JP2012173228A - 放射線発生体収納施設 - Google Patents

放射線発生体収納施設 Download PDF

Info

Publication number
JP2012173228A
JP2012173228A JP2011037816A JP2011037816A JP2012173228A JP 2012173228 A JP2012173228 A JP 2012173228A JP 2011037816 A JP2011037816 A JP 2011037816A JP 2011037816 A JP2011037816 A JP 2011037816A JP 2012173228 A JP2012173228 A JP 2012173228A
Authority
JP
Japan
Prior art keywords
duct
radiation
horizontal
building
base end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011037816A
Other languages
English (en)
Inventor
Yutaka Tanaka
豊 田中
Makoto Morishima
誠 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011037816A priority Critical patent/JP2012173228A/ja
Publication of JP2012173228A publication Critical patent/JP2012173228A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Particle Accelerators (AREA)

Abstract

【課題】冷却空気の圧損を低減し、放射線を効果的に遮断して漏洩を防ぐ。
【解決手段】建屋102には放射線発生体103が収納され、建屋103には吸気ダクト110と排気ダクト120が連通している。吸排気ダクト110,120は、水平ダクト111,121と、これに連通した鉛直ダクト112,122とで構成されており、水平ダクト111,121のダクト空間のうち先端側は放射線減衰空間R1,R2となっている。吸排気ダクト110,120内には放射線遮蔽板はなく、空気は低圧損で流通し、放射線は放射線減衰空間R1,R2で反射・吸収されて外部漏洩することはない。低圧損であるため、排気ダクト120を低くしても効果的な自然循環流通ができる。
【選択図】図1

