JP2012173273A - Ozone concentration measurement device - Google Patents

Ozone concentration measurement device Download PDF

Info

Publication number
JP2012173273A
JP2012173273A JP2011038925A JP2011038925A JP2012173273A JP 2012173273 A JP2012173273 A JP 2012173273A JP 2011038925 A JP2011038925 A JP 2011038925A JP 2011038925 A JP2011038925 A JP 2011038925A JP 2012173273 A JP2012173273 A JP 2012173273A
Authority
JP
Japan
Prior art keywords
ozone
measurement
light
ultraviolet
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011038925A
Other languages
Japanese (ja)
Inventor
Kaoru Yoshida
薫 吉田
Michiichi Takeuchi
道一 武内
Katsunobu Aoyanagi
克信 青柳
Hirotaka Nakamura
広隆 中村
Hiroyasu Sugano
裕靖 菅野
Yumi Abiko
由美 阿彦
Katsuyasu Sugano
勝靖 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI DENTO KOGYOSHO KK
Ritsumeikan Trust
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
HIKARI DENTO KOGYOSHO KK
Ritsumeikan Trust
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI DENTO KOGYOSHO KK, Ritsumeikan Trust, Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical HIKARI DENTO KOGYOSHO KK
Priority to JP2011038925A priority Critical patent/JP2012173273A/en
Publication of JP2012173273A publication Critical patent/JP2012173273A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone concentration measurement device capable of obtaining a correct measurement value using a nitride-based deep ultraviolet semi-conductor element and eliminating damage to the device, since when a sample gas passing through a measurement cell moves a long transmission distance, ozone repeatedly irradiated during transmission by ultraviolet rays do not allow correct ozone concentration measurement.SOLUTION: Suppression of re-ozonization and correct ozone concentration measurement can be realized by: using a solid light emitting element for emitting an ultraviolet ray including the wavelengths of 200 nm to 320 nm; providing a sample gas measurement part constituted by a gas emission part for inhaling the sample gas at a position opposed to a gas injection part for blowing the sample gas; providing a mechanism for instantaneously passing the sample gas; preventing disorder of the gas; and shortening a transmission period of time.

Description

本発明は、窒化物系深紫外半導体発光素子等の固体発光素子を利用した紫外線吸収式オゾン濃度測定装置に関するものである。   The present invention relates to an ultraviolet absorption ozone concentration measuring apparatus using a solid light emitting element such as a nitride-based deep ultraviolet semiconductor light emitting element.

紫外線を解説した参考書である非特許文献1によれば、オゾンには、Chappuis帯(850nm〜440nm)、Huggins帯(360nm〜300nm)、Hartley帯(200〜320nm)と呼ばれる吸収帯がある。本発明は、Hartley帯(200〜320nm)の紫外線を利用した紫外線吸収式オゾン濃度測定に関するものである。Hartley帯オゾンに放射される紫外線の波長(200〜320nm)の違いによってエネルギー準位が違う三種の活性酸素(O(P)、O(D)、O(S))が発生する。エネルギー準位の大きさは O(P)<O(D)<O(S)になる。O3(オゾン、以下同じ)に266nm(4.66eV)以上の波長を持った紫外線を放射すると、活性酸素O(D)だけが発生する。波長320nm(3.87eV)ではO(D)の発生量は少なくなるが依然として発生している。O3に266nm(4.66eV)未満の波長ではO(S)が発生し、O(D)とO(S)が混在して発生する。波長237nm(5.23eV)になるとO(D)の発生はなくなりO(S)のみとなり、波長200nm(6.20eV)からO(S)の発生量が増えてくる。   According to Non-Patent Document 1, which is a reference book explaining ultraviolet rays, ozone has absorption bands called Chapuis band (850 nm to 440 nm), Huggins band (360 nm to 300 nm), and Hartley band (200 to 320 nm). The present invention relates to an ultraviolet absorption ozone concentration measurement using ultraviolet rays in the Hartley band (200 to 320 nm). Three types of active oxygen (O (P), O (D), and O (S)) having different energy levels are generated depending on the wavelength of ultraviolet rays (200 to 320 nm) emitted to the Hartley band ozone. The magnitude of the energy level is O (P) <O (D) <O (S). When ultraviolet rays having a wavelength of 266 nm (4.66 eV) or more are emitted to O3 (ozone, the same applies hereinafter), only active oxygen O (D) is generated. At a wavelength of 320 nm (3.87 eV), the amount of O (D) generated is reduced but still generated. O (S) is generated at a wavelength of less than 266 nm (4.66 eV) in O3, and O (D) and O (S) are mixedly generated. When the wavelength is 237 nm (5.23 eV), O (D) is no longer generated and only O (S) is generated, and the amount of O (S) generated increases from the wavelength 200 nm (6.20 eV).

なお、活性酸素O(P)は、O3に463nm以下(2.68eV以上)の紫外線でないと発生しない。本発明は、Hartley帯のオゾン濃度測定なのでO(D)とO(S)を取り上げる。   Note that active oxygen O (P) is not generated unless it is ultraviolet light with O3 of 463 nm or less (2.68 eV or more). Since the present invention measures the ozone concentration in the Hartley band, O (D) and O (S) are taken up.

以上をまとめると、
1)O3+波長(320nm〜266nm)→O(D)+O2(酸素分子、以下同じ)、
2)O3+波長(266nm未満〜237nm)→O(S、D)+O2、
3)O3+波長(237nm未満〜200nm)→O(S)+O2になる
In summary,
1) O3 + wavelength (320 nm to 266 nm) → O (D) + O2 (oxygen molecule, the same applies hereinafter),
2) O3 + wavelength (less than 266 nm to 237 nm) → O (S, D) + O2,
3) O3 + wavelength (less than 237 nm to 200 nm) → O (S) + O2

O(D)、O(S)は酸化を引き起こす。この酸化作用を利用して、半導体製造工程では、酸化物膜厚の形成に利用される。例えば、シリコン表面に酸化物膜厚を形成させてシリコン表面にゲート絶縁膜を持たせる。また、発生した活性酸素を利用したシリコン表面の有機物の除去にも利用が出来る。   O (D) and O (S) cause oxidation. By utilizing this oxidation action, it is used for forming the oxide film thickness in the semiconductor manufacturing process. For example, an oxide film thickness is formed on the silicon surface to provide a gate insulating film on the silicon surface. It can also be used to remove organic substances on the silicon surface using the generated active oxygen.

波長によりオゾンの吸光率は変化する。この吸光率は図7に示すように、オゾンの吸光断面積で測ることができる。図7は参考書である非特許文献2から抜粋したものであり、一定温度におけるオゾン吸光断面積と紫外線波長域との関係をグラフに表したものである。この図7のグラフからどの波長域がオゾンに対してどのくらい効率良く吸収されるかを判断する事が出来る。例えば、水銀スペクトル線である単一波長254nm(4.88eV)は偶然であるが、オゾンに効率良く吸収される波長近傍にある。   The absorbance of ozone changes depending on the wavelength. This absorptance can be measured by the absorption cross section of ozone as shown in FIG. FIG. 7 is an excerpt from the non-patent document 2, which is a reference book, and shows a graph of the relationship between the ozone absorption cross section at a constant temperature and the ultraviolet wavelength region. It can be judged from the graph of FIG. 7 how efficiently the wavelength region is absorbed by ozone. For example, a single wavelength of 254 nm (4.88 eV), which is a mercury spectral line, is coincidental, but is in the vicinity of a wavelength that is efficiently absorbed by ozone.

オゾンの吸光断面積の値が大きいとその波長は効率良くオゾンに吸収される。波長255nmは、オゾンの吸光断面積のピーク値であるため、最大のオゾン吸収波長になる。このことは、Hartley帯オゾンの吸収波長帯(200〜320nm)において、波長255nm(4.86eV)近傍のみがオゾンに吸収されるのではなく、Hartley帯全域において、吸光作用があることを意味する。   When the value of the absorption cross section of ozone is large, the wavelength is efficiently absorbed by ozone. Since the wavelength of 255 nm is the peak value of the absorption cross section of ozone, it becomes the maximum ozone absorption wavelength. This means that in the Hartley band ozone absorption wavelength band (200 to 320 nm), not only the vicinity of the wavelength of 255 nm (4.86 eV) is absorbed by ozone, but there is a light absorption effect throughout the Hartley band. .

紫外線吸収式オゾン測定は、オゾンに吸収される前の波長の放射出力強度Iとオゾンに吸収された後の放射出力強度Oを測定し、吸収された紫外線量を求め、ランベルト・ベールの法則からオゾン濃度が判明する原理を利用している。   Ultraviolet absorption ozone measurement measures the radiation output intensity I of the wavelength before being absorbed by ozone and the radiation output intensity O after being absorbed by ozone, and the amount of absorbed ultraviolet light is obtained. From the Lambert-Beer law It uses the principle of determining the ozone concentration.

紫外線吸収式で濃度を測定する場合、測定する試料はランベルト・ベールの法則の数式1で求められる。試料ガスを透過してきた紫外線の放射出力強度をO、試料ガスを透過する前の入射光の放射出力強度I、波長におけるオゾンの吸収係数をε(オゾンの吸収係数εは各波長によってオゾンの吸収係数の値が決められている。)、試料ガスのオゾン濃度をc、紫外線が試料ガスを透過する際の光の光路長をLとすると、数式1は下記のようになる。JIS B 7957 大気中のオゾン及びオキシダントの自動計測器 付随書2(規定)に紫外線吸光光度計によるオゾン濃度の値付け方法が記載されており、ここに示された計算式を使用してオゾン濃度を算出することができるが、そのアルゴリズムは下記の数式1と基本的に同じである。   When the concentration is measured by the ultraviolet absorption method, the sample to be measured is obtained by Equation 1 of Lambert-Beer's law. The radiation output intensity of the ultraviolet light that has passed through the sample gas is O, the radiation output intensity I of the incident light before passing through the sample gas, the absorption coefficient of ozone at the wavelength ε (the ozone absorption coefficient ε is the absorption of ozone by each wavelength) The value of the coefficient is determined.) When the ozone concentration of the sample gas is c and the optical path length of the light when the ultraviolet rays pass through the sample gas is L, Equation 1 is as follows. JIS B 7957 Automatic measuring instrument for ozone and oxidant in the atmosphere Appendix 2 (normative) describes the method for pricing ozone concentration using an ultraviolet absorptiometer, and the ozone concentration using the formula shown here Can be calculated, but the algorithm is basically the same as Equation 1 below.

1992年頃、オゾン濃度測定は従来の湿式法に代わり低圧水銀ランプが利用されるようになった。低圧水銀ランプは湿式法とは違い薬品を使用しないこと、メンテナンスが容易であること、測定感度が良いことからオゾン濃度測定に低圧水銀ランプの利用が増えていった。   Around 1992, ozone concentration was measured by using a low-pressure mercury lamp instead of the conventional wet method. Unlike wet methods, low-pressure mercury lamps do not use chemicals, are easy to maintain, and have high measurement sensitivity, so the use of low-pressure mercury lamps for ozone concentration measurement has increased.

低圧水銀ランプを使用するオゾン濃度測定は、特許文献1に示すように、真空放電を利用した低圧水銀ランプから発せられる単一波長254nmの紫外線を利用したものである。この方法は効率よくオゾンに吸収する波長254nmが利用でき、しかも単一波長である点で有利である。しがしながら、真空放電を利用した低圧水銀ランプである故に、時間単位における放射出力強度の上限値、下限値の差が大きくなり、正しいオゾン濃度を得るには補正を常に必要とすること、また、低圧水銀ランプは約5000時間で劣化し、交換しなければならないという弱点を抱えていた。   As shown in Patent Document 1, the ozone concentration measurement using a low-pressure mercury lamp uses ultraviolet light having a single wavelength of 254 nm emitted from a low-pressure mercury lamp using vacuum discharge. This method is advantageous in that a wavelength of 254 nm that is efficiently absorbed by ozone can be used, and that the wavelength is a single wavelength. However, because it is a low-pressure mercury lamp that uses vacuum discharge, the difference between the upper and lower limits of the radiant output intensity in time units becomes large, and correction is always necessary to obtain the correct ozone concentration. In addition, the low-pressure mercury lamp deteriorates in about 5000 hours and has a weak point that must be replaced.

この弱点は、特に無人島などに設置してある自動オゾン濃度測定器に対して、低圧水銀ランプの交換の為に、わざわざ無人島に行かねばならないという運用上の問題に繋がった。   This weak point led to an operational problem in that it was necessary to go to uninhabited islands in order to replace the low-pressure mercury lamp, especially for automatic ozone concentration measuring devices installed on uninhabited islands.

更に、低圧水銀ランプには水銀が含まれている為、廃棄処理が難しく、環境負荷への影響は大きい。   Furthermore, because the low-pressure mercury lamp contains mercury, it is difficult to dispose of it and the impact on the environment is large.

これらの問題に対して、低圧水銀ランプに代わりにダイヤモンド紫外線発光素子を使用する方法が特許文献2に記載されている。ダイヤモンド紫外線発光素子を利用することによって、低圧水銀ランプを使用した場合の紫外線吸収式オゾン濃度測定上の問題点であった発光強度の安定までに時間がかかったことや、発光強度にちらつきがあったことなどが解決されている。   For these problems, Patent Document 2 discloses a method of using a diamond ultraviolet light emitting element instead of a low-pressure mercury lamp. By using a diamond ultraviolet light emitting element, it took time to stabilize the emission intensity, which was a problem in measuring the UV absorption ozone concentration when using a low-pressure mercury lamp, and the emission intensity flickered. Has been resolved.

