JP2012174579A - Wound type battery, and manufacturing method and manufacturing apparatus of the same - Google Patents

Wound type battery, and manufacturing method and manufacturing apparatus of the same Download PDF

Info

Publication number
JP2012174579A
JP2012174579A JP2011036892A JP2011036892A JP2012174579A JP 2012174579 A JP2012174579 A JP 2012174579A JP 2011036892 A JP2011036892 A JP 2011036892A JP 2011036892 A JP2011036892 A JP 2011036892A JP 2012174579 A JP2012174579 A JP 2012174579A
Authority
JP
Japan
Prior art keywords
electrode plate
groove
peripheral surface
surface side
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011036892A
Other languages
Japanese (ja)
Other versions
JP5622047B2 (en
Inventor
Yosuke Suzuki
洋介 鈴木
Takahiko Yamamoto
貴彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011036892A priority Critical patent/JP5622047B2/en
Publication of JP2012174579A publication Critical patent/JP2012174579A/en
Application granted granted Critical
Publication of JP5622047B2 publication Critical patent/JP5622047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a wound type battery capable of preventing trouble such as crack, fracture and breakage from occurring even in a case of flat-pressing after an electrode plate is wound, a manufacturing method and a manufacturing apparatus of the battery.SOLUTION: The wound type battery comprises an electrode plate which is one or both of a positive electrode plate 10 and a negative electrode plate 20 and includes one or both of an electrode active material layer having a groove portion 13a formed in a groove shape in a short-side direction on an inner peripheral surface side at a bent part B of a flat body 200 formed by flat-pressing, and an electrode active material layer having a notch 11a or a groove portion formed in a short-side direction on an outer peripheral surface side at the bent part B of the flat body 200 formed by flat-pressing. With this configuration, the groove portion 13a and the like are formed on one or both of the inner peripheral surface side and the outer peripheral surface side to prevent the trouble such as the crack, fracture and breakage of the electrode plate (especially, electrode active material layer) from occurring compared with a conventional art.

Description

本発明は、少なくとも正極板,負極板,セパレータを備える捲回型電池と、当該捲回型電池を製造する製造方法および捲回型電池の製造装置に関する。   The present invention relates to a wound battery including at least a positive electrode plate, a negative electrode plate, and a separator, a manufacturing method for manufacturing the wound battery, and a manufacturing apparatus for the wound battery.

従来では、渦巻き状に巻回された電極は、表裏両面に縦方向に沿って、0.5〜2.0mmの等間隔をおいて電極の厚みの1/10〜1/3の深さからなる複数の筋溝を有し、電極表面側の筋溝と裏面側の筋溝とは位相を異ならせた電池用電極に関する技術の一例が開示されている(例えば特許文献1を参照)。この電池用電極は、三次元的に連続した空間を有する帯状の金属多孔体と、その空間内に充填された活物質とからなる。特許文献1の図3に示すように、電極を渦巻き状に捲回する場合には、複数の筋溝が作用して電極の割れ,ヒビ,切断等の不具合を防止できる。   Conventionally, an electrode wound in a spiral shape has a depth of 1/10 to 1/3 of the thickness of the electrode at equal intervals of 0.5 to 2.0 mm along the longitudinal direction on both front and back surfaces. An example of a technique related to a battery electrode in which a plurality of streak grooves are provided, and the streak grooves on the electrode surface side and the streak grooves on the back surface side are different from each other is disclosed (for example, see Patent Document 1). This battery electrode is composed of a band-shaped metal porous body having a three-dimensionally continuous space and an active material filled in the space. As shown in FIG. 3 of Patent Document 1, when the electrode is wound in a spiral shape, a plurality of streak grooves act to prevent problems such as cracking, cracking and cutting of the electrode.

また、正極集電体層の一面に設けられた正極活物質層が、複数の凹部により一定間隔ごとに複数の活物質層単位に分割されるように構成された正極と、当該正極を搭載した電池に関する技術の一例が開示されている(例えば特許文献2を参照)。正極集電体層のうちの凹部に対応する部分を支点とし、活物質層単位どうしが当たる程度の湾曲角度までは湾曲可能になるので、正極を搭載した電池のフレキシブル特性が向上する。   In addition, a positive electrode active material layer provided on one surface of the positive electrode current collector layer is configured to be divided into a plurality of active material layer units at regular intervals by a plurality of recesses, and the positive electrode is mounted. An example of a technique related to a battery is disclosed (for example, see Patent Document 2). Since the portion corresponding to the concave portion of the positive electrode current collector layer is used as a fulcrum and can be bent up to a bending angle at which the active material layer units hit each other, the flexible characteristics of the battery equipped with the positive electrode are improved.

さらに、集電体の少なくとも一箇所以上に、正極合剤塗料または負極合剤塗料の厚みが薄くなる箇所を塗布形成する第一の工程、および正極合剤塗料または負極合剤塗料が乾燥された後、所定厚みにプレスされ、正極板または負極板の少なくとも一箇所以上に活物質密度が小さい箇所を形成する第二の工程を経て、電極板の活物質密度を電極群の内周面と外周面で部分的に小さい構成とした非水系二次電池に関する技術の一例が開示されている(例えば特許文献3を参照)。   Furthermore, the first step of applying and forming a portion where the thickness of the positive electrode mixture paint or the negative electrode mixture paint becomes thin, and the positive electrode mixture paint or the negative electrode mixture paint were dried on at least one place of the current collector Thereafter, the active material density of the electrode plate is changed to the inner peripheral surface and outer periphery of the electrode group through a second step of forming a portion having a low active material density in at least one portion of the positive electrode plate or the negative electrode plate. An example of a technique related to a non-aqueous secondary battery that is partially small in terms of surface is disclosed (see, for example, Patent Document 3).

特開平10−154506号公報JP-A-10-154506 特開2002−343340号公報JP 2002-343340 A 特開2009−181833号公報JP 2009-181833 A

しかし、特許文献1の技術を適用して、電極を捲回した後にプレスして扁平状に形成する際、屈曲部では曲率半径が大きく変化するために電極の割れ,ヒビ,切断等の不具合が生じる場合がある。すなわち、筋溝は電極の厚みの1/10〜1/3ほどしかないので、屈曲部の内周面側では圧縮に伴う割れ,ヒビ,切断等が生じ、屈曲部の外周面側では伸長に伴う割れ,ヒビ,切断等が生じる。   However, when the technique of Patent Document 1 is applied and the electrode is wound and then pressed and formed into a flat shape, the curvature radius greatly changes at the bent portion, so that there are problems such as cracking, cracking and cutting of the electrode. May occur. That is, since the streak is only about 1/10 to 1/3 of the thickness of the electrode, cracks, cracks, cuts, etc. due to compression occur on the inner peripheral surface side of the bent portion, and extension occurs on the outer peripheral surface side of the bent portion. Accompanied by cracks, cracks, cuts, etc.

また特許文献2の技術を適用しても、正極を捲回した後にプレスして扁平状に形成する際の湾曲角度は大きく、特に最内周の正極は90度よりも遙かに大きな湾曲角度になる。このような湾曲角度となるようにプレスすると活物質層単位どうしが当たるため、正極活物質層の割れ,ヒビ,切断等が生じる。   Even when the technique of Patent Document 2 is applied, the bending angle when the positive electrode is wound and then pressed to form a flat shape is large, and in particular, the innermost positive electrode has a bending angle much larger than 90 degrees. become. When the pressing is performed so as to have such a bending angle, the active material layer units come into contact with each other, so that the positive electrode active material layer is cracked, cracked, cut, or the like.

さらに特許文献3の技術では、間欠塗工の制御(第一の工程)だけでなく、活物質密度の変更制御(第二の工程)もまた並行して行わなければならないので、塗工速度を向上させることが困難である。電極板を捲回してプレスすることにより扁平体とする場合には、周回数(「捲数」や「層数」等とも呼ぶ。以下同じである。)に応じて曲率半径が変化する。第二の工程では当該曲率半径に応じて活物質密度を変更する制御を行う必要があり、その後の工程では正確な間隔で電極を切断しなければならない。そのため、不良品となる確率が高くなり、歩留まりが悪化する。   Furthermore, in the technique of Patent Document 3, not only intermittent coating control (first step) but also active material density change control (second step) must be performed in parallel. It is difficult to improve. When a flat body is formed by winding and pressing the electrode plate, the radius of curvature changes according to the number of turns (also referred to as “number of ridges”, “number of layers”, and so on). In the second step, it is necessary to perform control to change the active material density according to the radius of curvature, and in the subsequent steps, the electrodes must be cut at an accurate interval. Therefore, the probability of becoming a defective product increases, and the yield deteriorates.

本発明はこのような点に鑑みてなしたものであり、電極板を捲回した後にプレスして扁平状に形成しても、電極板の割れ,ヒビ,切断等の不具合が生じるのを防止できる捲回型電池、その製造方法および製造装置を提供することを目的とする。   The present invention has been made in view of the above points, and prevents defects such as cracking, cracking, and cutting of the electrode plate even if the electrode plate is rolled and then pressed into a flat shape. An object of the present invention is to provide a wound battery, a manufacturing method thereof, and a manufacturing apparatus.

上記課題を解決するためになされた請求項1に記載の発明は、それぞれが帯状の集電体上に電極活物質層を形成した正極板および負極板と、前記正極板と前記負極板との間に介在させる絶縁性のセパレータとを備え、前記正極板,前記負極板および前記セパレータを積層して捲回し、当該捲回して形成される捲回体を扁平状にプレスする扁平プレスによって得られる扁平体(すなわち扁平状の電極体)を有する捲回型電池において、前記正極板および前記負極板のうちで一方または双方の電極板は、前記扁平体の屈曲部となる部位の前記電極活物質層であって内周面側の短辺方向に沿って形成される溝状の溝状部と、前記扁平体の屈曲部となる部位の前記電極活物質層であって外周面側の短辺方向に沿って形成される切込部または前記溝状部とのうちで一方または双方を有することを特徴とする。   The invention according to claim 1, which has been made to solve the above-described problems, includes a positive electrode plate and a negative electrode plate each having an electrode active material layer formed on a strip-shaped current collector, and the positive electrode plate and the negative electrode plate. An insulating separator interposed between the positive electrode plate, the negative electrode plate and the separator, wound and laminated, and obtained by a flat press that presses the wound body formed by the winding into a flat shape In a wound battery having a flat body (that is, a flat electrode body), one or both of the positive electrode plate and the negative electrode plate are the electrode active material in a portion that becomes a bent portion of the flat body. A groove-like groove-shaped portion formed along the short-side direction on the inner peripheral surface side, and the electrode active material layer in a portion to be a bent portion of the flat body, the short-side on the outer peripheral surface side Cut portion formed along the direction or the groove-like portion And having one or both Of.

この構成によれば、内周面側の電極活物質層には溝状部が形成され、外周面側の電極活物質層には切込部または溝状部が形成された電極板を用い、捲回と扁平プレスが行われて捲回型電池が構成される。扁平プレスを行っても、内周面側の溝状部は電極活物質層が圧縮されるのを防止し、外周面側の切込部や溝状部は電極活物質層が伸長されるのを防止する。内周面側および外周面側のうち一方または双方に形成することで、従来よりは電極板(特に電極活物質層)の割れ,ヒビ,切断等の不具合が生じるのを防止できる。   According to this configuration, the electrode active material layer on the inner peripheral surface side is formed with a groove portion, and the electrode active material layer on the outer peripheral surface side is used with an electrode plate in which a cut portion or a groove portion is formed. Winding and flat pressing are performed to form a wound battery. Even when flat pressing is performed, the groove portion on the inner peripheral surface side prevents the electrode active material layer from being compressed, and the electrode active material layer is elongated at the cut portion and groove portion on the outer peripheral surface side. To prevent. By forming it on one or both of the inner peripheral surface side and the outer peripheral surface side, it is possible to prevent problems such as cracking, cracking, and cutting of the electrode plate (particularly the electrode active material layer) from the prior art.

なお、「集電体」は導電性の材料(物質を含む。以下同じである。)で帯状(長尺シート状)に形成されるが、板厚は任意である。「セパレータ」は正極板と負極板とが接触するのを防止する部材であって、例えば絶縁性の板材や固体電解質などを含む。「電極活物質層」は合剤層とも呼び、正極活物質層と負極活物質層とでは材料が異なる。正極活物質層は、例えばリチウムイオンなどの軽金属イオンを吸蔵・離脱することが可能な金属硫化物、金属酸化物または高分子化合物などの材料で構成される。負極活物質層は、例えばリチウム(Li)やナトリウム(Na)などの軽金属、これらの軽金属を含む合金または軽金属を吸蔵・離脱することが可能な材料などで構成される。「溝状部」の断面形状は任意であるが、扁平プレス工程によって扁平状に形成される点を考慮すると端面に向かって開口する形状(例えばV字形状,U字形状,箱形状等)が望ましい。「短辺方向」は、集電体の長辺方向と交差する幅方向であって、かつ、面に沿う方向を意味する。   Note that the “current collector” is formed of a conductive material (including a substance; the same applies hereinafter) in a band shape (long sheet shape), but the plate thickness is arbitrary. The “separator” is a member that prevents the positive electrode plate and the negative electrode plate from coming into contact with each other, and includes, for example, an insulating plate material or a solid electrolyte. The “electrode active material layer” is also called a mixture layer, and the positive electrode active material layer and the negative electrode active material layer are made of different materials. The positive electrode active material layer is made of a material such as a metal sulfide, a metal oxide, or a polymer compound capable of inserting and extracting light metal ions such as lithium ions. The negative electrode active material layer is made of, for example, a light metal such as lithium (Li) or sodium (Na), an alloy containing these light metals, or a material capable of inserting and extracting light metals. The cross-sectional shape of the “grooved portion” is arbitrary, but considering the point that is formed into a flat shape by the flat pressing process, the shape that opens toward the end surface (for example, V shape, U shape, box shape, etc.) desirable. The “short-side direction” means a width direction that intersects the long-side direction of the current collector and a direction along the surface.