Description

本発明は放射線発生体収納施設に関し、冷却空気の圧損が小さく且つ放射線を効率的に遮蔽することができるように吸排気ダクトに工夫をしたものである。
放射性発生物質や放射線発生機器を取り扱う施設においては、施設外への放射線放出量が厳しく管理されている。放射線放出量を低減するためには、放射線が外部に漏れないように、気密性のある施設が求められる。また、放射線は物質透過性を持つために、施設の壁や天井を厚くする必要がある。
このような原子力関連の施設として、放射線発生体を収納する放射線発生体収納施設がある。
具体的には、高放射性廃棄物とガラスを混ぜて一体化したガラス固化体を貯蔵するガラス固化体貯蔵施設や、使用済燃料を収納したキャスクを貯蔵するキャスク貯蔵施設や、放射線発生装置が設置された放射線発生施設などがある。
ガラス固化体やキャスクや放射線発生装置は放射線(中性子線やX線やγ線など)を発生する放射線発生体である。
またガラス固化体は製造直後の表面温度が200°Cを越える発熱体であり、キャスクは崩壊熱などにより熱を発生する発熱体であり、放射線発生装置は稼働時に熱を発生する発熱体である。
発熱する放射線発生体を空気冷却するためには、施設の建屋内の換気が必要であり、施設には吸排気ダクトが設置されている。
吸排気ダクトは空気の通り道になるだけでなく、放射線の通り道となる。このため、吸排気ダクトを通って放射線が施設の外に放出されないように、ダクトを屈曲させたり、ダクトの中に放射線遮蔽板を置いたりすることで、流路を蛇行させて放射線の遮蔽を行っている。
このようにすると、直進する放射線は、屈曲したダクトの内壁面やダクト内に配置した放射線遮蔽板に衝突して減衰・吸収されて外部へ漏洩することがなくなる。
一方、ダクトを屈曲させたり、ダクト内に放射線遮蔽板を置いたりすることで、流路を蛇行させても、空気は流通することができ空気冷却を行うことができる。
空気冷却をする方式としては、ファンを用いる強制循環方式と、自然の力を利用した自然循環方式があるが、放射線発生体収納施設としては、停電時の対応や長期冷却の観点から、自然循環方式が有利である。
自然循環を促進させるためには、流路の圧損が低いことが望ましいが、放射線遮蔽のためにダクト内に放射線遮蔽板を配置したり、ダクトを屈曲させたりすることは、吸排気ダクトとの圧損を増やす要因となっている。
放射線遮蔽のためにダクトを屈曲させたりダクト内に放射線遮蔽板を置いたりすることで、吸排気ダクトの圧損が増えた分は、自然循環の駆動力を増やす必要がある。そこで自然循環駆動力を増加させるために、排気口の高さを高くする必要がでてきている(例えば特許文献1参照)。
図9は、従来の放射線発生体収納施設1の一例を示す。この放射線発生体収容施設1は、自然循環方式により空気冷却をする施設であり、建屋2は地中に掘り下げられて設けられている。つまり、建屋2はその下部側が地中に入っており、上部側は大気側に露出している。
建屋2内には、放射線発生体3が収納されている。放射線発生体3は、放射線(中性子線やX線やγ線など)を発生する、例えば、ガラス固化体やキャスクや放射線発生装置である。
吸気ダクト10は、その基端部10aが建屋2の内部空間に連通しており、その吸気口10bが大気に開口している。吸気ダクト10は屈曲しており、しかも、吸気ダクト10の内部に複数の放射線遮蔽板11を配置している。
排気ダクト20は、その基端部20aが建屋2の内部空間に連通しており、その排気口20bが大気に開口している。排気ダクト20は屈曲しており、しかも、吸気ダクト20の内部に複数の放射線遮蔽板21を配置している。
図9において、空気の流れは点線の矢印で示しており、放射線の進行は実線の矢印で示している。
空気は吸気ダクト10内を通って建屋2の内部に入って、放射線発生体3を空気冷却する。温度上昇した空気は、排気ダクト20内を通って外部の大気中に排出される。
放射線発生体3から発生した放射線は直進し、屈曲したダクト10,20の内壁面や放射線遮蔽板11,21に衝突し、エネルギー減衰して放射線遮蔽板11,21等に吸収され、外部に漏洩することはない。
排気ダクト20は、屈曲すると共に内部に放射線遮蔽板21が配置されているため、流通する空気の圧損が増加する。そこで、圧損が増えた分を補填するため、排気口20bの高さを高くして自然循環の駆動力を増やしている。
特開2000―180586
耐震要求を満たした高い建造物はコスト高につながると共に、景観を損なう要因となる。特に放射線発生体収容施設1の排気ダクト20が高くなり、排気口20bが高所に位置することは、周辺住民にとって望ましいものではない。
本発明は、上記従来技術に鑑み、低圧損で放射線を効率的に遮蔽し、しかも、排気ダクトを低くすることができる放射線発生体収容施設を提供することを目的とする。
上記課題を解決する本発明の構成は、
放射線発生体を収納する建屋と、前記建屋に連通した吸気ダクトと、前記建屋に連通した排気ダクトを備えた放射線発生体収納施設において、
前記吸気ダクトと前記排気ダクトの少なくとも一方は、
水平ダクトと鉛直ダクトとで構成されており、
前記水平ダクトは、その基端部が前記建屋の内部空間に連通しており、その基端部から水平方向に伸びて、先端面が閉塞しており、
前記鉛直ダクトは、その基端部が前記水平ダクトに連通しており、その基端部から鉛直方向上方に向かって立ち上がっており、その先端には大気に開口した開口部が形成されており、
しかも、前記鉛直ダクトの基端部が前記水平ダクトに連通している位置は、前記水平ダクトの基端部と前記水平ダクトの先端面との間の位置になっていることを特徴とする。
また本発明の構成は、
前記建屋は、その下部側が地中に入っており、その上部側が大気側に露出しており、
前記水平ダクトは、地中に配置され、
前記鉛直ダクトは、その基端部側が地中に配置され、上側部分は大気中に配置されていることを特徴とする。
また本発明の構成は、
