)の操作入力が操作入力受付部14で受け付けられて記憶部11に記憶される。   The storage unit 11 includes an electrically rewritable non-volatile semiconductor memory such as a flash memory, and stores various information on the schedule and vehicle EVr, which will be described later, in addition to the measurement result of the power measurement unit 12. Yes. The operation input receiving unit 14 has an input device such as a keyboard, a touch panel, or an IC card reader, and receives various operation inputs input by the input device and passes them to the schedule generation unit 10. It should be noted that the operation input accepting unit 14 accepts operation inputs such as information related to the schedule of use for each vehicle EVr, such as entry time and exit time, requested amount of charge, travel distance (hereinafter referred to as reservation information), and the like. It is stored in the storage unit 11.

スケジュール生成部10は、記憶部11に記憶される種々の情報に基づき、複数の車両EVrの蓄電池を充電し且つ当該蓄電池から負荷(AC負荷3又はDC負荷9)に放電(給電)するためのスケジュールを作成する。なお、スケジュール生成部10がスケジュール生成に利用する情報とは、前記予約情報の他、電力供給時に種々の電力変換装置(AC/DCコンバータ5、DC/ACインバータ6、DC/DCコンバータ7)で発生する損失や、車両EVrに搭載されている蓄電池の充電容量及び充放電能力、負荷(AC負荷3及びDC負荷9)の消費電力などである。ただし、スケジュールの生成時点以降の負荷の消費電力は本来不明であるので、スケジュール生成部10は、消費電力の過去の実績や季節、天候などに基づき、単位時間毎(例えば、30分〜1時間毎)の消費電力を予測し、その予測結果を用いてスケジュールを生成する。   Based on various information stored in the storage unit 11, the schedule generation unit 10 charges a storage battery of a plurality of vehicles EVr and discharges (power feeds) the storage battery to a load (AC load 3 or DC load 9). Create a schedule. In addition to the reservation information, the information used by the schedule generation unit 10 for schedule generation includes various power conversion devices (AC / DC converter 5, DC / AC inverter 6, DC / DC converter 7) during power supply. The loss that occurs, the charge capacity and charge / discharge capacity of the storage battery mounted on the vehicle EVr, the power consumption of the load (AC load 3 and DC load 9), and the like. However, since the power consumption of the load after the generation time of the schedule is originally unknown, the schedule generation unit 10 performs unit time (for example, 30 minutes to 1 hour) based on the past performance of power consumption, season, weather, etc. Every) power consumption is predicted, and a schedule is generated using the prediction result.

制御部13は、スケジュール生成部10で生成されたスケジュールに従い、各車両EVrの制御装置(ECU)に指令を与えて蓄電池の充電及び放電を行わせる。また制御部13は、各車両EVrと直流給電路4Bとの接続状態を検出する機能も有しており、各車両EVrの接続状態の検出結果をスケジュール生成部10に渡している。さらに、各車両EVrを使用する使用者に固有の識別符号(使用者ID)が割り当てられ、スケジュール生成部10は、使用者IDによって各車両EVrを識別する。使用者IDのID番号(1,2,…)は充放電制御装置1の記憶部11に記憶(登録)されている。なお、スケジュール生成部10と制御部13と電力計測部12は、CPU(中央演算処理装置)やメモリなどのハードウェアと、各部1〜3の処理を行うためのソフトウェア(プログラム)とで構成されている。   The control unit 13 gives a command to the control device (ECU) of each vehicle EVr according to the schedule generated by the schedule generation unit 10 to charge and discharge the storage battery. The control unit 13 also has a function of detecting the connection state of each vehicle EVr and the DC power supply path 4B, and passes the detection result of the connection state of each vehicle EVr to the schedule generation unit 10. Furthermore, a unique identification code (user ID) is assigned to the user who uses each vehicle EVr, and the schedule generation unit 10 identifies each vehicle EVr by the user ID. The ID number (1, 2,...) Of the user ID is stored (registered) in the storage unit 11 of the charge / discharge control device 1. The schedule generation unit 10, the control unit 13, and the power measurement unit 12 are configured by hardware such as a CPU (Central Processing Unit) and a memory, and software (program) for performing processing of each unit 1 to 3. ing.