特許文献2の方法は、測定機器の部品、特に発光素子表面にO(S)、O(D)が作用して、酸化物膜を形成することによる測定誤差や、また、測定中の再オゾン化の影響を考慮していなかった。   In the method of Patent Document 2, measurement errors caused by the formation of an oxide film due to the action of O (S) and O (D) on the components of a measuring instrument, particularly the light emitting element surface, and re-ozone during measurement Did not take into account the effects of

これらの問題に対して、特許文献3の方法は、発光素子として窒化物系深紫外線半導体素子を使用しO(S)、O(D)が作用した酸化膜の形成と測定中の再オゾン化の影響を極力回避する方法を考慮したオゾン濃度測定装置を提案している。その実施形態では、特許文献4の発明である窒化物系深紫外線半導体素子を採用している。 To solve these problems, the method of Patent Document 3 uses a nitride-based deep ultraviolet semiconductor device as a light-emitting device, forms an oxide film on which O (S) and O (D) act, and re-ozonization during measurement. We have proposed an ozone concentration measurement device that takes into account the method of avoiding the effects of the effect as much as possible. In the embodiment, the nitride-based deep ultraviolet semiconductor element which is the invention of Patent Document 4 is employed.

特開平5−172743号公報JP-A-5-172743 特開2002−5826号公報Japanese Patent Laid-Open No. 2002-5826 特願2009−246024Japanese Patent Application No. 2009-246024 国際公開番号WO2006/104063International Publication Number WO2006 / 104063

実験化学講座 反応と速度 発行所 丸善株式会社 平成5年2月5日発行Laboratory Chemistry Course Reaction and Speed Issued Maruzen Co., Ltd. Issued on February 5, 1993 大気の物理化学 小川利紘著 発行所 東京堂出版 1991年8月30日発行Physical chemistry of the atmosphere Toshiaki Ogawa Publication place Tokyodo Publishing August 30, 1991

しかしながら、特許文献3の方法は、測定セルを通過する試料ガス中のオゾンが紫外線により酸素と活性酸素に分解された後活性酸素が再度酸素と結び付き再オゾン化されたオゾンに再照射する可能性を除去しておらず、オゾン測定値に誤差が生ずる点が問題である。また、セル内部構造の微小な歪みによるガスの乱れは活性酸素をセル内に残留させることが流体計測から判明している。その活性酸素により、再オゾン化や装置の劣化が発生する。   However, in the method of Patent Document 3, the ozone in the sample gas passing through the measurement cell is decomposed into oxygen and active oxygen by ultraviolet rays, and then the active oxygen is combined with oxygen again to re-irradiate the ozone that has been re-ozonized. The problem is that ozone is not removed and an error occurs in the ozone measurement value. Further, it has been found from fluid measurement that the turbulence of the gas due to the minute distortion of the cell internal structure causes the active oxygen to remain in the cell. Due to the active oxygen, re-ozonization and deterioration of the apparatus occur.

特許文献3では装置の劣化を緩和するため、吸光断面積の値が大きい250〜260nmの波長域を除くように設定している。しかし、測定セルを構成する紫外線収束管内を透過する紫外線は集束しており、照射エネルギーが集中しているため、透過中の再オゾン化の確率は高く、かつ、照射エネルギーの集中は、光学フィルタへダメージを与え、フィルタの寿命にも悪い影響を及ぼすと推定される。   In Patent Document 3, in order to mitigate deterioration of the apparatus, the wavelength range of 250 to 260 nm where the value of the absorption cross section is large is set to be excluded. However, since the ultraviolet rays that pass through the ultraviolet converging tube that constitutes the measurement cell are concentrated and the irradiation energy is concentrated, the probability of re-ozonization during transmission is high, and the concentration of irradiation energy is reduced by the optical filter. It is estimated that it will damage the filter and adversely affect the filter life.

本発明は上記の問題を解決するためになされたものであり、窒化物系深紫外線半導体素子を使用した、正しい測定値が得られ、装置へのダメージを排除するオゾン濃度測定装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides an ozone concentration measurement apparatus that uses a nitride-based deep ultraviolet semiconductor element to obtain a correct measurement value and eliminates damage to the apparatus. With the goal.

上記課題を解決するために、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.

本発明であるオゾン濃度測定装置は、200nm〜320nmの波長域を含む紫外線を発光する固体発光素子が少なくとも1個備わった発光チャンバ機構と、試料ガス計測部を挟んで試料ガスを吹き出すガス注入部と該試料ガスを吸い込むガス排出部とが相対する位置に少なくとも1対設けられ、前記発光チャンバ機構から来た紫外線が、ガス注入部からガス排出部へ向かう試料ガス計測部中の試料ガスの流れと直角の方向に透過する構造を有する計測チャンバ機構と、この計測チャンバ機構を出た紫外線を受光し、その放射強度を計測する強度センサを備えた受光チャンバ機構とが、取り外し可能な前記3つの機構により構成され、オゾン無しの状態の計測チャンバ機構内を透過してきた紫外線を強度センサで受け、その受光強度の値をオゾンゼロ値とするゼロ設定値取得手段と、試料ガスが流れた状態にある試料ガス計測部中を、紫外線が透過したときの強度センサの受光値と発光強度とみなした前記オゾンゼロ値とでオゾン濃度を算出するオゾン濃度算出手段を有することを特徴とする。   An ozone concentration measuring apparatus according to the present invention includes a light emitting chamber mechanism provided with at least one solid light emitting element that emits ultraviolet light including a wavelength region of 200 nm to 320 nm, and a gas injection unit that blows out a sample gas with a sample gas measuring unit interposed therebetween. And at least one pair of gas discharge portions for sucking in the sample gas are provided, and the flow of sample gas in the sample gas measurement portion in which the ultraviolet rays from the light emission chamber mechanism travel from the gas injection portion to the gas discharge portion The three measurement chamber mechanisms having a structure that transmits light in a direction perpendicular to the direction and a light receiving chamber mechanism that includes an intensity sensor that receives ultraviolet light emitted from the measurement chamber mechanism and measures the radiation intensity thereof are removable. The intensity sensor receives the ultraviolet light that has passed through the measurement chamber mechanism without ozone, and the received light intensity value is The ozone concentration with zero set value acquisition means for zero value and the ozone zero value regarded as the received light value of the intensity sensor and the emission intensity when the ultraviolet light is transmitted through the sample gas measuring part in the state where the sample gas flows It has an ozone concentration calculation means for calculating

ポンプが吸引するとガス注入部から外部大気が吸い込まれガス排出部に向かって高速に流れる。試料ガスの流れと直交する方向に紫外線が透過していく。このとき紫外線はオゾンにぶつかると酸素と活性酸素に分解するエネルギーに消費され、減衰(吸光)する。ポンプは吸引側に設けねばならない。また、ガス注入部とガス排出部は対になっていれば流れに歪みが生じないので好ましい。ガス注入部とガス排出部の口は複数個が好ましく、この複数の流れを紫外線がオゾンに衝突しながら通過した結果を計測する。   When the pump sucks, the external atmosphere is sucked from the gas injection part and flows toward the gas discharge part at high speed. Ultraviolet rays are transmitted in a direction orthogonal to the flow of the sample gas. At this time, when ultraviolet rays hit ozone, they are consumed by energy that decomposes into oxygen and active oxygen, and are attenuated (absorbed). The pump must be installed on the suction side. In addition, it is preferable that the gas injection part and the gas discharge part are paired because distortion does not occur in the flow. A plurality of ports of the gas injection part and the gas discharge part are preferable, and the result of the ultraviolet rays passing through the plurality of flows while colliding with ozone is measured.

また、本発明では、発光チャンバ機構は、真空又は不活性ガス充填の状態で密閉する。チョッパ駆動電源部を制御することにより機構内の固体発光素子が紫外線を断続発光し、その紫外線は平行レンズを経由して平行光になる。次いで、光学フィルタに到達し、この光学フィルタの仕様により指定された単一波長の紫外線のみが透過して次の計測チャンバ機構へ入射していく仕組みを設けている。   In the present invention, the light emitting chamber mechanism is hermetically sealed in a vacuum or filled with an inert gas. By controlling the chopper drive power supply unit, the solid state light emitting element in the mechanism emits ultraviolet light intermittently, and the ultraviolet light becomes parallel light via a parallel lens. Next, a mechanism for reaching the optical filter and transmitting only the ultraviolet light having a single wavelength specified by the specification of the optical filter and entering the next measurement chamber mechanism is provided.

この場合の光学フィルタは指定範囲の波長だけを透過させるバンドパスフィルタが好ましい。ただし、ロングパスフィルタとショートパスフィルタを組み合わせてもよい。この組み合わせ型も本発明に含まれることは言うまでもない。光学フィルタには使用しない波長の光を反射させる反射型とフィルタに吸収させる吸収型があり、特に吸収型の場合は温度上昇による損傷や光学特性の劣化が懸念される。ただし、本発明の紫外線エネルギーは微弱なので光学フィルタの劣化への影響はほとんど無い。従って、どちらの型も使用可能である。また、通常、固体発光素子の表面をレンズで保護するが、このレンズが平行レンズと光学フィルタとの一体型であってもよい。あるいは、発光チャンバと計測チャンバ機構の境に平行レンズと光学フィルタを一体化したレンズを配置してもよい。 The optical filter in this case is preferably a band pass filter that transmits only a wavelength in a specified range. However, a long pass filter and a short pass filter may be combined. It goes without saying that this combination type is also included in the present invention. There are two types of optical filters: a reflection type that reflects light of a wavelength that is not used and an absorption type that is absorbed by the filter. In particular, in the case of the absorption type, there are concerns about damage due to temperature rise and deterioration of optical characteristics. However, since the ultraviolet energy of the present invention is weak, there is almost no influence on the deterioration of the optical filter. Therefore, either type can be used. In addition, the surface of the solid state light emitting device is usually protected by a lens, but this lens may be an integrated type of a parallel lens and an optical filter. Or you may arrange | position the lens which integrated the parallel lens and the optical filter in the boundary of a light emission chamber and a measurement chamber mechanism.

本発明におけるチョッパ駆動電源部の紫外線発光の断続周期には、短周期と長周期の2つが組み合わさっている。短周期は紫外線を点滅させてオゾン計測を実行する周期である。更に第1の短周期と第2の短周期の間に、第1の短周期において紫外線が照射され、活性酸素が混在している測定済みの試料ガスがガス排出部へ吸引される時間を予想して紫外線照射を中断するガス排出予想時間(非測定時間)を設ける。長周期は、第1の短周期とこのガス排出予想時間を合わせた間隔になる。これら2つの周期をコンピュータ制御により実現する。   The intermittent period of ultraviolet light emission of the chopper drive power supply unit in the present invention is a combination of a short period and a long period. The short cycle is a cycle in which ozone measurement is performed by blinking ultraviolet rays. Furthermore, it is predicted that the measured sample gas mixed with active oxygen will be sucked into the gas discharge part between the first short cycle and the second short cycle, when ultraviolet rays are irradiated in the first short cycle. Thus, an estimated gas discharge time (non-measurement time) for interrupting ultraviolet irradiation is provided. The long cycle is an interval obtained by combining the first short cycle and the expected gas discharge time. These two cycles are realized by computer control.

ガス排出予想時間を設け、測定を中断する理由は、再オゾン化したオゾンを再度測定させないためである。従って、紫外線がオゾンを酸素と活性酸素に分離した後、その活性酸素が酸素と結び付いたオゾンを測定前に排出させる時間がガス排出予想時間になる。コンピュータはガス注入部/ガス排出部間の距離に対する試料ガスの流速を計算して排出時間を予想する。この時間を十分に長くすれば、再オゾン化されたオゾンを排除できる。更に、ガス注入部とガス排出部の間隔は狭ければ狭いほど都合がよい。なぜならば、排気が早ければ、再オゾン化したオゾンが紫外線に再吸光される確率が減るからである。この間隔は、固体発光素子のサイズによるところが大である。しかし、平行レンズに入る前に一度集光レンズで光を集めるようにすれば前記間隔を制御できる。短周期と長周期のタイミング設定は、発光出力や、計測部品の性能によるが、使用を通じて記録された情報から、効率、安全性を考慮した分析を行い、最良の実行条件を得る仕組みを組み込んでもよい。 The reason for setting the expected gas discharge time and interrupting the measurement is to prevent the re-ozonized ozone from being measured again. Therefore, after ultraviolet rays separate ozone into oxygen and active oxygen, the time for discharging the ozone in which the active oxygen is combined with oxygen before the measurement becomes the expected gas discharge time. The computer calculates the flow rate of the sample gas relative to the distance between the gas inlet / outlet and predicts the discharge time. If this time is made sufficiently long, re-ozoneized ozone can be eliminated. Furthermore, the smaller the distance between the gas injection part and the gas discharge part, the better. This is because the earlier the exhaust, the lower the probability that the re-ozoneized ozone will be reabsorbed into ultraviolet light. This interval largely depends on the size of the solid state light emitting device. However, once the light is collected by the condenser lens before entering the parallel lens, the interval can be controlled. Although the timing setting for short and long cycles depends on the light output and the performance of the measurement component, it is possible to analyze the efficiency and safety from the information recorded through use and incorporate the mechanism to obtain the best execution conditions. Good.

また、本発明においては、受光チャンバ機構は、真空又は不可性ガス充填の状態で密閉されている。計測チャンバ機構を出た紫外線は前記受光チャンバ機構内に設けた集光レンズにより集束され、強度センサに照射される。 In the present invention, the light receiving chamber mechanism is hermetically sealed in a vacuum or incapable gas filling state. The ultraviolet rays that have exited the measurement chamber mechanism are focused by a condensing lens provided in the light receiving chamber mechanism, and irradiated to the intensity sensor.