前記水平ダクトのうち前記鉛直ダクトが連通している部分よりも前記先端面側には、前記水平ダクトの内壁面に固定されると共に、水平ダクトの内部空間に突出するにつれて前記先端面側に向かうように傾斜している複数枚の放射線反射板が配置されていることを特徴とする。
また本発明の構成は、
前記水平ダクトの内部空間のうち前記鉛直ダクトが連通している部分よりも前記先端面側には、相互に間隔を開けつつ平行な状態で複数枚の放射線反射板が配置されていることを特徴とする。
本発明では、ダクト流路中に遮蔽板などの構造物が無く、圧損が低減しダクトの高さを低くすることができる。
また、水平ダクトの内部空間のうち鉛直ダクトが連通している部分よりも先端面側が放射線減衰空間となり、この放射線減衰空間にて放射線を効果的に反射・減衰させることができ、放射線が外部に漏洩することを防止できる。
本発明の実施例に係る放射線発生体収納施設を示す構成図。 放射線減衰の効果を説明するための説明図。 放射線減衰空間に放射線反射板を配置した例を示す断面図。 放射線減衰空間に配置した放射線反射板を示す平面図。 放射線減衰空間に放射線反射板を配置した例を示す断面図。 図5のA矢視図。 放射線減衰空間に放射線反射板を配置した例を示す構成図。 放射線減衰空間に放射線反射板を配置した例を示す構成図。 従来の放射線発生体収納施設の一例を示す構成図。
以下、本発明の実施の形態について、実施例に基づき詳細に説明する。
図1は、本発明の実施例1に係る放射線発生体収納施設101を示す。この放射線発生体収容施設101は、自然循環方式により空気冷却をする施設であり、建屋102は地中に掘り下げられて設けられている。つまり、建屋102はその下部側が地中に入っており、上部側は大気側に露出している。この建屋102の壁面(側面、天井面、床面)は、放射線を遮蔽するコンクリートなどで形成されている。
建屋102内には、放射線発生体103が収納されている。放射線発生体103は、放射線(中性子線やX線やγ線など)を発生する、例えば、ガラス固化体やキャスクや放射線発生装置である。
吸気ダクト110は、水平ダクト111と垂直ダクト112とを連通して構成されている。
水平ダクト111は、地中に配置された水平方向に伸びるダクトであり、その基端部111aが建屋102の内部空間に連通しており、その先端面111bは閉塞している。
鉛直ダクト112は、鉛直方向に配置されており、その基端部112aが水平ダクト111に連通している。しかも、鉛直ダクト112の基端部112aが水平ダクト111に連通している位置は、水平ダクト111の基端部111aと先端面111bとの間の位置になっている。この鉛直ダクト112は、水平ダクト111の配置位置から鉛直方向上方に向かって立ち上がっており、先端には大気に開口した吸気口112bが形成されている。この鉛直ダクト112は、基端部112a側の部分が地中に配置され、上側部分は大気中に配置されている。
この吸気ダクト110では、水平ダクト111の内部空間のうち、鉛直ダクト112が連通している部分よりも、先端面111b側の空間が放射線減衰空間R1となっている。なお、吸気ダクト110内には、放射線遮蔽板は配置していない。
排気ダクト120は、水平ダクト121と垂直ダクト122とを連通して構成されている。
水平ダクト121は、地中に配置された水平方向に伸びるダクトであり、その基端部121aが建屋102の内部空間に連通しており、その先端面121bは閉塞している。
鉛直ダクト122は、鉛直方向に配置されており、その基端部122aが水平ダクト121に連通している。しかも、鉛直ダクト122の基端部122aが水平ダクト121に連通している位置は、水平ダクト121の基端部121aと先端面121bとの間の位置になっている。この鉛直ダクト122は、水平ダクト121の配置位置から鉛直方向上方に向かって立ち上がっており、先端には大気に開口した排気口122bが形成されている。この鉛直ダクト122は、基端部122a側の部分が地中に配置され、上側部分は気中に配置されている。
この排気ダクト120では、水平ダクト121の内部空間のうち、鉛直ダクト122が連通している部分よりも、先端面121b側の空間が放射線減衰空間R2となっている。なお、吸気ダクト120内には、放射線遮蔽板は配置していない。
図1において、空気の流れは点線の矢印で示しており、放射線の進行は実線の矢印で示している。
空気は吸気ダクト110内を通って建屋102の内部に入って、放射線発生体103を空気冷却する。温度上昇した空気は、排気ダクト120内を通って外部の大気中に排出される。
このとき、吸気ダクト110及び排気ダクト120内に、放射線遮蔽板を配置していないため、ダクト110,120内を流通する空気の圧損は少ない。このように流通空気の圧損を少なくすることができるため、排気ダクト120の高さを、放射線遮蔽板を配置しているものに比べて、低くすることができる。
なお、放射線減衰空間R1,R2はいわば「袋小路の空間」となっており、空気が淀むが、この空気淀みは圧損をほとんど増加させることはない。
一方、放射線発生体103から発生した放射線は直進し、「袋小路の空間」となっている放射線減衰空間R1,R2に進行し、この放射線減衰空間R1,R2を形成している水平ダクト111、121の内壁面に衝突し、更に多重反射してエネルギー減衰し、水平ダクト111,121に吸収され、外部に漏洩することはない。
このように、実施例1の放射線発生体収容施設101では、吸気ダクト110及び排気ダクト120内の空気の流路に、圧損の要因となる放射線遮蔽板などの構造物を置かないようにしたことで、圧損を低減することができる。併せて、排気ダクト120の高さを低くすることができる。
また、空気は袋小路となっている放射線減衰空間R1,R2では淀んで流れないが、放射線は空気の淀みに関係なく直進することを利用して、放射線減衰空間R1,R2で放射線を減衰させることができる。
このように、実施例1では、放射線の遮蔽と圧損低減を両立することができる。
ここで、放射線減衰空間の有無により、「放射線減衰の効果」と「圧損の影響」がどのように変化するかの概要を、図1及び図2を参照して説明する。
なお、図2(a)は、放射線減衰空間が無いものの概要図であり、図2(b)は、放射線減衰空間が有るものの概要図である。
図2(a)、(b)を参照して放射線減衰の効果を概説する。
図2(a)のように放射線減衰空間がない場合は、排気口(図中*を付した部分)から直接散乱面(1回散乱)をみることができるため、放射線が多数到来する。
一方、図2(b)のように、放射線減衰空間がある場合は、直接散乱面は見ることができなくなる。排気口から直視できるのは間接散乱面であり、間接散乱面に入射する時点で既に放射線は散乱を経験している。1回の散乱あたりの減衰比(散乱比)は数分の1から数10分の1(粒子、エネルギーに依存)であり、仮に1/2としても、放射線減衰空間による放射線減衰効果は、放射線減衰空間が無いものに比べて2倍以上と見込める。
また、図1の放射線発生体収容施設101において、放射線減衰空間R1,R2を設けることによる圧損増加率は、数%に過ぎず、従来のダクト内の放射線遮蔽板を排除できるため圧損は大幅に低減される。
図1、図2を参照して概説したように、放射線減衰空間を備えることにより、放射線を大幅に減衰することができ、かつ、図9に示すような従来技術に比べて圧損を低減できる。
なお実施例1では、建屋102は半地下の建屋となっており、水平ダクト111,121は地下に埋設され、垂直ダクト112,122は基端部側が地中に配置されているが、建屋が地上に敷設されているものでは、水平ダクト111,121及び垂直ダクト112,122を気中(地上)に配置する構造とする。この場合には、ダクト110,120のうち少なくとも水平ダクト111,121を放射線遮蔽材により形成するか、少なくとも水平ダクト111,121に放射線遮蔽材を施す。
また、吸気ダクトと排気ダクトのうち、一方のダクトを、図9に示すような従来構造とすることも可能である。
次に、実施例1の放射線発生体収容施設101の放射線減衰空間における減衰効果を高めた第1の工夫を、実施例2として説明する。
図3は排気ダクト120の放射線減衰空間R2の部分を示す断面図であり、図4は放射線減衰空間R2を上から見た平面図である。
両図に示すように、放射線減衰空間R2には、複数枚(本例では4枚)の放射線反射板130a〜130dが配置されている。
放射線反射板130a〜130dは、水平ダクト121のうち放射線減衰空間R2を形成するダクト内壁面に固定されており、ダクト内壁面から放射線減衰空間R2に突出するにつれて先端面121b側に向かうように、傾斜して配置されている。
放射線減衰空間R2に、放射線反射板130a〜130dを傾斜配置しているため、放射線発生体103から進行してきて放射線減衰空間R2に侵入した放射線は、水平ダクト121の内壁面のみならず放射線反射板130a〜130dでも反射し、反射回数が増加し減衰効果が高まる。
しかも、傾斜配置された放射線反射板130a〜130dは、放射線減衰空間R2に侵入し反射した放射線が建屋102側に戻ることを遮り、放射線減衰空間R2内に閉じ込める作用をする。
このように放射線反射板130a〜130dにより、放射線の多重反射や閉じ込めを促進できるため、放射線減衰空間R2を小さくすることができる。
なお放射線減衰空間R2は、空気の流れに対して淀み部であるため、放射線減衰空間R2に放射線反射板130a〜130dを配置しても、圧損を増加させることはない。
また、吸気ダクト110側の放射線減衰空間R1にも、図3,図4に示すのと同様な傾斜した放射線反射板を配置することもできる。
次に、実施例1の放射線発生体収容施設101の放射線減衰空間における減衰効果を高めた第2の各種の工夫を、実施例3として説明する。
図5は排気ダクト120の放射線減衰空間R2の部分を示す断面図であり、図6は図5のA矢視図である。
図5,図6に示すように、放射線減衰空間R2には、水平面内で広がる放射線反射板131が多数枚(本例では6枚)、相互に間隔を開けつつ平行な状態で、上下(鉛直)方向にずらして配置している。
図5,図6に示すように、多数枚の放射線反射板131を配置して、放射線減衰空間R2を複数空間に区切っているため、放射線の通り道を狭めることで多重反射が促進され、減衰が進む。これにより、放射線減衰空間R2の体積を小さくすることが可能となる。
図7に示すものでは、放射線減衰空間R2には、鉛直面内で広がる放射線反射板132が多数枚(本例では6枚)、相互に間隔を開けつつ平行な状態で、左右(水平)方向にずらして配置している。
図7に示すように、多数枚の放射線反射板132を配置して、放射線減衰空間R2を複数空間に区切っているため、放射線の通り道を狭めることで多重反射が促進され、減衰が進む。これにより、放射線減衰空間R2の体積を小さくすることが可能となる。
図8に示すものでは、放射線減衰空間R2には、放射線反射板133を格子状に組んだものを配置している。
図8に示すように、格子状に組んだ放射線反射板133を配置して、放射線減衰空間R2を複数空間に区切っているため、放射線の通り道を狭めることで多重反射が促進され、減衰が進む。これにより、放射線減衰空間R2の体積を小さくすることが可能となる。
なお放射線減衰空間R2は、空気の流れに対して淀み部であるため、放射線減衰空間R2に放射線反射板131,132,133を配置しても、圧損を増加させることはない。
また、吸気ダクト110側の放射線減衰空間R1にも、図5〜図8に示すのと同様な多数枚の放射線反射板を配置することもできる。
本発明は、ガラス固化体を貯蔵するガラス固化体貯蔵施設や、使用済燃料を収納したキャスクを貯蔵するキャスク貯蔵施設や、放射線発生装置が設置された放射線発生施設など、放射線発生体を収納する放射線発生体収納施設に適用することができる。
1、101 放射線発生体収納施設
2、102 建屋
3、103 放射線発生体
10、110 吸気ダクト
111 水平ダクト
112 鉛直ダクト
20、120 排気ダクト
121 水平ダクト
122 鉛直ダクト
130a〜130d、131、132、133 放射線反射板