請求項2に記載の発明は、前記溝状部および前記切込部のうちで一方または双方は、不等間隔(「非等間隔」とも呼ぶ。以下同じである。)で形成されることを特徴とする。電極板を捲回し続けると(周回が増えると)、形成する溝状部や切込部における曲率半径も変化する。よって、溝状部や切込部の相互間に生じる引張力を一定値以下に抑えるには不等間隔で形成するのが望ましい。この構成によれば、溝状部や切込部を不等間隔で形成するので、溝状部や切込部の相互間における引張力が一定値以下に抑えられる。したがって、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   According to a second aspect of the present invention, one or both of the groove-shaped portion and the cut portion are formed at unequal intervals (also referred to as “non-equal intervals”; hereinafter the same). Features. As the electrode plate continues to be wound (when the number of turns increases), the radius of curvature of the groove-like portion or notch portion to be formed also changes. Therefore, it is desirable to form them at unequal intervals in order to suppress the tensile force generated between the groove-shaped part and the notch part below a certain value. According to this configuration, since the groove portions and the cut portions are formed at unequal intervals, the tensile force between the groove portions and the cut portions can be suppressed to a predetermined value or less. Therefore, it is possible to more reliably prevent the electrode plate from having defects such as irregularities, cracks, cracks, and cutting.

請求項3に記載の発明は、それぞれが帯状の集電体上に電極活物質層を形成した正極板および負極板と、前記正極板と前記負極板との間に介在させる絶縁性のセパレータとを備える捲回型電池を製造する捲回型電池の製造方法において、前記正極板,前記負極板および前記セパレータを積層して捲回する捲回工程と、前記捲回工程によって形成される捲回体を扁平状にプレスする扁平プレス工程と、前記捲回工程よりも前に行われ、前記正極板および前記負極板のうちで一方または双方の電極板に対し、前記扁平プレス工程によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって内周面側の短辺方向に沿って溝状の溝状部を形成する内周面側加工工程と、前記扁平プレス工程によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって外周面側の短辺方向に沿って切り込む切込部または前記溝状部を形成する外周面側加工工程とのうちで一方または双方の加工工程とを有することを特徴とする。   According to a third aspect of the present invention, there is provided a positive electrode plate and a negative electrode plate each having an electrode active material layer formed on a strip-shaped current collector, and an insulating separator interposed between the positive electrode plate and the negative electrode plate. In the manufacturing method of a wound type battery for manufacturing a wound type battery comprising: a winding step in which the positive electrode plate, the negative electrode plate and the separator are stacked and wound, and a winding formed by the winding step A flat pressing step for pressing the body into a flat shape and performed before the winding step, and formed by the flat pressing step on one or both of the positive electrode plate and the negative electrode plate. An inner peripheral surface side processing step of forming a groove-shaped groove-shaped portion along the short side direction on the inner peripheral surface side of the electrode active material layer in a portion to be a bent portion of a flat body, and the flat pressing step Site to be a bent part of the formed flat body One or both of the processing steps of the electrode active material layer and the outer peripheral surface side processing step for forming the cut portion or the groove-shaped portion cut along the short side direction on the outer peripheral surface side. Features.

この構成によれば、電極活物質層に溝状部が形成される。捲回工程で電極板を捲回し、さらに扁平プレス工程で電極板をプレスしても、電極活物質層に形成された溝状部によって電極活物質層が圧縮するのを防止する。したがって、電極板(特に内周面側の電極活物質層)の割れ,ヒビ,切断等の不具合が生じるのを防止できる。なお、「内周面側加工工程」および「外周面側加工工程」の双方を行う場合には、並行して行ってもよく、前後して順番に行ってもよい。   According to this configuration, the groove-shaped portion is formed in the electrode active material layer. Even when the electrode plate is wound in the winding step and further pressed in the flat pressing step, the electrode active material layer is prevented from being compressed by the groove-shaped portion formed in the electrode active material layer. Therefore, it is possible to prevent problems such as cracking, cracking, and cutting of the electrode plate (particularly, the electrode active material layer on the inner peripheral surface side). In addition, when performing both an "inner peripheral surface side processing process" and an "outer peripheral surface side processing process", you may perform in parallel and may perform in order before and after.

請求項4に記載の発明は、前記加工工程を行う以後、前記溝状部または前記切込部の形成に伴って生じる加工屑を除去する加工屑除去工程を有することを特徴とする。この構成によれば、溝状部や切込部の加工中または加工後に加工屑が除去されるので、電極板の相互間に加工屑が挟まるなどで電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのを防止できる。   The invention described in claim 4 is characterized in that, after performing the machining step, there is a machining waste removing step of removing machining waste generated along with the formation of the groove-shaped portion or the cut portion. According to this configuration, since the processing waste is removed during or after the processing of the groove-shaped portion or the cut portion, the processing waste is sandwiched between the electrode plates, and the electrode plate is uneven, cracked, cracked, cut, etc. Can be prevented from occurring.

請求項5に記載の発明は、前記加工工程は、それぞれ前記集電体上に前記電極活物質層を形成してからプレスする前までの期間(以下では「プレス前期間」と呼ぶ。)、当該プレス後から所定形状に切断する前までの期間(以下では「切断前期間」と呼ぶ。)、当該切断してから捲回する前までの期間(以下では「捲回前期間」と呼ぶ。)のうちで一以上の期間内に行うことを特徴とする。この構成によれば、内周面側加工工程はプレス前期間、切断前期間および捲回前期間のうちで一以上の期間内に行う。すなわち一の期間内で行ってもよく、複数(二または三)の期間内で行ってもよい。外周面側加工工程についても同様である。内周面側加工工程では溝状部を確実に形成し、外周面側加工工程では切込部または溝状部を確実に形成することができる。複数の期間内で行う場合には、同一箇所(その一部分を含む)を加工することで溝状部や切込部の形成を確実にし、異なる箇所を加工することで溝状部や切込部の形成箇所を増やすことができる。   According to a fifth aspect of the present invention, each of the processing steps is a period from when the electrode active material layer is formed on the current collector to before pressing (hereinafter referred to as “pre-press period”). A period from the press to before cutting into a predetermined shape (hereinafter referred to as “pre-cutting period”), a period from the cutting to before winding (hereinafter referred to as “pre-winding period”). ) Within one or more periods. According to this configuration, the inner peripheral surface side machining step is performed within one or more periods among the pre-press period, the pre-cut period, and the pre-winding period. That is, it may be performed within one period, or may be performed within a plurality (two or three) periods. The same applies to the outer peripheral surface side machining step. In the inner peripheral surface side machining step, the groove portion can be reliably formed, and in the outer peripheral surface side machining step, the cut portion or the groove portion can be reliably formed. When it is performed within a plurality of periods, the same part (including a part thereof) is processed to ensure the formation of the groove part and the cut part, and the different part is processed to form the groove part and the cut part. The number of formation sites can be increased.

請求項6に記載の発明は、前記加工工程は、前記扁平体における所定周回までの部位に対応する前記電極板に対し、前記溝状部または前記切込部を形成することを特徴とする。所定周回(「捲数」とも呼ぶ。以下同じである。)までの部位では曲率半径が小さいため、何ら措置を施さなければ電極板(特に電極活物質層)の割れ,ヒビ,切断等の不具合が生じる可能性がある。この構成によれば、所定周回までの部位に対応する電極板(具体的には電極活物質層)に対して溝状部または切込部を形成するので、電極板の割れ,ヒビ,切断等の不具合が生じるのを防止できる。「所定周回」は集電体および電極活物質層の各厚さによって異なるが、例えば1〜3[回]である。   The invention described in claim 6 is characterized in that the processing step forms the groove portion or the cut portion in the electrode plate corresponding to a portion of the flat body up to a predetermined round. Since the radius of curvature is small at the part up to a predetermined number of turns (also called “number of powers”, the same shall apply hereinafter), defects such as cracking, cracking, and cutting of the electrode plate (especially the electrode active material layer) must be taken without any measures. May occur. According to this configuration, since the groove portion or the cut portion is formed in the electrode plate (specifically, the electrode active material layer) corresponding to the portion up to the predetermined turn, the electrode plate is cracked, cracked, cut, etc. Can be prevented from occurring. The “predetermined number of turns” varies depending on the thicknesses of the current collector and the electrode active material layer, but is, for example, 1 to 3 [times].

請求項7に記載の発明は、前記加工工程は、前記扁平体における所定の曲率半径以下となる部位に対応する前記電極板に対し、前記溝状部または前記切込部を形成することを特徴とする。所定の曲率半径以下となる部位では、何ら措置を施さなければ電極板(特に電極活物質層)の割れ,ヒビ,切断等の不具合が生じる可能性がある。この構成によれば、所定の曲率半径以下となる部位に対応する電極板(具体的には電極活物質層)に対して溝状部または切込部を形成するので、電極板の割れ,ヒビ,切断等の不具合が生じるのを防止できる。「所定の曲率半径」は集電体および電極活物質層の各厚さによって異なるが、例えば0〜600[μm]である。   The invention according to claim 7 is characterized in that in the processing step, the groove portion or the cut portion is formed in the electrode plate corresponding to a portion having a predetermined radius of curvature or less in the flat body. And If no measures are taken at a portion where the radius of curvature is equal to or less than a predetermined radius of curvature, problems such as cracking, cracking, and cutting of the electrode plate (particularly the electrode active material layer) may occur. According to this configuration, since the groove portion or the cut portion is formed in the electrode plate (specifically, the electrode active material layer) corresponding to a portion having a predetermined radius of curvature or less, the electrode plate is cracked or cracked. , Cutting and other problems can be prevented. The “predetermined radius of curvature” varies depending on the thicknesses of the current collector and the electrode active material layer, but is, for example, 0 to 600 [μm].

請求項8に記載の発明は、前記加工工程は、前記溝状部または前記切込部を不等間隔で形成することを特徴とする。電極板を捲回し続けると(周回数が増えると)、形成する溝状部や切込部における曲率半径も変化する。捲回時以降で溝状部や切込部の相互間に生じる引張力を一定値以下に抑えるには不等間隔で形成するのが望ましい。この構成によれば、内周面側加工工程では溝状部を不等間隔で形成し、外周面側加工工程では切込部または溝状部を不等間隔で形成する。そのため、溝状部や切込部の相互間における引張力が一定値以下に抑えられるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   The invention described in claim 8 is characterized in that in the processing step, the groove portions or the cut portions are formed at unequal intervals. As the electrode plate continues to be wound (when the number of turns increases), the radius of curvature of the groove-like portion and the cut portion to be formed also changes. In order to suppress the tensile force generated between the groove-shaped part and the notch part to a certain value or less after winding, it is desirable to form them at unequal intervals. According to this configuration, the groove portions are formed at unequal intervals in the inner peripheral surface side processing step, and the cut portions or groove portions are formed at unequal intervals in the outer peripheral surface side processing step. Therefore, since the tensile force between the groove-shaped part and the notch part can be suppressed to a certain value or less, it is possible to more reliably prevent the electrode plate from having problems such as irregularities, cracks, cracks, and cutting.

請求項9に記載の発明は、前記加工工程は、前記扁平体の屈曲部にかかる曲率半径に基づいて前記溝状部または前記切込部を形成する間隔を変化させることを特徴とする。この構成によれば、捲回時以降で溝状部や切込部の相互間における引張力が分散され一定値以下に抑えられるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   The invention described in claim 9 is characterized in that, in the processing step, an interval for forming the groove portion or the cut portion is changed based on a radius of curvature applied to a bent portion of the flat body. According to this configuration, since the tensile force between the groove-shaped part and the notch part is dispersed and kept below a certain value after winding, problems such as irregularities, cracks, cracks, and cutting occur on the electrode plate. Can be more reliably prevented.

請求項10に記載の発明は、前記加工工程は、前記扁平体の屈曲部にかかる中心点から放射状に伸ばした仮想線と前記電極板とが交差する位置の前記電極板に対し、前記溝状部または前記切込部に形成することを特徴とする。この構成によれば、曲率半径に応じた溝状部や切込部を形成するので、捲回時以降で溝状部や切込部の相互間における引張力が均一化され、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。「仮想線」は任意の線分を設定でき、直線に限らず、曲線や折れ線等を含む。   According to a tenth aspect of the present invention, in the processing step, the groove shape is formed with respect to the electrode plate at a position where an imaginary line radially extending from a central point applied to the bent portion of the flat body and the electrode plate intersect. It forms in a part or the said notch part, It is characterized by the above-mentioned. According to this configuration, since the groove-shaped portion and the cut portion corresponding to the radius of curvature are formed, the tensile force between the groove-shaped portion and the cut portion is made uniform after winding, and the electrode plate is uneven. It is possible to more reliably prevent defects such as cracks, cracks, and cutting. The “virtual line” can set an arbitrary line segment and includes not only a straight line but also a curved line or a broken line.

請求項11に記載の発明は、前記加工工程は、断面がV字形状の前記溝状部を形成することを特徴とする。この構成によれば、溝状部をV字形状に形成するので、特に内周面側では電極活物質層どうしが当たり難くなる。よって電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   The invention described in claim 11 is characterized in that the processing step forms the groove-shaped portion having a V-shaped cross section. According to this configuration, since the groove-shaped portion is formed in a V shape, it is difficult for the electrode active material layers to hit each other particularly on the inner peripheral surface side. Therefore, it is possible to more reliably prevent defects such as irregularities, cracks, cracks, and cutting on the electrode plate.

請求項12に記載の発明は、前記加工工程は、前記V字形状をなす角度および深さのうちで一方または双方が内周側から外周側に向かって小さくなるように前記溝状部を形成することを特徴とする。内周側から外周側に向かって曲率半径が大きくなるにつれて、捲回する電極板の屈曲率が小さくなる。この構成によれば、V字形状をなす溝状部の角度が内周側から外周側に向かって小さくなるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのを防止しながらも、外周側の電極板の剛性を高めることができる。溝状部の深さ(深度)を小さくする場合も同様である。   According to a twelfth aspect of the present invention, in the machining step, the groove-shaped portion is formed so that one or both of the V-shaped angle and depth are reduced from the inner peripheral side toward the outer peripheral side. It is characterized by doing. As the radius of curvature increases from the inner peripheral side toward the outer peripheral side, the bending rate of the wound electrode plate decreases. According to this configuration, the angle of the V-shaped groove-shaped portion decreases from the inner peripheral side to the outer peripheral side, so that it is possible to prevent problems such as irregularities, cracks, cracks, and cutting on the electrode plate. In addition, the rigidity of the electrode plate on the outer peripheral side can be increased. The same applies to the case where the depth (depth) of the groove-like portion is reduced.

請求項13に記載の発明は、それぞれが帯状の集電体上に電極活物質層を形成した正極板および負極板と、前記正極板と前記負極板との間に介在させる絶縁性のセパレータとを備える捲回型電池を製造する捲回型電池の製造装置において、前記正極板,前記負極板および前記セパレータを積層して捲回する捲回手段と、前記捲回手段によって形成される捲回体を扁平状にプレスする扁平プレス手段と、前記捲回手段よりも前に行われ、前記正極板および前記負極板のうちで一方または双方の電極板に対し、前記扁平プレス手段によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって内周面側の短辺方向に沿って溝状の溝状部を形成する内周面側加工手段と、前記扁平プレス手段によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって外周面側の短辺方向に沿って切り込む切込部または前記溝状部を形成する外周面側加工手段とのうちで一方または双方の加工手段とを有することを特徴とする。この構成によれば、請求項3に記載の発明と同様に、電極板(特に電極活物質層)の割れ,ヒビ,切断等の不具合が生じるのを防止できる。   The invention according to claim 13 is a positive electrode plate and a negative electrode plate each having an electrode active material layer formed on a strip-shaped current collector, and an insulating separator interposed between the positive electrode plate and the negative electrode plate, In a winding type battery manufacturing apparatus for manufacturing a winding type battery comprising: a winding means for laminating and winding the positive electrode plate, the negative electrode plate and the separator; and a winding formed by the winding means Flat pressing means for pressing the body flatly and before the winding means, and formed by the flat pressing means for one or both of the positive electrode plate and the negative electrode plate. An inner peripheral surface side processing means for forming a groove-like groove-shaped portion along the short side direction on the inner peripheral surface side of the electrode active material layer in a portion to be a bent portion of a flat body, and the flat press means The part to be the bent part of the formed flat body One or both of the electrode active material layer and the outer peripheral surface side processing means for forming the cut portion or the groove-shaped portion cut along the short side direction on the outer peripheral surface side. It is characterized by. According to this configuration, it is possible to prevent problems such as cracking, cracking, and cutting of the electrode plate (particularly the electrode active material layer) as in the case of the third aspect.

請求項14に記載の発明は、前記溝状部または前記切込部の形成に伴って生じる加工屑を除去する加工屑除去手段を有することを特徴とする。この構成によれば、請求項4に記載の発明と同様に、加工屑が除去されるので、電極板の相互間に加工屑が挟まるなどで電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのを防止できる。   The invention described in claim 14 is characterized in that it has a processing waste removing means for removing processing waste generated along with the formation of the groove-shaped portion or the cut portion. According to this configuration, as in the invention described in claim 4, since the machining waste is removed, defects such as irregularities, cracks, cracks, cutting, etc. are formed in the electrode plate due to the processing waste being sandwiched between the electrode plates. Can be prevented.

電極板の構成例を模式的に示す側面図である。It is a side view which shows the structural example of an electrode plate typically. 電極板の構成例を模式的に示す平面図である。It is a top view which shows the structural example of an electrode plate typically. 捲回型電池の第1製造方法を示すチャート図である。It is a chart figure showing the 1st manufacturing method of a winding type battery. 加工工程の一例を示す側面図である。It is a side view which shows an example of a process process. 溝状部や切込部を形成する部位の一例を模式的に示す側面図である。It is a side view which shows typically an example of the site | part which forms a groove-shaped part and a notch part. 溝状部や切込部の間隔を設定する例を示す側面図である。It is a side view which shows the example which sets the space | interval of a groove-shaped part and a notch part. 溝状部の角度や深さを変化させる例を示す側面図である。It is a side view which shows the example which changes the angle and depth of a groove-shaped part. 捲回工程の一例を示す側面図である。It is a side view which shows an example of a winding process. 扁平プレス工程の一例を示す側面図である。It is a side view which shows an example of a flat press process. 扁平プレス後の扁平体を模式的に示す側面図である。It is a side view which shows typically the flat body after flat press. 捲回型電池の第2製造方法を示すチャート図である。It is a chart figure showing the 2nd manufacturing method of a winding type battery.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、各図は本発明を説明するために必要な要素を図示し、実際の全要素を図示してはいない。上下左右等の方向を言う場合には、図面の記載を基準とする。「材料」には物質を含む。単に「電極板」と言う場合には、正極板および負極板のうちで一方または双方を意味する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, each figure shows the element required in order to demonstrate this invention, and does not show all the actual elements. When referring to directions such as up, down, left and right, the description in the drawings is used as a reference. “Material” includes substances. When it is simply referred to as “electrode plate”, it means one or both of a positive electrode plate and a negative electrode plate.

まず、捲回型電池の基礎となる電極板の構成例について、図1および図2を参照しながら説明する。電極板の構成例について、側面図を模式的に図1に示し、平面図を模式的に図2に示す。図1(A)には捲回前の状態を示し、図1(B)には捲回後の状態を示し、図1(C)には扁平プレス後の状態を示す。図2(A)には捲回後の外周面を示し、図2(B)には捲回後の内周面を示す。   First, a configuration example of an electrode plate that is the basis of a wound battery will be described with reference to FIGS. 1 and 2. About the structural example of an electrode plate, a side view is typically shown in FIG. 1, and a top view is typically shown in FIG. 1A shows a state before winding, FIG. 1B shows a state after winding, and FIG. 1C shows a state after flat pressing. 2A shows the outer peripheral surface after winding, and FIG. 2B shows the inner peripheral surface after winding.

捲回型電池の構成要素である電極体(後述する扁平体)は、帯状の電極板を捲回して渦巻き状にし、さらに扁平状にプレスすることで得られる。図1および図2は、見易くするために屈曲部を中心とする一部分を示す。本形態にかかる捲回型電池の正極板と負極板とは、正負が異なるに過ぎない。よって正極板を代表して説明し、負極板については正極板と異なる内容を説明する。   An electrode body (a flat body to be described later) that is a constituent element of a wound battery is obtained by winding a band-shaped electrode plate into a spiral shape and further pressing it into a flat shape. FIG. 1 and FIG. 2 show a part centered on a bent portion for easy viewing. The positive electrode plate and the negative electrode plate of the wound battery according to this embodiment are only different in positive and negative. Therefore, the positive electrode plate will be described as a representative, and the content different from the positive electrode plate will be described for the negative electrode plate.

図1(A)に示す正極板10は、帯状をなす正極集電体12の面上に正極活物質層11,13が形成される。正極集電体12は、導電性の材料(例えば金属や導電性プラスチック等)で帯状に形成される。厚さは製造する捲回型電池の仕様(例えば蓄電容量や外形寸法等)に合わせて設定され、例えば5〜300[μm]程度である。負極板については、正極板10と同じ厚さにしてもよく、異なる厚さにしてもよい。形状についても同様であり、例えば平板状,箔状,網状などが該当する。正極活物質層11は捲回後の外周面側に形成され、正極活物質層13は捲回後の内周面側に形成される。   In the positive electrode plate 10 shown in FIG. 1A, positive electrode active material layers 11 and 13 are formed on the surface of a positive electrode current collector 12 having a strip shape. The positive electrode current collector 12 is formed in a strip shape from a conductive material (for example, metal or conductive plastic). The thickness is set in accordance with the specifications of the wound battery to be manufactured (for example, storage capacity, outer dimensions, etc.), and is, for example, about 5 to 300 [μm]. The negative electrode plate may have the same thickness as the positive electrode plate 10 or a different thickness. The same applies to the shape, for example, a flat plate shape, a foil shape, a net shape, or the like. The positive electrode active material layer 11 is formed on the outer peripheral surface side after winding, and the positive electrode active material layer 13 is formed on the inner peripheral surface side after winding.

正極活物質層11,13は、例えばリチウムイオンなどの軽金属イオンを吸蔵・離脱することが可能な金属硫化物、金属酸化物または高分子化合物などの材料で構成される。なお図示しないが、負極板を構成する負極集電体の面上に形成される負極活物質層は、例えばリチウムやナトリウムなどの軽金属、これらの軽金属を含む合金または軽金属を吸蔵・離脱することが可能な材料などで構成される。   The positive electrode active material layers 11 and 13 are made of a material such as a metal sulfide, a metal oxide, or a polymer compound that can occlude / release light metal ions such as lithium ions. Although not shown, the negative electrode active material layer formed on the surface of the negative electrode current collector constituting the negative electrode plate can occlude / release light metals such as lithium and sodium, alloys containing these light metals, or light metals. Consists of possible materials.

扁平プレス後の屈曲部Bに対応する部位の正極板10には、溝状部または切込部が形成される。具体的には、正極活物質層11に切込部11a(あるいは溝状部)が形成され、正極活物質層13に溝状部13aが形成される。切込部11aおよび溝状部13aは正極活物質層の範囲内で形成され、正極集電体12には形成されない。   A groove-shaped portion or a cut portion is formed in the positive electrode plate 10 at a portion corresponding to the bent portion B after flat pressing. Specifically, a cut portion 11 a (or groove-shaped portion) is formed in the positive electrode active material layer 11, and a groove-shaped portion 13 a is formed in the positive electrode active material layer 13. The cut portion 11 a and the groove-like portion 13 a are formed within the range of the positive electrode active material layer and are not formed on the positive electrode current collector 12.

上述した切込部11aや溝状部13aがそれぞれ形成された正極板10および負極板20の相互間に絶縁性のセパレータ30を介在させて捲回すると(図8を参照)、図1(B)に示す捲回体100が形成される。ただし、図1(B)には正極板10だけに着目した構成を示す。図1(A)の構成と比べると、捲回に伴って内周面側の溝状部13aの隙間が小さくなり、外周面側の切込部11aがV字状に広がっている。   If the insulating separator 30 is interposed between the positive electrode plate 10 and the negative electrode plate 20 in which the above-described cut portion 11a and groove-like portion 13a are formed (see FIG. 8), FIG. ) Is formed. However, FIG. 1B shows a configuration focusing only on the positive electrode plate 10. Compared with the configuration shown in FIG. 1A, the gap between the groove-like portions 13a on the inner peripheral surface side is reduced with winding, and the cut portions 11a on the outer peripheral surface side expand in a V shape.

さらに上述した捲回体100を扁平プレスすると(図9を参照)、図1(C)に示すように扁平状の電極体として扁平体200が形成される。図1(C)は、図1(B)と同様に、正極板10だけに着目した構成を示す。図1(C)の構成と比べると、屈曲に伴って内周面側の溝状部13aは隙間がほとんど無くなり、外周面側の切込部11aの端面側がさらに広がる。扁平プレスによる屈曲では、溝状部13aが圧縮を回避(または吸収)し、切込部11aが伸長を回避(または吸収)する。そのため、正極活物質層11,13には割れ,ヒビ,切断等が生じることがない。このことは、正極板10と同様に負極板20に切込部や溝状部を形成して、捲回および屈曲を行う場合でも同様である。   Further, when the wound body 100 described above is flat pressed (see FIG. 9), a flat body 200 is formed as a flat electrode body as shown in FIG. FIG. 1C shows a structure in which only the positive electrode plate 10 is focused, as in FIG. Compared with the configuration of FIG. 1C, the groove portion 13a on the inner peripheral surface side is almost free of gaps with bending, and the end surface side of the cut portion 11a on the outer peripheral surface side further expands. In the bending by the flat press, the groove portion 13a avoids (or absorbs) compression, and the cut portion 11a avoids (or absorbs) extension. Therefore, the positive electrode active material layers 11 and 13 are not cracked, cracked or cut. The same applies to the case where a cut portion or a groove-like portion is formed in the negative electrode plate 20 in the same manner as the positive electrode plate 10, and winding and bending are performed.

帯状の正極板10を平面的に見ると、図2に示すような構造になる。図2(A)と図2(B)とは、左右方向に反転させた状態である。電極板は、後述する切断工程(図3に示すステップS15,S23)によって板幅W(その他に板長,板厚等)で切断される。正極板10は、図2(A)の図面上側には正極活物質層11が形成されない部位があり、図2(B)の図面上側には正極活物質層13が形成されない部位がある。言い換えれば、正極集電体12のみの部位がある。当該正極集電体12のみの部位は、後述する扁平プレス工程(図3に示すステップS32)を行った後、正極集電体12どうしを電気的に接続して正極とするために用いる。負極板20の負極集電体22についても同様である。   When the belt-like positive electrode plate 10 is viewed in plan, the structure shown in FIG. 2 is obtained. FIG. 2A and FIG. 2B are states reversed in the left-right direction. The electrode plate is cut at a plate width W (in addition, plate length, plate thickness, etc.) by a cutting step (steps S15 and S23 shown in FIG. 3) described later. The positive electrode plate 10 has a portion where the positive electrode active material layer 11 is not formed on the upper side of the drawing in FIG. 2A, and a portion where the positive electrode active material layer 13 is not formed on the upper side of the drawing in FIG. In other words, there is a portion of only the positive electrode current collector 12. The portion having only the positive electrode current collector 12 is used to electrically connect the positive electrode current collectors 12 to each other after performing a flat pressing step (step S32 shown in FIG. 3) described later. The same applies to the negative electrode current collector 22 of the negative electrode plate 20.

次に、正極板10,負極板20,セパレータ30などを積層して捲回型電池を製造する工程について、チャート図で示す図3を参照しながら説明する。図3に示す製造方法は、正極板10を形成する第1工程と、負極板20を形成する第2工程と、形成された正極板10および負極板20とともにセパレータ30を積層して捲回および扁平プレスを行う第3工程とに大きく分けられる。以下では、第1工程から第3工程の順番に説明する。   Next, a process of manufacturing a wound battery by stacking the positive electrode plate 10, the negative electrode plate 20, the separator 30 and the like will be described with reference to FIG. 3 includes a first step of forming the positive electrode plate 10, a second step of forming the negative electrode plate 20, a stack of separators 30 together with the formed positive electrode plate 10 and negative electrode plate 20, and winding. This can be broadly divided into the third step of flat pressing. Below, it demonstrates in order of a 1st process to a 3rd process.

(第1工程)正極板10の形成工程
まず、正極集電体12上に形成する正極活物質層11,13の混練物を作製する混練工程を行う〔ステップS10〕。混練物は、バインダ10a、正極活物質10b、導電材10c、溶媒10dなどを混ぜ合わせて液状またはペースト状にした物である。
(First Step) Formation Step of Positive Electrode Plate 10 First, a kneading step is performed to produce a kneaded product of the positive electrode active material layers 11 and 13 formed on the positive electrode current collector 12 [Step S10]. The kneaded product is a product obtained by mixing a binder 10a, a positive electrode active material 10b, a conductive material 10c, a solvent 10d, and the like into a liquid or paste form.

バインダ10aは、任意の結着剤を用いることができる。例えば、ポリフッ化ビニリデン(PVDF)や、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着剤などが該当する。なお、反応性官能基を導入したアクリレートモノマーや、アクリレートオリゴマーなどを混入してもよい。   Any binder can be used for the binder 10a. For example, polyvinylidene fluoride (PVDF), a modified body of polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like are applicable. In addition, you may mix the acrylate monomer which introduce | transduced the reactive functional group, an acrylate oligomer, etc.

正極活物質10bは、例えばリチウムイオンなどの軽金属イオンを吸蔵・離脱することが可能な物質で構成される。具体的には、金属硫化物、金属酸化物または高分子化合物などが該当する。金属硫化物や金属酸化物には、例えば硫化チタン(TiS2)、硫化モリブデン(MoS2)、セレン化ニオブ(NbSe2)または酸化バナジウム(V25)などのリチウムを含有しないものが挙げられる。金属酸化物には、上記したリチウムを含有しない物質のほか、LixMOyなどで表されるリチウム複合酸化物が挙げられる。なお、Mは、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、亜鉛(Zn)、クロム(Cr)、Al、Co、Ni、Ti、Siのうちで一以上の金属元素、あるいはリン(P)やホウ素(B)などの非金属元素であり、二種以上組み合わせて用いてもよい。組成式の添字について、xは0.05≦x≦2.0の範囲内、yは2≦y≦4の範囲内でそれぞれ設定するのが望ましい。 The positive electrode active material 10b is made of a material capable of inserting and extracting light metal ions such as lithium ions. Specifically, metal sulfides, metal oxides, polymer compounds, and the like are applicable. Examples of metal sulfides and metal oxides include those that do not contain lithium, such as titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), niobium selenide (NbSe 2 ), or vanadium oxide (V 2 O 5 ). It is done. Examples of the metal oxide include lithium composite oxides represented by Li x MO y in addition to the above-described substances not containing lithium. Note that M is one or more of cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), zinc (Zn), chromium (Cr), Al, Co, Ni, Ti, and Si. It is a metallic element or a nonmetallic element such as phosphorus (P) or boron (B), and may be used in combination of two or more. As for the subscripts of the composition formula, it is desirable to set x in the range of 0.05 ≦ x ≦ 2.0 and y in the range of 2 ≦ y ≦ 4.

正極活物質10bは、特に高電圧・高エネルギー密度の確保およびサイクル特性を向上させるため、リチウム・コバルト複合酸化物やリチウム・ニッケル酸化物などのリチウム複合酸化物を用いるのが望ましい。上述した金属硫化物や金属酸化物などのうちで二種以上組み合わせて用いてもよい。正極活物質10bに用いる材料は、電池の種類や用途等に応じて任意に選択可能である。   As the positive electrode active material 10b, it is desirable to use a lithium composite oxide such as lithium / cobalt composite oxide or lithium / nickel oxide in order to ensure high voltage and high energy density and improve cycle characteristics. Two or more of the metal sulfides and metal oxides described above may be used in combination. The material used for the positive electrode active material 10b can be arbitrarily selected according to the type and use of the battery.

導電材10cは、例えばカーボンブラックなどのような導電性の材料を用いる。カーボンブラックは、BET法による比表面積が30[m2/g]以上の高比表面積のものを用いるのが望ましい。 For the conductive material 10c, for example, a conductive material such as carbon black is used. It is desirable to use carbon black having a high specific surface area of 30 [m 2 / g] or more by a BET method.

溶媒10dは、混練に適したものを用いる。例えば、1,2−ジメトキシエタン、1,2−ジエトキシエタン、プロピレンカーボネート、ブチレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの単独溶媒や、これらの溶媒のうちで二種以上を選択して混合させた混合溶媒などが該当する。   A solvent suitable for kneading is used as the solvent 10d. For example, 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, butylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, etc. A solvent, a mixed solvent in which two or more of these solvents are selected and mixed, and the like are applicable.

ステップS10で作製した混練物を正極集電体12上に正極活物質層11,13として形成する塗工・乾燥工程を行う〔ステップS11〕。具体的には、混練物を正極集電体12上に塗工した後、所定温度下で乾燥させて固形化する。塗工は、例えば塗装,塗りつけ,吹きつけ等が該当する。正極活物質層11,13は、乾燥後に所定厚さ(例えば100〜300[μm])となるように塗工量を調整する。正極集電体12の厚さは、例えば10〜20[μm]程度である。こうして帯状の正極板10が形成される。   A coating / drying step of forming the kneaded material produced in step S10 as the positive electrode active material layers 11 and 13 on the positive electrode current collector 12 is performed [step S11]. Specifically, after the kneaded material is coated on the positive electrode current collector 12, it is dried at a predetermined temperature to be solidified. Examples of the coating include painting, painting, spraying, and the like. The coating amount of the positive electrode active material layers 11 and 13 is adjusted so as to have a predetermined thickness (for example, 100 to 300 [μm]) after drying. The thickness of the positive electrode current collector 12 is, for example, about 10 to 20 [μm]. In this way, a strip-like positive electrode plate 10 is formed.

ステップS11で形成された正極板10および負極板20のうちで一方または双方の電極板に対し、内周面側加工工程および外周面側加工工程を行う〔ステップS12〕。内周面側加工工程は、後述する扁平プレス工程によって形成される扁平体200の屈曲部Bとなる部位の電極活物質層であって、内周面側の短辺方向(幅方向)に沿って直線状かつ実線状に溝状部13aを形成する。外周面側加工工程は、上記電極活物質層であって外周面側の短辺方向(幅方向)に沿って直線状かつ実線状に切込部11a(または溝状部)を形成する。   An inner peripheral surface side processing step and an outer peripheral surface side processing step are performed on one or both of the positive electrode plate 10 and the negative electrode plate 20 formed in step S11 [step S12]. The inner peripheral surface side processing step is an electrode active material layer at a portion to be a bent portion B of the flat body 200 formed by a flat pressing step described later, and is along the short side direction (width direction) on the inner peripheral surface side. Thus, the groove 13a is formed in a straight line and a solid line. In the outer peripheral surface side processing step, the cut portions 11a (or groove portions) are formed in a straight line and a solid line along the short side direction (width direction) of the electrode active material layer on the outer peripheral surface side.

内周面側加工工程と外周面側加工工程とは、並行して行ってもよく、前後して順番に行ってもよい。並行して行う例を図4(A)に示し、前後して順番に行う例を図4(B)〜図4(D)に示す。図4(A)に示す加工例は、加工手段40によって電極板の両面で加工を行う。すなわち内周面側加工手段40bは正極活物質層13が形成された内周面側を加工し、外周面側加工手段40aは正極活物質層11が形成された外周面側を加工する。内周面側加工手段40bは溝状部13aを加工できる任意の手段を適用でき、外周面側加工手段40aは切込部11aや溝状部(例えば図4(D)に示す溝状部11c等)を加工できる任意の手段を適用できる。溝状部13a(および正極活物質層11に形成する溝状部)の加工には溝形成手段43を用い、切込部11aの加工には切込形成手段41を用いる。溝形成手段43は、例えば形削り盤やフライス盤などのように、溝加工が可能な工作機械を用いる。切込形成手段41は、例えば回転運動または往復運動によって切り込み加工が可能な工作機械や、レーザー加工機、ウォータージェット加工機(ウォーターカッター)などを用いる。   The inner peripheral surface side processing step and the outer peripheral surface side processing step may be performed in parallel, or may be performed sequentially in order. An example performed in parallel is shown in FIG. 4A, and examples performed in order before and after are shown in FIGS. 4B to 4D. In the processing example shown in FIG. 4A, processing is performed on both surfaces of the electrode plate by the processing means 40. That is, the inner peripheral surface side processing means 40b processes the inner peripheral surface side on which the positive electrode active material layer 13 is formed, and the outer peripheral surface side processing means 40a processes the outer peripheral surface side on which the positive electrode active material layer 11 is formed. The inner peripheral surface side processing means 40b can apply any means capable of processing the groove-shaped portion 13a, and the outer peripheral surface-side processing means 40a can be a cut portion 11a or a groove-shaped portion (for example, the groove-shaped portion 11c shown in FIG. 4D). Etc.) can be applied to any means. The groove forming means 43 is used for processing the groove-shaped part 13a (and the groove-shaped part formed in the positive electrode active material layer 11), and the notch forming means 41 is used for processing the notched part 11a. The groove forming means 43 uses a machine tool capable of grooving, such as a shaper or a milling machine. The notch forming means 41 uses, for example, a machine tool capable of being cut by a rotational motion or a reciprocating motion, a laser processing machine, a water jet processing machine (water cutter), or the like.

図4(B)〜図4(D)に示す加工例は、平面台42に固定した電極板の片面ずつ加工を行う。例えば、まず外周面側の正極活物質層11が上面となるように正極板10を固定してから、図4(B)に示すように切込形成手段41で正極活物質層11に切込部11bを加工する。そして正極板10をひっくり返して固定した後、図4(C)に示すように溝形成手段43で正極活物質層13に溝状部13aを加工する。   In the processing examples shown in FIG. 4B to FIG. 4D, processing is performed for each side of the electrode plate fixed to the flat table 42. For example, the positive electrode plate 10 is first fixed so that the positive electrode active material layer 11 on the outer peripheral surface side becomes the upper surface, and then cut into the positive electrode active material layer 11 by the cut forming means 41 as shown in FIG. The part 11b is processed. Then, after the positive electrode plate 10 is turned over and fixed, the groove-shaped portion 13 a is processed into the positive electrode active material layer 13 by the groove forming means 43 as shown in FIG.

上述した手順とは逆順で加工してもよい。例えば、まず内周面側の正極活物質層13が上面となるように正極板10を固定してから、溝形成手段43で溝状部13aを加工する。そして正極板10をひっくり返して固定した後、図4(D)に示すように溝形成手段43で正極活物質層11に溝状部11cを加工する。   You may process in the reverse order to the procedure mentioned above. For example, first, the positive electrode plate 10 is fixed so that the positive electrode active material layer 13 on the inner peripheral surface side becomes the upper surface, and then the groove-shaped portion 43 a is processed by the groove forming means 43. Then, after the positive electrode plate 10 is turned over and fixed, the groove-shaped portion 11 c is processed into the positive electrode active material layer 11 by the groove forming means 43 as shown in FIG.

また、上述した溝状部13aや切込部11aを形成する部位(位置)や形状(角度や深さ)について、図5〜図7を参照しながら説明する。図5には、溝状部や切込部を形成する部位の一例を模式的に側面図で示す。図6には、溝状部や切込部の間隔を設定する例を側面図で示す。図7には、溝状部の角度や深さを変化させる例を側面図で示す。   Moreover, the site | part (position) and shape (angle and depth) which form the groove-shaped part 13a and the notch | incision part 11a mentioned above are demonstrated, referring FIGS. In FIG. 5, an example of the site | part which forms a groove-shaped part and a notch part is typically shown with a side view. In FIG. 6, the example which sets the space | interval of a groove-shaped part and a notch part is shown with a side view. In FIG. 7, the example which changes the angle and depth of a groove-shaped part is shown with a side view.

図5は、所定周回や曲率半径に基づいて、溝状部や切込部を形成する部位の一例を斜線ハッチで示す。図5(A)には、扁平体200における所定周回(例えば1〜3[回])までであって、かつ、屈曲部Bに対応する電極板の部位A1を示す。図5(B)には、扁平体200における所定の曲率半径Rx(例えば0〜600[μm])以下であって、かつ、屈曲部Bに対応する電極板の部位A2を示す。   FIG. 5 shows an example of the part which forms a groove-shaped part and a notch part by a hatching hatching based on a predetermined circumference and a radius of curvature. FIG. 5 (A) shows a part A1 of the electrode plate corresponding to the bent portion B up to a predetermined number of rounds (for example, 1 to 3 [times]) in the flat body 200. FIG. 5B shows a portion A2 of the electrode plate that is equal to or less than a predetermined curvature radius Rx (for example, 0 to 600 [μm]) in the flat body 200 and corresponds to the bent portion B.

図6は、扁平体200の屈曲部Bに対応する電極板に形成する溝状部や切込部の間隔を示す。図6(A)には、正極板10の外周面側である正極活物質層11に形成する切込部11aの間隔D1a,D1b,D1c,…を不等間隔(すなわち不均一)にし、内周面側である正極活物質層13に形成する溝状部13aの間隔D2a,D2b,D2c,D2d,…を不等間隔にする例を示す。なお、二点鎖線で示す切込部11aや溝状部13aは屈曲部Bの範囲外であるので、形成するか否かを問わない。   FIG. 6 shows the interval between the groove-shaped part and the notch part formed in the electrode plate corresponding to the bent part B of the flat body 200. In FIG. 6A, the intervals D1a, D1b, D1c,... Of the notches 11a formed in the positive electrode active material layer 11 on the outer peripheral surface side of the positive electrode plate 10 are set to be unequal intervals (that is, non-uniform). An example is shown in which the intervals D2a, D2b, D2c, D2d,... Of the groove-shaped portion 13a formed in the positive electrode active material layer 13 on the peripheral surface side are set at unequal intervals. In addition, since the notch part 11a and the groove-shaped part 13a which are shown with a dashed-two dotted line are outside the range of the bending part B, it does not ask | require whether it forms.

図6(B)には、上述した間隔D1a,D1b,D1c,…や間隔D2a,D2b,D2c,D2d,…などの間隔を、扁平体200の屈曲部Bにかかる曲率半径に基づいて変化させる例を示す。曲率と曲率半径とは逆数の関係にあるので、曲率が大きくなれば曲率半径は小さくなり、曲率が小さくなれば曲率半径は大きくなる。そのため、溝状部13aや切込部11aを形成する間隔は、切込部11aや溝状部13aを形成する位置(以下では単に「形成位置」と呼ぶ。)の曲率に基づいて、屈曲部Bの中心点Prから形成位置までの半径R1,R2,R3,…(すなわち曲率半径)を求め、さらに当該曲率半径の比率に応じて間隔を設定する。例えば図6(A)に示す間隔D1a,D1b,D1cを式で表すと、「D1a:D1b:D1c=R1:R2:R3」のようになる。   6B, the intervals D1a, D1b, D1c,... And the intervals D2a, D2b, D2c, D2d,... Are changed based on the radius of curvature applied to the bent portion B of the flat body 200. An example is shown. Since the curvature and the radius of curvature are inversely related, the curvature radius decreases as the curvature increases, and the curvature radius increases as the curvature decreases. Therefore, the interval at which the groove 13a or the notch 11a is formed is based on the curvature of the position where the notch 11a or the groove 13a is formed (hereinafter simply referred to as “formation position”). Radius R1, R2, R3,... (Namely, a radius of curvature) from the center point Pr of B to the formation position is obtained, and an interval is set according to the ratio of the radius of curvature. For example, the distances D1a, D1b, and D1c shown in FIG. 6A can be expressed by an expression such as “D1a: D1b: D1c = R1: R2: R3”.

図6(C)には、屈曲部Bの中心点Prから放射状に伸ばした仮想線L1,L2,L3,…と正極板10とが交差する位置の正極板10に対し、溝状部13aや切込部11aを形成する例を示す。すなわち、仮想線L1と正極板10とが交差する位置P1a,P1b,P1c,…や、仮想線L2と正極板10とが交差する位置P2a,P2b,P2c,…、仮想線L3と正極板10とが交差する位置P3a,P3b,P3c,…などに対応する正極板10に形成する。正極板10は渦巻き状に捲回されるので、間隔D1a,D1b,D1c,…や間隔D2a,D2b,D2c,D2d,…などは不等間隔になる。   In FIG. 6C, the groove-like portion 13a and the positive electrode plate 10 at positions where the virtual plates L1, L2, L3,... Radially extending from the center point Pr of the bent portion B intersect the positive electrode plate 10 are shown. The example which forms the notch part 11a is shown. That is, positions P1a, P1b, P1c,... Where virtual line L1 and positive electrode plate 10 intersect, positions P2a, P2b, P2c,... Where virtual line L2 and positive electrode plate 10 intersect, virtual line L3 and positive electrode plate 10 Are formed on the positive electrode plate 10 corresponding to the positions P3a, P3b, P3c,. Since the positive electrode plate 10 is wound in a spiral shape, the intervals D1a, D1b, D1c,... And the intervals D2a, D2b, D2c, D2d,.

図7には、V字形状をなす溝状部13aについて、角度や深さを内周側から外周側に向かって変化させて形成する例を示す。図7(A)には、屈曲部Bにかかる最内周の正極板10に形成する溝状部13aを示す。この溝状部13aは、角度θ1と深さD3とで形成されている。図7(B)には、外周側に向かって角度θ2を小さく(すなわちθ2<θ1)形成した溝状部13aの一例を示す。図7(C)には、外周側に向かって深さD4を浅く(すなわちD4<D3)形成した溝状部13aの一例を示す。図示しないが、外周側に向かって角度θ2と深さD4との双方を小さくして溝状部13aを形成してもよい。   FIG. 7 shows an example in which the V-shaped groove-like portion 13a is formed by changing the angle and depth from the inner peripheral side toward the outer peripheral side. FIG. 7A shows a groove-like portion 13a formed in the innermost positive electrode plate 10 in the bent portion B. FIG. The groove 13a is formed with an angle θ1 and a depth D3. FIG. 7B shows an example of the groove-like portion 13a formed with a smaller angle θ2 (that is, θ2 <θ1) toward the outer peripheral side. FIG. 7C shows an example of the groove-like portion 13a formed with a depth D4 shallower (that is, D4 <D3) toward the outer peripheral side. Although not shown, the groove 13a may be formed by reducing both the angle θ2 and the depth D4 toward the outer peripheral side.

図3に戻って、内周面側加工工程および外周面側加工工程と並行して、あるいはこれらの加工工程を行った後、加工屑除去工程を行う〔ステップS13〕。内周面側加工工程や外周面側加工工程では加工時に加工屑が発生するので、加工屑除去工程を行って加工屑を除去する。加工屑の除去方法は任意である。例えば、液体(水や油等)で流したり、気体(空気や窒素等)で吹き飛ばしたり、掃除部材(ブラシやモップ等)を用いて掃き出したりなどの各種方法で行えばよい。   Returning to FIG. 3, in parallel with the inner peripheral surface side processing step and the outer peripheral surface side processing step, or after performing these processing steps, a processing scrap removal step is performed [step S <b> 13]. In the inner peripheral surface side processing step and the outer peripheral surface side processing step, since processing waste is generated during processing, the processing waste removal step is performed to remove the processing waste. The removal method of processing waste is arbitrary. For example, it may be performed by various methods such as flowing with a liquid (water, oil, etc.), blowing off with a gas (air, nitrogen, etc.), and sweeping out using a cleaning member (brush, mop, etc.).

その後、プレス機(例えばローラ等)によって正極板10をプレスするプレス工程〔ステップS14〕と、切断機によって正極板10を所定形状(板長,板厚,板幅等)に切断する切断工程〔ステップS15〕とを順不同で行う。こうして、溝状部13aや切込部11aを備えて捲回可能な正極板10が形成される。   Thereafter, a pressing step (step S14) for pressing the positive electrode plate 10 with a press machine (for example, a roller) and a cutting step for cutting the positive electrode plate 10 into a predetermined shape (plate length, plate thickness, plate width, etc.) with a cutting machine [ Step S15] is performed in any order. In this way, the positive electrode plate 10 having the groove-like portion 13a and the cut portion 11a and capable of being wound is formed.

(第2工程)負極板20の形成工程
負極集電体22に形成する負極活物質層21,23の混練物を作製する混練工程を行う〔ステップS20〕。混練物は、バインダ20a、負極活物質20b、分散材20c、溶媒20dなどを混練した物である。
(2nd process) Formation process of the negative electrode plate 20 The kneading | mixing process which produces the kneaded material of the negative electrode active material layers 21 and 23 formed in the negative electrode collector 22 is performed [step S20]. The kneaded product is a product obtained by kneading the binder 20a, the negative electrode active material 20b, the dispersion material 20c, the solvent 20d, and the like.

バインダ20aは、バインダ10aと同様に任意の結着剤を用いることができる。例えば、ポリフッ化ビニリデン(PVDF)や、その変性体などが該当する。なお、リチウムイオン受入れ性を向上させるため、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に対し、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等を併用したり、少量添加したりするのが望ましい。   The binder 20a can use arbitrary binders similarly to the binder 10a. For example, polyvinylidene fluoride (PVDF) or a modified product thereof is applicable. In order to improve the lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof may be used in combination with cellulose resins such as carboxymethyl cellulose (CMC) or in small amounts. Is desirable.

負極活物質20bは、軽金属、当該軽金属を含む合金、当該合金や軽金属自体を吸蔵・離脱することが可能な材料などで構成される。軽金属は、例えばリチウム(Li)やナトリウム(Na)などが該当する。軽金属を吸蔵・離脱することが可能な材料は、例えば炭素材料、珪素(Si)、珪素化合物、金属酸化物または高分子化合物などが該当する。炭素材料は、例えば熱分解炭素類、コークス類、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維または活性炭などが該当する。コークス類には、例えばピッチコークス,ニードルコークス,石油コークスなどを含む。ガラス状炭素類には、難黒鉛化炭素材料などを含む。有機高分子化合物焼成体は、不活性ガス気流中または真空中において高分子化合物(例えばフェノール樹脂やフラン樹脂など)を高温(例えば約500℃以上)で焼成して炭素化された物質である。珪素化合物は、例えばCaSi2やCoSi2などが該当する。金属酸化物は、例えば酸化スズ(SnO2)などが該当する。高分子化合物は、例えばポリアセチレンやポリピロールなどが該当する。負極活物質20bとして用いる材料は、電池の種類や用途等に応じて任意に選択可能である。 The negative electrode active material 20b is composed of a light metal, an alloy containing the light metal, a material capable of inserting and extracting the alloy and the light metal itself, and the like. Examples of the light metal include lithium (Li) and sodium (Na). Examples of the material capable of inserting and extracting light metals include carbon materials, silicon (Si), silicon compounds, metal oxides, and polymer compounds. Examples of the carbon material include pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Examples of the coke include pitch coke, needle coke, and petroleum coke. Glassy carbons include non-graphitizable carbon materials. The organic polymer compound fired body is a carbonized substance obtained by firing a polymer compound (for example, phenol resin or furan resin) at a high temperature (for example, about 500 ° C. or more) in an inert gas stream or in a vacuum. Examples of the silicon compound include CaSi 2 and CoSi 2 . An example of the metal oxide is tin oxide (SnO 2 ). Examples of the polymer compound include polyacetylene and polypyrrole. The material used as the negative electrode active material 20b can be arbitrarily selected according to the type and application of the battery.

分散材20cは任意であり、例えばN−メチル−2−ピロリドン(NMP)等を用いる。溶媒20dは、溶媒10dと同様に混練に適したものを用いる。溶媒10dと同じ材料でもよく、異なる材料でもよい。   The dispersing material 20c is arbitrary, and for example, N-methyl-2-pyrrolidone (NMP) or the like is used. As the solvent 20d, a solvent suitable for kneading is used similarly to the solvent 10d. The same material as the solvent 10d may be used, or a different material may be used.

絶縁性のセパレータ30は、高分子材料(特に多孔質のもの)などから形成できる。セパレータ30の厚さは、例えば10〜30[μm]の範囲である。高分子材料は、例えばポリプロピレン、ポリエチレン、ポリメチルペンテンなどが該当する。さらには、これらの高分子材料から形成した不織布や、延伸多孔質化したフィルムなどを用いてもよい。   The insulating separator 30 can be formed from a polymer material (particularly porous). The thickness of the separator 30 is, for example, in the range of 10 to 30 [μm]. Examples of the polymer material include polypropylene, polyethylene, and polymethylpentene. Furthermore, you may use the nonwoven fabric formed from these polymeric materials, the film | membrane which made the stretch porous, etc.

ステップS11と同様にして、ステップS20で作製した混練物を負極集電体20e上に負極活物質層21,23として形成する塗工・乾燥工程を行う〔ステップS21〕。具体的には、混練物を負極集電体20e上に塗工した後、所定温度下で乾燥させて固形化する。負極活物質層21,23は、乾燥後に所定厚さ(例えば100〜200[μm])となるように塗工量を調整する。負極集電体20eの厚さは、例えば10〜20[μm]程度である。こうして帯状の負極板20が形成される。   Similarly to step S11, a coating / drying process for forming the kneaded material prepared in step S20 as the negative electrode active material layers 21 and 23 on the negative electrode current collector 20e is performed [step S21]. Specifically, after the kneaded material is coated on the negative electrode current collector 20e, it is dried and solidified at a predetermined temperature. The coating amount of the negative electrode active material layers 21 and 23 is adjusted so as to have a predetermined thickness (for example, 100 to 200 [μm]) after drying. The thickness of the negative electrode current collector 20e is, for example, about 10 to 20 [μm]. In this way, a strip-like negative electrode plate 20 is formed.

ステップS21で形成された負極板20および負極板20のうちで一方または双方の電極板に対し、必要に応じて内周面側加工工程および外周面側加工工程を行う〔ステップS22〕。負極板20の板厚が正極板10の板厚よりも大幅に小さい場合には、当該ステップS22を省略してもよい。なお、内周面側加工工程や外周面側加工工程の内容は、それぞれ上述したステップS12と同様である。溝状部13aに相当する溝状部や、切込部11aに相当する切込部を形成する。内周面側加工工程および外周面側加工工程を行う場合には、ステップS13と同様にして加工屑除去工程を行う〔ステップS23〕。   An inner peripheral surface side processing step and an outer peripheral surface side processing step are performed on one or both of the negative electrode plate 20 and the negative electrode plate 20 formed in step S21 as necessary [step S22]. When the plate thickness of the negative electrode plate 20 is significantly smaller than the plate thickness of the positive electrode plate 10, the step S22 may be omitted. The contents of the inner peripheral surface side machining step and the outer peripheral surface side machining step are the same as those in step S12 described above. A groove-shaped portion corresponding to the groove-shaped portion 13a and a cut portion corresponding to the cut portion 11a are formed. When the inner peripheral surface side machining step and the outer peripheral surface side machining step are performed, the machining waste removal step is performed in the same manner as in step S13 [step S23].

その後、ステップS14と同様にして負極板20をプレスするプレス工程〔ステップS24〕と、ステップS15と同様にして負極板20を所定形状(板長,板厚,板幅等)に切断する切断工程〔ステップS25〕とを順不同で行う。こうして、溝状部や切込部を備えて捲回可能な負極板20が形成される。   Thereafter, a pressing step [step S24] for pressing the negative electrode plate 20 in the same manner as in step S14, and a cutting step in which the negative electrode plate 20 is cut into a predetermined shape (plate length, plate thickness, plate width, etc.) in the same manner as in step S15. [Step S25] is performed in any order. In this way, the negative electrode plate 20 having a groove-like portion and a cut portion and capable of being wound is formed.

(第3工程)捲回および扁平プレス
正極板10および負極板20が形成された後、正極板10,負極板20,セパレータ30などを積層して渦巻き状に捲回する捲回工程を行い〔ステップS31〕、当該捲回工程によって形成される捲回体100を扁平状にプレスする扁平プレス工程を行う〔ステップS32〕。
(Third Step) Winding and Flat Pressing After the positive electrode plate 10 and the negative electrode plate 20 are formed, a winding step is performed in which the positive electrode plate 10, the negative electrode plate 20, the separator 30 and the like are stacked and wound in a spiral shape [ Step S31], a flat pressing step of pressing the wound body 100 formed by the winding step into a flat shape is performed [Step S32].

ステップS31では、図8に示すように、正極板10,負極板20,セパレータ30などを積層して、捲回手段44に捲回する。捲回手段44は、例えば円柱状や円筒状のローラ等が該当する。捲回手段44から捲回体100を取り外すと、図9のようになる。   In step S31, as shown in FIG. 8, the positive electrode plate 10, the negative electrode plate 20, the separator 30 and the like are stacked and wound on the winding means 44. The winding means 44 corresponds to, for example, a columnar or cylindrical roller. When the wound body 100 is removed from the winding means 44, it becomes as shown in FIG.

ステップS32では、図9に示すように、平面台42上に固定した捲回体100に対して、扁平プレス手段46を矢印D6方向に移動させて扁平プレスする。扁平プレス手段46は、平面状のプレス面46aを有するプレス機などが該当する。扁平プレスして得られる扁平体200を図10に示す。図10のA部は、屈曲部Bの拡大図である。   In step S32, as shown in FIG. 9, the flat pressing means 46 is moved flat in the direction of arrow D6 with respect to the wound body 100 fixed on the flat table 42. The flat press means 46 corresponds to a press machine having a flat press surface 46a. A flat body 200 obtained by flat pressing is shown in FIG. 10 is an enlarged view of the bent portion B. FIG.

ここで、扁平プレス後における電極板の一例について簡単に説明する。内周面側の溝状部13aや外周面側の切込部11a,11bや溝状部11cを形成するか否かによって、電極板(特に電極活物質層)に不具合が発生するか否かを実験した。その実験結果を下記表1に示す。実験に用いた正極板10は、正極集電体12として15[μm]の厚さのアルミニウム箔(Al)を用い、長さを1.4[m]で形成した。負極板20は、負極集電体22として10[μm]の厚さの銅箔(Cu)を用い、長さを1.5[m]で形成した。セパレータ30は、厚さを20[μm]とし、長さを1.6[m]で形成した。全周回(全捲数)は6[回]である。溝状部や切込部の有無については、所定周回が0[回]すなわち全く形成しない電極板を「無し」で示し、所定周回が1[回]すなわち最内周にのみ形成した電極板を「1捲目」で示し、所定周回が2[回]すなわち1周回と2周回に形成した電極板を「1,2捲目」で示す。不具合発生の有無については、発生した電極板を「×」で示し、発生しなかった電極板を「○」で示す。   Here, an example of the electrode plate after flat pressing will be briefly described. Whether or not a problem occurs in the electrode plate (particularly the electrode active material layer) depending on whether or not the groove portion 13a on the inner peripheral surface side and the cut portions 11a and 11b and the groove portion 11c on the outer peripheral surface side are formed. We experimented. The experimental results are shown in Table 1 below. The positive electrode plate 10 used in the experiment was formed using an aluminum foil (Al) having a thickness of 15 [μm] as the positive electrode current collector 12 and having a length of 1.4 [m]. The negative electrode plate 20 was formed using a copper foil (Cu) having a thickness of 10 [μm] as the negative electrode current collector 22 and having a length of 1.5 [m]. The separator 30 was formed with a thickness of 20 [μm] and a length of 1.6 [m]. The total number of laps (total number) is 6 [times]. Regarding the presence or absence of a groove-shaped part or a notch part, an electrode plate having a predetermined circumference of 0 [times], that is, not formed at all, is indicated as “none”, and an electrode plate having a predetermined circumference of 1 [times], that is, formed only on the innermost circumference An electrode plate formed by “1st grid” and having a predetermined turn of 2 [turns], that is, 1 round and 2 rounds, is shown by “1,2 grid”. Regarding the presence / absence of defects, the generated electrode plates are indicated by “x”, and the electrode plates that did not occur are indicated by “◯”.

Figure 2012174579
Figure 2012174579

上述した実施の形態によれば、以下に示す各効果を得ることができる。まず請求項1に対応し、捲回型電池において、正極板10および負極板20のうちで一方または双方の電極板は、扁平プレスによって形成される扁平体200の屈曲部Bとなる部位の電極活物質層であって内周面側の短辺方向に沿って形成される溝状の溝状部13aと、扁平プレスによって形成される扁平体200の屈曲部Bとなる部位の電極活物質層であって外周面側の短辺方向に沿って形成される切込部11a,11bまたは溝状部11cとの双方を備える構成とした(図1(C),図4(D)を参照)。この構成によれば、扁平プレスを行っても、内周面側の溝状部13aは正極活物質層13や負極活物質層23が圧縮されるのを防止し、外周面側の切込部11a,11bや溝状部11cは正極活物質層11や負極活物質層21が伸長されるのを防止する。内周面側および外周面側のうち一方または双方に形成することで、従来よりは電極板(特に電極活物質層)の割れ,ヒビ,切断等の不具合が生じるのを防止できる。なお、内周面側に形成する溝状部13aと、外周面側に形成する切込部11a,11bまたは溝状部11cとのいずれか一方を備える構成としてもよい。この構成であっても各周面側について上記作用効果を得ることができる。   According to the embodiment described above, the following effects can be obtained. First, according to claim 1, in the wound battery, one or both of the positive electrode plate 10 and the negative electrode plate 20 is an electrode at a portion to be a bent portion B of the flat body 200 formed by flat pressing. The active material layer is an electrode active material layer in a portion that becomes a groove-like groove-shaped portion 13a formed along the short side direction on the inner peripheral surface side and a bent portion B of the flat body 200 formed by flat pressing. And it was set as the structure provided with both the notch parts 11a and 11b or the groove-shaped part 11c formed along the short side direction of an outer peripheral surface side (refer FIG.1 (C) and FIG.4 (D)). . According to this configuration, even when flat pressing is performed, the groove portion 13a on the inner peripheral surface side prevents the positive electrode active material layer 13 and the negative electrode active material layer 23 from being compressed, and the cut portion on the outer peripheral surface side. 11a, 11b and the groove-like portion 11c prevent the positive electrode active material layer 11 and the negative electrode active material layer 21 from being elongated. By forming it on one or both of the inner peripheral surface side and the outer peripheral surface side, it is possible to prevent problems such as cracking, cracking, and cutting of the electrode plate (particularly the electrode active material layer) from the prior art. In addition, it is good also as a structure provided with either one of the groove-shaped part 13a formed in an inner peripheral surface side, and the notch parts 11a and 11b or the groove-shaped part 11c formed in an outer peripheral surface side. Even if it is this structure, the said effect can be obtained about each surrounding surface side.

請求項2に対応し、正極板10および負極板20のうちで一方または双方の電極板について、溝状部13aまたは切込部11aを不等間隔で形成する構成とした(図1を参照)。この構成によれば、溝状部13aや切込部11aの相互間における引張力が一定値以下に抑えられるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   Corresponding to claim 2, one or both of the positive electrode plate 10 and the negative electrode plate 20 is configured to form the groove portions 13 a or the cut portions 11 a at unequal intervals (see FIG. 1). . According to this configuration, since the tensile force between the groove-like portion 13a and the notch portion 11a is suppressed to a certain value or less, it is more reliable that defects such as irregularities, cracks, cracks, and cutting occur on the electrode plate. Can be prevented.

請求項3,13に対応し、正極板10,負極板20およびセパレータ30を積層して捲回する捲回工程(捲回手段44)と、捲回工程によって形成される捲回体100を扁平状にプレスする扁平プレス工程(扁平プレス手段46)と、捲回工程よりも前に行われ、正極板10および負極板20のうちで一方または双方の電極板に対し、扁平プレス工程によって形成される扁平体200の屈曲部Bとなる部位の電極活物質層であって内周面側の短辺方向に沿って溝状の溝状部13aを形成する内周面側加工工程(内周面側加工手段40b)と、扁平体200の屈曲部Bとなる部位の電極活物質層であって外周面側の短辺方向に沿って切込部11aまたは溝状部11cを形成する外周面側加工工程(外周面側加工手段40a)とのうちで一方または双方の加工工程とを有する構成とした(図1〜図9を参照)。この構成によれば、内周面側の正極活物質層13や負極活物質層23に形成された溝状部13aによって電極活物質層が圧縮するのを防止する。また、外周面側の正極活物質層11や負極活物質層21に形成された切込部11aまたは溝状部11cによって電極活物質層が伸長するのを防止する。内周面側および外周面側のうち一方または双方に形成することで、従来よりは電極板(特に電極活物質層)の割れ,ヒビ,切断等の不具合が生じるのを防止できる。   Corresponding to claims 3 and 13, a winding step (winding means 44) for laminating and winding the positive electrode plate 10, the negative electrode plate 20 and the separator 30, and the winding body 100 formed by the winding step is flattened. The flat pressing step (flat pressing means 46) that presses into a shape is performed before the winding step, and is formed by one or both of the positive electrode plate 10 and the negative electrode plate 20 by the flat pressing step. Inner peripheral surface side processing step (inner peripheral surface) for forming a groove-shaped groove-shaped portion 13a along the short side direction on the inner peripheral surface side of the electrode active material layer at the portion to be the bent portion B of the flat body 200 Side processing means 40b) and an electrode active material layer in a portion to be a bent portion B of the flat body 200, and the outer peripheral surface side forming the cut portion 11a or the groove portion 11c along the short side direction on the outer peripheral surface side One of the machining steps (outer peripheral surface side machining means 40a) And configured to have a both a processing step (see FIGS. 1-9). According to this configuration, the electrode active material layer is prevented from being compressed by the groove-shaped portion 13 a formed in the positive electrode active material layer 13 or the negative electrode active material layer 23 on the inner peripheral surface side. Further, the electrode active material layer is prevented from extending by the cut portions 11a or the groove portions 11c formed in the positive electrode active material layer 11 or the negative electrode active material layer 21 on the outer peripheral surface side. By forming it on one or both of the inner peripheral surface side and the outer peripheral surface side, it is possible to prevent problems such as cracking, cracking, and cutting of the electrode plate (particularly the electrode active material layer) from the prior art.

請求項4,14に対応し、内周面側加工工程および外周面側加工工程のうちで一方または双方の加工工程を行う以後、溝状部13aまたは切込部11aの形成に伴って生じる加工屑を除去する加工屑除去工程(加工屑除去手段)を有する構成とした。この構成によれば、溝状部13aや切込部11aの加工中または加工後に加工屑が除去されるので、電極板の相互間に加工屑が挟まるなどで電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのを防止できる。   Corresponding to claims 4 and 14, after performing one or both of the inner peripheral surface side processing step and the outer peripheral surface side processing step, processing that occurs with the formation of the groove-shaped portion 13a or the cut portion 11a. It was set as the structure which has the processing waste removal process (processing waste removal means) which removes waste. According to this configuration, since the processing waste is removed during or after the processing of the groove-shaped portion 13a or the cut portion 11a, the processing waste is sandwiched between the electrode plates. It is possible to prevent problems such as cutting.

請求項5に対応し、内周面側加工工程および外周面側加工工程は、プレス前期間内に行う構成とした(図3を参照)。この構成によれば、内周面側加工工程では溝状部13aを確実に形成し、外周面側加工工程では切込部11aまたは溝状部11cを確実に形成することができる。なお図11において、正極板10の形成で示すように捲回前期間内に行う構成としもよく、負極板20の形成で示すように切断前期間内に行う構成としてもよい。いずれの構成も、正極板10および負極板20のうち一方または双方に適用可能である。複数(二または三)の期間内で行う場合には、同一箇所(その一部分を含む)を加工することで溝状部13aや切込部11aの形成を確実にし、異なる箇所を加工することで溝状部13aや切込部11aの形成箇所を増やすことができる。   Corresponding to claim 5, the inner peripheral surface side processing step and the outer peripheral surface side processing step are performed within the pre-press period (see FIG. 3). According to this configuration, the groove portion 13a can be reliably formed in the inner peripheral surface side machining step, and the cut portion 11a or the groove portion 11c can be reliably formed in the outer peripheral surface side machining step. In FIG. 11, the configuration may be performed within the period before winding as shown by the formation of the positive electrode plate 10, or may be configured within the period before cutting as shown by the formation of the negative electrode plate 20. Either configuration is applicable to one or both of the positive electrode plate 10 and the negative electrode plate 20. When performing within a plurality of (two or three) periods, by processing the same part (including a part thereof), it is possible to ensure the formation of the groove-like part 13a and the cut part 11a, and to process different parts. The formation location of the groove-shaped part 13a and the notch part 11a can be increased.

請求項6に対応し、内周面側加工工程および外周面側加工工程は、扁平体200における所定周回までの部位A1に対応する電極板に対し、溝状部13aまたは切込部11aを形成する構成とした(図5(A)を参照)。この構成によれば、曲率半径が小さい箇所に溝状部13aや切込部11aを形成するので、電極板の割れ,ヒビ,切断等の不具合が生じるのを防止できる。   Corresponding to claim 6, in the inner peripheral surface side processing step and the outer peripheral surface side processing step, the groove-shaped portion 13a or the cut portion 11a is formed on the electrode plate corresponding to the portion A1 up to the predetermined circumference in the flat body 200. (See FIG. 5A). According to this structure, since the groove-shaped part 13a and the notch part 11a are formed in the location where a curvature radius is small, it can prevent that troubles, such as a crack, a crack, a cutting | disconnection of an electrode plate, arise.

請求項7に対応し、内周面側加工工程および外周面側加工工程は、扁平体200における所定の曲率半径Rx以下となる部位に対応する電極板に対し、溝状部13aまたは切込部11aを形成する構成とした(図5(B)を参照)。この構成によれば、所定の曲率半径Rx以下となる箇所に溝状部13aや切込部11aを形成するので、電極板の割れ,ヒビ,切断等の不具合が生じるのを防止できる。   Corresponding to claim 7, the inner peripheral surface side processing step and the outer peripheral surface side processing step are the groove-shaped portion 13a or the notch portion with respect to the electrode plate corresponding to the portion having a predetermined curvature radius Rx or less in the flat body 200. 11a is formed (see FIG. 5B). According to this configuration, since the groove-like portion 13a and the cut portion 11a are formed at a portion that is equal to or smaller than the predetermined curvature radius Rx, it is possible to prevent problems such as cracking, cracking, and cutting of the electrode plate.

請求項8に対応し、内周面側加工工程および外周面側加工工程は、溝状部13aまたは切込部11aを不等間隔で形成する構成とした(図6(A)を参照)。この構成によれば、溝状部13aや切込部11aの相互間における引張力が一定値以下に抑えられるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   Corresponding to claim 8, the inner peripheral surface side processing step and the outer peripheral surface side processing step are configured to form the groove portions 13a or the cut portions 11a at unequal intervals (see FIG. 6A). According to this configuration, since the tensile force between the groove-like portion 13a and the notch portion 11a is suppressed to a certain value or less, it is more reliable that defects such as irregularities, cracks, cracks, and cutting occur on the electrode plate. Can be prevented.

請求項9に対応し、内周面側加工工程および外周面側加工工程は、扁平体200の屈曲部Bにかかる曲率半径に基づいて溝状部13aまたは切込部11aを形成する間隔を変化させる構成とした(図6(B)を参照)。この構成によれば、捲回時以降で溝状部13aや切込部11aの相互間における引張力が分散され一定値以下に抑えられるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   Corresponding to claim 9, the inner peripheral surface side processing step and the outer peripheral surface side processing step change the interval for forming the groove-shaped portion 13a or the cut portion 11a based on the radius of curvature applied to the bent portion B of the flat body 200. (See FIG. 6B). According to this configuration, since the tensile force between the groove-like portion 13a and the cut portion 11a is dispersed and suppressed to a certain value or less after winding, the electrode plate has problems such as unevenness, cracks, cracks, and cutting. Can be more reliably prevented.

請求項10に対応し、内周面側加工工程および外周面側加工工程は、扁平体200の屈曲部Bにかかる中心点Prから放射状に伸ばした仮想線L1,L2,L3,…と電極板とが交差する位置の電極板に対し、溝状部13aまたは切込部11aに形成する構成とした(図6(C)を参照)。この構成によれば、捲回時以降で溝状部13aや切込部11aの相互間における引張力が均一化され、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   Corresponding to claim 10, the inner peripheral surface side processing step and the outer peripheral surface side processing step include virtual lines L1, L2, L3,... Radially extending from the center point Pr applied to the bent portion B of the flat body 200 and the electrode plate. With respect to the electrode plate at a position where and intersect, the groove-shaped portion 13a or the cut portion 11a is formed (see FIG. 6C). According to this configuration, the tensile force between the groove-like portion 13a and the cut portion 11a is made uniform after winding, and it is more reliable that defects such as irregularities, cracks, cracks, and cutting occur in the electrode plate. Can be prevented.

請求項11に対応し、内周面側加工工程および外周面側加工工程は、断面がV字形状の溝状部13aを形成する構成とした(図1,図4,図7等を参照)。この構成によれば、溝状部13aをV字形状に形成するので、特に内周面側では電極活物質層どうしが当たり難くなる。よって電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   Corresponding to claim 11, the inner peripheral surface side processing step and the outer peripheral surface side processing step are configured to form a groove-shaped portion 13a having a V-shaped cross section (see FIG. 1, FIG. 4, FIG. 7, etc.). . According to this configuration, since the groove-shaped portion 13a is formed in a V shape, it is difficult for the electrode active material layers to hit each other particularly on the inner peripheral surface side. Therefore, it is possible to more reliably prevent defects such as irregularities, cracks, cracks, and cutting on the electrode plate.

請求項12に対応し、内周面側加工工程および外周面側加工工程は、V字形状をなす角度および深さのうちで一方または双方が内周側から外周側に向かって小さくなるように溝状部13aを形成する構成とした(図7を参照)。この構成によれば、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのを防止しながらも、外周側の電極板の剛性を高めることができる。   Corresponding to claim 12, the inner peripheral surface side processing step and the outer peripheral surface side processing step are such that one or both of the V-shaped angle and depth become smaller from the inner peripheral side toward the outer peripheral side. It was set as the structure which forms the groove-shaped part 13a (refer FIG. 7). According to this configuration, it is possible to increase the rigidity of the electrode plate on the outer peripheral side while preventing defects such as irregularities, cracks, cracks, and cutting from occurring in the electrode plate.

〔他の実施の形態〕
以上では本発明を実施するための形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the form for implementing this invention was demonstrated above, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態では、集電体(正極集電体12や負極集電体22)の両面に電極活物質層(正極活物質層11,13や負極活物質層21,23)を形成した電極板を適用した(図1等を参照)。この形態に代えて、集電体の片面にのみ電極活物質層を形成した電極板を適用することもできる。例えば正極集電体12の片面に正極活物質層13のみを形成した正極板10では、内周面側加工工程(内周面側加工手段40b)によって溝状部13aを形成すればよく、外周面側加工工程(外周面側加工手段40a)は不要となる。逆に正極集電体12の片面に正極活物質層11のみを形成した正極板10では、外周面側加工工程(外周面側加工手段40a)によって切込部11aや溝状部11cを形成すればよく、内周面側加工工程(内周面側加工手段40b)は不要となる。負極集電体22の片面にのみ電極活物質層を形成する負極板20についても同様である。電極活物質層の形成面が相違するに過ぎないので、上述した実施の形態と同様の作用効果を得ることができる。   In the embodiment described above, the electrode active material layers (the positive electrode active material layers 11 and 13 and the negative electrode active material layers 21 and 23) are formed on both surfaces of the current collector (the positive electrode current collector 12 and the negative electrode current collector 22). An electrode plate was applied (see FIG. 1 etc.). It can replace with this form and can also apply the electrode plate which formed the electrode active material layer only in the single side | surface of a collector. For example, in the positive electrode plate 10 in which only the positive electrode active material layer 13 is formed on one surface of the positive electrode current collector 12, the groove-shaped portion 13a may be formed by the inner peripheral surface side processing step (inner peripheral surface side processing means 40b). The surface side processing step (outer peripheral surface side processing means 40a) becomes unnecessary. On the other hand, in the positive electrode plate 10 in which only the positive electrode active material layer 11 is formed on one surface of the positive electrode current collector 12, the cut portion 11a and the groove-shaped portion 11c are formed by the outer peripheral surface side processing step (the outer peripheral surface side processing means 40a). The inner peripheral surface side processing step (inner peripheral surface side processing means 40b) is not necessary. The same applies to the negative electrode plate 20 in which the electrode active material layer is formed only on one surface of the negative electrode current collector 22. Since only the formation surface of the electrode active material layer is different, it is possible to obtain the same effect as the above-described embodiment.

上述した実施の形態では、バインダ10a,正極活物質10b,導電材10c,溶媒10dを混練した混練物を正極集電体12上に正極活物質層11,13として形成する構成とした(図3,図11のステップS11,S21に示す塗工・乾燥工程を参照)。この形態に代えて、バインダ10a,正極活物質10b,導電材10c,溶媒10dを正極集電体12上に並行して(あるいは前後して順番に)塗工することで、正極集電体12上に直接的に正極活物質層11,13として形成する構成としてもよい。負極集電体22上に負極活物質層21,23として形成する場合も同様である。この形態によれば、混練工程が不要になるので、電極板の形成に要する時間を短縮することができる。   In the above-described embodiment, the kneaded material obtained by kneading the binder 10a, the positive electrode active material 10b, the conductive material 10c, and the solvent 10d is formed as the positive electrode active material layers 11 and 13 on the positive electrode current collector 12 (FIG. 3). , See the coating / drying step shown in steps S11 and S21 of FIG. Instead of this form, the positive electrode current collector 12 is formed by coating the binder 10a, the positive electrode active material 10b, the conductive material 10c, and the solvent 10d in parallel (or in order, before and after) on the positive electrode current collector 12. It is good also as a structure directly formed as the positive electrode active material layers 11 and 13 on it. The same applies when the negative electrode active material layers 21 and 23 are formed on the negative electrode current collector 22. According to this embodiment, since the kneading step is unnecessary, the time required for forming the electrode plate can be shortened.

上述した実施の形態では、間隔D1a,D1b,D1c,…や間隔D2a,D2b,D2c,D2d,…などの間隔を、扁平体200の屈曲部Bにかかる曲率半径に基づいて変化させる構成とした(図6(B)を参照)。この形態に代えて、所定範囲内の曲率半径に対して間隔を一定値に維持することで、間隔の値を階段状に変化させる構成としてもよい。例えば、曲率半径が10[μm]未満のときは間隔を50[μm]とし、曲率半径が10[μm]以上で20[μm]未満のときは間隔を70[μm]とし、曲率半径が20[μm]以上で50[μm]未満のときは間隔を100[μm]とし、曲率半径が50[μm]以上で100[μm]未満のときは間隔を200[μm]とするなどである。この構成でも、捲回時以降で溝状部13aや切込部11aの相互間における引張力が分散され一定値以下に抑えられるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   In the above-described embodiment, the intervals D1a, D1b, D1c,... And the intervals D2a, D2b, D2c, D2d,. (See FIG. 6B). Instead of this configuration, the interval value may be changed stepwise by maintaining the interval at a constant value with respect to the radius of curvature within a predetermined range. For example, when the radius of curvature is less than 10 [μm], the interval is 50 [μm]. When the radius of curvature is 10 [μm] or more and less than 20 [μm], the interval is 70 [μm], and the radius of curvature is 20 When the distance is not less than [μm] and less than 50 [μm], the interval is set to 100 [μm], and when the radius of curvature is not less than 50 [μm] and less than 100 [μm], the interval is set to 200 [μm]. Even in this configuration, since the tensile force between the groove-like portion 13a and the notch portion 11a is dispersed and kept below a certain value after winding, problems such as unevenness, cracks, cracks, and cutting occur in the electrode plate. Can be more reliably prevented.

上述した実施の形態では、溝状部13aを直線状のV字形状で形成した(図1,図4,図7,図10等を参照)。この形態に代えて、端面に向かって開口する他の形状で形成してもよい。他の形状は、例えば非直線状(曲線状や階段状など)のV字形状や、U字形状、箱形状(階段状を含む)などが該当する。端面に向かって開口する形状であれば、扁平プレス工程によって捲回体100を扁平状にプレスしても、電極活物質層どうしが当たり難くなる。よって、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   In the embodiment described above, the groove-like portion 13a is formed in a linear V-shape (see FIGS. 1, 4, 7, 10, etc.). It may replace with this form and you may form in the other shape opened toward an end surface. Other shapes are, for example, non-linear (curved or stepped) V-shaped, U-shaped, box-shaped (including stepped), and the like. If it is the shape opened toward an end surface, even if the winding body 100 is pressed flatly by a flat pressing process, the electrode active material layers will not easily hit each other. Therefore, it is possible to more reliably prevent defects such as irregularities, cracks, cracks, and cutting from occurring on the electrode plate.

上述した実施の形態では、集電体の短辺方向に沿って直線状に溝状部13aや切込部11aを形成した。この形態に代えて、他の平面形状(すなわち線状の加工軌跡)で溝状部13aや切込部11aを形成してもよい。他の平面形状は、例えば曲線や折れ線等が該当する。どのような平面形状で形成しても、電極活物質層どうしが当たり難くなるので、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのをより確実に防止できる。   In the embodiment described above, the groove-like portion 13a and the cut portion 11a are formed linearly along the short side direction of the current collector. Instead of this form, the groove-like portion 13a and the cut portion 11a may be formed with other planar shapes (that is, a linear processing locus). The other planar shape corresponds to, for example, a curve or a broken line. Regardless of the planar shape, the electrode active material layers are difficult to touch each other, so that defects such as irregularities, cracks, cracks, and cutting can be more reliably prevented from occurring on the electrode plate.

上述した実施の形態では、集電体の短辺方向に沿って形成する溝状部13aや切込部11aの線分を実線状で構成した。この形態に代えて、他の線分で溝状部13aや切込部11aを構成してもよい。他の線分は、例えば破線,一点鎖線,二点鎖線等のように実線以外の線分が該当する。実線以外の線分で形成すると、溝状部13aや切込部11aが形成されない部位では電極活物質層に圧縮や伸長が生じるが、この圧縮や伸長を溝状部13aや切込部11aで形成される空間部に逃がすことができる。そのため、電極板に凹凸や割れ,ヒビ,切断等の不具合が生じるのを従来よりも確実に防止できる。   In embodiment mentioned above, the line segment of the groove-shaped part 13a and the notch | incision part 11a formed along the short side direction of a collector was comprised by the continuous line shape. Instead of this form, the groove-like portion 13a and the cut portion 11a may be configured by other line segments. The other line segment corresponds to a line segment other than a solid line such as a broken line, a one-dot chain line, a two-dot chain line, or the like. When the line segment other than the solid line is formed, the electrode active material layer is compressed or stretched at a portion where the groove-shaped portion 13a or the cut portion 11a is not formed. This compression or stretch is caused by the groove-shaped portion 13a or the cut portion 11a. It can escape to the space part formed. Therefore, it is possible to more reliably prevent defects such as irregularities, cracks, cracks, and cutting from occurring in the electrode plate.

10 正極板(電極板)
10a,20a バインダ(結着剤)
10b 正極活物質(電極活物質)
10c 導電材
10d,20d 溶媒
11,13 正極活物質層(電極活物質層)
11a,11b 切込部
11c,13a 溝状部
12 正極集電体(集電体)
20 負極板(電極板)
20b 負極活物質(電極活物質)
20c 分散材
21,23 負極活物質層(電極活物質層)
22 負極集電体(集電体)
30 セパレータ
40 加工手段
40a 外周面側加工手段
40b 内周面側加工手段
41 切込形成手段
43 溝形成手段
44 捲回手段
46 扁平プレス手段
100 捲回体
200 扁平体
B 屈曲部
L1,L2,L3,… 仮想線
Pr 中心点
10 Positive plate (electrode plate)
10a, 20a Binder (binder)
10b Positive electrode active material (electrode active material)
10c Conductive material 10d, 20d Solvent 11, 13 Positive electrode active material layer (electrode active material layer)
11a, 11b Cut portion 11c, 13a Groove portion 12 Positive electrode current collector (current collector)
20 Negative electrode plate (electrode plate)
20b Negative electrode active material (electrode active material)
20c Dispersant 21, 23 Negative electrode active material layer (electrode active material layer)
22 Negative electrode current collector (current collector)
30 Separator 40 Processing means 40a Outer peripheral surface side processing means 40b Inner peripheral surface side processing means 41 Notch forming means 43 Groove forming means 44 Winding means 46 Flat pressing means 100 Winding body 200 Flat body B Bending part L1, L2, L3 , ... Virtual line Pr Center point

Claims (14)