次に、スケジュール生成部10による具体的なスケジュール生成方法について説明する。ただし、説明を簡単にするため、発電設備8の発電量とDC/DCコンバータ7における損失については省略する。   Next, a specific schedule generation method by the schedule generation unit 10 will be described. However, in order to simplify the description, the power generation amount of the power generation facility 8 and the loss in the DC / DC converter 7 are omitted.

本実施形態においては、外部系統2と負荷(AC負荷3及びDC負荷9)と車両EVrが給電路(交流給電路4A及び直流給電路4Bなど)で接続されてなる電力ネットワーク内における電力の時系列的なやりとりを時空間ネットワークを用いて表現し、外部系統2から供給される電力のピーク値が最小となる目的関数を設定し、決定変数の最適解を求めることで充放電スケジュールを生成している。   In the present embodiment, when the power is in the power network in which the external system 2, the load (AC load 3 and DC load 9), and the vehicle EVr are connected by a power supply path (AC power supply path 4 A, DC power supply path 4 B, etc.). Express a series of interactions using a spatio-temporal network, set an objective function that minimizes the peak value of power supplied from the external system 2, and generate a charge / discharge schedule by finding the optimal solution of the decision variable ing.

例えば、各種のパラメータと決定変数が図2のように定義される。なお、図2における「AC系統」は交流給電路4A、「DC系統」は直流給電路4Bをそれぞれ表している。また、車両EVrは1日のうちに2回出庫する場合があると仮定する。   For example, various parameters and decision variables are defined as shown in FIG. In FIG. 2, “AC system” represents the AC power supply path 4A, and “DC system” represents the DC power supply path 4B. Further, it is assumed that the vehicle EVr may leave twice in one day.

一方、目的関数は、ピーク時間帯における外部系統2からの受電量平均値μと、ピーク時間帯における外部系統2からの受電量の偏差σを用いて、μ+kσ(kは定数)と設定される(図3の式(1)参照)。また、目的関数を最小とする最適解を求めるための制約条件が、図3の式(2)〜(10)のように設定される。式(2)は車両EVrの充電容量に関する制約条件を示し、式(3)は車両EVrの要求充電量を満たすための制約条件を示している。なお、要求充電量は、次回の出庫時刻において車両EVrが必要とする充電量であり、予約情報や蓄電池の容量などから算出される。   On the other hand, the objective function is set to μ + kσ (k is a constant) using the average value μ of the amount of power received from the external system 2 in the peak time zone and the deviation σ of the amount of power received from the external system 2 in the peak time zone. (See equation (1) in FIG. 3). In addition, the constraint conditions for obtaining the optimum solution that minimizes the objective function are set as shown in equations (2) to (10) in FIG. Expression (2) represents a constraint condition regarding the charge capacity of the vehicle EVr, and Expression (3) represents a constraint condition for satisfying the required charge amount of the vehicle EVr. The required charge amount is a charge amount required by the vehicle EVr at the next shipping time, and is calculated from reservation information, storage battery capacity, and the like.

式(4)は外部系統2からAC系統及びDC系統への電力の割り当てを入力量(供給量)以内にするための制約条件を示している。式(5)は、同一の車両EVrにおいて充電と放電が同じ時間に重複しないようにするための制約条件を示している。式(6)及び式(7)は、それぞれAC系統及びDC系統内での流量保存則を満たすための制約条件を示し、式(8)は、車両EVrの充電に関する流量保存則を満たすための制約条件を示している。式(9)は、車両EVrの初期状態、式(10)は車両EVrの走行による使用量をそれぞれ示している。   Equation (4) shows a constraint condition for making the power allocation from the external system 2 to the AC system and the DC system within the input amount (supply amount). Equation (5) shows a constraint condition for preventing charging and discharging from overlapping at the same time in the same vehicle EVr. Equation (6) and Equation (7) show the constraint conditions for satisfying the flow conservation law in the AC system and DC system, respectively, and Equation (8) is for satisfying the flow conservation law for charging the vehicle EVr. The constraints are shown. Equation (9) represents the initial state of the vehicle EVr, and Equation (10) represents the amount of use of the vehicle EVr due to travel.

而して、スケジュール生成部10が上述した制約条件(式(1)〜(10))の元で目的関数(μ+kσ)を最小とする最適解を求めてスケジュールを生成すれば、車両EVの走行に必要な充電量を確保しつつ電力系統2における電力消費のピークの平準化を図るスケジュールを生成することができる。さらに、発電設備8の発電量及びDC/DCコンバータ7における損失のパラメータ及び制約条件を追加することにより、発電設備8の発電量や電力変換装置の損失が考慮されたスケジュールが生成可能となる。   Thus, if the schedule generation unit 10 generates a schedule by obtaining an optimal solution that minimizes the objective function (μ + kσ) under the above-described constraints (Equations (1) to (10)), the vehicle EV travels. It is possible to generate a schedule for leveling the peak of power consumption in the power system 2 while securing the amount of charge required for the power system 2. Furthermore, by adding the parameters of power generation of the power generation facility 8 and the loss parameters and the constraint conditions in the DC / DC converter 7, it is possible to generate a schedule that takes into account the power generation amount of the power generation facility 8 and the loss of the power converter.

例えば、図5に示すように発電設備8の発電量やDC/DCコンバータ7の減衰率に関するパラメータや発電設備からAC系統及びDC系統への電力の流量を表す変数を追加すればよい。さらに、制約条件では、AC系統及びDC系統に発電設備8からの発電量が流入するため、発電設備8の発電量まで考慮した流量保存則にするため、図3の式(6)(7)を書き換え、発電設備8が発電した電力と電力消費量の一致や、発電量の範囲などを定義する式を追加すればよい。   For example, as shown in FIG. 5, parameters relating to the power generation amount of the power generation facility 8 and the attenuation rate of the DC / DC converter 7 and variables representing the flow rate of power from the power generation facility to the AC system and DC system may be added. Furthermore, in the constraint condition, since the power generation amount from the power generation facility 8 flows into the AC system and the DC system, the equations (6) and (7) in FIG. And an expression defining the coincidence between the power generated by the power generation facility 8 and the power consumption, the range of the power generation, and the like may be added.

ここで、スケジュール生成部10は、車両EVrが使用されるときに必要とされる蓄電池の要求充電量に対して、蓄電池への充電量が大きくなるようにスケジュールを生成することが好ましい。すなわち、車両EVの使用に関する不確実性、例えば、予定の出庫時刻よりも早く出庫したり、予定の走行距離よりも長い距離を走行する可能性に対して、ロバスト性の高いスケジュールの生成が可能となり、早めの出庫や走行距離の増大にも対応可能となる。   Here, it is preferable that the schedule generation unit 10 generates the schedule so that the amount of charge to the storage battery is larger than the required amount of charge of the storage battery required when the vehicle EVr is used. In other words, it is possible to generate a highly robust schedule for uncertainties related to the use of the vehicle EV, for example, the possibility of leaving earlier than the scheduled departure time or traveling longer than the scheduled mileage. Therefore, it is possible to deal with early departures and increased mileage.

例えば、スケジュール生成部10において、図3に示した目的関数及び制約条件から最適解を導き出した後、要求充電量を超える余分な充電量αtsができるだけ大きくなるとともに、先に導き出された最適解との差を最小とする最適解を求めてスケジュールを生成すればよい。具体的には、図4に示すようなパラメータ、目的関数、制約条件が設定され、制約条件の元で目的関数を最大とする最適解が求められる。なお、図4に示す制約条件では、図3の式(3)がgrytr+Crutrtr=Dtrに変更され、μ+kσ+β=F1が追加されている。 For example, in the schedule generation unit 10, after the optimum solution is derived from the objective function and the constraint conditions shown in FIG. 3, the excess charge amount α ts exceeding the required charge amount becomes as large as possible, and the optimum solution derived earlier is derived. What is necessary is just to produce | generate a schedule by calculating | requiring the optimal solution which minimizes the difference with these. Specifically, parameters, objective functions, and constraint conditions as shown in FIG. 4 are set, and an optimal solution that maximizes the objective function under the constraint conditions is obtained. 4 is changed to g r y tr + C r u tr −α tr = D tr and μ + kσ + β = F1 is added.

1 充放電制御装置
10 スケジュール生成部(スケジュール生成手段)
11 記憶部
12 電力計測部
13 制御部(制御手段)
1 Charge / discharge control device
10 Schedule generator (schedule generator)
11 Memory
12 Power measurement unit
13 Control unit (control means)

Claims (4)

電力系統から各車両に搭載された蓄電池への充電と当該蓄電池から車両外の負荷への放電のスケジュールを生成するスケジュール生成手段と、前記スケジュールに従って前記蓄電池の充電と放電を制御する制御手段とを備え、前記スケジュール生成手段は、前記電力系統から供給される電力のピークを低下させるようにスケジュールを生成することを特徴とする充放電制御装置。   Schedule generation means for generating a schedule for charging a storage battery mounted on each vehicle from the power system and discharging from the storage battery to a load outside the vehicle; and control means for controlling charging and discharging of the storage battery according to the schedule The charge / discharge control apparatus is characterized in that the schedule generation means generates a schedule so as to reduce a peak of power supplied from the power system. 前記スケジュール生成手段は、太陽電池や燃料電池などの発電設備から前記蓄電池の充電及び前記負荷への給電に使用される電力を考慮して前記スケジュールを生成することを特徴とする請求項1記載の充放電制御装置。   The said schedule production | generation means produces | generates the said schedule in consideration of the electric power used for the charge of the said storage battery, and the electric power feeding to the said load from electric power generation facilities, such as a solar cell and a fuel cell. Charge / discharge control device. 前記電力系統及び前記蓄電池から前記負荷に供給される電力が電力変換装置によって電力変換される場合、前記スケジュール生成手段は、前記電力変換装置における電力変換の損失を考慮して前記スケジュールを生成することを特徴とする請求項1又は2記載の充放電制御装置。   When power supplied from the power system and the storage battery to the load is converted by a power conversion device, the schedule generation unit generates the schedule in consideration of power conversion loss in the power conversion device. The charge / discharge control apparatus according to claim 1 or 2. 前記スケジュール生成手段は、前記車両が使用されるときに必要とされる前記蓄電池の要求充電量に対して、当該蓄電池への充電量が大きくなるように前記スケジュールを生成することを特徴とする請求項1〜3の何れか1項に記載の充放電制御装置。   The schedule generation means generates the schedule such that a charge amount to the storage battery is larger than a required charge amount of the storage battery required when the vehicle is used. Item 4. The charge / discharge control device according to any one of Items 1 to 3.
JP2011032005A 2011-02-17 2011-02-17 Charge-discharge controller Pending JP2012175722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032005A JP2012175722A (en) 2011-02-17 2011-02-17 Charge-discharge controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032005A JP2012175722A (en) 2011-02-17 2011-02-17 Charge-discharge controller

Publications (1)

Publication Number Publication Date
JP2012175722A true JP2012175722A (en) 2012-09-10

Family

ID=46978102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032005A Pending JP2012175722A (en) 2011-02-17 2011-02-17 Charge-discharge controller

Country Status (1)

Country Link
JP (1) JP2012175722A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004869A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Power management system and control device
JP2015104157A (en) * 2013-11-21 2015-06-04 シャープ株式会社 Power management system
WO2016186001A1 (en) * 2015-05-19 2016-11-24 Ntn株式会社 Electric linear actuator and electric braking device
JP2017518725A (en) * 2014-06-20 2017-07-06 ゼネラル・エレクトリック・カンパニイ Power control system and method for energy storage and charging station
JP2020140615A (en) * 2019-03-01 2020-09-03 Jfeスチール株式会社 Production planning method and production planning system
WO2021090915A1 (en) * 2019-11-08 2021-05-14 パナソニックIpマネジメント株式会社 Charging system, charging method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008380A (en) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd Power management system
JP2001157364A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd System power stabilization device and controlling method thereof
JP2008054439A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Power system
WO2009069481A1 (en) * 2007-11-30 2009-06-04 Toyota Jidosha Kabushiki Kaisha Charging control device and charging control method
JP2009284586A (en) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Power system and its control method
US20100017045A1 (en) * 2007-11-30 2010-01-21 Johnson Controls Technology Company Electrical demand response using energy storage in vehicles and buildings
WO2010109888A1 (en) * 2009-03-27 2010-09-30 株式会社日本総合研究所 Device for controlling charging-discharging and method of controlling charging-discharging

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008380A (en) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd Power management system
JP2001157364A (en) * 1999-11-25 2001-06-08 Nissin Electric Co Ltd System power stabilization device and controlling method thereof
JP2008054439A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Power system
US20090192655A1 (en) * 2006-08-25 2009-07-30 Toyota Jidosha Kabushiki Kaisha Power System
WO2009069481A1 (en) * 2007-11-30 2009-06-04 Toyota Jidosha Kabushiki Kaisha Charging control device and charging control method
JP2009136109A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Charge control device and method
US20100017045A1 (en) * 2007-11-30 2010-01-21 Johnson Controls Technology Company Electrical demand response using energy storage in vehicles and buildings
JP2009284586A (en) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Power system and its control method
WO2010109888A1 (en) * 2009-03-27 2010-09-30 株式会社日本総合研究所 Device for controlling charging-discharging and method of controlling charging-discharging
JP2010233408A (en) * 2009-03-27 2010-10-14 Japan Research Institute Ltd Charging/discharging controller and charging/discharging control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004869A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Power management system and control device
JP2015019501A (en) * 2013-07-10 2015-01-29 パナソニックIpマネジメント株式会社 Power management system, and control device
JP2015104157A (en) * 2013-11-21 2015-06-04 シャープ株式会社 Power management system
JP2017518725A (en) * 2014-06-20 2017-07-06 ゼネラル・エレクトリック・カンパニイ Power control system and method for energy storage and charging station
US10520966B2 (en) 2014-06-20 2019-12-31 General Electric Company System and method of power control for an energy storage charging station
US11231733B2 (en) 2014-06-20 2022-01-25 Westinghouse Air Brake Technologies Corporation System and method of power control for an energy storage charging station
WO2016186001A1 (en) * 2015-05-19 2016-11-24 Ntn株式会社 Electric linear actuator and electric braking device
JP2020140615A (en) * 2019-03-01 2020-09-03 Jfeスチール株式会社 Production planning method and production planning system
JP7010254B2 (en) 2019-03-01 2022-01-26 Jfeスチール株式会社 Production planning method and production planning system
WO2021090915A1 (en) * 2019-11-08 2021-05-14 パナソニックIpマネジメント株式会社 Charging system, charging method, and program

Similar Documents

Publication Publication Date Title
JP6298465B2 (en) Power management apparatus, power management system, server, power management method, program
Wang et al. Energy management and optimization of vehicle-to-grid systems for wind power integration
KR102346944B1 (en) Method and system for management charge and discharge of electric energy by prediction photovoltaic power generation and load
JP5680438B2 (en) Charge control device
JP5095495B2 (en) Electric power system and control method thereof
KR102621905B1 (en) System and Method for reservation charge of electric vehicle
US8744641B2 (en) Electric power supply system
US8571720B2 (en) Supply-demand balance controller
JP5481080B2 (en) Power interchange system
Kaur et al. A novel resource reservation scheme for mobile PHEVs in V2G environment using game theoretical approach
US20130103378A1 (en) Electricity demand prediction
JP2012175722A (en) Charge-discharge controller
Ghofrani et al. Optimal charging/discharging of grid-enabled electric vehicles for predictability enhancement of PV generation
US20140035374A1 (en) Power control system
JP5404756B2 (en) Power management system
JP6062163B2 (en) Power supply system
RU2014137174A (en) DISTRIBUTED ELECTRICITY OF ELECTRIC VEHICLE
JP2012060834A (en) Charge control device
KR101769776B1 (en) System and method for Frequency Control
JP6125358B2 (en) Charging system and method for constructing charging system
KR102128363B1 (en) System of management of energy trading and method of the same
JP2012123637A (en) Charge controller, control method of charge controller, charge/discharge controller, control method of charge/discharge controller, control program, and recording medium
JP2015220862A (en) Power management system
Juul et al. Real-time scheduling of electric vehicles for ancillary services
JP2022050126A (en) Distributed energy resource management device, distributed energy resource management method, and distributed energy resource management program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150113