Claims (4)

  1. 放射線発生体を収納する建屋と、前記建屋に連通した吸気ダクトと、前記建屋に連通した排気ダクトを備えた放射線発生体収納施設において、
    前記吸気ダクトと前記排気ダクトの少なくとも一方は、
    水平ダクトと鉛直ダクトとで構成されており、
    前記水平ダクトは、その基端部が前記建屋の内部空間に連通しており、その基端部から水平方向に伸びて、先端面が閉塞しており、
    前記鉛直ダクトは、その基端部が前記水平ダクトに連通しており、その基端部から鉛直方向上方に向かって立ち上がっており、その先端には大気に開口した開口部が形成されており、
    しかも、前記鉛直ダクトの基端部が前記水平ダクトに連通している位置は、前記水平ダクトの基端部と前記水平ダクトの先端面との間の位置になっていることを特徴とする放射線発生体収納施設。
  2. 請求項1において、
    前記建屋は、その下部側が地中に入っており、その上部側が大気側に露出しており、
    前記水平ダクトは、地中に配置され、
    前記鉛直ダクトは、その基端部側が地中に配置され、上側部分は大気中に配置されていることを特徴とする放射線発生体収納施設。
  3. 請求項1において
    前記水平ダクトのうち前記鉛直ダクトが連通している部分よりも前記先端面側には、前記水平ダクトの内壁面に固定されると共に、水平ダクトの内部空間に突出するにつれて前記先端面側に向かうように傾斜している複数枚の放射線反射板が配置されていることを特徴とする放射線発生体収納施設。
  4. 請求項1において
    前記水平ダクトの内部空間のうち前記鉛直ダクトが連通している部分よりも前記先端面側には、相互に間隔を開けつつ平行な状態で複数枚の放射線反射板が配置されていることを特徴とする放射線発生体収納施設。
JP2011037816A 2011-02-24 2011-02-24 放射線発生体収納施設 Withdrawn JP2012173228A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037816A JP2012173228A (ja) 2011-02-24 2011-02-24 放射線発生体収納施設

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037816A JP2012173228A (ja) 2011-02-24 2011-02-24 放射線発生体収納施設

Publications (1)

Publication Number Publication Date
JP2012173228A true JP2012173228A (ja) 2012-09-10

Family

ID=46976250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037816A Withdrawn JP2012173228A (ja) 2011-02-24 2011-02-24 放射線発生体収納施設

Country Status (1)

Country Link
JP (1) JP2012173228A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200477301Y1 (ko) * 2014-10-29 2015-06-09 이건호 환기설비용 냄새역류방지장치
CN112601340A (zh) * 2020-12-21 2021-04-02 上海高鹰科技有限公司 一种加速器波导加气装置的防辐射结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200477301Y1 (ko) * 2014-10-29 2015-06-09 이건호 환기설비용 냄새역류방지장치
CN112601340A (zh) * 2020-12-21 2021-04-02 上海高鹰科技有限公司 一种加速器波导加气装置的防辐射结构

Similar Documents

Publication Publication Date Title
JP2012173228A (ja) 放射線発生体収納施設
US9466399B2 (en) Expansion gap radiation shield
JP2008111674A (ja) 保管構造
US2868992A (en) Reactor viewing apparatus
JP4340521B2 (ja) 原子炉建屋
JP2003004888A (ja) 使用済燃料検査装置
WO2020107109A1 (en) Cooling system for nuclear reactor
JP2006010313A (ja) 放射性物質貯蔵建屋
JP2006010330A (ja) 使用済燃料の高密度貯蔵システム
JP2005291796A (ja) 放射性物質乾式貯蔵施設および方法
Montagnini et al. Feasibility of a small accelerator driven subcritical reactor for BNCT applications
Boon et al. Heat load for the APS superconducting undulator
JP2001337200A (ja) 中性子発生装置
JP2008267902A (ja) 放射性物質貯蔵施設
Asai Radiation shielding considerations against gas bremsstrahlung for the transverse wall at the Canadian Light Source
Linander et al. Progress of the ESS monolith design and engineering solutions for target and moderator systems
JP2013250198A (ja) 放射性廃棄体の冷却貯蔵設備
Yang et al. Conceptual design for TRR-II neutron guide system
Sunny et al. Shield structure optimisation studies for the west beam port of the KAMINI reactor
Ben-Shachar et al. Some dosimetric properties of the LiF: Mg, Ti evaluated by the automatic 6600 thermoluminescent reader
Leitner et al. Radiation protection aspects in the design of the Linac Coherent Light Source II
Lavi et al. Neutron activation analysis for environmental trace element research determination of elemental composition of sediments in the Sea of Galillee, Israel
Pelled et al. Limitations of absolute activity determination of I-125 sources
JP2001091690A (ja) 放射線遮蔽施設
Belaish et al. RIS-125 {sup 125} I air monitor system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513