それぞれが帯状の集電体上に電極活物質層を形成した正極板および負極板と、前記正極板と前記負極板との間に介在させる絶縁性のセパレータとを備え、前記正極板,前記負極板および前記セパレータを積層して捲回し、当該捲回して形成される捲回体を扁平状にプレスする扁平プレスによって得られる扁平体を有する捲回型電池において、
前記正極板および前記負極板のうちで一方または双方の電極板は、前記扁平体の屈曲部となる部位の前記電極活物質層であって内周面側の短辺方向に沿って形成される溝状の溝状部と、前記扁平体の屈曲部となる部位の前記電極活物質層であって外周面側の短辺方向に沿って形成される切込部または前記溝状部とのうちで一方または双方を有することを特徴とする捲回型電池。
A positive electrode plate and a negative electrode plate each having an electrode active material layer formed on a strip-shaped current collector; and an insulating separator interposed between the positive electrode plate and the negative electrode plate. In a wound battery having a flat body obtained by a flat press for laminating and winding a plate and the separator, and pressing the wound body formed by winding into a flat shape,
One or both of the positive electrode plate and the negative electrode plate is the electrode active material layer in a portion that becomes a bent portion of the flat body and is formed along the short side direction on the inner peripheral surface side. Of the groove-shaped groove-shaped portion and the cut portion or the groove-shaped portion formed along the short side direction on the outer peripheral surface side of the electrode active material layer in the portion to be a bent portion of the flat body A wound battery characterized by having one or both.
前記溝状部および前記切込部のうちで一方または双方は、不等間隔で形成されることを特徴とする請求項1に記載の捲回型電池。   2. The wound battery according to claim 1, wherein one or both of the groove-shaped portion and the cut portion are formed at unequal intervals. それぞれが帯状の集電体上に電極活物質層を形成した正極板および負極板と、前記正極板と前記負極板との間に介在させる絶縁性のセパレータとを備える捲回型電池を製造する捲回型電池の製造方法において、
前記正極板,前記負極板および前記セパレータを積層して捲回する捲回工程と、
前記捲回工程によって形成される捲回体を扁平状にプレスする扁平プレス工程と、
前記捲回工程よりも前に行われ、前記正極板および前記負極板のうちで一方または双方の電極板に対し、前記扁平プレス工程によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって内周面側の短辺方向に沿って溝状の溝状部を形成する内周面側加工工程と、前記扁平プレス工程によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって外周面側の短辺方向に沿って切り込む切込部または前記溝状部を形成する外周面側加工工程とのうちで一方または双方の加工工程と、
を有することを特徴とする捲回型電池の製造方法。
A wound battery comprising a positive electrode plate and a negative electrode plate each having an electrode active material layer formed on a strip-shaped current collector, and an insulating separator interposed between the positive electrode plate and the negative electrode plate is manufactured. In the manufacturing method of the wound battery,
A winding step of laminating and winding the positive electrode plate, the negative electrode plate and the separator;
A flat pressing step for flatly pressing the wound body formed by the winding step;
Prior to the winding step, the electrode activity in a portion that becomes a bent portion of a flat body formed by the flat pressing step with respect to one or both of the positive electrode plate and the negative electrode plate. An inner peripheral surface side processing step of forming a groove-shaped groove-shaped portion along the short side direction on the inner peripheral surface side of the material layer, and a portion to be a bent portion of the flat body formed by the flat pressing step One or both of the processing steps of the electrode active material layer and the outer peripheral surface side processing step for forming the cut portion or the groove-shaped portion cut along the short side direction on the outer peripheral surface side,
A method for producing a wound battery, comprising:
前記加工工程を行う以後、前記溝状部または前記切込部の形成に伴って生じる加工屑を除去する加工屑除去工程を有することを特徴とする請求項3に記載の捲回型電池の製造方法。   4. The wound battery manufacturing method according to claim 3, further comprising a processing waste removal step of removing processing waste generated along with the formation of the groove-shaped portion or the cut portion after performing the processing step. 5. Method. 前記加工工程は、それぞれ前記集電体上に前記電極活物質層を形成してからプレスする前までの期間、当該プレス後から所定形状に切断する前までの期間、当該切断してから捲回する前までの期間のうちで一以上の期間内に行うことを特徴とする請求項3または4に記載の捲回型電池の製造方法。   Each of the processing steps includes a period from the formation of the electrode active material layer on the current collector to a time before pressing, a period from the pressing to a time before cutting into a predetermined shape, and winding 5. The method for manufacturing a wound battery according to claim 3, wherein the method is performed within one or more of the periods before the start. 前記加工工程は、前記扁平体における所定周回までの部位に対応する前記電極板に対し、前記溝状部または前記切込部を形成することを特徴とする請求項3から5のいずれか一項に記載の捲回型電池の製造方法。   The said process process forms the said groove-shaped part or the said notch part with respect to the said electrode plate corresponding to the site | part to the predetermined circumference | surroundings in the said flat body, The any one of Claim 3 to 5 characterized by the above-mentioned. A method for producing the wound battery according to claim 1. 前記加工工程は、前記扁平体における所定の曲率半径以下となる部位に対応する前記電極板に対し、前記溝状部または前記切込部を形成することを特徴とする請求項3から5のいずれか一項に記載の捲回型電池の製造方法。   The said processing step forms the said groove-shaped part or the said notch part with respect to the said electrode plate corresponding to the site | part which becomes below a predetermined curvature radius in the said flat body, The any one of Claim 3 to 5 characterized by the above-mentioned. A method for producing a wound battery according to claim 1. 前記加工工程は、前記溝状部または前記切込部を不等間隔で形成することを特徴とする請求項3から7のいずれか一項に記載の捲回型電池の製造方法。   The said manufacturing process forms the said groove-shaped part or the said notch part at unequal intervals, The manufacturing method of the winding type battery as described in any one of Claim 3 to 7 characterized by the above-mentioned. 前記加工工程は、前記扁平体の屈曲部にかかる曲率半径に基づいて前記溝状部または前記切込部を形成する間隔を変化させることを特徴とする請求項8に記載の捲回型電池の製造方法。   9. The wound battery according to claim 8, wherein in the processing step, an interval for forming the groove portion or the cut portion is changed based on a radius of curvature applied to a bent portion of the flat body. Production method. 前記加工工程は、前記扁平体の屈曲部にかかる中心点から放射状に伸ばした仮想線と前記電極板とが交差する位置の前記電極板に対し、前記溝状部または前記切込部に形成することを特徴とする請求項8または9に記載の捲回型電池の製造方法。   The machining step is formed in the groove portion or the cut portion with respect to the electrode plate at a position where an imaginary line radially extending from a central point applied to the bent portion of the flat body and the electrode plate intersect. The method for manufacturing a wound battery according to claim 8 or 9, wherein: 前記加工工程は、断面がV字形状の前記溝状部を形成することを特徴とする請求項3から10のいずれか一項に記載の捲回型電池の製造方法。   The method for manufacturing a wound battery according to any one of claims 3 to 10, wherein the processing step forms the groove-shaped portion having a V-shaped cross section. 前記加工工程は、前記V字形状をなす角度および深さのうちで一方または双方が内周側から外周側に向かって小さくなるように前記溝状部を形成することを特徴とする請求項11に記載の捲回型電池の製造方法。   The said process step forms the said groove-shaped part so that one or both may become small toward the outer peripheral side from an inner peripheral side among the angles and depths which make the said V shape. A method for producing the wound battery according to claim 1. それぞれが帯状の集電体上に電極活物質層を形成した正極板および負極板と、前記正極板と前記負極板との間に介在させる絶縁性のセパレータとを備える捲回型電池を製造する捲回型電池の製造装置において、
前記正極板,前記負極板および前記セパレータを積層して捲回する捲回手段と、
前記捲回手段によって形成される捲回体を扁平状にプレスする扁平プレス手段と、
前記捲回手段よりも前に行われ、前記正極板および前記負極板のうちで一方または双方の電極板に対し、前記扁平プレス手段によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって内周面側の短辺方向に沿って溝状の溝状部を形成する内周面側加工手段と、前記扁平プレス手段によって形成される扁平体の屈曲部となる部位の前記電極活物質層であって外周面側の短辺方向に沿って切り込む切込部または前記溝状部を形成する外周面側加工手段とのうちで一方または双方の加工手段と、
を有することを特徴とする捲回型電池の製造装置。
A wound battery comprising a positive electrode plate and a negative electrode plate each having an electrode active material layer formed on a strip-shaped current collector, and an insulating separator interposed between the positive electrode plate and the negative electrode plate is manufactured. In a wound battery manufacturing device,
Winding means for laminating and winding the positive electrode plate, the negative electrode plate and the separator;
Flat pressing means for flatly pressing the wound body formed by the winding means;
The electrode activity is performed before the winding means, and the portion of the positive electrode plate and the negative electrode plate that is a bent portion of the flat body formed by the flat press means is applied to one or both of the electrode plates. An inner peripheral surface side processing means for forming a groove-like groove-shaped portion along the short side direction on the inner peripheral surface side of the material layer, and a portion to be a bent portion of the flat body formed by the flat press means One or both processing means of the electrode active material layer and the outer peripheral surface side processing means for forming the cut portion or the groove-shaped portion cut along the short side direction on the outer peripheral surface side,
An apparatus for manufacturing a wound battery, comprising:
前記溝状部または前記切込部の形成に伴って生じる加工屑を除去する加工屑除去手段を有することを特徴とする請求項13に記載の捲回型電池の製造装置。   14. The wound battery manufacturing apparatus according to claim 13, further comprising processing scrap removing means for removing processing scrap generated in association with the formation of the groove portion or the cut portion.
JP2011036892A 2011-02-23 2011-02-23 Winding type battery, manufacturing method and manufacturing apparatus thereof Expired - Fee Related JP5622047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036892A JP5622047B2 (en) 2011-02-23 2011-02-23 Winding type battery, manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036892A JP5622047B2 (en) 2011-02-23 2011-02-23 Winding type battery, manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2012174579A true JP2012174579A (en) 2012-09-10
JP5622047B2 JP5622047B2 (en) 2014-11-12

Family

ID=46977306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036892A Expired - Fee Related JP5622047B2 (en) 2011-02-23 2011-02-23 Winding type battery, manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP5622047B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140781A (en) * 2011-12-06 2013-07-18 Semiconductor Energy Lab Co Ltd Square shape lithium secondary battery
EP2933808A4 (en) * 2012-12-13 2016-05-18 Jm Energy Corp Method for manufacturing electricity-storage device, and electricity-storage device
CN106099207A (en) * 2016-07-29 2016-11-09 湖南立方新能源科技有限责任公司 A kind of naked battery core and comprise the preparation method of lithium ion battery of this naked battery core
CN114204132A (en) * 2020-09-18 2022-03-18 株式会社东芝 Electrode group, secondary battery, battery pack, and vehicle
CN115516691A (en) * 2021-04-22 2022-12-23 宁德时代新能源科技股份有限公司 Electrode assembly, manufacturing method and manufacturing system thereof, battery cell and battery
CN116682935A (en) * 2023-08-04 2023-09-01 宁德时代新能源科技股份有限公司 Battery monomer, battery and power consumption device
EP4148814A4 (en) * 2020-05-09 2023-11-08 BYD Company Limited Pole, winding-type battery cell, and battery
JP7413296B2 (en) 2020-09-18 2024-01-15 株式会社東芝 Electrode groups, secondary batteries, battery packs, and vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992274A (en) * 1995-09-27 1997-04-04 Shin Kobe Electric Mach Co Ltd Winding type battery electrode plate
JP2000100467A (en) * 1998-07-21 2000-04-07 Matsushita Electric Ind Co Ltd Flat battery and its manufacture
JP2001266857A (en) * 2000-03-22 2001-09-28 Toyota Motor Corp Manufacturing method of battery electrode and manufacturing device
JP2007207698A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2007335165A (en) * 2006-06-13 2007-12-27 Sony Corp Battery
JP2012059491A (en) * 2010-09-08 2012-03-22 Panasonic Corp Electrode group for flat-type secondary battery and flat-type secondary battery using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992274A (en) * 1995-09-27 1997-04-04 Shin Kobe Electric Mach Co Ltd Winding type battery electrode plate
JP2000100467A (en) * 1998-07-21 2000-04-07 Matsushita Electric Ind Co Ltd Flat battery and its manufacture
JP2001266857A (en) * 2000-03-22 2001-09-28 Toyota Motor Corp Manufacturing method of battery electrode and manufacturing device
JP2007207698A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2007335165A (en) * 2006-06-13 2007-12-27 Sony Corp Battery
JP2012059491A (en) * 2010-09-08 2012-03-22 Panasonic Corp Electrode group for flat-type secondary battery and flat-type secondary battery using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140781A (en) * 2011-12-06 2013-07-18 Semiconductor Energy Lab Co Ltd Square shape lithium secondary battery
US9595732B2 (en) 2011-12-06 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Square lithium secondary battery
EP2933808A4 (en) * 2012-12-13 2016-05-18 Jm Energy Corp Method for manufacturing electricity-storage device, and electricity-storage device
CN106099207A (en) * 2016-07-29 2016-11-09 湖南立方新能源科技有限责任公司 A kind of naked battery core and comprise the preparation method of lithium ion battery of this naked battery core
EP4148814A4 (en) * 2020-05-09 2023-11-08 BYD Company Limited Pole, winding-type battery cell, and battery
JP7454705B2 (en) 2020-05-09 2024-03-22 ビーワイディー カンパニー リミテッド Electrode sheets, wound battery cells and batteries
CN114204132A (en) * 2020-09-18 2022-03-18 株式会社东芝 Electrode group, secondary battery, battery pack, and vehicle
US20220093975A1 (en) * 2020-09-18 2022-03-24 Kabushiki Kaisha Toshiba Electrode group, secondary battery, battery pack, and vehicle
US11735777B2 (en) * 2020-09-18 2023-08-22 Kabushiki Kaisha Toshiba Electrode group, secondary battery, battery pack, and vehicle
JP7413296B2 (en) 2020-09-18 2024-01-15 株式会社東芝 Electrode groups, secondary batteries, battery packs, and vehicles
CN115516691A (en) * 2021-04-22 2022-12-23 宁德时代新能源科技股份有限公司 Electrode assembly, manufacturing method and manufacturing system thereof, battery cell and battery
CN116682935A (en) * 2023-08-04 2023-09-01 宁德时代新能源科技股份有限公司 Battery monomer, battery and power consumption device

Also Published As

Publication number Publication date
JP5622047B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5622047B2 (en) Winding type battery, manufacturing method and manufacturing apparatus thereof
KR102290961B1 (en) Negative electrode active material, method for preparing the negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
CN100396410C (en) Slitter apparatus and production method of electrode
JP5748108B2 (en) Lithium secondary battery
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
JP5168763B2 (en) Battery electrode
JP5472207B2 (en) Battery, battery manufacturing method and battery manufacturing apparatus
JP2014179217A (en) Method for manufacturing secondary battery, and secondary battery
WO2018021129A1 (en) Electrode assembly and manufacturing method therefor
WO2018021128A1 (en) Electrode assembly and manufacturing method therefor
JP7041811B2 (en) Strip type electrodes used for cylindrical jelly rolls and lithium secondary batteries containing them
JP5573922B2 (en) Method for manufacturing battery electrode
KR101510509B1 (en) Method for manufacturing a battery electrode
JP2012190542A (en) Wound-around battery and method and device for manufacturing the same
CN111527627B (en) Method for manufacturing negative electrode and negative electrode obtained thereby
KR102036666B1 (en) Electrode having lamellar structure and secondary battery containing the same
JP5622048B2 (en) Winding type battery manufacturing method and manufacturing apparatus
JP2021077591A (en) All-solid battery manufacturing method and all-solid battery
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP7163801B2 (en) All-solid-state laminated battery
KR20160048527A (en) A Cutting Method of Irregular Cell and the Irregular Cell Manufactured by The Same
JP2007265698A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP6699351B2 (en) Electrode manufacturing method and electrode inspection method
WO2013098968A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
KR20210037439A (en) Method of forming a fine holes on the secondary battery anode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R151 Written notification of patent or utility model registration

Ref document number: 5622047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees