JP2012175371A - Receiving method and receiver - Google Patents

Receiving method and receiver Download PDF

Info

Publication number
JP2012175371A
JP2012175371A JP2011035013A JP2011035013A JP2012175371A JP 2012175371 A JP2012175371 A JP 2012175371A JP 2011035013 A JP2011035013 A JP 2011035013A JP 2011035013 A JP2011035013 A JP 2011035013A JP 2012175371 A JP2012175371 A JP 2012175371A
Authority
JP
Japan
Prior art keywords
signal sequence
signal
combined
response
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011035013A
Other languages
Japanese (ja)
Other versions
JP5394420B2 (en
Inventor
Takayuki Yamada
貴之 山田
Hironori Shiba
宏礼 芝
Do-Hwan Li
ドファン リ
Akira Yamaguchi
陽 山口
Kazuhiro Uehara
一浩 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011035013A priority Critical patent/JP5394420B2/en
Publication of JP2012175371A publication Critical patent/JP2012175371A/en
Application granted granted Critical
Publication of JP5394420B2 publication Critical patent/JP5394420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noise Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect, and modulate, desired signal sequences from received signal sequences including desired signal sequences whose electric power level is minute, by making use of a probability resonance phenomenon.SOLUTION: A receiver comprises a plurality of composite signal sequence generation units which generate composite signal sequences based either desired signal sequences or interference signal sequences included in received signal sequences; a composition unit which combines the composite signal sequences, white Gauss signal sequences and the received signal sequences for each composite signal sequence generated by the composite signal sequence generation units; a plurality of nonlinear response units which respectively calculate response signal sequences indicating nonlinear responses to the plural signal sequences combined by the composition unit; and a response signal composition unit which generates composite response signal sequences which combine the response signal sequences calculated by the nonlinear response units.

Description

本発明は、受信方法、及び受信装置に関する。   The present invention relates to a receiving method and a receiving apparatus.

特定のレベルの雑音存在下で微弱信号を非線形系に入力すると、その出力が確率的に微弱信号の波形を増大して再現する確率共鳴現象が知られている(例えば、非特許文献1参照)。確率共鳴現象が起きる非線形系の主な例には、閾値型や、双安定型がある。   When a weak signal is input to a nonlinear system in the presence of a specific level of noise, a stochastic resonance phenomenon is known in which the output probabilistically increases and reproduces the waveform of the weak signal (for example, see Non-Patent Document 1). . Major examples of nonlinear systems in which stochastic resonance occurs include a threshold type and a bistable type.

図3は閾値型の非線形系の一例を示す図である。図4は双安定型の非線形の一例を示す図である。図3において、横軸は時間を示し、縦軸は各信号の振幅を示している。また、図4において、横軸は粒子の位置を示し、縦軸は粒子のポテンシャルを示している。閾値型の非線形系の単純な例は、図3に示されるように、信号系列S(t)と、雑音W(t)とを合成した振幅が、ある閾値Thを越えるか否かを観測する系である。また、双安定型の非線形系の単純な例は、図4に示されるように、以下の式(1)で与えられる双安定ポテンシャルU(x)上を移動する粒子(位置:x(t))が、外力(信号系列S(t)+雑音W(t))を与えられた時にポテンシャルの山を越えられるか否かを観測する系である。   FIG. 3 is a diagram showing an example of a threshold type nonlinear system. FIG. 4 is a diagram illustrating an example of a bistable nonlinearity. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the amplitude of each signal. In FIG. 4, the horizontal axis indicates the position of the particle, and the vertical axis indicates the potential of the particle. As shown in FIG. 3, a simple example of a threshold type nonlinear system observes whether or not the amplitude obtained by combining the signal sequence S (t) and the noise W (t) exceeds a certain threshold Th. It is a system. Further, as shown in FIG. 4, a simple example of a bistable nonlinear system is a particle (position: x (t)) moving on a bistable potential U (x) given by the following equation (1). ) Is a system for observing whether or not a potential peak can be exceeded when an external force (signal sequence S (t) + noise W (t)) is applied.

Figure 2012175371
Figure 2012175371

どちらの非線形系においても、信号系列S(t)が微弱な場合、観測点(閾値、あるいはポテンシャルの山)を越えることができない。しかし、雑音が加わることにより越えることができるときがあり、ある特定のレベルの雑音が信号系列S(t)に加えられると観測点を越える確率が入力した微弱信号の波形を表すことになる。これが確率共鳴現象である。雑音のレベルは、低すぎても高すぎても微弱信号の波形を表すことができないため、使用する非線形系に対して最適な雑音レベルが存在する。   In either nonlinear system, when the signal sequence S (t) is weak, the observation point (threshold value or potential peak) cannot be exceeded. However, there are times when the noise can be exceeded by adding noise, and when a certain level of noise is added to the signal sequence S (t), the probability of exceeding the observation point represents the waveform of the input weak signal. This is a stochastic resonance phenomenon. If the noise level is too low or too high, the waveform of the weak signal cannot be expressed, and therefore there is an optimum noise level for the nonlinear system to be used.

この確率共鳴現象を利用した微弱信号の増幅方法が検討されている(例えば、非特許文献2,3参照)。図5は、確率共鳴現象を利用して、信号を増幅する処理を示した概略図である。図5に示すように、増幅の処理は、受信した受信信号系列R(t)に対して、内部雑音源が生成する白色ガウス信号W1(t)〜Wn(t)を合成し、受信信号系列R(t)と白色ガウス信号W1(t)〜Wn(t)とを合成した信号系列それぞれを非線形系に入力し、非線形系が出力する信号系列を合成することで、受信信号系列R(t)に含まれる所望の信号系列を劣化なく増幅することができる。   A method for amplifying a weak signal using the stochastic resonance phenomenon has been studied (for example, see Non-Patent Documents 2 and 3). FIG. 5 is a schematic diagram illustrating a process of amplifying a signal using the stochastic resonance phenomenon. As shown in FIG. 5, in the amplification process, white gauss signals W1 (t) to Wn (t) generated by the internal noise source are synthesized with the received received signal sequence R (t) to obtain a received signal sequence. Each signal sequence obtained by synthesizing R (t) and white Gaussian signals W1 (t) to Wn (t) is input to a nonlinear system, and a signal sequence output by the nonlinear system is synthesized, whereby a received signal sequence R (t ) Can be amplified without deterioration.

R. Benzi, A. Sutera, and A. Vulpiani, “The Mechanism of stochastic resonance,” J. Phys. A, vol.14, 1981, pp.453-457R. Benzi, A. Sutera, and A. Vulpiani, “The Mechanism of stochastic resonance,” J. Phys. A, vol.14, 1981, pp.453-457 J. Collins, C. Show, and T. Imhoff, “Stochastic Resonance without turning,” Nature, vol.376, pp.236-238, Jul. 1995J. Collins, C. Show, and T. Imhoff, “Stochastic Resonance without turning,” Nature, vol.376, pp.236-238, Jul. 1995 H.Ham, T.Matsuoka, and K.Taniguchi, “Sub-threshold Detection Using Noise Statistics for Communications Applications,” 15th IEEE International Conference on Electronics, Circuits and Systems 2008, pp.1167-1170, Aug. 2008H. Ham, T. Matsuoka, and K. Taniguchi, “Sub-threshold Detection Using Noise Statistics for Communications Applications,” 15th IEEE International Conference on Electronics, Circuits and Systems 2008, pp.1167-1170, Aug. 2008

しかしながら、電力レベルが微弱な所望信号系列に電力レベルの大きな雑音が合成された受信信号系列、又は微弱な所望信号系列に電力レベルの大きな雑音と他の信号などの干渉信号が合成された受信信号系列から、所望信号系列を取得し復調したい場合、確率共鳴現象を利用した上記の増幅方法では、受信信号系列そのものを増幅してしまう。そのため、雑音や干渉信号も増幅され、受信信号系列に含まれる電力レベルが微弱な所望信号系列の検出、及び復調することができないことがある。   However, a received signal sequence in which a high power level noise is synthesized with a desired signal sequence having a weak power level, or a received signal in which a noise having a large power level and an interference signal such as another signal are synthesized with a weak desired signal sequence. When it is desired to acquire and demodulate a desired signal sequence from the sequence, the amplification method using the stochastic resonance phenomenon amplifies the received signal sequence itself. For this reason, noise and interference signals are also amplified, and it may not be possible to detect and demodulate a desired signal sequence with a weak power level included in the received signal sequence.

本発明は、上記の事情を鑑みてなされたものであり、確率共鳴現象を用いて、電力レベルが微弱な所望信号系列を含む受信信号系列から所望信号系列を検出、及び復調する受信方法、及び受信装置を提供することにある。   The present invention has been made in view of the above circumstances, and uses a stochastic resonance phenomenon to detect and demodulate a desired signal sequence from a received signal sequence including a desired signal sequence having a weak power level, and To provide a receiving apparatus.