また、本発明のゼロ設定値取得手段は、計測チャンバ機構内を一時密閉して外部空気の侵入を遮断し、計測に使用するすべての固体発光素子から紫外線を連続照射することにより、計測チャンバ機構内のオゾンを破壊する。オゾンがすべて破壊された状態では、強度センサが受ける受光強度は変化しない。従って、透過してきた紫外線の受光強度を少なくとも2回測定し、強度センサの値が変化しなくなったときの強度センサの値をオゾンゼロにおける受光強度とすることを特徴とする。   Further, the zero set value acquisition means of the present invention temporarily seals the inside of the measurement chamber mechanism to block the intrusion of external air, and continuously irradiates ultraviolet rays from all the solid state light emitting elements used for measurement, whereby the measurement chamber mechanism Destroy the ozone inside. When all the ozone is destroyed, the received light intensity received by the intensity sensor does not change. Therefore, the received light intensity of the transmitted ultraviolet rays is measured at least twice, and the intensity sensor value when the intensity sensor value no longer changes is the received light intensity at zero ozone.

オゾンゼロ後は、紫外線の吸光は無くなるので受光強度は変わらないという前提に基づき、測定値が一定になるまで紫外線の連続照射を行う。この測定値が一定(オゾンゼロに到達)になるまでは、オゾン破壊時のみに使用する素子の参加や、濃度計測用の素子の出力強度を強めるなどにより、オゾン破壊の時間短縮を図ってもよい。ただし、オゾンゼロに到達した後、計測時と同じ出力強度で測定に参加する素子のみによるオゾンゼロの強度基準値を求めなければならない。ノイズの影響も加味して、測定値不変と認めるまでの比較回数は、コンピュータの記憶装置に記録したデータの解析により経験的に求めていくことになる。また、計測時と同じ条件にするために、ゼロ基準値の最終決定には、断続発光(短周期)で計測する工程を加えてもよい。なお、オゾンゼロの受光強度は発光強度(素子から発光があり、吸光が未だされていない初期の強度)とみなすことができる。 After the ozone is zero, the ultraviolet light is not absorbed, and therefore, the ultraviolet light is continuously irradiated until the measured value becomes constant based on the assumption that the received light intensity does not change. Until this measurement value becomes constant (reaches ozone zero), ozone destruction time may be shortened by joining elements used only during ozone destruction or increasing the output intensity of elements for concentration measurement. . However, after reaching ozone zero, the ozone zero intensity reference value must be obtained only by the elements participating in the measurement with the same output intensity as at the time of measurement. In consideration of the influence of noise, the number of comparisons until the measurement value is recognized as being unchanged is determined empirically by analyzing data recorded in the storage device of the computer. Moreover, in order to make it the same conditions as at the time of measurement, a step of measuring with intermittent light emission (short cycle) may be added to the final determination of the zero reference value. Note that the received light intensity of ozone zero can be regarded as the emission intensity (the initial intensity at which light is emitted from the element and has not yet been absorbed).

また、本発明におけるオゾン濃度算出手段は、計測チャンバ機構に入射した紫外線が試料ガス計測部をオゾンに吸光されつつ通過して強度センサに到達したときの測定値を長周期毎に記録し、次にその記録データから最頻値を算出して受光強度とみなし、更に、前記オゾンゼロにおける受光強度を発光強度とみなし、オゾン濃度を算出する。   Further, the ozone concentration calculation means in the present invention records the measurement value when the ultraviolet ray incident on the measurement chamber mechanism passes through the sample gas measurement part while being absorbed by ozone and reaches the intensity sensor for each long period. The mode value is calculated from the recorded data and regarded as the received light intensity. Further, the received light intensity at zero ozone is regarded as the emitted light intensity, and the ozone concentration is calculated.

測定条件次第で測定値は種々変わる。そのため、一定時間の測定値を記録し、統計的手法を駆使して、妥当な測定値(受光強度)を算出する。本発明における測定の特徴から、測定値には最頻値、又は最頻値近傍に記録値が集まると推定される。従って、記録値の分布が予測より分散している場合には異常の発生を疑い、エラーとしてよい。オゾン濃度はランベルト・ベールの法則を採用する。また、これらの計算や解析はコンピュータが実行し、測定動作を制御する。   Depending on the measurement conditions, the measured values vary. Therefore, a measured value for a certain time is recorded, and a reasonable measured value (light receiving intensity) is calculated using a statistical method. From the characteristics of the measurement in the present invention, it is estimated that recorded values are collected in the mode value or in the vicinity of the mode value. Therefore, if the distribution of the recorded values is more dispersed than predicted, the occurrence of an abnormality may be suspected and an error may occur. The Lambert-Beer law is used for the ozone concentration. These calculations and analyzes are executed by a computer to control the measurement operation.

本発明の固体発光素子は、電力制御により1個当たりの固体発光素子の放射出力強度が0.015〜0.12μw/cm2に設定できる窒化物系深紫外半導体素子であることを特徴とする。   The solid state light emitting device of the present invention is a nitride-based deep ultraviolet semiconductor device in which the radiation output intensity per solid state light emitting device can be set to 0.015 to 0.12 μw / cm 2 by power control.

また、本発明のゼロ設定値取得手段におけるオゾンゼロ化の手段には、計測チャンバ機構内を密閉し、減圧又は真空にする手段を含む。更に、ゼロ設定値取得手段におけるオゾンゼロ化の手段には、計測チャンバ機構内を密閉し、不活性ガスを充填する手段を含む。従って、本発明のゼロ設定値取得手段には、固体発光素子によるオゾンゼロ状態の生成、真空によるオゾンゼロ状態の生成、不活性ガス充填によるオゾンゼロ状態の生成、及び減圧によるオゾン量減少化と固体発光素子からの紫外線照射の併用によるオゾンゼロ状態の生成の4つの方法がある。最後に記載した方法は、減圧(残存気体の排出)とオゾン破壊を同時並行に進行させることが好ましい。オゾン破壊のときの活性酸素も排出されるからである。 The means for zero ozone in the zero set value acquisition means of the present invention includes means for sealing the inside of the measurement chamber mechanism and reducing the pressure or vacuum. Furthermore, the means for zero ozone in the zero set value acquisition means includes means for sealing the inside of the measurement chamber mechanism and filling with an inert gas. Therefore, the zero set value acquisition means of the present invention includes a generation of a zero ozone state by a solid light emitting element, a generation of a zero ozone state by vacuum, a generation of a zero ozone state by filling with an inert gas, and a reduction in ozone amount by decompression and a solid light emitting element. There are four methods of generating a zero ozone state by using ultraviolet radiation from In the method described at the end, it is preferable that the depressurization (discharge of residual gas) and ozone destruction proceed simultaneously in parallel. This is because active oxygen during ozone destruction is also discharged.

なお、本発明では、発光チャンバ機構と計測チャンバ機構と受光チャンバ機構は、それぞれ取り外し可能な独立した構成を基本としているが、図2に示すように、3機構が連続一体化していてもよい。ただし、発光チャンバ機構と受光チャンバ機構は計測チャンバ機構と繋がっているので、計測チャンバ機構を減圧、真空又は不活性ガス充填する際には、3機構すべてを密閉し、3機構すべてを減圧、真空又は不活性ガス充填の処理が必要になる。   In the present invention, the light emitting chamber mechanism, the measurement chamber mechanism, and the light receiving chamber mechanism are based on independent and detachable structures. However, as shown in FIG. 2, three mechanisms may be continuously integrated. However, since the light emitting chamber mechanism and the light receiving chamber mechanism are connected to the measurement chamber mechanism, when the measurement chamber mechanism is decompressed, vacuumed, or filled with an inert gas, all the three mechanisms are sealed, and all the three mechanisms are decompressed and vacuumed. Alternatively, an inert gas filling process is required.

本発明は試料ガスが測定領域を瞬時に通過する機構を設け、透過時間を短くした計測なので、再オゾン化を抑える効果を奏する。また、試料ガス行路長が短くガスの乱れがないので、発生した活性酸素や、仮に再オゾン化されたオゾンが生じても測定前に排気され、活性酸素による部品の劣化も最小限となる効果を奏する。   Since the present invention is provided with a mechanism for instantaneously passing the sample gas through the measurement region and the permeation time is shortened, the present invention has an effect of suppressing re-ozonization. In addition, because the sample gas path length is short and there is no gas turbulence, even if generated active oxygen or ozone that has been re-ozoned is generated, it is exhausted before measurement, and the deterioration of parts due to active oxygen is minimized. Play.

本発明によれば、紫外線の放射出力強度を0.015〜0.12(μW/cm2)の微弱光に抑え、かつ、紫外線を短時間に点滅させ、測定済み試料ガスは再測定されずに排気される効果を奏する。   According to the present invention, the radiant output intensity of ultraviolet rays is suppressed to a faint light of 0.015 to 0.12 (μW / cm 2), the ultraviolet rays are blinked in a short time, and the measured sample gas is not remeasured. Has the effect of being exhausted.

本発明によれば、連続波長の紫外線を平行レンズで平行光に分散させた後に光学フィルタで単一波長に絞るため、更にエネルギーの集中を排除でき、装置寿命を長く保つことが期待できる。   According to the present invention, since ultraviolet rays having continuous wavelengths are dispersed into parallel light by a parallel lens and then narrowed down to a single wavelength by an optical filter, it is possible to eliminate further energy concentration and to maintain a long apparatus life.

本発明を実施する発光・計測・受光のチャンバ機構が独立分離した、窒化物系深紫外半導体発光素子を用いたガス交差分離型紫外線吸収式オゾン濃度測定装置の構成図である。It is a block diagram of the gas cross-separation type | mold ultraviolet absorption type ozone concentration measuring apparatus using the nitride-type deep ultraviolet semiconductor light emitting element which the chamber mechanism of the light emission, measurement, and light reception which implements this invention isolate | separated independently. 本発明を実施する発光・計測・受光のチャンバ機構が連続一体化した、窒化物系深紫外半導体発光素子を用いたガス交差型紫外線吸収式オゾン濃度測定装置の構成図である。(実施例1)It is a block diagram of the gas crossing type | mold ultraviolet absorption type ozone concentration measuring apparatus using the nitride-type deep ultraviolet semiconductor light-emitting device with which the chamber mechanism of light emission, measurement, and light reception which implements this invention was integrated continuously. Example 1 本発明を実施する窒化物系深紫外半導体発光素子を用いた実験から駆動電流値と放射出力強度の関係をグラフにしたものである。FIG. 5 is a graph showing the relationship between the drive current value and the radiant output intensity from an experiment using a nitride-based deep ultraviolet semiconductor light-emitting device for carrying out the present invention. 本発明を実施する窒化物系深紫外半導体発光素子を用いた実験から照射距離と放射出力強度の関係をグラフにしたものである。FIG. 3 is a graph showing the relationship between irradiation distance and radiation output intensity from an experiment using a nitride-based deep ultraviolet semiconductor light emitting device for carrying out the present invention. 本発明を実施する窒化物系深紫外半導体発光素子を用いた実験からオゾン濃度に対する分光放射照度の減衰をグラフにしたものである。FIG. 5 is a graph showing the attenuation of spectral irradiance with respect to ozone concentration from an experiment using a nitride-based deep ultraviolet semiconductor light emitting device embodying the present invention. 本発明を実施する窒化物系深紫外半導体発光素子を用いた実験をする為のオゾン発生・供給システムの構成図である。1 is a configuration diagram of an ozone generation / supply system for performing an experiment using a nitride-based deep ultraviolet semiconductor light-emitting element for carrying out the present invention. 非特許文献2から抜粋した一定温度におけるオゾン吸光断面積と紫外線波長域との関係をグラフに表したものである。The graph shows the relationship between the ozone absorption cross section at a constant temperature and the ultraviolet wavelength region extracted from Non-Patent Document 2. 本発明を実施するオゾン濃度測定装置において、オゾンゼロの場合の発光強度又は受光強度の相対値を設定するフローチャートである。In the ozone concentration measuring apparatus which implements this invention, it is a flowchart which sets the relative value of the light emission intensity or light reception intensity in the case of ozone zero. 本発明を実施するオゾン濃度測定装置において、オゾン濃度を確定するためのフローチャートである。It is a flowchart for determining ozone concentration in the ozone concentration measuring apparatus which implements this invention.