上記問題を解決するために、本発明は、受信信号系列に含まれる所望信号系列及び干渉信号系列のいずれかに基づいて、複数の合成信号系列を生成する合成信号系列生成ステップと、前記合成信号系列生成ステップにおいて生成した複数の合成信号系列ごとに、該合成信号系列と、白色ガウス信号系列と、前記受信信号系列とを合成する第1の合成ステップと、前記第1の合成ステップにおいて合成した複数の信号系列ごとに、該信号系列に対する非線形系の応答を示す応答信号系列を算出する応答信号算出ステップと、前記応答信号算出ステップにおいて算出した複数の応答信号系列を合成した合成応答信号系列を生成する第2の合成ステップとを有することを特徴とする受信方法である。   In order to solve the above problem, the present invention provides a combined signal sequence generation step of generating a plurality of combined signal sequences based on either a desired signal sequence or an interference signal sequence included in a received signal sequence, and the combined signal For each of a plurality of synthesized signal sequences generated in the sequence generating step, the synthesized signal sequence, the white Gaussian signal sequence, and the received signal sequence are synthesized in the first synthesizing step and the first synthesizing step. A response signal calculation step for calculating a response signal sequence indicating a non-linear response to the signal sequence for each of a plurality of signal sequences, and a combined response signal sequence obtained by combining the plurality of response signal sequences calculated in the response signal calculation step. And a second synthesizing step to be generated.

また、本発明は、上記に記載の発明において、前記第2の合成ステップにおいて生成した合成応答信号系列の統計的特徴量に基づいて、該合成応答信号系列から所望信号系列を検出する信号検出ステップと、前記信号検出ステップにおいて検出される所望信号系列の電力レベルに基づいて、前記合成信号系列の電力レベル、前記白色ガウス信号系列の電力レベル、前記非線形系の応答特性を変更して、前記検出される所望信号系列のSN(Signal to Noise;信号電力対雑音電力)比、あるいは電力レベルを最大にするパラメータ制御ステップとを更に有することを特徴とする。   Further, the present invention provides the signal detection step of detecting a desired signal sequence from the combined response signal sequence based on the statistical feature quantity of the combined response signal sequence generated in the second combining step in the invention described above. And changing the power level of the composite signal sequence, the power level of the white Gaussian signal sequence, and the response characteristics of the nonlinear system based on the power level of the desired signal sequence detected in the signal detection step. And a parameter control step of maximizing the signal level to signal power to noise (SN) ratio of the desired signal sequence or the power level.

また、本発明は、上記に記載の発明において、前記合成信号系列生成ステップにおいて生成される合成信号系列は、前記所望信号系列に含まれる信号から生成されることを特徴とする。   In the invention described above, the present invention is characterized in that the composite signal sequence generated in the composite signal sequence generation step is generated from a signal included in the desired signal sequence.

また、本発明は、上記に記載の発明において、前記合成信号系列生成ステップにおいて生成される合成信号系列は、前記干渉信号系列に含まれる信号から生成されることを特徴とする。   In the invention described above, the present invention is characterized in that the combined signal sequence generated in the combined signal sequence generation step is generated from a signal included in the interference signal sequence.

また、本発明は、上記に記載の発明において、前記合成信号系列生成ステップにおいて生成される合成信号系列は、前記所望信号系列のキャリア周波数の無変調信号、又は、前記干渉信号系列のレプリカ信号の正負を反転させた信号から生成されることを特徴とする。   Further, the present invention is the above-described invention, wherein the combined signal sequence generated in the combined signal sequence generating step is an unmodulated signal having a carrier frequency of the desired signal sequence or a replica signal of the interference signal sequence. It is generated from a signal in which positive and negative are inverted.

また、本発明は、受信信号系列に含まれる所望信号系列及び干渉信号系列のいずれかに基づいて、合成信号系列を生成する複数の合成信号系列生成部と、前記複数の合成信号系列生成部が生成した合成信号系列ごとに、該合成信号系列と、白色ガウス信号系列と、前記受信信号系列とを合成する合成部と、前記合成部が合成した複数の信号系列に対する非線形系の応答を示す応答信号系列をそれぞれ算出する複数の非線形応答部と、前記非線形応答部が算出した複数の応答信号系列を合成した合成応答信号系列を生成する応答信号合成部とを備えることを特徴とする受信装置である。   Further, the present invention provides a plurality of combined signal sequence generation units that generate a combined signal sequence based on either a desired signal sequence or an interference signal sequence included in a received signal sequence, and the plurality of combined signal sequence generation units For each generated composite signal sequence, a composite unit that combines the composite signal sequence, a white Gaussian signal sequence, and the received signal sequence, and a response indicating a response of a non-linear system to a plurality of signal sequences combined by the composite unit A receiving apparatus comprising: a plurality of nonlinear response units that respectively calculate signal sequences; and a response signal combining unit that generates a combined response signal sequence obtained by combining a plurality of response signal sequences calculated by the nonlinear response unit. is there.

また、本発明は、上記に記載の発明において、前記応答信号合成部が生成する合成応答信号系列の統計的特徴量に基づいて、該合成応答信号系列から所望信号系列を検出する信号検出部と、前記信号検出部が検出した所望信号系列の電力レベルに基づいて、前記合成信号系列の電力レベル、前記白色ガウス信号系列の電力レベル、前記非線形系の応答特性を変更して、前記検出される所望信号系列のSN比、あるいは電力レベルを最大にするパラメータ制御部とを更に備えることを特徴とする。   In addition, the present invention provides a signal detection unit that detects a desired signal sequence from the combined response signal sequence based on a statistical feature quantity of the combined response signal sequence generated by the response signal combining unit. Based on the power level of the desired signal sequence detected by the signal detector, the power level of the composite signal sequence, the power level of the white Gaussian signal sequence, and the response characteristic of the nonlinear system are changed and detected. And a parameter control unit that maximizes the SN ratio of the desired signal sequence or the power level.

また、本発明は、上記に記載の発明において、前記合成信号系列生成部は、前記所望信号系列に含まれる信号から前記合成信号系列を生成することを特徴とする。   In the invention described above, the present invention is characterized in that the combined signal sequence generation unit generates the combined signal sequence from signals included in the desired signal sequence.

また、本発明は、上記に記載の発明において、前記合成信号系列生成部は、前記干渉信号系列に含まれる信号から前記合成信号系列を生成することを特徴とする。   In the invention described above, the present invention is characterized in that the combined signal sequence generation unit generates the combined signal sequence from signals included in the interference signal sequence.

また、本発明は、上記に記載の発明において、前記合成信号系列生成部は、前記所望信号系列のキャリア周波数の無変調信号、又は、前記干渉信号系列のレプリカ信号の正負を反転させた信号から前記合成信号系列を生成することを特徴とする。   Further, the present invention is the above-described invention, wherein the synthesized signal sequence generation unit is based on an unmodulated signal of a carrier frequency of the desired signal sequence or a signal obtained by inverting the sign of the replica signal of the interference signal sequence. The synthesized signal sequence is generated.

本発明によれば、受信信号系列に含まれる所望信号系列及び干渉信号系列のいずれかに基づいて生成された合成信号系列と、受信信号系列とを合成した後に、確率共鳴現象を用いて所望信号系列を強調するようにした。
合成信号系列が所望信号系列に基づいて生成された場合、合成信号系列と受信信号系列とを合成することにより、受信信号系列に含まれる所望信号系列に対して強く確率共鳴を生じさせることができるので、受信信号系列に電力レベルの大きな雑音や他の信号などの干渉信号系列が含まれている場合においても、所望信号系列を強調することにより、所望信号系列を検出及び復調することができる。
また、合成信号系列が干渉信号系列に基づいて生成された場合、合成信号系列と受信信号系列とを合成することにより、受信信号系列に含まれる干渉信号系列に対する確率共鳴を抑圧することができるので、受信信号系列に電力レベルの大きな雑音や他の信号などの干渉信号系列が含まれている場合においても、所望信号系列を強調することにより、所望信号系列を検出及び復調することができる。
According to the present invention, a synthesized signal sequence generated based on one of a desired signal sequence and an interference signal sequence included in a received signal sequence and a received signal sequence are synthesized, and then the desired signal is used using the stochastic resonance phenomenon. The series was emphasized.
When the synthesized signal sequence is generated based on the desired signal sequence, it is possible to generate a strong stochastic resonance with respect to the desired signal sequence included in the received signal sequence by synthesizing the synthesized signal sequence and the received signal sequence. Therefore, even when the received signal sequence includes an interference signal sequence such as noise with a large power level or other signals, the desired signal sequence can be detected and demodulated by enhancing the desired signal sequence.
In addition, when the composite signal sequence is generated based on the interference signal sequence, it is possible to suppress the stochastic resonance for the interference signal sequence included in the reception signal sequence by combining the composite signal sequence and the reception signal sequence. Even when the received signal sequence includes an interference signal sequence such as noise having a high power level or other signals, the desired signal sequence can be detected and demodulated by enhancing the desired signal sequence.

本実施形態における受信装置1の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the receiver 1 in this embodiment. 同実施形態における受信装置1の受信方法を示すフローチャートである。It is a flowchart which shows the receiving method of the receiver 1 in the embodiment. 閾値型の非線形系の一例を示す図である。It is a figure which shows an example of a threshold-type nonlinear system. 双安定型の非線形系の一例を示す図である。It is a figure which shows an example of a bistable type nonlinear system. 確率共鳴現象を利用して、信号を増幅する増幅装置の一例を示す図である。It is a figure which shows an example of the amplifier which amplifies a signal using a stochastic resonance phenomenon.