オゾン濃度測定は、オゾンの紫外線吸収性を利用したものである。従来、この紫外線発光には、水銀ランプが用いられている。測定には、単一波長の紫外線がもっとも好ましく、水銀ランプの真空放電方式は単一波長を発する為、広く使われるようになった。しかし、水銀ランプには耐久性がなく、また、装置構成にもオゾンの再発生を防止する機構が無いなど数々の問題があり、水銀ランプに代わる方式が求められていた。本発明のオゾン濃度測定装置は紫外線発光体として、水銀ランプではなく、窒化物系深紫外半導体発光素子102を利用する事に特徴がある。窒化物系深紫外半導体発光素子102からは200〜320nmの連続波長を発する。オゾン濃度測定を行う際、試料ガスが長い透過距離を移動すると、透過中の再オゾン化があり正しいオゾン濃度測定ができない。そこで本発明では、試料ガス行路長を短くした試料ガス計測部129を採用し、ガスの乱れを防ぐ工夫、活性酸素を除去する工夫、再オゾン化を防ぐ工夫を取り入れた。また、放射出力強度を0.015〜0.12(μW/cm2)の微弱光により、活性酸素による機器へのダメージの低減、再オゾン化の減少を促進できた。更に紫外線の発光を点滅化することで、測定ノイズの除去が実現した。これは、短時間に紫外線を点滅させることにより、検出信号のS/N比を高くする効果があるからである。なお、窒化物系深紫外線半導体素子102は高速スイッチングが可能であり、チョッピング周期を短くする点において優れている。このため、経時的に紫外線を点灯、消灯するチョッピング方式を取り入れた。更に、紫外線照射を受けたガスの排気中は紫外線照射を中断させれば、同じオゾン分子に紫外線を何度も作用させないので再オゾン化を極力抑えられる。また、本発明では連続波長から紫外線を平行光レンズ127で平行光に照射エネルギーを分散させ、更に連続波長から単一波長を取り出せる光学フィルタ130を採用した。   The ozone concentration measurement utilizes the ultraviolet absorptivity of ozone. Conventionally, mercury lamps are used for this ultraviolet light emission. Single-wavelength ultraviolet light is most preferable for measurement, and the mercury lamp vacuum discharge method emits a single wavelength, so it has become widely used. However, mercury lamps are not durable, and there are a number of problems such as the lack of a mechanism for preventing the reoccurrence of ozone in the device configuration, and a method to replace mercury lamps has been demanded. The ozone concentration measuring apparatus of the present invention is characterized in that a nitride-based deep ultraviolet semiconductor light emitting element 102 is used as an ultraviolet light emitter instead of a mercury lamp. The nitride-based deep ultraviolet semiconductor light emitting device 102 emits a continuous wavelength of 200 to 320 nm. When measuring the ozone concentration, if the sample gas moves through a long permeation distance, there is re-ozonization during permeation, and correct ozone concentration measurement cannot be performed. Therefore, in the present invention, the sample gas measuring unit 129 with a shortened sample gas path length is adopted, and a device for preventing gas turbulence, a device for removing active oxygen, and a device for preventing re-ozonization are incorporated. In addition, the weak light with a radiation output intensity of 0.015 to 0.12 (μW / cm 2) was able to promote the reduction of damage to the device due to active oxygen and the reduction of re-ozonization. In addition, measurement noise can be eliminated by blinking ultraviolet light. This is because the S / N ratio of the detection signal is increased by blinking ultraviolet rays in a short time. The nitride-based deep ultraviolet semiconductor element 102 is capable of high-speed switching and is excellent in shortening the chopping cycle. For this reason, a chopping method in which ultraviolet rays are turned on and off over time is adopted. Furthermore, if the irradiation of ultraviolet rays is interrupted during the exhaust of the gas that has been irradiated with ultraviolet rays, ultraviolet rays do not act on the same ozone molecule many times, so re-ozonization can be suppressed as much as possible. Further, in the present invention, the optical filter 130 is used which disperses the irradiation energy from the continuous wavelength to the parallel light by the parallel light lens 127 and further extracts a single wavelength from the continuous wavelength.

図1は本発明を実施する系深紫外半導体発光素子102を用いたガス交差分離型紫外線吸収式オゾン濃度計1の構成図である。発光チャンバ機構164、計測チャンバ機構163、受光チャンバ機構165から構成され、3機構は独立分離している。発光チャンバ機構164、計測チャンバ機構163、受光チャンバ機構165は密封状態が保たれている。取り付けネジ部150を取り外す事で計測チャンバ機構163内に取り付けてある機構部品のメンテナンス作業(部品の簡単な洗浄を行う作業など)を行う事ができるが、その後は、真空又は不活性ガスを充填して、密封状態を回復する必要がある。発光チャンバ機構164と受光チャンバ機構165は真空状態(不活性ガス充填でも可)にするので発光素子保護ガラス103、平行レンズ127、光学フィルタ130、集光レンズ128、強度センサ111の表面には、紫外線の影響による酸化膜の形成はない。   FIG. 1 is a configuration diagram of a gas cross-separation type ultraviolet absorption ozone densitometer 1 using a system deep ultraviolet semiconductor light emitting device 102 embodying the present invention. The light emitting chamber mechanism 164, the measuring chamber mechanism 163, and the light receiving chamber mechanism 165 are configured, and the three mechanisms are independently separated. The light emitting chamber mechanism 164, the measurement chamber mechanism 163, and the light receiving chamber mechanism 165 are kept sealed. By removing the mounting screw part 150, maintenance work of the mechanical parts attached in the measurement chamber mechanism 163 (work for performing simple cleaning of the parts, etc.) can be performed, but after that, filling with vacuum or inert gas Thus, it is necessary to restore the sealed state. Since the light emitting chamber mechanism 164 and the light receiving chamber mechanism 165 are in a vacuum state (can be filled with an inert gas), the surface of the light emitting element protection glass 103, the parallel lens 127, the optical filter 130, the condenser lens 128, and the intensity sensor 111 is There is no formation of an oxide film due to the influence of ultraviolet rays.

オゾン濃度測定に先立ち、オゾンゼロの状態である受光強度(ゼロ基準設定値)を得る操作を行う。真空や不活性気体で充填されているといったオゾンの存在しない空間を紫外線が通過するならば、オゾンによる紫外線の吸光作用は起きない。即ち、紫外線の減衰は無いという前提に基づき、固体発光素子から発光した紫外線は、前述の空間を通過しても、そのままの強度で強度センサに到達する。従って、強度センサが受けた強度は発光強度に等しくなる。しかし、測定機器は紫外線やオゾンにより酸化等のダメージを受けている。また、個々の固体発光素子により出力に相違があるので、オゾン濃度測定時には予め、相対的な発光強度(吸光の無いオゾンゼロ状態と同様)を測定しておかなければならない。   Prior to the measurement of the ozone concentration, an operation for obtaining the received light intensity (zero reference set value) that is in a zero ozone state is performed. If ultraviolet rays pass through a space where ozone does not exist, such as a vacuum or an inert gas, the ultraviolet rays do not absorb light. That is, based on the premise that there is no attenuation of ultraviolet rays, the ultraviolet rays emitted from the solid-state light emitting element reach the intensity sensor with the same intensity even when passing through the space. Therefore, the intensity received by the intensity sensor is equal to the emission intensity. However, the measuring instrument is damaged by oxidation or the like by ultraviolet rays or ozone. Further, since there is a difference in output depending on the individual solid-state light emitting elements, the relative light emission intensity (similar to the ozone zero state without light absorption) must be measured in advance when measuring the ozone concentration.

図1に従い、オゾンゼロを設定するための操作手順を説明する。流量バルブ117を閉じて試料ガスが計測チャンバ機構163に試料ガスが流入しないようにする。ここでは計測チャンバを真空にしてオゾンを除去するケースを説明する。真空ポンプ120を作動させガス計測部排気バルブ119、チャンバ排気バルブ118を開け計測チャンバ機構163、試料ガス計測部129内に滞留する酸素、オゾン、大気中に含まれるガス、微少水分、を排気ガス出口121から排気して真空状態をつくる。到達吸引圧 −85KPa程度である。今後、実験を進めることで低真空状態、更には大気圧に近い状態においてもゼロガス設定が可能になると考える。真空ポンプ120は長寿命でメンテナンスフリーの小型式真空ポンプが市販されている。真空度は真空計を使用しなくても計測チャンバ機構163の内部体積、真空ポンプ120の排気流量から実験で到達真空度までの時間が分かれば真空度は時間で管理する事が出来る。この後、計測チャンバ機構163内に滞留するオゾンを分解させる目的で、発光素子取り付け部104のチョッパ駆動電源部115を連続点灯モードで作動させ、計測チャンバ機構163の内のオゾンを分解させる。オゾン分解は例えば窒化物系深紫外半導体発光素子102から発する放射出力強度を上げる事でオゾンの分解反応は活発になる。ただし、オゾン除去後は、オゾン計測に使用する窒化物系深紫外半導体発光素子102を使用(複数素子の場合にはそのすべて)とその出力強度を同一(複数素子の場合にはそれぞれの強度を一致)させて、ゼロ基準を設定する。分解されたオゾンは試料ガス計測部129内から排出される。オゾンの分解度が進む事で計測チャンバ機構163内の真空度は上がる。(真空度が良くなる)時間毎に窒化物系深紫外半導体発光素子102から微弱光の紫外線を放射させ、放射出力強度を計測する。このオゾン除去を継続すると放射出力強度がほぼ同じ値に安定してくる。この時に、オゾンが無くなり、吸光されなくなったゼロ基準に達したと判断でき、ゼロ設定完了とする。また、図1、図2に記載はないがオゾン分解の為の専用の発光素子を計測チャンバ機構163の内(例えば計測チャンバ機構163の側面に取り付ける)に取り付ける事も可能である。試料ガス計測部129内だけでなく計測チャンバ機構163内全体のオゾン分解反応が活発になりより精度よくオゾンが無い状態を作ることが出来る。ただし、オゾン除去後、濃度測定を行う素子のみで、再度ゼロ基準値を得る操作が必要である。   The operation procedure for setting ozone zero will be described with reference to FIG. The flow valve 117 is closed so that the sample gas does not flow into the measurement chamber mechanism 163. Here, a case will be described in which the measurement chamber is evacuated to remove ozone. The vacuum pump 120 is actuated to open the gas measurement unit exhaust valve 119 and the chamber exhaust valve 118, and the oxygen, ozone, gas contained in the atmosphere, and minute moisture remaining in the measurement chamber mechanism 163 and the sample gas measurement unit 129 are exhausted. A vacuum is created by exhausting from the outlet 121. The ultimate suction pressure is about -85 KPa. In the future, it is considered that the zero gas can be set even in a low vacuum state and even in a state close to atmospheric pressure by proceeding with experiments. As the vacuum pump 120, a small-sized vacuum pump having a long life and maintenance-free is commercially available. Even if a vacuum gauge is not used, if the time from the internal volume of the measurement chamber mechanism 163 and the exhaust flow rate of the vacuum pump 120 to the ultimate vacuum is known in the experiment, the vacuum can be managed by time. Thereafter, for the purpose of decomposing ozone staying in the measurement chamber mechanism 163, the chopper drive power supply unit 115 of the light emitting element mounting unit 104 is operated in the continuous lighting mode to decompose ozone in the measurement chamber mechanism 163. For example, ozone decomposition becomes active by increasing the intensity of radiation output emitted from the nitride-based deep ultraviolet semiconductor light emitting device 102. However, after ozone removal, the output intensity is the same as the nitride-based deep ultraviolet semiconductor light-emitting element 102 used for ozone measurement (all in the case of multiple elements) (the intensity of each in the case of multiple elements is the same). Match) and set the zero reference. The decomposed ozone is discharged from the sample gas measuring unit 129. As the degree of decomposition of ozone proceeds, the degree of vacuum in the measurement chamber mechanism 163 increases. The weak ultraviolet light is radiated from the nitride-based deep ultraviolet semiconductor light emitting element 102 every time (the degree of vacuum is improved), and the radiation output intensity is measured. If this ozone removal is continued, the radiant output intensity becomes stable at substantially the same value. At this time, it can be determined that the zero reference has been reached when ozone has disappeared and no light is absorbed, and the zero setting is completed. Although not shown in FIGS. 1 and 2, a dedicated light emitting element for decomposing ozone can be attached to the measurement chamber mechanism 163 (for example, attached to the side surface of the measurement chamber mechanism 163). The ozone decomposition reaction not only in the sample gas measurement unit 129 but also in the entire measurement chamber mechanism 163 becomes active, and a state without ozone can be created with higher accuracy. However, after removing ozone, it is necessary to obtain the zero reference value again with only the element for measuring the concentration.

オゾンゼロ基準値へ到達したかの判断は、十分な時間、真空ポンプを作動させる方法の他、真空ポンプによるオゾン除去や紫外線によるオゾン分解を継続して行い、受光強度が一定になったときをオゾンゼロとする方法がある。本発明は後者を採用する。即ち、光チャンバ機構164の窒化物系深紫外半導体発光素子102を点灯、消灯をさせたチョッピングで光を照射させる。光は照射方向126に進み、連続波長の紫外線が平行レンズ部106に取り付けられた平行レンズ127に照射される。平行レンズ127により平行な紫外線となって光学フィルタ部140に取り付けられた光学フィルタ130に照射される。光学フィルタ130で連続波長は単一波長に絞られ、透過フィルタ部161に取り付けられた透過フィルタ162を通り、計測チャンバ機構163内の試料ガス計測部129に入射される。オゾンがあれば、紫外線はオゾンを分解し、放射出力強度は減衰する。真空やオゾンがない状態の場合、紫外線はオゾンに吸収されず、放射出力強度(発光強度)は減衰しない。試料ガス計測部129を通過した単一波長の紫外線は透過フィルタ部161に取り付けられた透過フィルタ162を通り受光チャンバ機構165内の集光レンズ部110に取り付けられた集光レンズ128により収束した光になって強度センサ111に到着する。受光チャンバ機構165に取り付けてある強度センサ111で測定された値は電圧値として出力される。電圧値は増幅器112を通してインターフェイス123を介してマイクロコンピュータ124に入力される。オゾンゼロの状態でのI=入射光の放射出力強度がオゾンゼロ基準値であり、オゾンゼロ基準設定が完了する。また、このときの放射出力強度が、発光強度とみなせる。   In order to determine whether the ozone zero reference value has been reached, in addition to the method of operating the vacuum pump for a sufficient period of time, ozone removal by the vacuum pump and ozone decomposition by ultraviolet rays are continuously performed. There is a method. The present invention employs the latter. That is, light is irradiated by chopping with the nitride-based deep ultraviolet semiconductor light emitting element 102 of the light chamber mechanism 164 turned on and off. The light travels in the irradiation direction 126 and the parallel lens 127 attached to the parallel lens unit 106 is irradiated with ultraviolet light having a continuous wavelength. The parallel lens 127 turns the parallel ultraviolet light into the optical filter 130 attached to the optical filter unit 140. The continuous wavelength is reduced to a single wavelength by the optical filter 130, passes through the transmission filter 162 attached to the transmission filter unit 161, and enters the sample gas measurement unit 129 in the measurement chamber mechanism 163. If ozone is present, ultraviolet light decomposes ozone, and the radiant output intensity attenuates. In the absence of vacuum or ozone, ultraviolet rays are not absorbed by ozone, and the radiation output intensity (luminescence intensity) is not attenuated. Light having a single wavelength that has passed through the sample gas measurement unit 129 passes through the transmission filter 162 attached to the transmission filter unit 161 and is converged by the condenser lens 128 attached to the condenser lens unit 110 in the light receiving chamber mechanism 165. And arrives at the intensity sensor 111. The value measured by the intensity sensor 111 attached to the light receiving chamber mechanism 165 is output as a voltage value. The voltage value is input to the microcomputer 124 through the amplifier 112 and the interface 123. In the state of ozone zero, I = the radiation output intensity of incident light is the ozone zero reference value, and the ozone zero reference setting is completed. The radiation output intensity at this time can be regarded as the emission intensity.

オゾンゼロ基準値設定後、試料ガスの濃度測定を行う。ここでも、図1に基づき、説明する。真空ポンプ120を作動させた状態でチャンバ排気バルブ118は閉じ、ガス計測部排気バルブ119は開ける。流量バルブ117を開け流量計116でガス流量を所定の値に設定して、試料ガスを試料ガス入口122から試料ガス計測部129に試料ガスを流入させる。計測チャンバ機構163の試料ガス計測部129内のガス注入109とガス排出108の間の短い試料ガス行路長を試料ガスが一瞬に乱れなく通過する。圧力差を利用しているので試料ガス注入109からガス排出108に試料ガスの方向107に流れる。試料ガスが試料ガス計測部129に流入した状態で発光素子取り付け部104のチョッパ駆動電源部115を作動させ窒化物系深紫外半導体発光素子102を点灯、消灯させ連続波長の紫外線を放射する。窒化物系深紫外半導体発光素子102から発する200〜320の放射出力強度は0.015〜0.12(μW/cm2)の微弱光である。平行レンズ127で紫外線を平行光にし、光学フィルタ130で所定の単一波長の紫外線を取り出す。単一波長となった紫外線は、試料ガス計測部129内を流入され試料ガスに含まれているオゾンを分解しながら透過する。このとき紫外線は減衰する。単一波長でかつ平行光である紫外線は集光レンズ128において収束させられ、強度センサ111に受光される。強度センサ111で測定された値は電圧値として出力される。透過光の放射出力強度はO(受光強度)として、電圧値は増幅器112を通してインターフェイス123を介してマイクロコンピュータ124に入力される。   After setting the ozone zero reference value, measure the concentration of the sample gas. Here also, description will be given based on FIG. In a state where the vacuum pump 120 is operated, the chamber exhaust valve 118 is closed and the gas measuring unit exhaust valve 119 is opened. The flow rate valve 117 is opened, the gas flow rate is set to a predetermined value by the flow meter 116, and the sample gas is caused to flow from the sample gas inlet 122 into the sample gas measuring unit 129. The sample gas passes through the short sample gas path length between the gas injection 109 and the gas discharge 108 in the sample gas measurement unit 129 of the measurement chamber mechanism 163 without any disturbance. Since the pressure difference is utilized, the sample gas flows from the sample gas injection 109 to the gas discharge 108 in the direction 107 of the sample gas. With the sample gas flowing into the sample gas measuring unit 129, the chopper drive power supply unit 115 of the light emitting device mounting unit 104 is operated to turn on and off the nitride-based deep ultraviolet semiconductor light emitting device 102, and radiate continuous wavelength ultraviolet rays. The radiation output intensity of 200 to 320 emitted from the nitride-based deep ultraviolet semiconductor light emitting device 102 is weak light of 0.015 to 0.12 (μW / cm 2). The parallel lens 127 converts the ultraviolet light into parallel light, and the optical filter 130 extracts the ultraviolet light having a predetermined single wavelength. Ultraviolet light having a single wavelength is passed through the sample gas measuring unit 129 and is transmitted while decomposing ozone contained in the sample gas. At this time, ultraviolet rays are attenuated. Ultraviolet light having a single wavelength and parallel light is converged by the condenser lens 128 and received by the intensity sensor 111. The value measured by the intensity sensor 111 is output as a voltage value. The radiated output intensity of the transmitted light is O (received light intensity), and the voltage value is input to the microcomputer 124 through the amplifier 112 and the interface 123.

入射光の放射出力強度(オゾンゼロ基準値)I(発光強度)、透過光の放射出力強度をO(受光強度)がマイクロコンピュータ124に入力されると、マイクロコンピュータ124はランベルト・ベールの法則を表した数式1から計算してオゾン濃度を算出する。マイクロコンピュータ124は統計的な手法により最頻値を計算し、表示器125に表示する。   When incident light output intensity (zero ozone reference value) I (light emission intensity) and transmitted light output intensity O (received light intensity) are input to the microcomputer 124, the microcomputer 124 represents Lambert-Beer's law. The ozone concentration is calculated by calculating from Equation 1 given above. The microcomputer 124 calculates the mode value by a statistical method and displays it on the display 125.

更に、本発明においては、オゾンゼロにおけるゼロ基準設定値又は発光強度を得るために、密閉した測定空間を紫外線で十分に照射してオゾンを消滅させる方法を提案している。この方法を採用すると、特にコンピュータによる制御が重要になる。図8及び図9は、コンピュータ制御を中心に、本発明の動作を解説する。   Furthermore, in the present invention, in order to obtain a zero reference set value or light emission intensity at zero ozone, a method of extinguishing ozone by sufficiently irradiating a sealed measurement space with ultraviolet rays is proposed. When this method is adopted, control by a computer becomes particularly important. 8 and 9 explain the operation of the present invention with a focus on computer control.

図8はオゾンが存在しない環境において強度センサが受ける紫外線の強度を、発光強度とみなす処理フローチャートである。排気ガス出口121、試料ガス入口122を閉じ、外部と遮断し、真空ポンプ120により計測チャンバ機構163の気体を排出すれば真空状態にすることができる。予め真空状態にするとゼロ設定値が早く取得できる利点があり、また、残留物も除去され、より測定環境は良くなる。しかし、この実施形態においては、本発明の特徴を明瞭にするため、ゼロ設定値の取得手段では、密閉した計測チャンバ機構163を紫外線で照射することのみで、オゾンゼロの状態を現出する方法を採用した。なお、図示していないが、ゼロ設定の手段実施中に並行して、計測チャンバ内の残留物除去を目的に真空ポンプを作動させることは実際の運用において好ましいと言える。   FIG. 8 is a process flowchart in which the intensity of ultraviolet rays received by the intensity sensor in an environment where ozone is not present is regarded as the emission intensity. If the exhaust gas outlet 121 and the sample gas inlet 122 are closed and disconnected from the outside, and the gas from the measurement chamber mechanism 163 is discharged by the vacuum pump 120, a vacuum state can be obtained. If the vacuum state is set in advance, there is an advantage that the zero set value can be acquired quickly, and the residue is also removed, and the measurement environment is improved. However, in this embodiment, in order to clarify the characteristics of the present invention, the zero set value acquisition means is a method of revealing a zero ozone state only by irradiating the sealed measurement chamber mechanism 163 with ultraviolet rays. Adopted. Although not shown, it can be said that it is preferable in actual operation to operate the vacuum pump for the purpose of removing the residue in the measurement chamber in parallel with the zero setting means.

以下、その手段を説明する。まず、S801において、計測稼動情報をマイクロコンピュータ124に付属する記憶装置から取り出す。計測稼動情報には、オゾン消滅に必要な紫外線照射時間や、窒化物系深紫外半導体発光素子102別の発光電力などが記録されている。もっとも効率のよいかつ機器へのダメージを少なくする照射時間や発光強度が選択され、実行に移る。S802では、本処理を実行するときに使用するワーク記憶域をクリアする。ワーク記憶域には、1回あたりの紫外線照射時間カウンタ、強度センサ値の前記録データ、センサ値同一の場合の比較カウンタ等がある。   Hereinafter, the means will be described. First, in step S <b> 801, measurement operation information is extracted from a storage device attached to the microcomputer 124. In the measurement operation information, ultraviolet irradiation time necessary for ozone extinction, light emission power for each nitride-based deep ultraviolet semiconductor light emitting element 102, and the like are recorded. The irradiation time and light emission intensity that are the most efficient and reduce the damage to the device are selected, and the execution is started. In S802, the work storage area used when executing this processing is cleared. The work storage area includes an ultraviolet irradiation time counter per time, prerecorded data of intensity sensor values, a comparison counter when the sensor values are the same.

計測チャンバ機構163の開口部分の試料ガス入口122、排気ガス出口121を閉じ、密閉状態にするため、真空ポンプ120を閉じるよう指令する(S803)。マイクロコンピュータ124から指令を受け、すべてのバブルが閉じられる(S804)。次に計測稼動情報に基づき、指定された窒化物系深紫外半導体発光素子102(S805)とその出力の強度が指定される(S806)。図示はしていないが、固体発光素子の一つである窒化物系深紫外半導体発光素子102が本実施形態では使用されているがこれが一つとは限らない。また同様に、図示はしていないが、固体発光素子は窒化物系深紫外半導体発光素子とは異なる、紫外線発光素子を含む場合もある。   In order to close the sample gas inlet 122 and the exhaust gas outlet 121 in the opening portion of the measurement chamber mechanism 163 and to make it sealed, the vacuum pump 120 is instructed to close (S803). In response to a command from the microcomputer 124, all the bubbles are closed (S804). Next, based on the measurement operation information, the designated nitride-based deep ultraviolet semiconductor light emitting element 102 (S805) and the intensity of its output are designated (S806). Although not shown, a nitride-based deep ultraviolet semiconductor light emitting device 102, which is one of solid state light emitting devices, is used in the present embodiment, but this is not limited to one. Similarly, although not shown, the solid state light emitting device may include an ultraviolet light emitting device different from the nitride-based deep ultraviolet semiconductor light emitting device.

マイクロコンピュータ124は発光チャンバ機構164に指定時間、連続して紫外線照射を行うよう指令する(S807)。この指令の結果、指定された窒化物系深紫外半導体発光素子102(複数可)が指定された時間、指定された出力強度で紫外線を発光する(S808)。マイクロコンピュータ124は、指定時間後に強度センサ111から受光強度の値を受ける(S809)。強度センサ111は強度を知らせる(S810)。   The microcomputer 124 instructs the light emitting chamber mechanism 164 to continuously irradiate ultraviolet rays for a specified time (S807). As a result of this command, the specified nitride-based deep ultraviolet semiconductor light emitting element 102 (s) emits ultraviolet light at the specified output intensity for the specified time (S808). The microcomputer 124 receives the value of the received light intensity from the intensity sensor 111 after a specified time (S809). The intensity sensor 111 notifies the intensity (S810).

S811において、マイクロコンピュータ124は、前に記録していた受光強度値と比較し、同一か、誤差範囲内であれば、オゾンゼロ(吸光無し)と予測する。そうでないならば、ワークデータのゼロ値計測カウンタをクリアする(S812)。これは、前回のオゾンゼロ状態は偶然とみなし、再度オゾンゼロ状態を追求するために、初期状態に戻したのである。ゼロ値計測カウンタはオゾンゼロと予想する状態が指定回数続けば、オゾンゼロと確定することができるとの考えに基づき設けられた。S811でオゾンゼロ(吸光無し)と予測されたので、このゼロ値計測カウンタを1回更新する(S813)。このカウントが指定回に達するとオゾンゼロと確定してもよいとなる(S814)。そうでなければ、再度、同様の状態が続き、指定回数に達するまで紫外線照射と受光強度の記録を続行する。   In step S811, the microcomputer 124 compares the received light intensity value recorded previously with it, and if it is the same or within the error range, predicts that ozone is zero (no light absorption). Otherwise, the work data zero value measurement counter is cleared (S812). This is because the previous ozone zero state is regarded as a coincidence and the initial state is restored in order to pursue the ozone zero state again. The zero value measurement counter is provided based on the idea that it can be determined that ozone is zero if the state where ozone is expected to be zero continues for a specified number of times. Since zero ozone (no light absorption) is predicted in S811, this zero value measurement counter is updated once (S813). When this count reaches the designated number, it may be determined that ozone is zero (S814). Otherwise, the same state continues again, and the recording of UV irradiation and received light intensity is continued until the specified number of times is reached.

オゾンゼロと確定したならば、マイクロコンピュータ124は、紫外線照射を停止させる(S815、S816)。この時の強度センサ111が連続して記録した同一の値がゼロ設定値である。これを不揮発な記憶領域に記録する(S817)。また、ゼロ設定値の取得やオゾン濃度測定計算に最も効率よく、機器の安定性を維持できるための、測定時間や発光強度、使用する固体発光素子などを決める分析データを最良指定値分析情報として、マイクロコンピュータ124に付属する記憶装置に記録する(S818)。   If it is determined that ozone is zero, the microcomputer 124 stops the ultraviolet irradiation (S815, S816). The same value continuously recorded by the intensity sensor 111 at this time is the zero set value. This is recorded in a non-volatile storage area (S817). In addition, analysis data that determines the measurement time, emission intensity, and solid-state light emitting element to be used is the best specified value analysis information that is most efficient for obtaining zero set values and calculating ozone concentration and maintaining the stability of the equipment. The data is recorded in a storage device attached to the microcomputer 124 (S818).

図9は、ゼロ設定値を相対的な発光強度とみなし、オゾン環境下において、測定した受光強度によりオゾン濃度を計算する処理のフローチャートである。オゾンゼロ設定値取得手段において使用した固体発光素子、その紫外線発光時の電力強度は同一であり、その情報は先に記録された相対発光強度(ゼロ設定値)を含めて、マイクロコンピュータ124に付属する記憶装置から供給される。   FIG. 9 is a flowchart of processing for calculating the ozone concentration based on the measured received light intensity under the ozone environment, assuming that the zero setting value is the relative light emission intensity. The solid light emitting elements used in the ozone zero set value acquisition means and the power intensity at the time of ultraviolet light emission are the same, and the information is attached to the microcomputer 124 including the previously recorded relative light emission intensity (zero set value). Supplied from the storage device.

以下、図9を説明する。前述の相対発光強度や、後で説明する紫外線発光の断続短周期や断続長周期等を記録した計測稼動情報をマイクロコンピュータ124に付属する記憶装置から取り出す(S901)。次に、S902では、本処理を実行するときに使用するワーク記憶域をクリアする。マイクロコンピュータ124の指令により計測チャンバ機構163内の試料ガス計測部129の試料ガス注入部109から外部の試料ガスが吹き出し、ガス排出部108へと吸い込まれ外部へ出ていくように真空ポンプ120が指定された圧力で作動し、各種バルブを調整していく(S903、S904)。   Hereinafter, FIG. 9 will be described. Measurement operation information in which the above-mentioned relative light emission intensity and the intermittent short period and intermittent long period of ultraviolet light emission to be described later are recorded is taken out from the storage device attached to the microcomputer 124 (S901). Next, in S902, the work storage area used when executing this processing is cleared. In response to a command from the microcomputer 124, the vacuum pump 120 is arranged so that an external sample gas is blown out from the sample gas injection unit 109 of the sample gas measurement unit 129 in the measurement chamber mechanism 163, sucked into the gas discharge unit 108 and then out It operates at the specified pressure and adjusts various valves (S903, S904).

マイクロコンピュータ124の制御を受けて、発光チャンバ機構164の指定された固体発光素子は、指定された周期の点滅を開始する(S905、S906)。この指定された固体発光素子とは、ゼロ設定値取得手段でオゾン消去を行った固体発光素子(複数可)である。紫外線の強度はオゾン消去時に使用した強度である。本発明ではオゾン濃度測定を実行するときは、紫外線を連続照射せず、点滅を繰り返す断続照射を採用している。この点滅には短周期と長周期がある。短周期は、非常に短い周期で紫外線を点滅させることにより、S/N比が大きくなり、測定ノイズを除去できる。長周期は、一度照射されたオゾンが再オゾン化されてもそのオゾンに紫外線が照射されず、排気ガス出口121から外部へ出ていく時間を短周期に含む周期である。即ち、短周期+再オゾンの排気時間(無照射)である。一連の短周期発光でオゾンが破壊されるが、同時に生成した活性酸素により再オゾン化があり、再度このオゾンに紫外線が当たるとオゾン濃度に不測の値を加えてしまうので、本発明では、再オゾン化されたオゾンを含む試料ガスが外部へ吸引排気されるように仕組みを設けた。   Under the control of the microcomputer 124, the designated solid state light emitting element of the light emitting chamber mechanism 164 starts blinking with the designated period (S905, S906). The designated solid-state light-emitting element is a solid-state light-emitting element (or a plurality of solid-state light-emitting elements) that have been subjected to ozone erasure by the zero set value acquisition means. The intensity of ultraviolet rays is the intensity used when ozone is erased. In the present invention, when the ozone concentration measurement is performed, intermittent irradiation that repeats blinking is employed without continuously irradiating ultraviolet rays. This blinking has a short cycle and a long cycle. In the short period, the S / N ratio is increased and the measurement noise can be removed by blinking the ultraviolet rays with a very short period. The long period is a period that includes a short period of time in which the ozone that has been irradiated once is not re-ozonated, and the ozone is not irradiated with ultraviolet light and exits from the exhaust gas outlet 121 to the outside. That is, short cycle + re-ozone exhaust time (no irradiation). Although ozone is destroyed by a series of short-period light emission, there is re-ozonization due to the active oxygen produced at the same time, and if this ozone is again exposed to ultraviolet rays, an unexpected value is added to the ozone concentration. A mechanism was provided so that sample gas containing ozonized ozone was sucked and exhausted to the outside.

S907において、長周期の紫外線照射断続を実行すべく、長周期の回数を計測稼動情報から取り出し(S908)、計測を開始する。また、S909において、短周期で紫外線を点滅すべく、照射時間と無照射時間のタイミングをコンピュータ制御により実行する。   In step S907, the number of long periods is extracted from the measurement operation information (S908) and measurement is started in order to execute long-period ultraviolet irradiation interruption. In S909, the timing of irradiation time and non-irradiation time is executed by computer control so as to blink ultraviolet rays in a short cycle.

S910において、マイクロコンピュータ124は、発光チャンバ機構164へ紫外線照射時間、電力等を指示し、紫外線を発光させる(S911)。受光チャンバ機構165は、強度センサ111で受けた紫外線の強度の値をマイクロコンピュータ124へ報告する(S912)。点滅により、この繰り返しが短周期分ある。これらは、マイクロコンピュータ124に付属する記憶装置に記録される。これらの記録について、マイクロコンピュータ124は妥当な計測値とみなす値を選別する(S913)。この測定と処理を周期分実行する(S914)。   In S910, the microcomputer 124 instructs the light emission chamber mechanism 164 about the ultraviolet irradiation time, power, and the like to emit ultraviolet light (S911). The light receiving chamber mechanism 165 reports the intensity value of the ultraviolet ray received by the intensity sensor 111 to the microcomputer 124 (S912). By flashing, this repetition is for a short period. These are recorded in a storage device attached to the microcomputer 124. For these records, the microcomputer 124 selects values that are regarded as appropriate measurement values (S913). This measurement and processing are executed for a period (S914).

S915では、短周期の紫外線点滅後、前述した再オゾン再計測を阻止するため、試料ガスが排気ガス出口に吸い込まれる時間を予測して紫外線の照射を停止する。マイクロコンピュータ124は、発光チャンバ機構164へ指令して、指定時間の紫外線発光を停止させる(S916)。この長周期の紫外線断続照射を指定回数分実行し、回数分に達したら(S917)オゾン濃度測定の機器の稼動を停止する(S918)。発光チャンバ機構164には紫外線照射の停止(S919)、計測チャンバ機構163には試料ガス計測部129を流れる試料ガスの停止を指示する(S920)。   In S915, after the short period of ultraviolet blinking, in order to prevent the re-ozone re-measurement described above, the irradiation of ultraviolet rays is stopped in anticipation of the time during which the sample gas is sucked into the exhaust gas outlet. The microcomputer 124 instructs the light emission chamber mechanism 164 to stop the ultraviolet light emission for a specified time (S916). This long-period intermittent UV irradiation is executed for the designated number of times, and when the number of times is reached (S917), the operation of the ozone concentration measurement device is stopped (S918). The light emission chamber mechanism 164 is instructed to stop ultraviolet irradiation (S919), and the measurement chamber mechanism 163 is instructed to stop the sample gas flowing through the sample gas measuring unit 129 (S920).

長周期回数分の強度センサ値のデータを統計的手法により最頻値を求める。この場合、分散分布の適正パターンが存在するので、それから外れた記録を外し、最頻値近傍のデータから受光強度を確定する(S921)。なお、図示していないが、分布状態が異常であると、機器故障や操作ミスが疑われ、測定エラーとなる。ここにオゾンゼロ設定値を発光強度とみなし、ランベルト・ベールの式を使用して、オゾン濃度を算出する(S922)。   The mode value is obtained from the data of intensity sensor values for the number of long cycles by a statistical method. In this case, since an appropriate pattern of the dispersion distribution exists, the recording deviated therefrom is removed, and the received light intensity is determined from the data near the mode value (S921). Although not shown, if the distribution state is abnormal, a device failure or an operation error is suspected, resulting in a measurement error. Here, the ozone zero set value is regarded as the emission intensity, and the ozone concentration is calculated using the Lambert-Beer formula (S922).

図2は真空チャンバ機構101内に窒化物系深紫外半導体発光素子102を用いて、試料ガス計測部129内にガス排出108、ガス注入109を取り付けたガス交差型紫外線吸収式オゾン濃度計2の構成図である。図2を利用して構成図の概略を説明する。発光素子取り付け部104とカバー160は取り付けネジ部150で取り付けられ密封されている。取り付けネジ部150に取り付けてあるカバー160を取り外す事で真空チャンバ101内にある全ての機構部品のメンテナンス作業、部品交換作業を行う事ができる特徴がある。   FIG. 2 shows a gas cross type ultraviolet absorption ozone concentration meter 2 in which a nitride-based deep ultraviolet semiconductor light emitting element 102 is used in a vacuum chamber mechanism 101 and a gas discharge 108 and a gas injection 109 are attached in a sample gas measurement unit 129. It is a block diagram. An outline of the configuration diagram will be described with reference to FIG. The light emitting element attachment portion 104 and the cover 160 are attached and sealed with attachment screw portions 150. A feature is that maintenance work and part replacement work of all mechanical parts in the vacuum chamber 101 can be performed by removing the cover 160 attached to the mounting screw part 150.

オゾンゼロ基準値設定後、試料ガスの測定を行う。真空ポンプ120を作動させ試料ガスが真空チャンバ機構101に流れ込まないようにガス計測部排気バルブ119は開け、チャンバ排気バルブ118は閉じる。試料ガスが試料ガス計測部129に流入した状態で発光素子取り付け部104のチョッパ駆動電源部115を作動させ窒化物系深紫外半導体発光素子102を点灯、消灯させ連続波長の紫外線を放射する。試料ガス計測部129内に流入され試料ガスに含まれているオゾンに吸収され紫外線は減衰する。平行に分散された単一波長の紫外線は集光レンズ128において収束させられ、強度センサ111で受光し、透過光の放射出力強度とする。強度センサ111で測定された値は電圧値として出力される。透過光の放射出力強度はOとして、電圧値は増幅器112を通してインターフェイス123を介してマイクロコンピュータ124に入力される。   After setting the ozone zero reference value, measure the sample gas. The gas pump exhaust valve 119 is opened and the chamber exhaust valve 118 is closed so that the sample pump does not flow into the vacuum chamber mechanism 101 by operating the vacuum pump 120. With the sample gas flowing into the sample gas measuring unit 129, the chopper drive power supply unit 115 of the light emitting device mounting unit 104 is operated to turn on and off the nitride-based deep ultraviolet semiconductor light emitting device 102, and radiate continuous wavelength ultraviolet rays. The ultraviolet rays are attenuated by being absorbed into ozone that is introduced into the sample gas measuring unit 129 and contained in the sample gas. The ultraviolet light having a single wavelength dispersed in parallel is converged by the condenser lens 128, received by the intensity sensor 111, and used as the radiation output intensity of the transmitted light. The value measured by the intensity sensor 111 is output as a voltage value. The radiated output intensity of the transmitted light is O, and the voltage value is input to the microcomputer 124 through the amplifier 112 and the interface 123.

図3〜図6の実験の目的は、特許文献4に記載のある製造方法で作成した窒化物系深紫外半導体発光素子102を実際に使用して活性酸素による再オゾン化の影響がある250〜260nmの紫外線の放射出力強度下限値、上限値を見いだし、下限値の微弱光が計測可能であるかをオゾン発生・供給システム6を使用して見いだす事である。また、本発明に使用した平行レンズ127、試料ガス計測部129、を利用する手段の必要性を確認する実験を行った。 The purpose of the experiments in FIGS. 3 to 6 is that the nitride-based deep ultraviolet semiconductor light-emitting device 102 produced by a manufacturing method described in Patent Document 4 is actually used and has the effect of re-ozonization with active oxygen. The lower limit value and the upper limit value of the radiant output intensity of 260 nm ultraviolet light are found, and whether the weak light of the lower limit value can be measured is found using the ozone generation / supply system 6. In addition, an experiment was conducted to confirm the necessity of means using the parallel lens 127 and the sample gas measurement unit 129 used in the present invention.

(実験装置の説明)図6は、本発明を実施する窒化物系深紫外半導体発光素子102を用いた実験をする為のオゾン発生・供給システム6の構成図である。微弱光の下限値を見いだす為にオゾン発生・供給システム6を使用した。ポンプ203で大気ガスをオゾン発生装置201に注入させ濃度計202で設定したオゾン濃度を発生させる。発生したオゾンガスはオゾン測定セル206に入り、光源部209内にセットした窒化物系深紫外半導体発光素子102から紫外線を発光させる。紫外線はオゾン測定セル206を通過する間にオゾン濃度ガスに吸収され減衰する。オゾン測定セル206を通過したオゾンガスはオゾン分解器205で処理され大気中に排出される。オゾン測定セル206の長さは30cmである。オゾン測定セル206には温度・圧力計204が取り付けられている。紫外線の放射出力強度は地方独立行政法人 東京都立産業技術研究センターの分光器で測定した。(仕様 プリズムグレーティング方式 測定波長 200nm〜2500nm 分光計器(株)製 型番 US−25ART)オゾン無しの放射出力強度と、オゾン有りの放射出力強度を分光器207で計測する。分光器207で計測した入射光(オゾンゼロ基準値)の放射出力強度をI、透過光(オゾン設定値)の放射出力強度をOとする。オゾン測定セル206内の圧力、温度、大気温度は参考値として計測した。ランベルト・ベールの法則、数式1から計算してオゾン濃度を算出する。オゾン発生装置201で発生させたオゾン濃度と実測値で計算したオゾン濃度からより正確なオゾン発生濃度がわかる。図6には記載はないがオゾン発生装置201に流量調整バルブが取り付けてある。また、光源部209内にセットしてある窒化物系深紫外半導体発光素子102が含まれている。   (Explanation of Experimental Apparatus) FIG. 6 is a block diagram of an ozone generation / supply system 6 for conducting an experiment using the nitride-based deep ultraviolet semiconductor light emitting device 102 for carrying out the present invention. In order to find the lower limit of faint light, the ozone generation / supply system 6 was used. Atmospheric gas is injected into the ozone generator 201 by the pump 203 and the ozone concentration set by the densitometer 202 is generated. The generated ozone gas enters the ozone measuring cell 206 and emits ultraviolet light from the nitride-based deep ultraviolet semiconductor light emitting device 102 set in the light source unit 209. Ultraviolet rays are absorbed and attenuated by the ozone concentration gas while passing through the ozone measuring cell 206. The ozone gas that has passed through the ozone measuring cell 206 is processed by the ozone decomposer 205 and discharged into the atmosphere. The length of the ozone measuring cell 206 is 30 cm. A temperature / pressure gauge 204 is attached to the ozone measuring cell 206. Ultraviolet radiation output intensity was measured with a spectroscope at the Tokyo Metropolitan Industrial Technology Research Center. (Specifications Prism grating method Measurement wavelength 200 nm to 2500 nm, manufactured by Spectrometer Co., Ltd. Model No. US-25ART) The radiant output intensity without ozone and the radiant output intensity with ozone are measured by the spectrometer 207. The radiation output intensity of incident light (ozone zero reference value) measured by the spectroscope 207 is I, and the radiation output intensity of transmitted light (ozone setting value) is O. The pressure, temperature, and atmospheric temperature in the ozone measurement cell 206 were measured as reference values. The ozone concentration is calculated by calculating from Lambert-Beer's law, Equation 1. A more accurate ozone generation concentration can be found from the ozone concentration generated by the ozone generator 201 and the ozone concentration calculated from the actual measurement value. Although not shown in FIG. 6, a flow rate adjusting valve is attached to the ozone generator 201. Further, a nitride-based deep ultraviolet semiconductor light emitting element 102 set in the light source unit 209 is included.

(実験1)図5は、本発明を実施する窒化物系深紫外半導体発光素子102を用いて250〜260nmの波長を放射してオゾン発生・供給システム6を使用した実験からオゾン濃度を発生させ紫外線が減衰した時の放射出力強度をグラフにしたものである。僅かな紫外線の出力強度が分光器207で計測可能であるかを確認することが目的である。たとえば、200ppbのオゾンを発生させた時、縦軸が分光放射照度(放射出力強度)の値、横軸が窒化物系深紫外半導体発光素子102から発する波長の値を表している。オゾン無しの時の分光放射照度(放射出力強度)(501)、オゾン濃度200ppbの時の分光放射照度(放射出力強度)(502)がグラフから分かる。実験から活性酸素による再オゾン化を抑え安定的に精度よく放射出力強度を計測出来る250〜260nmの波長の下限値は0.015(μW/cm)とした。 (Experiment 1) FIG. 5 shows an ozone concentration generated from an experiment using the ozone generation / supply system 6 by radiating a wavelength of 250 to 260 nm using the nitride-based deep ultraviolet semiconductor light emitting device 102 embodying the present invention. This is a graph showing the radiation output intensity when ultraviolet rays are attenuated. The purpose is to check whether the output intensity of a slight ultraviolet ray can be measured by the spectroscope 207. For example, when ozone of 200 ppb is generated, the vertical axis represents the spectral irradiance (radiant output intensity) value, and the horizontal axis represents the wavelength value emitted from the nitride-based deep ultraviolet semiconductor light emitting device 102. The spectral irradiance (radiant output intensity) (501) without ozone and the spectral irradiance (radiant output intensity) (502) when the ozone concentration is 200 ppb can be seen from the graph. From the experiment, the lower limit value of the wavelength of 250 to 260 nm at which re-ozonization by active oxygen is suppressed and radiation output intensity can be measured stably and accurately was set to 0.015 (μW / cm 2 ).

(実験2) 図3は本発明を実施する窒化物系深紫外半導体発光素子102を用いて250〜260nmの波長を放射してオゾン発生・供給システム6を使用した実験から駆動電流値と放射出力強度の関係をグラフにしたものである。
オゾン発生・供給システム6を使用して例えばオゾン濃度が0ppmの時の放射出力強度と駆動電流値をグラフにしてある。縦軸が放射出力強度の値、横軸が窒化物系深紫外半導体発光素子102から発する波長を表している。250〜260nmの波長で放射出力強度が約0.015(μW/cm・255nm)を放射する駆動電流値は5mA(306)になる。駆動電流値30mA(301)、駆動電流値25mA(302)、駆動電流値20mA(303)、駆動電流値15mA(304)、駆動電流値10mA(305)に対する放射出力強度を読み取る事ができる。実験から活性酸素による再オゾン化を抑え、安定的に精度よく放射出力強度を計測できる250〜260nmの波長の駆動電流値は30mA(301)として、上限値は0.12(μW/cm)とした。更に、実験を進める事で、0.12μW/cm以上の放射出力強度で、活性酸素による再オゾン化の影響を抑え、安定的に精度よく計測出来る値を見いだせると考える。
(Experiment 2) FIG. 3 shows a driving current value and radiation output from an experiment using the ozone generation / supply system 6 that emits a wavelength of 250 to 260 nm using the nitride-based deep ultraviolet semiconductor light emitting device 102 embodying the present invention. This is a graph showing the relationship of strength.
Using the ozone generation / supply system 6, for example, the radiation output intensity and the drive current value when the ozone concentration is 0 ppm are graphed. The vertical axis represents the value of the radiation output intensity, and the horizontal axis represents the wavelength emitted from the nitride-based deep ultraviolet semiconductor light emitting device 102. The drive current value at which a radiation output intensity of about 0.015 (μW / cm 2 · 255 nm) is emitted at a wavelength of 250 to 260 nm is 5 mA (306). The radiation output intensity can be read with respect to the drive current value of 30 mA (301), the drive current value of 25 mA (302), the drive current value of 20 mA (303), the drive current value of 15 mA (304), and the drive current value of 10 mA (305). The driving current value of the wavelength of 250 to 260 nm that can suppress the re-ozonization by the active oxygen from the experiment and can measure the radiation output intensity stably and accurately is 30 mA (301), and the upper limit value is 0.12 (μW / cm 2 ). It was. Furthermore, by proceeding with the experiment, it is considered that a value that can be stably and accurately measured can be found with a radiation output intensity of 0.12 μW / cm 2 or more while suppressing the influence of re-ozonization by active oxygen.

(実験3) 図4は本発明を実施する窒化物系深紫外半導体発光素子102を用いて250〜260nmの波長を放射して透過距離と放射出力強度の関係をグラフにしたものである。測定セルを通過する試料ガスが長い透過距離を移動する間に透過中にオゾンが何度も紫外線に照射される事を実験する為オゾン発生・供給システム6のオゾン測定セル206を使用しないで大気中(オゾン濃度 10ppb以下)で計測を行った。透過距離を変化させて放射出力強度の変化を実験した。縦軸が放射出力強度の値、横軸が窒化物系深紫外半導体発光素子102から発する波長の値を表している。窒化物系深紫外半導体発光素子102から放射出力強度0.12μW/cmを放射して、透過距離10cm(401)、透過距離20cm(402)、透過距離30cm(403)に対する放射出力強度の値を読み取る事ができる。オゾン測定セル206を使用しない計測は分光器207に紫外線が到達する前に大気中に分散してしまい放射エネルギーが減衰する。実験から測定セルを使用する計測は分散した紫外線が測定セルに反射して試料ガスが長い透過距離を移動する間に、透過中にオゾンが何度も紫外線に照射される事になる。 (Experiment 3) FIG. 4 is a graph showing the relationship between the transmission distance and the radiation output intensity by emitting a wavelength of 250 to 260 nm using the nitride-based deep ultraviolet semiconductor light emitting device 102 for carrying out the present invention. Do not use the ozone measurement cell 206 of the ozone generation / supply system 6 in order to test that the sample gas passing through the measurement cell is irradiated with ultraviolet rays many times during transmission while the sample gas moves through a long transmission distance. Measurement was performed in the medium (ozone concentration of 10 ppb or less). The change of the radiation output intensity was experimented by changing the transmission distance. The vertical axis represents the radiation output intensity value, and the horizontal axis represents the wavelength value emitted from the nitride-based deep ultraviolet semiconductor light emitting device 102. Radiation output intensity of 0.12 μW / cm 2 is emitted from the nitride-based deep ultraviolet semiconductor light emitting device 102, and the value of the radiation output intensity with respect to a transmission distance of 10 cm (401), a transmission distance of 20 cm (402), and a transmission distance of 30 cm (403) Can be read. Measurement without using the ozone measuring cell 206 is dispersed in the atmosphere before the ultraviolet rays reach the spectroscope 207, and the radiant energy is attenuated. In the measurement using the measurement cell from the experiment, ozone is irradiated many times during transmission while the dispersed ultraviolet rays are reflected by the measurement cell and the sample gas moves through a long transmission distance.

本発明のオゾン濃度測定の仕組みは、気相を対象にしている。しかし、この仕組みは、液相に対しても有効である。濃度測定には、予めオゾンゼロ状態における相対的な受光強度の値を取得しておかねばならない。即ち、本発明を特徴づける最も重要な手段は、オゾンが存在しない状態を計測環境に如何に現出するかにある。この手段には真空や紫外線に不活性な物質充填等を上げることができる。しかしながら、気相と液相では条件が異なり単純に同じ仕組みを適用できない。これは媒質の除去、又は交換のような手間のかかる工程があるからである。この点、本発明では、紫外線の照射により残留オゾンを破壊しオゾンゼロの状態を設定できることに気付いている。破壊されたオゾンの処置や気相で通用した固体発光素子の出力が、液相ではどの程度に調整しなければならないか等、考察すべき項目は多々ある。しかし、前述の理由から、本発明は液相に適用できる特徴を有すると考える。   The mechanism of the ozone concentration measurement of the present invention targets the gas phase. However, this mechanism is also effective for the liquid phase. For the concentration measurement, it is necessary to obtain a value of relative received light intensity in a zero ozone state in advance. In other words, the most important means for characterizing the present invention is how to show the state in which ozone is not present in the measurement environment. This means can be filled with a substance inert to vacuum or ultraviolet rays. However, conditions differ between the gas phase and the liquid phase, and the same mechanism cannot be applied simply. This is because there are time-consuming processes such as removal or replacement of the medium. In this regard, in the present invention, it has been found that the residual ozone can be destroyed and the state of zero ozone can be set by irradiation with ultraviolet rays. There are many items to be considered, such as how to deal with the destruction of ozone and how much the output of the solid state light emitting device used in the gas phase should be adjusted in the liquid phase. However, for the reasons described above, the present invention is considered to have characteristics that can be applied to the liquid phase.

具体的には、液相ゼロ設定値を取得する際は液相の進入、排出をなくす為にバルブは閉め計測する液相を閉じ込める。計測に使用するすべての固体発光素子から紫外線を連続照射することにより、計測部に閉じ込められた液相に含まれるオゾンを破壊する。液相に含まれるオゾンがすべて破壊された状態では、強度センサが受ける受光強度は変化しない。従って、透過してきた紫外線の受光強度を少なくとも2回測定し、強度センサの値が変化しなくなったときの強度センサの値を液相オゾンゼロにおける受光強度とする事になる。   Specifically, when acquiring the liquid phase zero set value, the valve is closed to confine the liquid phase to be measured in order to eliminate the entry and discharge of the liquid phase. By continuously irradiating ultraviolet rays from all solid-state light emitting elements used for measurement, ozone contained in the liquid phase confined in the measurement unit is destroyed. In a state where all the ozone contained in the liquid phase has been destroyed, the received light intensity received by the intensity sensor does not change. Therefore, the received light intensity of the transmitted ultraviolet light is measured at least twice, and the intensity sensor value when the intensity sensor value stops changing is set as the received light intensity at zero liquid phase ozone.

1 ガス交差分離型紫外線吸収式オゾン濃度計
2 ガス交差型紫外線吸収式オゾン濃度計
6 オゾン発生・供給システム
101 真空チャンバ機構
102 窒化物系深紫外半導体発光素子
103 発光素子保護ガラス
104 発光素子取り付け部
105 発光素子アダプタ
106 平行レンズ部
107 試料ガス方向
108 ガス排出部
109 ガス注入部
110 集光レンズ部
111 強度センサ
112 増幅器
115 チョッパ駆動電源部
116 流量計
117 流量バルブ
118 チャンバ排気バルブ
119 ガス計測部排気バルブ
120 真空ポンプ
121 排気ガス出口
122 試料ガス入口
123 インターフェイス
124 マイクロコンピュータ
125 表示器
126 照射方向
127 平行レンズ
128 集光レンズ
129 試料ガス計測部
130 光学フィルタ
140 光学フィルタ部
150 取り付けネジ部
160 カバー
161 透過フィルタ部
162 透過フィルタ
163 計測チャンバ機構
164 発光チャンバ機構
165 受光チャンバ機構
201 オゾン発生装置
202 濃度計
203 ポンプ
204 温度・圧力計
205 オゾン分解器
206 オゾン測定用セル
207 分光器
208 オゾンを通過した光
209 光源部
DESCRIPTION OF SYMBOLS 1 Gas cross-separation type ultraviolet absorption ozone concentration meter 2 Gas cross-type ultraviolet absorption ozone concentration meter 6 Ozone generation and supply system 101 Vacuum chamber mechanism 102 Nitride-based deep ultraviolet semiconductor light emitting element 103 Light emitting element protection glass 104 Light emitting element mounting portion 105 Light emitting element adapter 106 Parallel lens unit 107 Sample gas direction 108 Gas discharge unit 109 Gas injection unit 110 Condensing lens unit 111 Intensity sensor 112 Amplifier 115 Chopper drive power supply unit 116 Flow meter 117 Flow valve 118 Chamber exhaust valve 119 Gas measurement unit exhaust Valve 120 Vacuum pump 121 Exhaust gas outlet 122 Sample gas inlet 123 Interface 124 Microcomputer 125 Display 126 Irradiation direction 127 Parallel lens 128 Condensing lens 129 Sample gas measurement unit 130 Optical filter 14 Optical filter section 150 Mounting screw section 160 Cover 161 Transmission filter section 162 Transmission filter 163 Measurement chamber mechanism 164 Light emission chamber mechanism 165 Light reception chamber mechanism 201 Ozone generator 202 Density meter 203 Pump 204 Temperature / pressure gauge 205 Ozone decomposer 206 For ozone measurement Cell 207 Spectrometer 208 Light 209 that has passed through ozone 209 Light source

Claims (9)

200nm〜320nmの波長域を含む紫外線を発光する固体発光素子が少なくとも1個備わった発光チャンバ機構と、試料ガス計測部を挟んで試料ガスを吹き出すガス注入部と該試料ガスを吸い込むガス排出部とが相対する位置に少なくとも1対設けられ、前記発光チャンバ機構から来た紫外線が、前記ガス注入部から前記ガス排出部へ向かう前記試料ガス計測部中の試料ガスの流れと直角の方向に透過する構造を有する計測チャンバ機構と、前記計測チャンバ機構を出た紫外線を受光し、該受光強度を計測する強度センサを備えた受光チャンバ機構とが、取り外し可能な前記3機構により構成され、オゾン無しの状態の前記計測チャンバ機構内を透過してきた紫外線を前記強度センサで受け、該受光強度の値をオゾンゼロ値とするゼロ設定値取得手段と、前記試料ガスが流れた状態にある前記試料ガス計測部中を、紫外線が透過したときの前記強度センサの受光値と発光強度とみなした前記オゾンゼロ値とでオゾン濃度を算出するオゾン濃度算出手段を有することを特徴とするオゾン濃度測定装置。   A light emitting chamber mechanism provided with at least one solid-state light emitting element that emits ultraviolet rays including a wavelength region of 200 nm to 320 nm, a gas injection unit that blows out a sample gas across the sample gas measurement unit, and a gas discharge unit that sucks the sample gas Are provided at at least one pair at opposite positions, and ultraviolet rays from the light emission chamber mechanism are transmitted in a direction perpendicular to the flow of the sample gas in the sample gas measuring unit from the gas injection unit to the gas discharge unit. A measurement chamber mechanism having a structure and a light receiving chamber mechanism having an intensity sensor that receives ultraviolet light emitted from the measurement chamber mechanism and measures the received light intensity are constituted by the three mechanisms that can be removed, and have no ozone. The ultraviolet light transmitted through the measurement chamber mechanism in the state is received by the intensity sensor, and the zero value is set so that the received light intensity value is the ozone zero value. The ozone concentration is calculated by the value acquisition means and the light receiving value of the intensity sensor when the ultraviolet light is transmitted and the ozone zero value regarded as the light emission intensity in the sample gas measuring unit in a state where the sample gas flows. An ozone concentration measuring device having an ozone concentration calculating means. 前記発光チャンバ機構は、真空又は不活性ガス充填の状態で密閉されており、チョッパ駆動電源部を制御することにより該機構内の前記固体発光素子が紫外線を断続発光し、該紫外線が平行レンズを経由して平行光になり、光学フィルタに到達し、該光学フィルタを指定された単一波長の紫外線が透過して前記計測チャンバ機構へ入射する請求項1に記載のオゾン濃度測定装置。   The light emitting chamber mechanism is hermetically sealed in a vacuum or filled with an inert gas, and the solid light emitting element in the mechanism intermittently emits ultraviolet light by controlling the chopper drive power supply, and the ultraviolet light passes through the parallel lens. 2. The ozone concentration measuring apparatus according to claim 1, wherein the ozone concentration measuring device is converted into parallel light and reaches an optical filter, and ultraviolet light having a specified single wavelength passes through the optical filter and enters the measurement chamber mechanism. 前記チョッパ駆動電源部の紫外線発光の断続周期は、紫外線を点滅させてオゾン計測を実行する短周期と、第1の前記短周期と第2の前記短周期の間に、前記第1の短周期において紫外線照射された前記試料ガスが前記ガス排出部へ吸引される時間を予想して紫外線照射を中断するガス排出予想時間を設け、該第1の短周期と該ガス排出予想時間を合わせた間隔である長周期と、からなり、前記2つの周期をコンピュータ制御により実行する請求項1又は2に記載のオゾン濃度測定装置。   The intermittent period of the ultraviolet light emission of the chopper drive power supply unit is between the first short period and the second short period between the short period in which ozone measurement is performed by blinking ultraviolet light, and the first short period. Estimating the time for which the sample gas irradiated with ultraviolet rays is sucked into the gas discharge portion in the above, an expected gas discharge time for interrupting the ultraviolet irradiation is provided, and an interval that combines the first short period and the expected gas discharge time The ozone concentration measuring apparatus according to claim 1, wherein the two periods are executed by computer control. 前記受光チャンバ機構は、真空又は不可性ガス充填の状態で密閉されており、前記計測チャンバ機構を出た紫外線は該機構内に設けた集光レンズにより、集束され、前記強度センサに照射される請求項1乃至3のいずれか1項に記載のオゾン濃度測定装置。   The light receiving chamber mechanism is hermetically sealed in a vacuum or incapable gas filled state, and the ultraviolet light emitted from the measuring chamber mechanism is focused by a condensing lens provided in the mechanism and irradiated to the intensity sensor. The ozone concentration measuring apparatus according to any one of claims 1 to 3. 前記ゼロ設定値取得手段は、前記計測チャンバ機構内を一時密閉して外部空気の侵入を遮断し、計測に使用するすべての前記固体発光素子から紫外線を連続照射することにより、該計測チャンバ機構内のオゾンを破壊する過程において、透過してきた紫外線の受光強度を少なくとも2回測定し、前記強度センサの値が変化しなくなったときの前記強度センサの値をオゾンゼロにおける受光強度とすることを特徴とする請求項1乃至4のいずれか1項に記載のオゾン濃度測定装置。   The zero set value acquisition means temporarily seals the inside of the measurement chamber mechanism to block the intrusion of external air, and continuously irradiates ultraviolet rays from all the solid state light emitting elements used for the measurement, so that the inside of the measurement chamber mechanism In the process of destroying ozone, the received light intensity of transmitted ultraviolet rays is measured at least twice, and the value of the intensity sensor when the value of the intensity sensor stops changing is the received light intensity at zero ozone. The ozone concentration measuring apparatus according to any one of claims 1 to 4. 前記オゾン濃度算出手段は、前記計測チャンバ機構に入射した紫外線が前記試料ガス計測部をオゾンに吸光されつつ通過して前記強度センサに到達したときの測定値を前記長周期毎に記録し、該記録データから最頻値を算出して受光強度とみなし、前記オゾンゼロにおける受光強度を発光強度とみなし、オゾン濃度を算出する請求項1乃至5のいずれか1項に記載のオゾン濃度測定装置。   The ozone concentration calculation means records the measurement value when the ultraviolet light incident on the measurement chamber mechanism passes through the sample gas measurement unit while being absorbed by ozone and reaches the intensity sensor for each long period, The ozone concentration measuring apparatus according to any one of claims 1 to 5, wherein the ozone concentration is calculated by calculating the mode value from the recorded data and regarding the received light intensity, regarding the received light intensity at zero ozone as the emitted light intensity. 前記固体発光素子は、電力制御により1個当たりの固体発光素子の放射出力強度が0.015〜0.12μw/cm2に設定できる窒化物系深紫外半導体素子であることを特徴とする請求項1乃至6のいずれか1項に記載のオゾン濃度測定装置。   2. The solid-state light emitting device is a nitride-based deep ultraviolet semiconductor device capable of setting a radiation output intensity per solid light-emitting device to 0.015 to 0.12 μw / cm 2 by power control. The ozone concentration measuring apparatus according to any one of items 1 to 6. 前記ゼロ設定値取得手段におけるオゾンゼロ化の手段には、前記計測チャンバ機構内を密閉し、減圧又は真空にする手段を含む請求項1乃至7のいずれか1項に記載のオゾン濃度測定装置。   The ozone concentration measuring apparatus according to any one of claims 1 to 7, wherein means for zeroing ozone in the zero set value obtaining means includes means for sealing the inside of the measurement chamber mechanism and reducing the pressure or vacuum. 前記ゼロ設定値取得手段におけるオゾンゼロ化の手段には、前記計測チャンバ機構内を密閉し、不活性ガスを充填する手段を含む請求項1乃至7のいずれか1項に記載のオゾン濃度測定装置。   The ozone concentration measuring apparatus according to any one of claims 1 to 7, wherein means for zeroing ozone in the zero set value obtaining means includes means for sealing the inside of the measurement chamber mechanism and filling with an inert gas.
JP2011038925A 2011-02-24 2011-02-24 Ozone concentration measurement device Withdrawn JP2012173273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038925A JP2012173273A (en) 2011-02-24 2011-02-24 Ozone concentration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038925A JP2012173273A (en) 2011-02-24 2011-02-24 Ozone concentration measurement device

Publications (1)

Publication Number Publication Date
JP2012173273A true JP2012173273A (en) 2012-09-10

Family

ID=46976289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038925A Withdrawn JP2012173273A (en) 2011-02-24 2011-02-24 Ozone concentration measurement device

Country Status (1)

Country Link
JP (1) JP2012173273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059784A (en) * 2013-09-18 2015-03-30 有限会社光電鍍工業所 Ozone concentration measurement apparatus
CN110441203A (en) * 2019-09-11 2019-11-12 生态环境部华南环境科学研究所 One kind is for active oxygen on-line monitoring acquisition equipment and monitoring device
CN113916821A (en) * 2021-09-22 2022-01-11 苏州天一信德环保科技有限公司 Ozone concentration measuring system and method for measuring ozone concentration by using same
WO2024009681A1 (en) * 2022-07-06 2024-01-11 株式会社堀場製作所 Gas analysis device, gas analysis method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059784A (en) * 2013-09-18 2015-03-30 有限会社光電鍍工業所 Ozone concentration measurement apparatus
CN110441203A (en) * 2019-09-11 2019-11-12 生态环境部华南环境科学研究所 One kind is for active oxygen on-line monitoring acquisition equipment and monitoring device
CN110441203B (en) * 2019-09-11 2024-04-05 生态环境部华南环境科学研究所 Online active oxygen monitoring and capturing device and monitoring device
CN113916821A (en) * 2021-09-22 2022-01-11 苏州天一信德环保科技有限公司 Ozone concentration measuring system and method for measuring ozone concentration by using same
CN113916821B (en) * 2021-09-22 2024-03-22 苏州天一信德环保科技有限公司 Ozone concentration measuring system and method for measuring ozone concentration by using same
WO2024009681A1 (en) * 2022-07-06 2024-01-11 株式会社堀場製作所 Gas analysis device, gas analysis method, and program

Similar Documents

Publication Publication Date Title
JP2013088371A (en) Ozone concentration measuring apparatus
CA2203775C (en) Diode laser-pumped and linear cavity laser systems for ultra-sensitive gas detection via intracavity laser spectroscopy (ils)
Luo et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy
US7069769B2 (en) Ultraviolet photoacoustic ozone detection
US7968854B2 (en) Device for sterilizing a fluid
DE60232749D1 (en) METHOD FOR DETECTING GASES BY ABSORPTION SPECTROSCOPY
JP2012173273A (en) Ozone concentration measurement device
US20130015362A1 (en) Fluid purification and sensor system
US8699030B2 (en) Apparatus for sensing of chlorine dioxide
Onel et al. An intercomparison of HO 2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
JP2009520205A5 (en)
KR20110119719A (en) Method for material processing and laser processing device for material processing
WO2016125338A1 (en) Gas analyzing method and gas analyzing device
KR102051684B1 (en) Deterioration detection device and method for ultraviolet ray discharge lamp
JP2011075449A (en) Hydroxyl radical-containing water supply system
JP5239000B2 (en) Ozone concentration measuring device
JP2010169444A (en) Aerosol spectroscopic analyzer, and method for calibrating the same
JP2004502136A (en) Method and apparatus for detecting compounds in a gas stream
JP6908110B2 (en) Water quality measuring device and water quality measuring method
JP2012242311A (en) Gas analyzer
JP2006267047A (en) Substance detector and substance detection method utilizing laser beam
JP2012220250A (en) Gas concentration measuring apparatus and gas concentration measuring method
JP5670717B2 (en) Ozone gas supply device
JP2006300706A (en) Life decision method for ultraviolet light source, ultraviolet light source device, and ultraviolet irradiation device
JP5772166B2 (en) Detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513