以下、図面を参照して本発明の実施形態における受信方法、及び受信装置を説明する。
図1は、本実施形態における受信装置1の構成を示す概略ブロック図である。同図に示すように、受信装置1は、確率共鳴現象を用いて、外部より入力される受信信号系列R(t)に含まれる電力レベルが微弱な所望信号系列を検出、及び復調する。受信装置1は、n個の合成信号系列生成部101(101−1〜101−n)、n個の加算部102(102−1〜102−n)、n個の白色ガウス信号生成部103(103−1〜103−n)、n個の加算部104(104−1〜104−n)、n個の非線形応答部105(105−1〜105−n)、平均算出部106、信号検出部107、信号復調部108、及び、パラメータ制御部109を備えている。ここで、nは1以上の自然数である。
Hereinafter, a reception method and a reception apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic block diagram showing the configuration of the receiving device 1 in the present embodiment. As shown in the figure, the receiving apparatus 1 detects and demodulates a desired signal sequence having a weak power level included in a received signal sequence R (t) input from the outside using a stochastic resonance phenomenon. The receiving apparatus 1 includes n composite signal sequence generation units 101 (101-1 to 101-n), n addition units 102 (102-1 to 102-n), and n white Gaussian signal generation units 103 ( 103-1 to 103-n), n adders 104 (104-1 to 104-n), n nonlinear response units 105 (105-1 to 105-n), an average calculator 106, and a signal detector 107, a signal demodulator 108, and a parameter controller 109. Here, n is a natural number of 1 or more.

合成信号系列生成部101−1は、受信信号系列R(t)と合成する合成信号系列Z1(t)を生成し、加算部102−1に出力する。合成信号系列生成部101−2〜101−nは、合成信号系列生成部101−1と同様に、受信信号系列R(t)と合成する合成信号系列Z2(t)〜Zn(t)を生成し、加算部102−2〜102−nに出力する。
加算部102−1は、入力される受信信号系列R(t)と、合成信号系列生成部101−1が生成した合成信号系列Z1(t)とを加算する合成を行い、合成により得られた信号系列を加算部104−1に出力する。加算部102−2〜102−nは、加算部102−1と同様に、入力される受信信号系列R(t)と、合成信号系列生成部101−2〜101−nが生成した合成信号系列Z2(t)〜Zn(t)とを加算する合成を行い、合成により得られた信号系列をそれぞれ加算部104−2〜104−nに出力する。
The combined signal sequence generation unit 101-1 generates a combined signal sequence Z1 (t) to be combined with the received signal sequence R (t) and outputs it to the adding unit 102-1. The combined signal sequence generation units 101-2 to 101-n generate combined signal sequences Z2 (t) to Zn (t) to be combined with the received signal sequence R (t), similar to the combined signal sequence generation unit 101-1. And output to the adders 102-2 to 102-n.
The adder 102-1 performs synthesis by adding the input received signal sequence R (t) and the synthesized signal sequence Z1 (t) generated by the synthesized signal sequence generator 101-1, and obtained by synthesis. The signal series is output to adder 104-1. The adders 102-2 to 102-n, like the adder 102-1, receive the received signal sequence R (t) and the synthesized signal sequence generated by the synthesized signal sequence generators 101-2 to 101-n. The combination of adding Z2 (t) to Zn (t) is performed, and the signal sequences obtained by the combination are output to the addition units 104-2 to 104-n, respectively.

白色ガウス信号生成部103−1は、平均値が0であり、かつ分散がσである白色ガウス信号(白色ガウス雑音信号)W1(t)を生成して加算部104−1に出力する。白色ガウス信号生成部103−2〜103−nは、白色ガウス信号生成部103−1と同様に、白色ガウス信号W2(t)〜Wn(t)を生成して加算部104−2〜104−nに出力する。
加算部104−1は、加算部102−1が合成した信号系列と、白色ガウス信号生成部103−1が生成した白色ガウス信号W1(t)とを加算する合成を行い、合成により得られた信号系列を非線形応答部105−1に出力する。加算部104−2〜104−nは、加算部104−1と同様に、加算部102−2〜102−nが合成した信号系列と、白色ガウス信号生成部103−2〜103−nが生成した白色ガウス信号W2(t)〜Wn(t)とを加算する合成を行い、合成により得られた信号系列を非線形応答部105−2〜105−nに出力する。
The white Gaussian signal generation unit 103-1 generates a white Gaussian signal (white Gaussian noise signal) W < b > 1 (t) having an average value of 0 and a variance σ 2 and outputs the generated signal to the adder 104-1. The white Gaussian signal generators 103-2 to 103-n generate white Gaussian signals W2 (t) to Wn (t) and adders 104-2 to 104-, similarly to the white Gaussian signal generator 103-1. output to n.
The addition unit 104-1 performs synthesis by adding the signal sequence synthesized by the addition unit 102-1 and the white Gaussian signal W1 (t) generated by the white Gaussian signal generation unit 103-1, and is obtained by synthesis. The signal series is output to the nonlinear response unit 105-1. Similar to the adder 104-1, the adders 104-2 to 104-n generate the signal series synthesized by the adders 102-2 to 102-n and the white Gaussian signal generators 103-2 to 103-n. The resultant white Gaussian signals W2 (t) to Wn (t) are combined, and a signal sequence obtained by the combination is output to the nonlinear response units 105-2 to 105-n.

加算部102−1と加算部104−1とは、受信信号系列R(t)に対して、合成信号系列Z1(t)及び白色ガウス信号W1(t)を合成する合成部111−1を構成している。加算部102−2〜102−nと、加算部104−2〜104−nとは、加算部102−1と加算部104−1と同様に、受信信号系列R(t)に対して、合成信号系列Z2(t)〜Zn(t)及び白色ガウス信号W2(t)〜Wn(t)を合成する合成部111−2〜111−nを構成している。   The adder 102-1 and the adder 104-1 constitute a synthesizer 111-1 that synthesizes the synthesized signal sequence Z1 (t) and the white Gaussian signal W1 (t) with the received signal sequence R (t). is doing. The adding units 102-2 to 102-n and the adding units 104-2 to 104-n are combined with the received signal sequence R (t) in the same manner as the adding units 102-1 and 104-1. Combining sections 111-2 to 111-n are configured to synthesize the signal series Z2 (t) to Zn (t) and the white Gaussian signals W2 (t) to Wn (t).

非線形応答部105−1は、予め定められた非線形系に基づいて、加算部104−1が合成した信号系列に対する応答信号系列を出力する。非線形応答部105−2〜105−nは、非線形応答部105−1と同様に、予め定められた非線形系に基づいて、加算部104−2〜104−nが合成した信号系列に対する応答信号系列を出力する。
非線形応答部105−1〜105−nは、例えば、図3に示した閾値型の非線形系における応答信号系列を出力する処理、又は、図4に示した双安定型の非線形系における応答信号系列を出力する処理を行う。
上記のように、受信装置1は、受信信号系列R(t)を、合成信号系列Zi(t)及び白色ガウス信号Wi(t)(i=1,2,…,n)と合成し、合成した信号系列に対する非線形系の応答信号系列を出力させるn個の信号処理部110−1〜110−nを有している。
The non-linear response unit 105-1 outputs a response signal sequence for the signal sequence synthesized by the addition unit 104-1 based on a predetermined non-linear system. Similarly to the non-linear response unit 105-1, the non-linear response units 105-2 to 105-n are response signal sequences for the signal sequence synthesized by the addition units 104-2 to 104-n based on a predetermined non-linear system. Is output.
For example, the nonlinear response units 105-1 to 105-n output the response signal sequence in the threshold type nonlinear system shown in FIG. 3, or the response signal sequence in the bistable nonlinear system shown in FIG. Process to output.
As described above, the receiving apparatus 1 combines the received signal sequence R (t) with the combined signal sequence Zi (t) and the white Gaussian signal Wi (t) (i = 1, 2,..., N) and combines them. N signal processing units 110-1 to 110-n for outputting a non-linear response signal sequence to the signal sequence.

平均算出部106は、n個の信号処理部110−1〜110−nから出力される応答信号系列を各時点毎に平均化した平均信号系列を算出する。具体的には、平均算出部106は、連続的に入力される複数の応答信号系列それぞれの値を各時点毎に加算を用いた合成により合成応答信号系列を生成する。更に、平均算出部106は、合成応答信号系列の値を複数の合成信号系列の数(n)で除算することにより逐次平均値を算出して、複数の応答信号系列を平均化した平均信号系列を生成する。
平均算出部106は、非線形応答部105−1〜105−nそれぞれが出力する応答信号系列を各時点毎に平均化することによって、非線形系における出力の期待値(あるいは確率)を算出することになる。この期待値は、理想的には所望信号系列の振幅を示すことになる。
The average calculation unit 106 calculates an average signal sequence obtained by averaging the response signal sequences output from the n signal processing units 110-1 to 110-n at each time point. Specifically, the average calculation unit 106 generates a combined response signal sequence by combining the values of a plurality of response signal sequences that are continuously input using addition for each time point. Further, the average calculation unit 106 sequentially calculates an average value by dividing the value of the combined response signal sequence by the number (n) of the plurality of combined signal sequences, and averages the plurality of response signal sequences. Is generated.
The average calculation unit 106 calculates the expected value (or probability) of the output in the nonlinear system by averaging the response signal series output by each of the nonlinear response units 105-1 to 105-n at each time point. Become. This expected value ideally indicates the amplitude of the desired signal sequence.

信号検出部107は、平均算出部106が出力する平均信号系列の統計的特徴量を算出して受信信号系列R(t)に含まれている所望信号系列を検出する。例えば、信号検出部107は、統計的特徴量として、単位時間当たりのパワースペクトル密度分布や予め定められた周波数帯域ごとの電力レベルの平均値を算出する。あるいは、信号検出部107は、所望信号に含まれるプリアンブルなどの既知の信号系列との相関値を算出する。そして、信号検出部107は、パワースペクトル密度分布の偏りなどから信号の中心周波数や、周波数帯域、電力レベルを推定し、所望信号系列を検出する。
信号復調部108は、平均算出部106が出力する平均信号系列に含まれる所望信号系列を検出し、予め定められた所望信号の変調方式に基づいて、検出した所望信号系列を復調した出力信号を出力する。
The signal detection unit 107 calculates a statistical feature quantity of the average signal sequence output from the average calculation unit 106 and detects a desired signal sequence included in the reception signal sequence R (t). For example, the signal detection unit 107 calculates the average value of the power spectrum density distribution per unit time and the power level for each predetermined frequency band as the statistical feature amount. Alternatively, the signal detection unit 107 calculates a correlation value with a known signal sequence such as a preamble included in the desired signal. Then, the signal detection unit 107 estimates the center frequency, frequency band, and power level of the signal from the bias of the power spectrum density distribution, and detects the desired signal sequence.
The signal demodulator 108 detects a desired signal sequence included in the average signal sequence output by the average calculator 106, and outputs an output signal obtained by demodulating the detected desired signal sequence based on a predetermined modulation method of the desired signal. Output.

パラメータ制御部109は、信号検出部107が検出した所望信号系列に基づいて、合成信号系列生成部101−1〜101−nが生成する合成信号系列Z1(t)〜Zn(t)の電力レベルや、白色ガウス信号生成部103−1〜103−nが生成する白色ガウス信号W1(t)〜Wn(t)の電力レベル、非線形応答部105−1〜105−nにおける非線形系のパラメータを制御するパラメータ制御を行い、各非線形応答部105−1〜105−nが出力する応答信号系列を調整する。
このとき、パラメータ制御部109は、信号検出部107が検出する所望信号系列のSN(Signal to Noise;信号電力対雑音電力)比を最大化するように、合成信号系列Z1(t)〜Zn(t)の電力レベルと、白色ガウス信号W1(t)〜Wn(t)の電力レベルと、非線形系の応答特性とを変更する。なお、パラメータ制御部109は、信号検出部107が検出する所望信号系列の電力レベルが最大になるようにパラメータ制御を行うようにしてもよい。
The parameter control unit 109 uses the power levels of the combined signal sequences Z1 (t) to Zn (t) generated by the combined signal sequence generating units 101-1 to 101-n based on the desired signal sequence detected by the signal detecting unit 107. Further, the power level of the white Gaussian signals W1 (t) to Wn (t) generated by the white Gaussian signal generators 103-1 to 103-n and the parameters of the nonlinear system in the nonlinear responders 105-1 to 105-n are controlled. Parameter control is performed to adjust the response signal sequence output by each of the nonlinear response units 105-1 to 105-n.
At this time, the parameter control unit 109 combines the composite signal sequences Z1 (t) to Zn (Zn) so as to maximize the SN (Signal to Noise) ratio of the desired signal sequence detected by the signal detection unit 107. The power level of t), the power levels of the white Gaussian signals W1 (t) to Wn (t), and the response characteristics of the nonlinear system are changed. The parameter control unit 109 may perform parameter control so that the power level of the desired signal sequence detected by the signal detection unit 107 is maximized.

例えば、閾値型の非線形系におけるパラメータは閾値である。この場合、パラメータ制御部109は、所望信号系列のパワースペクトル密度分布において、ノイズフロアが非常に低く、且つ、信号が何も検出されない場合、閾値のレベルを下げ、ノイズフロアが非常に高い場合、閾値のレベルを上げて、非線形系における応答特性を制御する。また、図4に示した双安定型の非線形系におけるパラメータは、双安定ポテンシャルU(x)と、双安定ポテンシャルU(x)における井戸の深さΔUとを決定する変数a、bである。この場合、パラメータ制御部109は、変数a、bの値を変更することで深さΔU(=a/4b)を深く、あるいは浅くして、閾値型の非線形系における閾値のレベルの制御と同様に、非線形系における応答特性を制御する。 For example, the parameter in the threshold type nonlinear system is a threshold value. In this case, the parameter control unit 109 lowers the threshold level when the noise floor is very low and no signal is detected in the power spectrum density distribution of the desired signal sequence, and when the noise floor is very high, The response level in the nonlinear system is controlled by increasing the threshold level. The parameters in the bistable nonlinear system shown in FIG. 4 are variables a and b that determine the bistable potential U (x) and the well depth ΔU in the bistable potential U (x). In this case, the parameter control unit 109 changes the values of the variables a and b to increase or decrease the depth ΔU (= a 2 / 4b) to control the threshold level in the threshold type nonlinear system. Similarly, response characteristics in the nonlinear system are controlled.

図2は、本実施形態における受信装置1の受信方法を示すフローチャートである。
受信装置1において、外部より入力された受信信号系列R(t)は、加算部102−1〜102−nそれぞれに入力される(ステップS1)。すなわち、加算部102−1〜102−nそれぞれには、複製された受信信号系列R(t)が入力される。
加算部102−1〜102−nは、それぞれが入力された受信信号系列R(t)と、合成信号系列生成部101−1〜101−nが生成した合成信号系列Z1(t)〜Zn(t)とを加算し(ステップS2)、加算により得られた信号系列を加算部104−1〜104−nに出力する。
FIG. 2 is a flowchart illustrating a reception method of the reception device 1 in the present embodiment.
In the receiving device 1, the received signal sequence R (t) input from the outside is input to each of the adders 102-1 to 102-n (step S1). That is, each of the adders 102-1 to 102-n receives the duplicated received signal sequence R (t).
The adders 102-1 to 102-n respectively receive the received signal sequence R (t) and the combined signal sequences Z1 (t) to Zn () generated by the combined signal sequence generators 101-1 to 101-n. t) is added (step S2), and the signal sequence obtained by the addition is output to the adders 104-1 to 104-n.

ここで、合成信号系列生成部101−1〜101−nそれぞれが生成する合成信号系列Z1(t)〜Zn(t)は、例えば、所望信号系列に基づく信号系列や、受信信号系列R(t)に含まれる干渉信号系列に基づく信号系列である。具体的には、所望信号のキャリア周波数と同じ周波数を有する無変調の信号系列(以下、キャリア信号という)や、干渉信号(又は、干渉信号のレプリカ信号)の振幅の正負を反転させた信号系列を、合成信号系列Z1(t)〜Zn(t)にする。なお、受信信号系列R(t)において、いずれの信号を干渉信号とするかは、受信信号系列R(t)に含まれるいずれの信号系列を所望信号系列にするかに応じて定められる。   Here, the synthesized signal sequences Z1 (t) to Zn (t) generated by the synthesized signal sequence generators 101-1 to 101-n are, for example, a signal sequence based on a desired signal sequence or a received signal sequence R (t ) Is a signal sequence based on the interference signal sequence included. Specifically, an unmodulated signal sequence (hereinafter referred to as a carrier signal) having the same frequency as the carrier frequency of the desired signal, or a signal sequence in which the amplitude of the interference signal (or replica signal of the interference signal) is inverted. Are combined signal sequences Z1 (t) to Zn (t). Note that in the received signal sequence R (t), which signal is used as the interference signal is determined depending on which signal sequence included in the received signal sequence R (t) is the desired signal sequence.

続いて、加算部104−1〜104−nは、加算部102−1〜102−nが合成した信号系列と、白色ガウス信号生成部103−1〜103−nが生成した、平均値が0であり、分散がσである白色ガウス信号W1(t)〜Wn(t)とを合成し(ステップS3)、合成した信号系列を非線形応答部105−1〜105−nに入力する(ステップS4)。
平均算出部106は、非線形応答部105−1〜105−nそれぞれが出力するn個の応答信号系列を各時点毎に平均した平均信号系列を出力する(ステップS5)。
Subsequently, the adders 104-1 to 104-n have the average value 0 generated by the signal series synthesized by the adders 102-1 to 102-n and the white Gaussian signal generators 103-1 to 103-n. And the white Gaussian signals W1 (t) to Wn (t) with variance σ 2 (step S3), and the combined signal series is input to the nonlinear response units 105-1 to 105-n (step S3). S4).
The average calculator 106 outputs an average signal sequence obtained by averaging the n response signal sequences output by the nonlinear response units 105-1 to 105-n at each time point (step S5).

信号検出部107は、平均算出部106が出力した平均信号系列から所望信号系列を検出する(ステップS6)。このとき、信号検出部107は、平均信号系列のパワースペクトル密度分布を算出し、算出したパワースペクトル密度分布を用いて所望信号系列の検出を行うようにしてもよい。また、信号検出部107は、所望信号に含まれるプリアンブルなどの既知の信号系列との相関値を算出し、この相関値を用いて所望信号系列の検出を行うようにしてもよい。信号復調部108は、平均算出部106が出力した平均信号系列から所望信号系列を検出し、検出した所望信号系列を復調する(ステップS7)。
なお、信号検出部107は、信号復調部108における復調の結果に基づいて、所望信号系列を正しく検出できているか否かを判定するようにしてもよい。
The signal detection unit 107 detects a desired signal sequence from the average signal sequence output by the average calculation unit 106 (step S6). At this time, the signal detection unit 107 may calculate the power spectrum density distribution of the average signal sequence and detect the desired signal sequence using the calculated power spectrum density distribution. Further, the signal detection unit 107 may calculate a correlation value with a known signal sequence such as a preamble included in the desired signal, and detect the desired signal sequence using the correlation value. The signal demodulator 108 detects a desired signal sequence from the average signal sequence output by the average calculator 106 and demodulates the detected desired signal sequence (step S7).
Note that the signal detection unit 107 may determine whether or not the desired signal sequence has been correctly detected based on the demodulation result in the signal demodulation unit 108.

パラメータ制御部109は、信号検出部107が検出した所望信号系列に基づいたパラメータ制御を行い(ステップS8)、合成信号系列生成部101−1〜101−n、白色ガウス信号生成部103−1〜103−n、及び非線形応答部105−1〜105−nに対して、所望信号系列のSN比、あるいは電力レベルを最大にするフィードバックをする。
なお、パラメータ制御部109は、シミュレーションや実測の結果と、信号検出部107が検出した所望信号系列とを比較することにより、予め定められた合成信号系列Z1(t)〜Zn(t)及び白色ガウス信号W1(t)〜Wn(t)の電力レベルと、非線形応答部105−1〜105−nの応答特性とをどのように変更するかを選択するようにしてもよい。
The parameter control unit 109 performs parameter control based on the desired signal sequence detected by the signal detection unit 107 (step S8), the combined signal sequence generation units 101-1 to 101-n, and the white Gaussian signal generation units 103-1 to 103-1. 103-n and the nonlinear response units 105-1 to 105-n are fed back to maximize the SN ratio or power level of the desired signal sequence.
Note that the parameter control unit 109 compares the result of simulation or actual measurement with the desired signal sequence detected by the signal detection unit 107, thereby determining a predetermined composite signal sequence Z1 (t) to Zn (t) and white color. You may make it select how to change the power level of the Gaussian signal W1 (t) -Wn (t), and the response characteristic of the nonlinear response part 105-1 -105-n.

本実施形態における受信装置1は、上述のように、n個の信号処理部110−1〜110−nそれぞれにおいて、合成信号系列Z1(t)〜Zn(t)及び白色ガウス信号W1(t)〜Wn(t)と、受信信号系列R(t)とを合成する。また、非線形系をモデル化した非線形応答部105−1〜105−nが、合成により得られた信号系列に対する応答信号系列を平均算出部106に出力する。更に、信号復調部108が、非線形応答部105−1〜105−nから出力されるn個の応答信号系列を平均した平均信号系列から所望信号系列を復調する。また、パラメータ制御部109が、所望信号系列のSN比、あるいは振幅(電力レベル)に応じて、合成信号系列Z1(t)〜Zn(t)及び白色ガウス信号W1(t)〜Wn(t)の電力レベルや、非線形応答部105−1〜105−nの応答特性を制御する。
これにより、受信装置1は、受信信号系列R(t)に含まれている電力レベルが微弱な所望信号系列を、確率共鳴現象を用いた強調(増幅)を行うことができ、所望信号系列の検出及び復調を行うことができ、所望信号系列に対する受信性能を向上させることができる。
As described above, the receiving apparatus 1 in the present embodiment includes the combined signal series Z1 (t) to Zn (t) and the white Gaussian signal W1 (t) in each of the n signal processing units 110-1 to 110-n. ˜Wn (t) and received signal sequence R (t) are combined. Further, the non-linear response units 105-1 to 105-n modeling the non-linear system output to the average calculation unit 106 a response signal sequence for the signal sequence obtained by the synthesis. Further, the signal demodulator 108 demodulates the desired signal sequence from the average signal sequence obtained by averaging the n response signal sequences output from the nonlinear response units 105-1 to 105-n. In addition, the parameter control unit 109 determines the combined signal sequence Z1 (t) to Zn (t) and the white Gaussian signal W1 (t) to Wn (t) according to the SN ratio or amplitude (power level) of the desired signal sequence. And the response characteristics of the non-linear response units 105-1 to 105-n are controlled.
Accordingly, the receiving apparatus 1 can perform enhancement (amplification) using a stochastic resonance phenomenon on a desired signal sequence having a weak power level included in the received signal sequence R (t). Detection and demodulation can be performed, and reception performance for a desired signal sequence can be improved.

なお、本実施形態において、受信装置1は、合成信号系列Z1(t)〜Zn(t)及び白色ガウス信号W1(t)〜Wn(t)と、受信信号系列R(t)とを加算することで合成を行う構成を説明したが、これに限ることなく、乗算を用いて信号系列を合成するようにしてもよい。
また、受信装置1において、受信信号系列R(t)と合成信号系列Z1(t)〜Zn(t)とを合成した後に、合成により得られた信号系列と白色ガウス信号W1(t)〜Wn(t)とを合成する構成を説明したが、受信信号系列R(t)と白色ガウス信号W1(t)〜Wn(t)とを合成した後に、合成により得られた信号系列と合成信号系列Z1(t)〜Zn(t)とを合成するようにしてもよい。
In the present embodiment, the receiving apparatus 1 adds the combined signal series Z1 (t) to Zn (t), the white Gaussian signals W1 (t) to Wn (t), and the received signal series R (t). However, the present invention is not limited to this, and a signal sequence may be synthesized using multiplication.
In addition, after the received signal sequence R (t) and the synthesized signal sequences Z1 (t) to Zn (t) are synthesized in the receiving apparatus 1, the signal sequence obtained by the synthesis and the white Gaussian signals W1 (t) to Wn. The configuration for combining (t) has been described, but the signal sequence and the combined signal sequence obtained by combining the received signal sequence R (t) and the white Gaussian signals W1 (t) to Wn (t) are combined. Z1 (t) to Zn (t) may be synthesized.

また、本実施形態において、平均算出部106は、非線形応答部105−1〜105−nが出力する複数の応答信号系列を各時点毎に平均化することにより、平均信号系列を算出するようにしたが、複数の合成信号系列の数(n)で除算せずに、加算信号系列を出力するようにしてもよい。   In the present embodiment, the average calculation unit 106 calculates the average signal sequence by averaging the plurality of response signal sequences output by the nonlinear response units 105-1 to 105-n at each time point. However, the added signal sequence may be output without being divided by the number (n) of the plurality of synthesized signal sequences.

以下、本実施形の具体的な実施例について説明する。   Hereinafter, specific examples of the present embodiment will be described.

実施例1では、合成信号系列生成部101−1〜101−nは、検出・復調の対象となる所望信号系列のキャリア信号を合成信号系列Z1(t)〜Zn(t)として出力する。このとき、キャリア信号のキャリア周波数は既知であり、また、受信信号系列R(t)に含まれる所望信号と、合成信号系列生成部101−1〜101−nが出力する合成信号系列Z1(t)〜Zn(t)との時間同期がとられているものとする。   In the first embodiment, the combined signal sequence generation units 101-1 to 101-n output carrier signals of desired signal sequences to be detected and demodulated as combined signal sequences Z1 (t) to Zn (t). At this time, the carrier frequency of the carrier signal is known, the desired signal included in the received signal sequence R (t), and the combined signal sequence Z1 (t ) To Zn (t) are time-synchronized.

具体的には、送信側と受信側との間で周波数帯域とタイミングとを予め定めておいたり、受信装置1において、パワースペクトル密度分布から得られる所望信号系列の統計的特徴量を示す情報から所望信号系列のキャリア周波数を検出したり、プリアンブルなどの同期信号を用いて時間同期をとったりする。検出したキャリア周波数などを受信装置1に設けられた記憶部(不図示)に記憶させ、再度のキャリア周波数の検出を不要にしてもよい。また、所望信号系列の変調方式には、BPSK(Binary Phase Shift Keying;2値位相偏移変調)が用いられている場合について説明する。
ここで、統計的特徴量とは、単位時間当たりのパワースペクトル密度分布や予め定められた周波数帯域ごとの電力レベルの平均値などである。
Specifically, the frequency band and timing are determined in advance between the transmission side and the reception side, or in the reception device 1 from information indicating the statistical feature quantity of the desired signal sequence obtained from the power spectrum density distribution. A carrier frequency of a desired signal sequence is detected, or time synchronization is performed using a synchronization signal such as a preamble. The detected carrier frequency or the like may be stored in a storage unit (not shown) provided in the receiving apparatus 1 so that the detection of the carrier frequency again is unnecessary. A case where BPSK (Binary Phase Shift Keying) is used as the modulation scheme of the desired signal sequence will be described.
Here, the statistical feature amount is a power spectrum density distribution per unit time, an average value of power levels for each predetermined frequency band, or the like.

BPSKを用いて変調された信号は、送信データの1ビット分を1シンボルで表し、送信データの値が「0」の信号と、送信データの値が「1」の信号との位相差はπである。つまり、「0」を示すビットに対応するシンボル(以下、0シンボルという)と、キャリア信号と位相差が0(零)である場合、「1」を示すビットに対応するシンボル(以下、1シンボルという)と、キャリア信号との位相差は、πとなる。   In a signal modulated using BPSK, one bit of transmission data is represented by one symbol, and the phase difference between a signal having a transmission data value of “0” and a signal having a transmission data value of “1” is π It is. That is, a symbol corresponding to a bit indicating “0” (hereinafter referred to as 0 symbol) and a symbol corresponding to a bit indicating “1” (hereinafter referred to as 1 symbol) when the phase difference between the carrier signal and the carrier signal is 0 (zero). And the phase difference from the carrier signal is π.

図2に示した受信方法のステップS2において、0シンボルとの位相差が0となるキャリア信号を合成信号系列として受信信号系列R(t)に合成すると、0シンボルの信号は強め合い、1シンボルの信号は弱め合うことになる。すなわち、受信信号系列R(t)に含まれる信号(所望信号系列)のうち、キャリア信号の位相と一致する信号が増幅され、位相がπずれている信号が抑圧される。また、位相がπずれているキャリア信号を合成信号系列として受信信号系列R(t)に合成すると、1シンボルの信号は増幅され、0シンボルの信号は抑圧されることになる。   In step S2 of the receiving method shown in FIG. 2, when a carrier signal having a phase difference of 0 with respect to 0 symbol is combined with the received signal sequence R (t) as a combined signal sequence, the signal of 0 symbol is strengthened and 1 symbol The signals will be weakened. That is, of the signals (desired signal sequence) included in the received signal sequence R (t), a signal that matches the phase of the carrier signal is amplified, and a signal whose phase is shifted by π is suppressed. Further, when a carrier signal whose phase is shifted by π is combined with the received signal sequence R (t) as a combined signal sequence, the signal of 1 symbol is amplified and the signal of 0 symbol is suppressed.

上述のように、0シンボルの信号と、1シンボルの信号との間に振幅レベルの差が生じるため、パラメータ制御部109において、合成により強められた信号に対してのみ確率共鳴が生じるように白色ガウス信号W1(t)〜Wn(t)の電力レベルを変更するパラメータ制御を行うことで、BPSK信号の各シンボルを強調する。   As described above, since a difference in amplitude level occurs between the 0 symbol signal and the 1 symbol signal, the parameter control unit 109 has white so that stochastic resonance occurs only for the signal strengthened by the synthesis. Each symbol of the BPSK signal is emphasized by performing parameter control for changing the power level of the Gaussian signals W1 (t) to Wn (t).

例えば、合成信号系列生成部101−1〜101−m(m=n/2)がBPSK変調された所望信号の0シンボルとの位相差が0(零)であるキャリア信号として合成信号系列Z1(t)〜Zm(t)を生成し、合成信号系列生成部101−(m+1)〜101−nが所望信号の0シンボルとの位相差がπであるキャリア信号として合成信号系列Zm+1(t)〜Zn(t)を生成する。これにより、受信装置1は、確率共鳴現象を用いて、BPSK変調された所望信号の0シンボルと1シンボルを同時に強調することができる。したがって、受信信号系列R(t)に含まれ電力レベルが微弱であり、かつBPSKにより変調された所望信号系列を強調(増幅)するので、受信信号系列R(t)から所望信号系列を検出及び復調を行うことができる。なお、復調する際には、0シンボルと1シンボルを上記のように同時に強調して復調してもよく、両シンボルを別々に強調して復調した後、復調後のデータ系列として合成配列してもよい。   For example, the combined signal sequence generators 101-1 to 101-m (m = n / 2) are combined signal sequences Z1 () as a carrier signal having a phase difference of 0 (zero) from the 0 symbol of the desired signal that has been BPSK modulated. t) to Zm (t), and the combined signal sequence generators 101- (m + 1) to 101-n are combined as a carrier signal whose phase difference from the 0 symbol of the desired signal is π. Zn (t) is generated. Thereby, the receiving apparatus 1 can simultaneously emphasize the 0 symbol and the 1 symbol of the desired signal subjected to BPSK modulation using the stochastic resonance phenomenon. Therefore, since the desired signal sequence included in the received signal sequence R (t) has a weak power level and is modulated by BPSK, the desired signal sequence is detected and received from the received signal sequence R (t). Demodulation can be performed. When demodulating, the 0 symbol and 1 symbol may be simultaneously emphasized and demodulated as described above, and both symbols may be separately emphasized and demodulated, and then synthesized and arranged as a demodulated data series. Also good.

ここでは、変調方式にBPSKを用いた場合について説明したが、FSK(Frequency Shift Keying;周波数偏移変調)や、2値以外のPSK(Phase Shift Keying;位相偏移変調)、QAM(Quadrature Amplitude Modulation;直交位相振幅変調)などの変調方式であってもよい。この場合、合成信号系列生成部101−1〜101−nは、所望信号系列を生成する際に用いた変調方式に応じた合成信号系列を生成し、加算部102−1〜102−nにおける合成の際に、受信信号系列R(t)に含まれる所望信号系列の各シンボル等を増幅、あるいは抑圧させる。そして、その各シンボル間の違いを利用した確率共鳴により所望信号を強調する。   Here, the case where BPSK is used as the modulation method has been described, but FSK (Frequency Shift Keying), non-binary PSK (Phase Shift Keying), QAM (Quadrature Amplitude Modulation). Modulation method such as quadrature phase amplitude modulation) may be used. In this case, the combined signal sequence generation units 101-1 to 101-n generate a combined signal sequence according to the modulation scheme used when generating the desired signal sequence, and the combining units 102-1 to 102-n combine them. At this time, each symbol of the desired signal sequence included in the received signal sequence R (t) is amplified or suppressed. Then, the desired signal is emphasized by stochastic resonance using the difference between the symbols.

次に、実施例2では、合成信号系列生成部101−1〜101−nが生成する合成信号系列Z1(t)〜Zn(t)として、受信信号系列R(t)に含まれ所望信号系列と異なり、かつ電力レベルの大きい他の信号系列のレプリカを生成する。このとき、所望信号系列のキャリア信号、及び他の信号系列のキャリア信号におけるキャリア周波数は、実施例1と同様に、既知であるとともに、その時間同期がとれているものとする。ここで、受信装置1が上記の他の信号系列を受信信号系列R(t)から復調することができ、復調の結果に対して変調を行うことで、他の信号系列のレプリカを生成する処理を行えるものとする。   Next, in Example 2, the desired signal sequence included in the received signal sequence R (t) as the combined signal sequence Z1 (t) to Zn (t) generated by the combined signal sequence generation units 101-1 to 101-n. And a replica of another signal sequence having a high power level is generated. At this time, it is assumed that the carrier frequency of the carrier signal of the desired signal sequence and the carrier signal of the other signal sequence are known and time-synchronized as in the first embodiment. Here, the receiving apparatus 1 can demodulate the other signal sequence from the received signal sequence R (t), and generates a replica of the other signal sequence by modulating the demodulation result. Can be performed.

受信信号系列R(t)に1つの他の信号系列が含まれる場合、合成信号系列生成部101−1〜101−nは、他の信号系列のレプリカに基づいて、他の信号系列を打ち消す、若しくは抑圧する合成信号系列Z1(t)〜Zn(t)を生成する。
これにより、図2に示した受信方法のステップS2において、受信信号系列R(t)に含まれる他の信号系列を抑圧した信号系列が合成され、合成された信号系列と白色ガウス信号とを合成した信号系列が、非線形応答部105−1〜105−nに入力される。電力レベルが大きい他の信号系列が抑圧されているので、電力レベルが微弱な所望信号系列に対して確率共鳴現象を用いた強調(増幅)することができる。
When the received signal sequence R (t) includes one other signal sequence, the combined signal sequence generation units 101-1 to 101-n cancel other signal sequences based on replicas of the other signal sequences. Alternatively, the composite signal series Z1 (t) to Zn (t) to be suppressed are generated.
Thereby, in step S2 of the reception method shown in FIG. 2, a signal sequence in which other signal sequences included in the reception signal sequence R (t) are suppressed is combined, and the combined signal sequence and the white Gaussian signal are combined. The signal sequence thus obtained is input to the non-linear response units 105-1 to 105-n. Since other signal sequences having a high power level are suppressed, it is possible to enhance (amplify) the desired signal sequence having a weak power level using the stochastic resonance phenomenon.

ここで、合成信号系列生成部101−1〜101−nが生成する上記の他の信号系列に対するレプリカの正確度が高い場合と低い場合とについて説明する。
他の信号系列に対するレプリカの正確度が高い場合、すなわち、周期や、電力レベル(振幅)、位相などが正確に再現されている場合、加算部102−1〜102−nにおける合成によって、受信信号系列R(t)から他の信号系列を打ち消すことができるので、受信信号系列R(t)に含まれる所望信号系列に対する確率共鳴現象を用いることにより、所望信号系列を検出、及び復調することができる。
Here, the case where the accuracy of the replica with respect to the other signal sequences generated by the combined signal sequence generation units 101-1 to 101-n is high and the case where it is low will be described.
When the accuracy of the replica with respect to other signal series is high, that is, when the period, power level (amplitude), phase, etc. are accurately reproduced, the received signals are combined by the adders 102-1 to 102-n. Since other signal sequences can be canceled from the sequence R (t), the desired signal sequence can be detected and demodulated by using the stochastic resonance phenomenon for the desired signal sequence included in the received signal sequence R (t). it can.

一方、他の信号系列に対するレプリカの正確度が低い場合、加算部102−1〜102−nが出力する信号系列には、抑圧されてはいるが、ある程度の電力を有する他の信号系列が含まれることになる。しかし、この場合、パラメータ制御部109が、信号検出部107が出力する信号系列と、レプリカとを比較することにより、平均信号系列に含まれる他の信号系列の電力レベルを下げるように、合成信号系列生成部101−1〜101−nが出力する合成信号系列Z1(t)〜Zn(t)の電力レベルを変化させる。
これにより、他の信号系列における確率共鳴が生じないようにするとともに、所望信号系列に対して確率共鳴を生じさせて、所望信号系列を強調して、所望信号系列の検出及び復調を行うことができる。
On the other hand, when the accuracy of the replica with respect to other signal sequences is low, the signal sequences output from the adders 102-1 to 102-n include other signal sequences that are suppressed but have some power. Will be. However, in this case, the parameter control unit 109 compares the signal sequence output from the signal detection unit 107 with the replica so as to reduce the power level of other signal sequences included in the average signal sequence. The power levels of the combined signal sequences Z1 (t) to Zn (t) output from the sequence generators 101-1 to 101-n are changed.
As a result, stochastic resonance in other signal sequences can be prevented, and stochastic resonance can be generated in the desired signal sequence to emphasize the desired signal sequence and detect and demodulate the desired signal sequence. it can.

上述のように、合成信号系列生成部101−1〜101−nが、受信信号系列R(t)に含まれる所望信号系列以外の信号系列のレプリカを生成して、受信信号系列R(t)に含まれる所望信号系列以外の信号系列を打ち消す、あるいは抑圧することで、確率共鳴現象を用いて電力レベルが微弱な所望信号系列を強調(増幅)することができ、受信信号系列R(t)から所望信号系列を検出及び復調することができる。
また、所望信号系列以外の受信信号系列R(t)に含まれる信号系列が複数ある場合、合成信号系列生成部101−1〜101−nが各信号系列を合成したレプリカを生成することで、所望信号系列が強調されるようにしてもよい。
更に、レプリカに加えて、所望信号系列のキャリア信号に基づく信号系列を合成信号系列Z1(t)〜Zn(t)に含めることにより、受信信号系列R(t)に含まれる所望信号系列を強調しつつ、所望信号系列以外の受信信号系列R(t)に含まれる信号を打ち消す、あるいは抑圧するようにしてもよい。
As described above, synthesized signal sequence generation sections 101-1 to 101-n generate replicas of signal sequences other than the desired signal sequence included in received signal sequence R (t), and receive signal sequence R (t) By canceling or suppressing a signal sequence other than the desired signal sequence included in the signal sequence, it is possible to emphasize (amplify) the desired signal sequence having a weak power level using the stochastic resonance phenomenon, and receive signal sequence R (t) Thus, a desired signal sequence can be detected and demodulated.
Further, when there are a plurality of signal sequences included in the received signal sequence R (t) other than the desired signal sequence, the combined signal sequence generation units 101-1 to 101-n generate replicas by combining the signal sequences, The desired signal sequence may be emphasized.
Further, in addition to the replica, the signal sequence based on the carrier signal of the desired signal sequence is included in the combined signal sequence Z1 (t) to Zn (t), thereby enhancing the desired signal sequence included in the received signal sequence R (t). However, a signal included in the received signal sequence R (t) other than the desired signal sequence may be canceled or suppressed.

なお、本発明における受信装置1における受信方法を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、受信信号に含まれる電力レベルが微弱な所望信号系列の検出及び復調を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。   Note that a program for realizing the reception method in the reception apparatus 1 according to the present invention is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed to receive the program. Detection and demodulation of a desired signal sequence having a weak power level included in the signal may be performed. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer system” includes a WWW system having a homepage providing environment (or display environment). The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.

また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。   The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.

なお、本発明に記載の応答信号合成部は、実施の形態に記載の平均算出部に対応する。   The response signal combining unit described in the present invention corresponds to the average calculating unit described in the embodiment.

1…受信装置
101−1,101−2,101−n…合成信号系列生成部
102−1,102−2,102−n…加算部
103−1,103−2,103−n…白色ガウス信号生成部
104−1,104−2,104−n…加算部
105−1,105−2,105−n…非線形応答部
106…平均算出部
107…信号検出部
108…信号復調部
109…パラメータ制御部
110−1,110−2,110−n…信号処理部
111−1,111−2,111−n…合成部
DESCRIPTION OF SYMBOLS 1 ... Receiving device 101-1, 101-2, 101-n ... Synthetic signal sequence production | generation part 102-1, 102-2, 102-n ... Addition part 103-1, 103-2, 103-n ... White Gaussian signal Generation unit 104-1, 104-2, 104-n ... Addition unit 105-1, 105-2, 105-n ... Nonlinear response unit 106 ... Average calculation unit 107 ... Signal detection unit 108 ... Signal demodulation unit 109 ... Parameter control Units 110-1, 110-2, 110-n ... Signal processing units 111-1, 111-2, 111-n ... Synthesizer

Claims (10)

受信信号系列に含まれる所望信号系列及び干渉信号系列のいずれかに基づいて、複数の合成信号系列を生成する合成信号系列生成ステップと、
前記合成信号系列生成ステップにおいて生成した複数の合成信号系列ごとに、該合成信号系列と、白色ガウス信号系列と、前記受信信号系列とを合成する第1の合成ステップと、
前記第1の合成ステップにおいて合成した複数の信号系列ごとに、該信号系列に対する非線形系の応答を示す応答信号系列を算出する応答信号算出ステップと、
前記応答信号算出ステップにおいて算出した複数の応答信号系列を合成した合成応答信号系列を生成する第2の合成ステップと
を有することを特徴とする受信方法。
A combined signal sequence generating step for generating a plurality of combined signal sequences based on any of the desired signal sequence and the interference signal sequence included in the received signal sequence;
For each of a plurality of synthesized signal sequences generated in the synthesized signal sequence generating step, a first synthesizing step for synthesizing the synthesized signal sequence, a white Gaussian signal sequence, and the received signal sequence;
A response signal calculating step for calculating a response signal sequence indicating a response of a nonlinear system to the signal sequence for each of the plurality of signal sequences combined in the first combining step;
And a second combining step for generating a combined response signal sequence by combining the plurality of response signal sequences calculated in the response signal calculating step.
前記第2の合成ステップにおいて生成した合成応答信号系列の統計的特徴量に基づいて、該合成応答信号系列から所望信号系列を検出する信号検出ステップと、
前記信号検出ステップにおいて検出される所望信号系列の電力レベルに基づいて、前記合成信号系列の電力レベル、前記白色ガウス信号系列の電力レベル、前記非線形系の応答特性を変更して、前記検出される所望信号系列のSN比、あるいは電力レベルを最大にするパラメータ制御ステップと
を更に有することを特徴とする請求項1に記載の受信方法。
A signal detection step of detecting a desired signal sequence from the combined response signal sequence based on a statistical feature quantity of the combined response signal sequence generated in the second combining step;
Based on the power level of the desired signal sequence detected in the signal detection step, the power level of the composite signal sequence, the power level of the white Gaussian signal sequence, and the response characteristic of the nonlinear system are changed and detected. The reception method according to claim 1, further comprising a parameter control step of maximizing an S / N ratio of the desired signal sequence or a power level.
前記合成信号系列生成ステップにおいて生成される合成信号系列は、前記所望信号系列に含まれる信号から生成される
ことを特徴とする請求項1又は請求項2のいずれかに記載の受信方法。
The reception method according to claim 1, wherein the combined signal sequence generated in the combined signal sequence generation step is generated from a signal included in the desired signal sequence.
前記合成信号系列生成ステップにおいて生成される合成信号系列は、前記干渉信号系列に含まれる信号から生成される
ことを特徴とする請求項1から請求項3のいずれか一項に記載の受信方法。
The reception method according to any one of claims 1 to 3, wherein the combined signal sequence generated in the combined signal sequence generation step is generated from a signal included in the interference signal sequence.
前記合成信号系列生成ステップにおいて生成される合成信号系列は、前記所望信号系列のキャリア周波数の無変調信号、又は、前記干渉信号系列のレプリカ信号の正負を反転させた信号から生成される
ことを特徴とする請求項1から請求項4のいずれか一項に記載の受信方法。
The composite signal sequence generated in the composite signal sequence generation step is generated from an unmodulated signal having a carrier frequency of the desired signal sequence or a signal obtained by inverting the sign of the replica signal of the interference signal sequence. The reception method according to any one of claims 1 to 4.
受信信号系列に含まれる所望信号系列及び干渉信号系列のいずれかに基づいて、合成信号系列を生成する複数の合成信号系列生成部と、
前記複数の合成信号系列生成部が生成した合成信号系列ごとに、該合成信号系列と、白色ガウス信号系列と、前記受信信号系列とを合成する合成部と、
前記合成部が合成した複数の信号系列に対する非線形系の応答を示す応答信号系列をそれぞれ算出する複数の非線形応答部と、
前記非線形応答部が算出した複数の応答信号系列を合成した合成応答信号系列を生成する応答信号合成部と
を備えることを特徴とする受信装置。
A plurality of combined signal sequence generation units for generating a combined signal sequence based on one of the desired signal sequence and the interference signal sequence included in the received signal sequence;
For each combined signal sequence generated by the plurality of combined signal sequence generating units, a combining unit that combines the combined signal sequence, a white Gaussian signal sequence, and the received signal sequence;
A plurality of nonlinear response units that respectively calculate response signal sequences indicating response of a nonlinear system to the plurality of signal sequences synthesized by the synthesis unit;
A receiving apparatus comprising: a response signal combining unit that generates a combined response signal sequence by combining a plurality of response signal sequences calculated by the nonlinear response unit.
前記応答信号合成部が生成する合成応答信号系列の統計的特徴量に基づいて、該合成応答信号系列から所望信号系列を検出する信号検出部と、
前記信号検出部が検出した所望信号系列の電力レベルに基づいて、前記合成信号系列の電力レベル、前記白色ガウス信号系列の電力レベル、前記非線形系の応答特性を変更して、前記検出される所望信号系列のSN比、あるいは電力レベルを最大にするパラメータ制御部と
を更に備えることを特徴とする請求項6に記載の受信装置。
A signal detection unit for detecting a desired signal sequence from the combined response signal sequence based on a statistical feature quantity of the combined response signal sequence generated by the response signal combining unit;
Based on the power level of the desired signal sequence detected by the signal detector, the power level of the composite signal sequence, the power level of the white Gaussian signal sequence, and the response characteristic of the nonlinear system are changed to detect the desired signal The receiving apparatus according to claim 6, further comprising: a parameter control unit configured to maximize a signal sequence S / N ratio or a power level.
前記合成信号系列生成部は、前記所望信号系列に含まれる信号から前記合成信号系列を生成する
ことを特徴とする請求項6又は請求項7のいずれかに記載の受信装置。
The receiving apparatus according to claim 6, wherein the combined signal sequence generation unit generates the combined signal sequence from a signal included in the desired signal sequence.
前記合成信号系列生成部は、前記干渉信号系列に含まれる信号から前記合成信号系列を
生成する
ことを特徴とする請求項6から請求項8のいずれか一項に記載の受信装置。
The receiving apparatus according to any one of claims 6 to 8, wherein the combined signal sequence generation unit generates the combined signal sequence from signals included in the interference signal sequence.
前記合成信号系列生成部は、前記所望信号系列のキャリア周波数の無変調信号、又は、前記干渉信号系列のレプリカ信号の正負を反転させた信号から前記合成信号系列を生成する
ことを特徴とする請求項6から請求項9のいずれか一項に記載の受信装置。
The composite signal sequence generation unit generates the composite signal sequence from an unmodulated signal having a carrier frequency of the desired signal sequence or a signal obtained by inverting the sign of a replica signal of the interference signal sequence. The receiving device according to any one of claims 6 to 9.
JP2011035013A 2011-02-21 2011-02-21 Receiving method and receiving apparatus Expired - Fee Related JP5394420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035013A JP5394420B2 (en) 2011-02-21 2011-02-21 Receiving method and receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035013A JP5394420B2 (en) 2011-02-21 2011-02-21 Receiving method and receiving apparatus

Publications (2)

Publication Number Publication Date
JP2012175371A true JP2012175371A (en) 2012-09-10
JP5394420B2 JP5394420B2 (en) 2014-01-22

Family

ID=46977847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035013A Expired - Fee Related JP5394420B2 (en) 2011-02-21 2011-02-21 Receiving method and receiving apparatus

Country Status (1)

Country Link
JP (1) JP5394420B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104298878A (en) * 2014-10-14 2015-01-21 天津工业大学 Self-adaptive searching method for obtaining optimal parameters of stochastic resonance system
WO2015189920A1 (en) * 2014-06-11 2015-12-17 株式会社日立製作所 Signal detection system and signal detection method
CN105181334A (en) * 2015-09-21 2015-12-23 燕山大学 Rolling bearing fault detection method based on cascade multistable stochastic resonance and empirical mode decomposition (EMD)
EP3226534A1 (en) 2016-03-31 2017-10-04 Canon Kabushiki Kaisha Signal processing apparatus, signal processing method, and program
EP3226533A1 (en) * 2016-03-31 2017-10-04 Canon Kabushiki Kaisha Signal processing apparatus and signal processing method
JP2019153188A (en) * 2018-03-05 2019-09-12 学校法人 芝浦工業大学 Object recognition device and object recognition method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109428A (en) * 1988-10-19 1990-04-23 Nec Corp Noise elimination circuit
JPH04227338A (en) * 1990-05-28 1992-08-17 Matsushita Electric Ind Co Ltd Voice signal processing unit
JPH05158494A (en) * 1991-07-04 1993-06-25 Sony Corp Noise reducer
JPH10190620A (en) * 1996-12-26 1998-07-21 Nec Corp Spread spectrum diffusion modem
JP2000010593A (en) * 1998-06-19 2000-01-14 Nec Corp Spectrum noise removing device
JP2000267684A (en) * 1999-03-18 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for emphasizing format component of voice buried in noise and program recording medium
JP2001044739A (en) * 1999-08-03 2001-02-16 Toyota Central Res & Dev Lab Inc System and equipment for adaptive array reception

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109428A (en) * 1988-10-19 1990-04-23 Nec Corp Noise elimination circuit
JPH04227338A (en) * 1990-05-28 1992-08-17 Matsushita Electric Ind Co Ltd Voice signal processing unit
JPH05158494A (en) * 1991-07-04 1993-06-25 Sony Corp Noise reducer
JPH10190620A (en) * 1996-12-26 1998-07-21 Nec Corp Spread spectrum diffusion modem
JP2000010593A (en) * 1998-06-19 2000-01-14 Nec Corp Spectrum noise removing device
JP2000267684A (en) * 1999-03-18 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for emphasizing format component of voice buried in noise and program recording medium
JP2001044739A (en) * 1999-08-03 2001-02-16 Toyota Central Res & Dev Lab Inc System and equipment for adaptive array reception

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189920A1 (en) * 2014-06-11 2015-12-17 株式会社日立製作所 Signal detection system and signal detection method
CN104298878A (en) * 2014-10-14 2015-01-21 天津工业大学 Self-adaptive searching method for obtaining optimal parameters of stochastic resonance system
CN105181334A (en) * 2015-09-21 2015-12-23 燕山大学 Rolling bearing fault detection method based on cascade multistable stochastic resonance and empirical mode decomposition (EMD)
EP3226534A1 (en) 2016-03-31 2017-10-04 Canon Kabushiki Kaisha Signal processing apparatus, signal processing method, and program
EP3226533A1 (en) * 2016-03-31 2017-10-04 Canon Kabushiki Kaisha Signal processing apparatus and signal processing method
JP2017182561A (en) * 2016-03-31 2017-10-05 キヤノン株式会社 Signal extraction processing device and signal extraction processing method
US10679329B2 (en) 2016-03-31 2020-06-09 Canon Kabushiki Kaisha Signal processing apparatus and signal processing method setting noise strength for stochastic resonance processing
US10715192B2 (en) 2016-03-31 2020-07-14 Canon Kabushiki Kaisha Signal processing apparatus, signal processing method, and storage medium
JP2019153188A (en) * 2018-03-05 2019-09-12 学校法人 芝浦工業大学 Object recognition device and object recognition method
JP7184318B2 (en) 2018-03-05 2022-12-06 学校法人 芝浦工業大学 Object recognition device and object recognition method

Also Published As

Publication number Publication date
JP5394420B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5394420B2 (en) Receiving method and receiving apparatus
Ling et al. Covert underwater acoustic communications
US10491262B2 (en) Reliable orthogonal spreading codes in wireless communication
Kaddoum et al. Differential chaos shift keying: A robust modulation scheme for power-line communications
Witrisal et al. Equivalent system model and equalization of differential impulse radio UWB systems
Shu et al. Chaotic direct sequence spread spectrum for secure underwater acoustic communication
Stojanovic et al. Recent trends in underwater acoustic communications
Amirabadi et al. Deep learning based detection technique for FSO communication systems
Qiao et al. Doppler scale estimation for varied speed mobile frequency-hopped binary frequency-shift keying underwater acoustic communication
NO20076248L (en) System and method for communicating data using constant amplitude waveform with hybrid orthogonal modulation and MSK or GMSK modulation
EP3580886B1 (en) Self-referenced continous-variable quantum key distribution devices, methods and systems
CN111427030B (en) Underwater acoustic signal modulation and processing method for positioning underwater robot
CN106910508B (en) Hidden underwater acoustic communication method for imitating marine pile driving sound source
Chang et al. Convergence property of transmit time pre-synchronization for concurrent cooperative communication
Pan et al. Doppler-shift estimation of flat underwater channel using data-aided least-square approach
Gendron Sparse broadband time varying acoustic response modeling and estimation from an undersampled vertical array with application to underwater communications
JP7176449B2 (en) Wireless device and wireless transmission method
Nath et al. Performance analysis of time reversal underwater acoustic communication
Men et al. Blind beamforming-based strong interference suppression in underwater acoustic direct-sequence code-division multiple-access systems
JP2007043608A (en) Amplitude/phase controller and receiving system
Sun et al. M-ary code shift keying direct sequence spread spectrum with gold sequence using in underwater acoustic communication
Prlincevic et al. Performance analysis of FSO transmission of watermarked image over Rician fading channels
Van Nguyen et al. Antijamming receiver with hybrid blanking—Clipping for DCSK system
Zhang et al. A secure communication system based on DCSK
Lakshmi et al. A literature survey on performance of free space optical communication links under strong turbulence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5394420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees