JP2012173070A - Mobile terminal position estimating device, mobile terminal position estimating method, and calculating method of radio wave environmental index - Google Patents

Mobile terminal position estimating device, mobile terminal position estimating method, and calculating method of radio wave environmental index Download PDF

Info

Publication number
JP2012173070A
JP2012173070A JP2011033973A JP2011033973A JP2012173070A JP 2012173070 A JP2012173070 A JP 2012173070A JP 2011033973 A JP2011033973 A JP 2011033973A JP 2011033973 A JP2011033973 A JP 2011033973A JP 2012173070 A JP2012173070 A JP 2012173070A
Authority
JP
Japan
Prior art keywords
mobile terminal
radio wave
bandwidth
position estimation
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011033973A
Other languages
Japanese (ja)
Other versions
JP5691613B2 (en
Inventor
Iku Yokoo
郁 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011033973A priority Critical patent/JP5691613B2/en
Publication of JP2012173070A publication Critical patent/JP2012173070A/en
Application granted granted Critical
Publication of JP5691613B2 publication Critical patent/JP5691613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that in a position estimation of mobile terminal utilizing RSSI (Received Signal Strength Indicator: reception electric field intensity), a tolerance of the position estimation does not become constant by fading and NLOS (Non Line Of Sight: out of prospect) that is influence of radio wave environment.SOLUTION: The mobile terminal receives a signal transmitted from an access point by making the band variable to calculate the RSSI and calculates a radio wave environmental index therefrom. This index calculation is used for weighing each access point at the position estimation by performing the index calculation for every access point.

Description

本発明は、無線LANなどの無線通信システムの移動端末位置の推定に係り、特にアクセスポイントから受信した受信信号より、受信電界強度を利用して移動端末位置を推定する移動端末位置推定装置、移動端末位置推定方法及び電波環境指標算出方法に関わる。   The present invention relates to estimation of a mobile terminal position in a wireless communication system such as a wireless LAN, and in particular, a mobile terminal position estimation apparatus that estimates a mobile terminal position using received electric field strength from a received signal received from an access point, The present invention relates to a terminal location estimation method and a radio wave environment index calculation method.

従来、GPSを搭載しない移動端末に搭載された無線機で、無線LANのアクセスポイント(以下APと表現)から送信される信号の受信電界強度(RSSI: Received Signal Strength Indicator)を測定・収集し、収集したRSSIデータから、移動端末の位置を推定するシステムが知られている。   Conventionally, a radio device mounted on a mobile terminal not equipped with GPS measures and collects a received signal strength indicator (RSSI: Received Signal Strength Indicator) of a signal transmitted from a wireless LAN access point (hereinafter referred to as AP). A system that estimates the position of a mobile terminal from collected RSSI data is known.

例えば、複数のAPによるRSSIのパターンが、場所によって異なるという性質を利用し、あらかじめ測定対象の場所毎にRSSIパターンの収集を行ってデータベースを構築し、実際の利用時には、得られたRSSIパターンと、データベースの内のRSSIパターンが最も近くなる場所を推定結果として出力する方法がある。また、別の例ではAPからの距離と、RSSIの値との関係が、電界強度の距離減衰(パスロス)曲線に近似できる事を利用し、得られたRSSIの組み合わせから距離を推定し、推定された距離と、あらかじめ与えられるAPの位置の情報から、例えば、三辺測量の原理を用いて移動端末の位置を推定する方法を採っている。   For example, by utilizing the property that RSSI patterns by a plurality of APs differ depending on locations, a database is constructed by collecting RSSI patterns for each location to be measured in advance. There is a method of outputting the location where the RSSI pattern in the database is the closest as an estimation result. In another example, using the fact that the relationship between the distance from the AP and the RSSI value can be approximated by a distance attenuation (path loss) curve of the electric field strength, the distance is estimated from the obtained RSSI combination, and the estimation is performed. For example, a method of estimating the position of the mobile terminal using the principle of triangulation from the distance and the AP position information given in advance is adopted.

特開2009−47556号公報JP 2009-47556 A

電子情報通信学会論文誌 B VolJ89−B No−5 pp.742−750IEICE Transactions B VolJ89-B No-5 pp. 742-750

実際の無線チャネルにおいては、信号の多重反射(マルチパス)と、移動端末自身及び周辺の人・物体の移動があり、その結果として、フェージングが生じて、RSSI値は大きく変動する。そのため、前述したようなRSSIを用いた位置推定方式は大きな影響を受ける。そのため、フェージング対策を行うのが一般的である。例えば、非特許文献1では、RSSIのフェージングによる変動を指数分布と見なした上で、最尤推定法を用い、移動端末の位置推定の性能の向上を図っている。しかしながら、フェージングの特性は各場所で大きく異なる。そのため、上記のようなフェージング対策を施したとしても、場所による測定誤差のばらつきが生じる。また、フェージング対策によりフェージングの影響を除いたRSSIが算出できても、移動端末とAPの間に障害物がある場合は位置推定の誤差が大きくなる。これは、移動端末とAP間に障害物がある見通し外の状態(NLOS:Non Line of Sightと呼ばれる)では、電波が障害物を通過する際の吸収、端部での回折、あるいは他の物体に反射して迂回される等の距離減衰以外の減衰を受けるため、移動端末とAP間の直線距離が計算出来ないことに起因する。これに対し、例えば、特許文献1では遮蔽物などの影響を受けた環境下での端末位置の推定システムとして電波の到来時刻と受信信号強度から位置推定を行うシステムが開示されている。なお、NLOSに対し、見通しがある状態はLOS(LOS:Line of Sight)と呼ばれる。   In an actual radio channel, there are multiple reflections of signals (multipath) and movement of the mobile terminal itself and surrounding people / objects. As a result, fading occurs, and the RSSI value varies greatly. Therefore, the position estimation method using RSSI as described above is greatly affected. Therefore, it is common to take measures against fading. For example, in Non-Patent Document 1, the variation due to RSSI fading is regarded as an exponential distribution, and the maximum likelihood estimation method is used to improve the position estimation performance of the mobile terminal. However, fading characteristics vary greatly from place to place. For this reason, even if the above fading countermeasures are taken, variation in measurement error depending on the location occurs. Even if RSSI can be calculated without fading due to fading countermeasures, if there is an obstacle between the mobile terminal and the AP, an error in position estimation becomes large. This is because in an out-of-sight state where there is an obstacle between the mobile terminal and the AP (referred to as NLOS: Non Line of Light), the absorption of radio waves passing through the obstacle, diffraction at the end, or other objects This is due to the fact that the linear distance between the mobile terminal and the AP cannot be calculated because it receives attenuation other than distance attenuation, such as being reflected and detoured. On the other hand, for example, Patent Document 1 discloses a system for estimating a position from a radio wave arrival time and received signal strength as a terminal position estimation system under an environment affected by a shielding object or the like. Note that a state where there is a line of sight with respect to NLOS is called LOS (LOS: Line of Light).

RSSIを利用した移動端末の位置推定は、上述したように、フェージングとNLOSの影響、すなわち電波環境のために、位置推定の誤差が一定しないという問題がある。   As described above, the position estimation of a mobile terminal using RSSI has a problem that the position estimation error is not constant due to the influence of fading and NLOS, that is, the radio wave environment.

無線通信システムの移動端末周辺の複数のアクセスポイントから受信した無線通信システムに係る受信信号、たとえば通信パラメータおよび同期情報を通知するためにAPから定期的に送信されるビーコンパケットなど、から算出した各アクセスポイントのRSSIを、受信信号を帯域幅可変して算出した帯域可変RSSI及び、それを用いて算出される電波環境指標の評価基準で判定し、判定結果を考慮に入れたアクセスポイントのRSSIより移動端末の測位計算を行い、移動端末の位置を推定する。   Each calculated from a received signal related to a wireless communication system received from a plurality of access points around a mobile terminal of the wireless communication system, such as a beacon packet periodically transmitted from an AP to notify communication parameters and synchronization information The RSSI of the access point is determined by the band variable RSSI calculated by varying the bandwidth of the received signal and the evaluation standard of the radio wave environment index calculated using the RSSI, and the RSSI of the access point taking the determination result into consideration The positioning calculation of the mobile terminal is performed and the position of the mobile terminal is estimated.

また、受信信号の帯域幅の可変はアクセスポイントからの受信信号の本来の帯域より狭帯域に設定し、RSSIの評価は電波環境指標としてのCDF(Cummulative Disribution Function:確率密度関数)の傾き、あるいはRSSIの分散値で行う。   Further, the variable bandwidth of the received signal is set to be narrower than the original bandwidth of the received signal from the access point, and the RSSI is evaluated by the slope of a CDF (Cumulative Distribution Function) as a radio wave environment index, or This is done using the RSSI variance.

本発明によれば、通信先との電波環境を判定し、判定結果に応じて移動端末の位置推定を予測し、精度の良い移動端末位置の推定ができる移動端末位置装置、移動端末位置推定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the mobile terminal position apparatus and mobile terminal position estimation method which determine the radio wave environment with a communication destination, predict the position estimation of a mobile terminal according to a determination result, and can estimate a mobile terminal position with sufficient accuracy Can be provided.

本発明の一実施形態の移動端末位置推定システムを示す図である。It is a figure which shows the mobile terminal position estimation system of one Embodiment of this invention. 本発明の一実施形態の移動端末位置推定の基本手順を示す図である。It is a figure which shows the basic procedure of the mobile terminal position estimation of one Embodiment of this invention. 本発明の移動端末の位置推定算出手順(最小二乗法)を示す図である。It is a figure which shows the position estimation calculation procedure (least square method) of the mobile terminal of this invention. 本発明の移動端末の位置推定算出手順(最尤推定法)を示す図である。It is a figure which shows the position estimation calculation procedure (maximum likelihood estimation method) of the mobile terminal of this invention. 本発明の一実施形態の移動端末の位置推定RSSI算出手順を示す図である。It is a figure which shows the position estimation RSSI calculation procedure of the mobile terminal of one Embodiment of this invention. 本発明の一実施形態の電波環境算出とその判定手順(その1)を示す図である。It is a figure which shows the radio wave environment calculation of one Embodiment of this invention, and its determination procedure (the 1). 本発明の電波環境指標算出とその判定手順(その1)のLOS/NLOS判定例を示す図である。It is a figure which shows the LOS / NLOS determination example of the radio wave environment parameter | index calculation of this invention, and its determination procedure (the 1). 本発明の一実施形態の電波環境指標算出とその判定手順(その2)を示す図である。It is a figure which shows the radio wave environment parameter | index calculation of one Embodiment of this invention, and its determination procedure (the 2). 本発明の一実施形態の電波環境指標算出とその判定手順(その2)の分散値を示す図である。It is a figure which shows the dispersion | distribution value of the electromagnetic wave environment parameter | index calculation of one Embodiment of this invention, and its determination procedure (the 2). 本発明の一実施形態の電波環境指標算出とその判定手順(その3)を示す図である。It is a figure which shows the radio wave environment parameter | index calculation of one Embodiment of this invention, and its determination procedure (the 3). 本発明の電波環境指標算出その判定手順(その3)の帯域可変RSSI算出例を示す図である。It is a figure which shows the band variable RSSI calculation example of the radio wave environment parameter | index calculation and its determination procedure (the 3) of this invention.

(実施例1)
図1は本発明の一実施形態の移動端末位置推定システムを示す図である。移動端末位置推定システムは、無線ネットワーク1内の複数の移動端末2(1つの移動端末のみ図示)及び複数のアクセスポイントAP3−i(i=1〜N)と移動端末位置推定装置4と、で構成する。
Example 1
FIG. 1 is a diagram showing a mobile terminal position estimation system according to an embodiment of the present invention. The mobile terminal location estimation system includes a plurality of mobile terminals 2 (only one mobile terminal is shown) and a plurality of access points AP3-i (i = 1 to N) and a mobile terminal location estimation device 4 in the wireless network 1. Constitute.

移動端末位置推定装置4は、移動端末2の内部に構成されている。移動端末2は、複数のAPからの信号、たとえばビーコンパケット、を受信機10で受信し、受信信号は、移動端末位置推定装置4に送られる。移動端末位置推定装置4では、受信した各アクセスポイントの時間域信号を受信信号の帯域幅で決まる受信信号所定周期でサンプリングして、RSSI計算部1(11)の経路とRSSI計算部2(14)への経路に送り出す。   The mobile terminal position estimation device 4 is configured inside the mobile terminal 2. The mobile terminal 2 receives signals from a plurality of APs, for example, beacon packets, by the receiver 10, and the received signal is sent to the mobile terminal position estimation device 4. The mobile terminal location estimation apparatus 4 samples the received time domain signal of each access point at a predetermined period of the received signal determined by the bandwidth of the received signal, and the path of the RSSI calculator 1 (11) and the RSSI calculator 2 (14 ) To the route to.

なお、本発明を実施するためには、必ずしもこの構成である必要はない。例えば、移動端末位置推定装置4は、移動端末2とネットワークを経由して接続され、受信機10のデータを送る事が可能な別のサーバ上でも良い。さらに、各計算部は、必ずしも同じ端末・サーバ上に存在する必要はなく、各部位が相互に接続され、所定のデータのやりとりが可能であればよい。また、以下の説明ではAPから移動端末2へ送られた信号を用いてRSSIを計算し、それを用いて位置推定を行うが、電波の相反性より、移動端末2から送信された信号を、各APで受信した信号に対して同様の演算を行ってもよい。
説明は1つのAPからの受信信号の流れについて説明するが、全てのAPからの受信号について行われる。
Note that this configuration is not necessarily required to implement the present invention. For example, the mobile terminal location estimation device 4 may be connected to the mobile terminal 2 via a network and may be on another server that can send the data of the receiver 10. Furthermore, the calculation units do not necessarily have to exist on the same terminal / server, as long as the respective parts are connected to each other and can exchange predetermined data. Further, in the following description, RSSI is calculated using a signal sent from the AP to the mobile terminal 2, and position estimation is performed using the RSSI. However, due to radio wave reciprocity, a signal transmitted from the mobile terminal 2 is You may perform the same calculation with respect to the signal received by each AP.
The description will be made on the flow of a received signal from one AP, but it is performed on received signals from all APs.

RSSI計算部1(11)の経路では受信信号所定周期の各サンプリング点の振幅よりRSSIを算出するRSSI計算部1(11)、算出したRSSIと以下に述べる電波環境指標計算・判定部15での判定結果を基に移動端末2の位置測位を行う測位計算部12で構成する。   In the path of the RSSI calculation unit 1 (11), the RSSI calculation unit 1 (11) that calculates RSSI from the amplitude of each sampling point of the reception signal predetermined cycle, the calculated RSSI and the radio wave environment index calculation / determination unit 15 described below It is comprised by the positioning calculation part 12 which measures the position of the mobile terminal 2 based on a determination result.

一方、RSSI計算部2(14)の経路では、受信信号の所定周期の信号の帯域幅を可変にする帯域幅可変部13、帯域幅を可変させた受信信号の帯域幅可変RSSIを算出するRSSI計算部2(14)、算出したRSSIより電波環境指標を算出、判定しRSSI計算部1(11)の算出したRSSIを移動端末2の位置測位に適用するか否かのフラグを生成する電波環境指標計算・判定部15で構成する。さらにRSSI算出に用いる情報の保持、算出したRSSIを一時的に保持するDB(データベース)16で構成する。   On the other hand, in the path of the RSSI calculation unit 2 (14), the bandwidth variable unit 13 for changing the bandwidth of the signal of the predetermined period of the received signal, and the RSSI for calculating the bandwidth variable RSSI of the received signal with the variable bandwidth. A radio wave environment for calculating and determining a radio wave environment index from the calculated RSSI and generating a flag indicating whether or not the RSSI calculated by the RSSI calculator 1 (11) is applied to the positioning of the mobile terminal 2 The index calculation / determination unit 15 is configured. Furthermore, it is configured by a DB (database) 16 that holds information used for RSSI calculation and temporarily holds the calculated RSSI.

帯域幅可変部13、電波環境指標計算・判定部15、測位計算部12の処理内容について説明する。
1)帯域幅可変部13は受信機10からの受信信号の所定周期の信号列より受信信号の帯域幅を時間間引きにより、あるいは帯域指定により、あるいはフィルタを用いて帯域幅可変を行う。
The processing contents of the bandwidth variable unit 13, the radio wave environment index calculation / determination unit 15, and the positioning calculation unit 12 will be described.
1) The bandwidth variable unit 13 varies the bandwidth of the received signal from the signal sequence of the received signal from the receiver 10 by decimation of time, by band designation, or by using a filter.

時間間引きによる帯域可変は、受信機10からの受信信号所定周期のサンプリング点の信号列の信号を間引くことにより帯域幅を可変にする。例えば、元の信号列を2回に1回間引くことにより帯域が元の帯域の1/2となり、さらに同じ間引を行うと帯域は1/4に低下した信号が生成できる。   The bandwidth variable by time thinning makes the bandwidth variable by thinning out the signal of the signal sequence of the sampling points of the reception signal from the receiver 10 in a predetermined cycle. For example, it is possible to generate a signal whose band is reduced to ½ of the original band by thinning the original signal sequence once every two times, and further, when the same thinning is performed, the band is reduced to ¼.

帯域指定による帯域可変は、受信機からの受信信号所定周期のサンプリング点の信号列をFFT変換により周波数領域に変換し、得られた周波数領域中で帯域指定を行い、帯域幅を可変にする。   In the band variable by the band designation, the signal sequence of the sampling points of the reception signal from the receiver in a predetermined cycle is converted into the frequency domain by FFT conversion, the band is designated in the obtained frequency domain, and the bandwidth is made variable.

フィルタを用いた帯域幅可変は、所定の帯域特性を持たせたディジタルフィルタを構成して受信信号の帯域幅を可変にする。ここで、フィルタは必ずしもディジタルフィルタである必要はなく、例えばアナログフィルタでもよい。
2)電波環境指標計算・判定部15は、電波環境指標として累積確率密度関数(CDF:Cumulative Distribution Function)、あるいは分散値を算出して、位置推定に用いる各APからのRSSIのLOS、NLOSの判定を行う。
In the variable bandwidth using the filter, a digital filter having a predetermined bandwidth characteristic is configured to change the bandwidth of the received signal. Here, the filter is not necessarily a digital filter, and may be an analog filter, for example.
2) The radio wave environment index calculation / determination unit 15 calculates a cumulative probability density function (CDF) or a variance value as the radio wave environment index, and calculates the RSSI LOS and NLOS from each AP used for position estimation. Make a decision.

LOS、NLOSの判定は、位置端末位置推定装置4の位置から等距離にAPが位置していてもNLOSの場合、環境により電波が大きな減衰を受けてRSSIが小さくなり、位置推定誤差の要因となる。従って、APがLOSの状態にあるかNLOSの状態にあるかを判別し、LOS判定のAPのRSSIにより位置算出することが重要である。   In the determination of LOS and NLOS, even if the AP is located at the same distance from the position of the position terminal position estimation device 4, in the case of NLOS, the radio wave is greatly attenuated by the environment and the RSSI is reduced. Become. Therefore, it is important to determine whether the AP is in the LOS state or the NLOS state, and calculate the position based on the RSSI of the AP for LOS determination.

電波環境指標計算・判定部15は、算出されたRSSIのCDFの傾きによりLOSかNLOSの判定評価を行う。なお、信号帯域幅とそのLOS、NLOSの判定について、一般的に次の性質が知られている。RSSI測定の帯域幅がコヒーレント帯域幅よりも十分大きいと、複数パスの平均化効果により、RSSI値のフェージング変動は小さくなる。逆に言えば、RSSI測定の帯域幅が十分小さければ、RSSI値のフェージングの変動は大きく見える。また、LOS環境では、フェージング変動は小さく、NLOS環境では、フェージング変動は大きくなる。従って、RSSIの傾きによるLOSあるいはNLOSの判定において、RSSI測定の帯域幅が広い場合にはLOSとNLOSのフェージング変動の差があまり無い場合でも、RSSI測定の帯域幅を狭くすることにより、顕著な差が見られ、LOSとNLOSの弁別が容易になる。   The radio wave environment index calculation / determination unit 15 performs LOS or NLOS determination evaluation based on the calculated slope of the RSSI CDF. The following properties are generally known for determining the signal bandwidth and its LOS and NLOS. If the RSSI measurement bandwidth is sufficiently larger than the coherent bandwidth, the fading fluctuation of the RSSI value becomes small due to the averaging effect of a plurality of paths. Conversely, if the RSSI measurement bandwidth is sufficiently small, the RSSI value fading fluctuation appears to be large. Further, fading fluctuation is small in the LOS environment, and fading fluctuation is large in the NLOS environment. Therefore, in the determination of LOS or NLOS based on the slope of RSSI, when the RSSI measurement bandwidth is wide, even if there is not much difference in fading fluctuation between LOS and NLOS, by reducing the RSSI measurement bandwidth, A difference is seen, and LOS and NLOS are easily discriminated.

また、電波環境指標計算・判定部15は、算出されたRSSIの分散値の大きさ(集中度)によりLOSかNLOSの判定評価を行う。LOS環境の場合、RSSIの分散値は大きくなる。
3)測位計算部12は移動端末位置を算出する。受信信号のRSSIを基に移動端末の位置を推定する方法については、最小二乗法、あるいは最尤推定法が知られている。複数APと、各APについて、複数パケットのRSSIから移動端末2の位置を推定する手順は図3、図4で説明する。
In addition, the radio wave environment index calculation / determination unit 15 performs LOS or NLOS determination evaluation based on the magnitude (concentration) of the calculated RSSI variance. In the LOS environment, the variance value of RSSI is large.
3) The positioning calculation unit 12 calculates the mobile terminal position. As a method for estimating the position of the mobile terminal based on the RSSI of the received signal, a least square method or a maximum likelihood estimation method is known. The procedure for estimating the position of the mobile terminal 2 from the multiple packets and the RSSI of the multiple packets for each AP will be described with reference to FIGS.

図2は本発明の一実施形態の移動端末位置推定の基本手順を示す図である。   FIG. 2 is a diagram showing a basic procedure of mobile terminal position estimation according to an embodiment of the present invention.

S1:受信信号情報、帯域幅可変情報、電波環境指標、電波環境指標算出のパラメータの初期設定を行う。 S1: Initial setting of reception signal information, variable bandwidth information, radio wave environment index, and radio wave environment index calculation parameters.

受信信号情報は、受信信号の帯域幅で決まる所定周期Taと2つの所定最小数M1、所定最小数M2である。M1は受信信号の通信プロトコル上の1つのパケットの受信信号からRSSIを算出するのに必要な最小サンプル数であり(RSSI算出最小サンプル数)、M2は移動端末2の位置推定に用いるために必要なRSSIの最小数である(測位算出最小RSSI数)。   The received signal information includes a predetermined period Ta determined by the bandwidth of the received signal, two predetermined minimum numbers M1, and a predetermined minimum number M2. M1 is the minimum number of samples required to calculate RSSI from the received signal of one packet on the communication protocol of the received signal (RSSI calculated minimum number of samples), and M2 is necessary for use in position estimation of the mobile terminal 2 This is the minimum number of RSSIs (positioning calculation minimum RSSI number).

帯域幅可変情報は受信信号の帯域幅可変の方法である。電波環境指標は指定する電波環境指標である。パラメータ(所定最小数2種)は電波環境指標評価に必要な所定数であり、帯域可変RSSI算出最小サンプル数と電波環境指標算出最小パケット数である。
S2:受信機10からのAP毎の信号を所定周期Taでサンプリングする。下記S3〜S8の処理はAPの数N全てについて行う。
S3、S4、S5:所定数M2のパケットについて、パケット毎に測位計算に用いるRSSIを算出する手順である。
Bandwidth variable information is a method for varying the bandwidth of a received signal. The radio wave environment index is a designated radio wave environment index. The parameters (two predetermined minimum numbers) are a predetermined number required for the radio wave environment index evaluation, and are the variable variable RSSI calculation minimum sample number and the radio wave environment index calculation minimum packet number.
S2: The signal for each AP from the receiver 10 is sampled at a predetermined period Ta. The processes in S3 to S8 below are performed for all N APs.
S3, S4, S5: This is a procedure for calculating RSSI used for positioning calculation for each packet of a predetermined number M2.

順次受信する通信プロトコルの1つのパケットより、Taの周期でサンプリングし、その数が該当のパケットでのRSSIを算出するのに必要な所定数M1になるまでサンプリング値を保持し、M1になった場合そこからRSSIを算出し、保持する。同様に、順次受信するM2個のパケットについてRSSIを算出し保持する。S6〜S8の処理によるフラグ指示が「該当のAPのRSSIは位置測位に適用可能」の場合、該当APのM2個のRSSIを測位計算部12に送る。
S6、S7、S8:指定した電波環境指標を基にS3、S4、S5で算出した該当のAPのRSSIが測位計算に適用可能か否かの判定を行う手順である。
Sampling is performed from one packet of the communication protocol sequentially received at a cycle of Ta, and the sampling value is held until the number reaches a predetermined number M1 necessary for calculating the RSSI in the corresponding packet, and becomes M1. In that case, the RSSI is calculated therefrom and held. Similarly, RSSI is calculated and held for M2 packets received sequentially. When the flag instruction by the processing of S6 to S8 is “The RSSI of the corresponding AP is applicable to position positioning”, the M2 RSSIs of the corresponding AP are sent to the positioning calculation unit 12.
S6, S7, S8: This is a procedure for determining whether the RSSI of the corresponding AP calculated in S3, S4, S5 based on the designated radio wave environment index is applicable to the positioning calculation.

1つのパケットからの受信信号の帯域幅を可変(受信信号の帯域幅より狭帯域にする)した信号をサンプリングし、その数が指定した帯域可変RSSI算出に必要な所定の数(帯域可変RSSI算出最小サンプル数)になるまで、サンプリング値を保持する。所定数になった場合、保持するサンプリング値より帯域可変RSSIを算出し、保持する。   A signal obtained by changing the bandwidth of the received signal from one packet (which is narrower than the bandwidth of the received signal) is sampled, and a predetermined number (band variable RSSI calculation) necessary for calculating the band variable RSSI specified by the number is sampled. The sampling value is held until the minimum number of samples) is reached. When the predetermined number is reached, the band variable RSSI is calculated from the sampling value to be held and held.

次のパケットより同様に電波環境指標評価の所定数(電波環境指標算出最小パケット数)のパケットについて行う。保持する電波環境指標算出最小パケット数の帯域可変RSSIより、指定の電波環境指標を算出し、所定の基準を満たすか否か判定し、判定結果により以下のフラグを生成する。
ア.所定値を満たす :該当のAPのM2個のRSSIは移動端末位置測位に適用する。
イ.所定値を満たさない:該当のAPのM2個のRSSIは移動端末位置測位に適用しない。
S9:位置測位に適用可能と判定されたAPの各々、M2個のRSSIより移動端末の位置を算出する。(位置測位の方法図3、図4)
次に、複数(N個)のAPから、AP毎に複数M2個のパケットから算出したRSSIから移動端末2の位置を推定する方法として、最小二乗方法、最尤推定法について説明する。下記の「i」、「k」は後述するAPの数(N)、AP毎に複数のRSSIを算出するパケットの数M2に対応し、i=1〜N、k=1〜M2となる。
Similarly to the next packet, a predetermined number of radio wave environment index evaluations (minimum number of radio wave environment index calculation packets) are performed. The specified radio wave environment index is calculated from the band variable RSSI having the minimum number of packets of the radio wave environment index to be held, it is determined whether or not a predetermined standard is satisfied, and the following flags are generated according to the determination result.
A. Satisfy a predetermined value: M2 RSSIs of the corresponding AP are applied to mobile terminal location positioning.
A. The predetermined value is not satisfied: M2 RSSIs of the corresponding AP are not applied to the mobile terminal location measurement.
S9: The position of the mobile terminal is calculated from M2 RSSIs for each AP determined to be applicable to position measurement. (Positioning method Fig. 3 and Fig. 4)
Next, a least square method and a maximum likelihood estimation method will be described as a method for estimating the position of the mobile terminal 2 from a plurality of (N) APs based on RSSI calculated from a plurality of M2 packets for each AP. “I” and “k” below correspond to the number (N) of APs described later and the number M2 of packets for calculating a plurality of RSSIs for each AP, and i = 1 to N and k = 1 to M2.

一般的に、電波は距離rによる減衰を受けるため、送信電力一定の場合の受信電力pは送信電力が一定とすれば、(式1)と表される。   In general, since radio waves are attenuated by the distance r, the received power p when the transmission power is constant is expressed as (Equation 1) if the transmission power is constant.

Figure 2012173070
ここで、α、βは環境により決まるパラメータである。(式1)を基に移動端末の位置推定の手順を図3、図4で説明する。
Figure 2012173070
Here, α and β are parameters determined by the environment. The procedure for estimating the position of the mobile terminal based on (Equation 1) will be described with reference to FIGS.

図3は本発明の移動端末の位置推定算出手順(最小二乗法)を示す図である。
S11:位置xiにあるi番目のAPのk番目の信号によるRSSI値を(式2)で算出する。
FIG. 3 is a diagram showing a position estimation calculation procedure (least square method) of the mobile terminal according to the present invention.
S11: The RSSI value by the k-th signal of the i-th AP at the position xi is calculated by (Expression 2).

位置x=(x,y)にある移動端末の位置xにあるi番目のAPから受信したk番目の信号によるRSSI値(pi,k)は(式1)を用いて(式2)となる。 The RSSI value (p i, k ) by the k th signal received from the i th AP at the position x i of the mobile terminal at the position x = (x, y) is expressed by using (Expression 2) It becomes.

Figure 2012173070
ここで、nは雑音である。
S12:移動端末の推定位置を(式3)、(式4)、(式5)で算出する。
1)APのk番目の信号による移動端末の推定位置を(式3)で算出する。
Figure 2012173070
Here, n is noise.
S12: The estimated position of the mobile terminal is calculated by (Expression 3), (Expression 4), and (Expression 5).
1) The estimated position of the mobile terminal based on the k-th signal of the AP is calculated by (Equation 3).

この時、移動端末が得た全てのAPからの受信電力を   At this time, the received power from all APs obtained by the mobile terminal

Figure 2012173070
なるベクトルとすれば、移動端末のk番目の信号からの推定位置
Figure 2012173070
The estimated position from the k-th signal of the mobile terminal

Figure 2012173070

は(式3)となる。
Figure 2012173070

Becomes (Equation 3).

Figure 2012173070
ここで、
Figure 2012173070
here,

Figure 2012173070
であり、
Figure 2012173070
And

Figure 2012173070
である。
Figure 2012173070
It is.

2)全てのAPを加味した移動端末の位置を(式4)で算出する。 2) The position of the mobile terminal including all APs is calculated by (Equation 4).

全てのAPを加味した、RSSIを算出する数(k=1〜M2)の信号から推定する移動端末の位置は(式4)となる。   The position of the mobile terminal estimated from the number of signals (k = 1 to M2) for calculating RSSI with all APs taken into consideration is (Equation 4).

Figure 2012173070
3)AP毎に重みの重要度を加味した移動端末の位置を(式5)で算出する。
Figure 2012173070
3) Calculate the position of the mobile terminal taking into account the importance of the weight for each AP using (Equation 5).

AP毎のRSSIに重要度を加味する場合は、移動端末の推定位置は(式5)となる。   When importance is added to RSSI for each AP, the estimated position of the mobile terminal is (Expression 5).

Figure 2012173070
ここで、WはAP毎の重要度に対応した重み行列で、0≦w≦1であり、wが「1」に近い程、該当のAPのデータが重視され、「0」の場合は全く反映されない。
Figure 2012173070
Here, W is a weight matrix corresponding to the importance for each AP, and 0 ≦ w i ≦ 1, and the closer the w i is to “1”, the more important the data of the corresponding AP is. Is not reflected at all.

図4は本発明の移動端末の位置推定算出手順(最尤推定法)を示す図である。   FIG. 4 is a diagram showing a position estimation calculation procedure (maximum likelihood estimation method) of the mobile terminal according to the present invention.

最小二乗法は通信路が白色雑音のみの影響を受けるAWGN(Additive White Gaussian Noise)を想定したものと等価である。しかし、一般に無線通信路はフェージングの影響を受ける。信号がレイリーフェージングを受ける場合、その信号電力は指数分布になる。そこで、レイリーフェージングの影響を受けた場合について移動端末の位置推定について説明する。
S15:移動端末とAPの距離rでの確率密度(式6)、尤度(式7)を算出する。
The least square method is equivalent to a method in which an AWGN (Additive White Gaussian Noise) whose communication path is affected only by white noise is assumed. However, in general, the wireless communication path is affected by fading. When a signal undergoes Rayleigh fading, its signal power is exponentially distributed. Then, the position estimation of a mobile terminal is demonstrated about the case where it receives to the influence of Rayleigh fading.
S15: The probability density (formula 6) and likelihood (formula 7) at the distance r between the mobile terminal and the AP are calculated.

受信電力の距離rでの条件付き確率密度分布は、平均電力   The conditional probability density distribution at the distance r of the received power is the average power

Figure 2012173070
を用いて(式6)となる。
Figure 2012173070
(Equation 6).

Figure 2012173070
また、尤度はP=(P,P,・・・P)但し、P=(Pi,k,P2,k,・・・Pi,k・・・Pn,k))を用いて(式7)と表される。
Figure 2012173070
The likelihood is P = (P 1 , P 2 ,... P k ), where P k = (P i, k , P 2, k ,... P i, k ... P n, k )) Is used to express (Equation 7).

Figure 2012173070
S16:移動端末の位置を(式8)で算出する。
Figure 2012173070
S16: The position of the mobile terminal is calculated by (Equation 8).

移動端末の位置の位置を尤度を用いて算出する。求める推定位置   The position of the position of the mobile terminal is calculated using the likelihood. Estimated position

Figure 2012173070
は尤度が最大になる地点であり、対数尤度を用いて(式8)で算出できる。
Figure 2012173070
Is the point where the likelihood is maximum, and can be calculated by (Equation 8) using the log likelihood.

Figure 2012173070
ここで、尤度は(式9)である。
Figure 2012173070
Here, the likelihood is (Equation 9).

Figure 2012173070

S17:対数尤度を(式10)算出する。
Figure 2012173070

S17: The log likelihood is calculated (Equation 10).

対数尤度は(式10)となる。   The log likelihood is (Equation 10).

Figure 2012173070
S18:AP毎に重要度を加味した重み行列を導入した対数尤度を(式11)で算出する。
Figure 2012173070
S18: Logarithmic likelihood into which a weight matrix that takes importance into consideration for each AP is introduced is calculated by (Expression 11).

AP毎の重みを加味した重み行列を導入した対数尤度を算出する。
AP毎の重みを加味した重み行W(W=(w,w,・・w・・・w))とすると、重み付き対数尤度は(式11)で表される。
A log likelihood is calculated by introducing a weight matrix taking into account the weight for each AP.
Weight line W in consideration of the weight for each AP (W = (w 1, w 2, ·· w i ··· w N)) When to, weighted log likelihood is represented by (Equation 11).

Figure 2012173070
S19:移動端末の位置を対数尤度(式10)あるいは(式11)を用いて(式8)で算出する。
Figure 2012173070
S19: The position of the mobile terminal is calculated by (Equation 8) using the log likelihood (Equation 10) or (Equation 11).

移動端末の位置を対数尤度、重み付き対数尤度を用いて算出する。(式9)の代わりに(式10)を用いて移動端末の位置を推定する。さらにAP毎の重要度に応じて重み付けを行う場合は、(式9)の代わりに(式11)を用いて電波環境に対応したて移動端末の位置を推定できる。なお、(式11)の先頭行の   The position of the mobile terminal is calculated using the log likelihood and the weighted log likelihood. The position of the mobile terminal is estimated using (Expression 10) instead of (Expression 9). Furthermore, when weighting is performed according to the importance for each AP, the position of the mobile terminal can be estimated according to the radio wave environment using (Expression 11) instead of (Expression 9). In the first line of (Equation 11)

Figure 2012173070
は、2行目以降で用いられる演算を実行するための演算子である。また、重み行列の要素wは、0≦w≦1であり、最小二乗法と同様にwが「1」に近い程、該当のAPのデータが重視され、「0」の場合は全く反映されない。
Figure 2012173070
Is an operator for executing operations used in the second and subsequent lines. Also, the weight matrix element w i is 0 ≦ w i ≦ 1, and as w i is closer to “1” as in the least square method, the data of the corresponding AP is more important. Not reflected at all.

図5は本発明の一実施形態の移動端末の位置推定用RSSI算出手順を示す図である。   FIG. 5 is a diagram showing a location estimation RSSI calculation procedure of the mobile terminal according to the embodiment of the present invention.

S21:受信信号情報として、受信信号取得所定周期Ta、RSSI算出最小サンプル数M1、測位算出最小RSSI数M2の初期設定を行う。 S21: As reception signal information, initial setting of reception signal acquisition predetermined period Ta, RSSI calculation minimum sample number M1, and positioning calculation minimum RSSI number M2 is performed.

受信信号取得所定周期Taは受信信号の帯域幅で決まる所定周期である。M1は1つのパケットについてRSSI算出するために必要な所定周期Taの受信信号サンプル数である。M2は1つのパケットから算出するRSSIを測位計算に必要な複数のパケットついて行うために必要な最小パケット数である。
S22:S23〜S26の手順をAP毎に全てのAPについて行う。
S23:測位計算に用いる該当APのRSSIを算出する手順である。
The reception signal acquisition predetermined period Ta is a predetermined period determined by the bandwidth of the reception signal. M1 is the number of received signal samples of a predetermined period Ta necessary for RSSI calculation for one packet. M2 is the minimum number of packets necessary for performing RSSI calculated from one packet for a plurality of packets necessary for positioning calculation.
S22: The procedure of S23 to S26 is performed for all APs for each AP.
S23: This is a procedure for calculating the RSSI of the corresponding AP used for positioning calculation.

該当APの1つのパケットより位置対応の受信信号サンプリングを帯域で定まる受信信号取得周期Ta間隔でM1個取得し、サンプル数がM1になった時、このAPでのRSSIを算出し、保持する。
S24、S25、S26:S23の処理を順次受信する所定のパケット数M2について行う手順である。
M1 pieces of received signal sampling corresponding to positions are acquired from one packet of the corresponding AP at intervals of the received signal acquisition period Ta determined by the band, and when the number of samples reaches M1, the RSSI at this AP is calculated and held.
S24, S25, S26: This is a procedure performed for a predetermined number of packets M2 for sequentially receiving the processing of S23.

S23の処理を順次、次のパケットより、取得したM2個のRSSIを算出し保持する。
S27:電波環境指標判定結果が所定の基準を満たすAPの各々、M2個のRSSIを測位計算部に送る。
The processing of S23 is sequentially performed, and the acquired M2 RSSIs are calculated and held from the next packet.
S27: Each of the APs whose radio wave environment index determination result satisfies a predetermined standard, M2 RSSIs are sent to the positioning calculation unit.

図6は本発明の一実施形態の電波環境指標算出とその判定手順(その1)を示す図である。電波環境指標としてRSSIのCDFの傾きからLOS/NLOS判定について説明する。   FIG. 6 is a diagram showing radio wave environment index calculation and determination procedure (part 1) according to an embodiment of the present invention. The LOS / NLOS determination from the slope of the RSSI CDF as a radio wave environment index will be described.

S31:帯域幅可変情報、電波環境指標、電波環境指標パラメータ(閾値)、パラメータ所定数の初期設定を行う。   S31: Initial setting of variable bandwidth information, radio wave environment index, radio wave environment index parameter (threshold), and a predetermined number of parameters.

帯域幅可変は、受信信号の間引きで行い、その信号取得間隔はTbである。電波環境指標はCDFであり、CDFの傾きの閾値はLである。また、パラメータ所定数は、帯域可変RSSI算出サンプル数M1aと電波環境指標(CDF)算出最小パケット数M2aである。   The bandwidth is varied by thinning the received signal, and the signal acquisition interval is Tb. The radio wave environment index is CDF, and the threshold value of the CDF slope is L. Also, the predetermined number of parameters are the band variable RSSI calculation sample number M1a and the radio wave environment index (CDF) calculation minimum packet number M2a.

M1aは1つのパケットについて帯域可変した受信信号よりRSSI算出するために必要な所定周期Tbの受信信号サンプル数であり、M2aは、サンプル数M1aから算出する1つのパケットのRSSIを、電波環境指標(CDF)の評価のために必要とする最小パケット数である。
S32:以下の処理をAP毎に全てのAPについて行う。
S33、S34、S35、S36:該当のAPからの受信信号のパケットを帯域可変した信号列のM1a個のサンプル数から帯域可変RSSIを算出する手順である。
M1a is the number of received signal samples with a predetermined period Tb necessary for calculating RSSI from a received signal whose band is variable for one packet, and M2a is the RSSI of one packet calculated from the number of samples M1a. CDF) is the minimum number of packets required for evaluation.
S32: The following processing is performed for all APs for each AP.
S33, S34, S35, S36: This is a procedure for calculating the variable bandwidth RSSI from the number of M1a samples of the signal sequence obtained by changing the bandwidth of the packet of the received signal from the corresponding AP.

該当APの時刻Tj(j=1)での受信信号をサンプリングし、その時刻でのサンプル値を保持する。j=j+1とし、時刻Tj=Tj+Tbの時刻の受信信号を順次サンプリングする。帯域幅可変の処理は、例えば、信号取得周期Tbを2×Taとして順次サンプリングする信号系列の帯域は、元の受信信号の帯域の1/2となる(具体的には、帯域幅の信号を2回に1回間引くと帯域は1/2となる)。M1a個のサンプル値より該当のパケットでのRSSIを算出し保持する。
S37、S38:S33〜S36の処理を所定パケット数M2a行い、電波環境指標CDFを評価する手順である。
The received signal at the time Tj (j = 1) of the corresponding AP is sampled, and the sample value at that time is held. j = j + 1 is set, and the received signal at time Tj = Tj + Tb is sampled sequentially. In the bandwidth variable processing, for example, the band of the signal sequence that is sequentially sampled with the signal acquisition period Tb of 2 × Ta is ½ of the band of the original received signal (specifically, the bandwidth signal is If you thin out once every two times, the bandwidth will be halved). The RSSI in the corresponding packet is calculated from the M1a sample values and held.
S37, S38: A procedure in which the processing of S33 to S36 is performed for a predetermined number of packets M2a to evaluate the radio wave environment index CDF.

M2aのパケットについて、各々、帯域可変RSSIを算出する(S33〜S36)を行い、保持する該当のAPのM2a個の帯域可変RSSIより算出されるCDFの傾きが閾値Lを越えたか否かにより評価し、LOS/NLOS判定を行う(LOS/NLOS判定:図7)
S39:LOS、NLOS判定結果によりフラグを生成する手順である。
The bandwidth variable RSSI is calculated for each of the M2a packets (S33 to S36), and evaluation is performed based on whether or not the slope of the CDF calculated from the M2a bandwidth variable RSSI of the corresponding AP to be held exceeds the threshold L. Then, LOS / NLOS determination is performed (LOS / NLOS determination: FIG. 7).
S39: This is a procedure for generating a flag based on the LOS and NLOS determination results.

評価結果により、以下のフラグを生成する。
LOS判定:[該当のAPを測位計算に適用する」フラグ
NLOS判定:「該当のAPは測位計算に適用しない」フラグ
なお、図7に示す傾きがLより大きい場合はLOS判定であり、小さい場合はNLOS判定であるが、後に記載するように大きさに応じてウェイトwを計算しても良い。
The following flags are generated according to the evaluation result.
LOS determination: [applicable AP is applied to positioning calculation] flag NLOS determination: “applicable AP is not applied to positioning calculation” flag Note that if the slope shown in FIG. Is an NLOS determination, but the weight w i may be calculated according to the size as described later.

図7は本発明の電波環境指標算出とその判定手順(その1)のLOS/NLOS判定例を示す図である。   FIG. 7 is a diagram showing an example of LOS / NLOS determination in the radio wave environment index calculation and determination procedure (part 1) of the present invention.

RSSIの累積確率密度分布関数CDF(Cummulative Distoribution Function)を基にLOS指標とその判定例を示している。   The LOS index and its determination example are shown based on the cumulative probability density distribution function CDF (Cumulative Distribution Function) of RSSI.

二次元座標で表現したCDF特性の傾き算出の切片(所定の立ち上がり点、収束域点の値)より特性の傾きgを算出する。gは(式12)のように表わされる。   The characteristic gradient g is calculated from the intercept of the CDF characteristic inclination calculation expressed by two-dimensional coordinates (values of predetermined rising points and convergence range points). g is expressed as (Equation 12).

Figure 2012173070
ここで、C1、C2は得られたRSSIのCDFとし、f−1(c)は図面化したCDF特性を近似した関数の逆関数である。
ア.LOS判定
この場合、傾きgが所定の閾値より大きいのでLOSと判定する。
イ.NLOS判定
この場合、傾きgが所定の閾値より小さいのでNLOSと判定する。
Figure 2012173070
Here, C1 and C2 are the CDFs of the obtained RSSI, and f −1 (c) is an inverse function of a function approximating the CDF characteristics shown in the drawing.
A. LOS determination In this case, since the slope g is larger than a predetermined threshold, it is determined as LOS.
In this case, since the slope g is smaller than a predetermined threshold value, it is determined as NLOS.

図8は本発明の一実施形態の電波環境指標算出とその判定手順(その2)を示す図である。図6で述べた電波環境指標CDFの傾きでの評価を分散値の大きさでの評価に変えた手順である。一部重複して説明する。   FIG. 8 is a diagram showing radio wave environment index calculation and determination procedure (part 2) according to an embodiment of the present invention. This is a procedure in which the evaluation based on the slope of the radio wave environment index CDF described in FIG. 6 is changed to the evaluation based on the magnitude of the dispersion value. Some explanations are duplicated.

S41:帯域幅可変情報、電波環境指標、電波環境指標パラメータ(閾値)、パラメータ所定数の初期設定を行う。   S41: Initial setting of variable bandwidth information, radio wave environment index, radio wave environment index parameter (threshold), and a predetermined number of parameters.

帯域幅可変は信号間引きで行い、その信号取得周期はTbである。電波環境指標は分散値であり、その分散値閾値はBである。また、パラメータ所定数は帯域可変RSSI算出サンプル数M1bと電波環境指標(分散)算出最小パケット数M2bである。   The bandwidth is varied by signal decimation, and the signal acquisition cycle is Tb. The radio wave environment index is a variance value, and the variance value threshold is B. Further, the predetermined number of parameters are the band variable RSSI calculation sample number M1b and the radio wave environment index (dispersion) calculation minimum packet number M2b.

M1bは1つのパケットについて、帯域可変した受信信号よりRSSIを算出するために必要な所定周期Tbの受信信号サンプル数であり、M2bは、サンプル数M1bから算出する1つのパケットのRSSIを、電波環境指標分散の評価のために必要とする最小パケット数である。
S42: 以下の処理をAP毎に全てのAPについて行う。
S43、S44、S45、S46:各APからの1つのパケットの受信信号から帯域可変した信号列からM1b個のサンプル数から帯域可変RSSIを算出する手順である。
M1b is the number of received signal samples of a predetermined period Tb necessary for calculating RSSI from a received signal whose bandwidth is variable for one packet, and M2b is the RSSI of one packet calculated from the number of samples M1b. This is the minimum number of packets required for evaluating the index variance.
S42: The following processing is performed for all APs for each AP.
S43, S44, S45, S46: This is a procedure for calculating the band variable RSSI from the number of M1b samples from the signal sequence variable in band from the received signal of one packet from each AP.

該当APの時刻Tj(j=1)での受信信号をサンプリングし、サンプル値を保持する。j=j+1とし、時刻Tj=Tj+Tbの時刻の受信信号を順次サンプリングする。帯域幅可変の処理は、図5の例と同様である。
S47、S48:S44〜S46の処理を所定パケット数M2b行い、電波環境指標分散を評価する手順である。
The received signal at the time Tj (j = 1) of the corresponding AP is sampled, and the sample value is held. j = j + 1 is set, and the received signal at time Tj = Tj + Tb is sampled sequentially. The bandwidth variable processing is the same as in the example of FIG.
S47, S48: This is a procedure for performing the processing of S44 to S46 for a predetermined number of packets M2b to evaluate the radio wave environment index dispersion.

M2bのパケットについて、各々、帯域可変RSSIを算出する(S43〜S46)を行い、保持する該当のAPのM2b個の帯域可変RSSIの分散値が閾値Bを越えたか否かにより評価する。こちらも、CDFの場合と同様、値の大きさに応じたウェイトwを与えてもよい。(分散判定:図9)
S49:分散値判定結果により以下のフラグを生成する。
所定値を満たす:「該当のAPは測位計算に適用する」フラグ
所定値を満たさない:「該当のAPは測位計算に適用しない」フラグ
なお、分散値がBより小さい場合(所定値を満たす)はLOS判定であり、大きい場合(所定値を満たさない)はNLOS判定である。
The bandwidth variable RSSI is calculated for each of the M2b packets (S43 to S46), and evaluation is performed based on whether or not the dispersion value of the M2b bandwidth variable RSSI of the corresponding AP held exceeds the threshold value B. Here, as in the case of CDF, a weight w i corresponding to the magnitude of the value may be given. (Dispersion judgment: Fig. 9)
S49: The following flags are generated based on the dispersion value determination result.
Satisfies predetermined value: “applicable AP applies to positioning calculation” flag Does not satisfy predetermined value: “corresponding AP does not apply to positioning calculation” flag Note that the variance value is smaller than B (satisfies predetermined value) Is a LOS determination, and when it is large (a predetermined value is not satisfied), it is an NLOS determination.

図9は本発明の一実施形態の電波環境指標算出とその判定手順(その2)の分散値を示す図である。電波環境指標としてRSSIの分散値の判定について説明する。   FIG. 9 is a diagram showing a variance value of radio wave environment index calculation and determination procedure (part 2) according to an embodiment of the present invention. The determination of the RSSI variance value as a radio wave environment index will be described.

1つのAPiからの各時刻でのRSSIをPi,k(k=1〜M2b)とすると分散は(式13)で表される。 If RSSI at each time from one APi is P i, k (k = 1 to M2b), the variance is expressed by (Equation 13).

Figure 2012173070
図10は本発明の一実施形態の電波環境指標算出とその判定手順(その3)を示す図である。
S51:帯域幅可変情報、電波環境指標パラメータ、所定数パラメータM1c、M2cの初期設定を行う。
Figure 2012173070
FIG. 10 is a diagram showing radio wave environment index calculation and determination procedure (part 3) according to an embodiment of the present invention.
S51: Initial setting of variable bandwidth information, radio wave environment index parameter, and predetermined number of parameters M1c and M2c is performed.

帯域幅可変は受信信号をFFTにより変換した周波数域の領域を指定する。また、FFT計算の受信信号取得周期は受信信号帯域幅で決まる所定周期Taである。所定数パラメータは帯域可変RSSI算出サンプル数M1cと、電波環境指標算出最小パケット数M2cである。   The variable bandwidth designates a frequency region obtained by converting the received signal by FFT. Also, the received signal acquisition period of the FFT calculation is a predetermined period Ta determined by the received signal bandwidth. The predetermined number parameters are the variable band RSSI calculation sample number M1c and the radio wave environment index calculation minimum packet number M2c.

M1cは1つのパケットについて受信信号の帯域幅で決まる所定周期Taの受信信号サンプル数であり、Taの周期で取得したサンプル数でFFT(Fast Fourier Transform:高速フーリエ変換)変換を行う。ここで、周波数領域に変換する信号処理であれば、必ずしもFFTでなくても良い。例えば、DFT(Digital Fourier Transform)などでも良い。M2cはサンプル数M1cから算出するRSSIを、電波環境指標(CDFあるいは分散)の評価のために必要とする最小パケット数である。
S52:対象の全てのAPについて、S53〜S55の処理を行う。
S53、S54:各APからの1つのパケットの受信信号からFFT変換した周波数領域に指定した領域のRSSIを算出する手順である。
M1c is the number of received signal samples with a predetermined period Ta determined by the bandwidth of the received signal for one packet, and performs FFT (Fast Fourier Transform) with the number of samples acquired at the period of Ta. Here, if the signal processing is to be converted into the frequency domain, the FFT is not necessarily required. For example, DFT (Digital Fourier Transform) may be used. M2c is the minimum number of packets required for the RSSI calculated from the number of samples M1c to evaluate the radio wave environment index (CDF or dispersion).
S52: The processes of S53 to S55 are performed for all target APs.
S53, S54: This is a procedure for calculating the RSSI of the region designated as the frequency region obtained by FFT conversion from the received signal of one packet from each AP.

受信信号の所定周期Taの間隔で受信信号をM1c個取得し、FFTを行い、周波数軸上への信号変換を行う。周波数軸上の指定された帯域の振幅を用いてその帯域でのRSSIを算出する。不連続に複数の領域を指定した場合はそのRSSIを算出し、保持する。
S55、S56:S53〜S54の処理を所定のパケット数M2c行い、電波環境指標(CDF、あるいは分散)による評価手順である。
M1c reception signals are acquired at intervals of a predetermined period Ta of the reception signal, FFT is performed, and signal conversion on the frequency axis is performed. The RSSI in that band is calculated using the amplitude of the specified band on the frequency axis. When a plurality of areas are specified discontinuously, the RSSI is calculated and held.
S55, S56: This is an evaluation procedure based on the radio wave environment index (CDF or dispersion) by performing the processing of S53 to S54 for a predetermined number of packets M2c.

保持する該当のAPのM2c個のRSSIより電波環境指標(CDFあるいは分散値)により、評価し、判定した結果により、以下のフラグを生成する。
所定値を満たす :該当のAPは移動端末位置測位に適用する」フラグ
所定値を満たさない:該当のAPは移動端末位置測位に適用しない」フラグ
Based on the radio wave environment index (CDF or dispersion value) based on the M2c RSSI of the corresponding AP to be held, the following flags are generated based on the determination result.
Satisfies predetermined value: Applicable AP applies to mobile terminal position positioning "Flag does not satisfy predetermined value: Applicable AP does not apply to mobile terminal position positioning" flag

なお、測位計算に用いる受信信号取得所定周期のRSSIの信号系列をFFT変換する代わりにチャネル推定等時に得られる周波数応答のデータを使い帯域を指定する方法も考えられる。また、変調方式がOFDM(Orthogonal Frequency Division Multiplexing)の場合、OFDM復調時に作成する周波数軸上のデータを使い帯域を指定する方法も考えられる。   In addition, instead of performing FFT conversion on the RSSI signal sequence of the reception signal acquisition predetermined period used for positioning calculation, a method of designating a band using frequency response data obtained at the time of channel estimation or the like is also conceivable. In addition, when the modulation method is OFDM (Orthogonal Frequency Division Multiplexing), a method of designating a band using data on the frequency axis created at the time of OFDM demodulation can be considered.

図11は本発明の電波環境指標算出その判定手順(その3)の帯域可変RSSI算出例を示す図である。   FIG. 11 is a diagram showing a band variable RSSI calculation example of the radio wave environment index calculation and determination procedure (part 3) according to the present invention.

ア.で示す受信信号は帯域可変部13でFFT変換行い周波数域領域に変換され、イ.で示す帯域幅の信号となる。帯域幅可変部13で、例えば、ウ.で示す4つの周波数域を指定し、その領域のRRSIのRSSIをRSSI計算部2(14)で算出する。その結果RSSI#1、RSSI#2、RSSI#3、RSSI#4を得る。これらを用いてこのAPでの帯域可変RSSIを得る。   A. The band variable unit 13 performs FFT conversion on the received signal shown in FIG. It becomes a signal of the bandwidth shown by. In the bandwidth variable unit 13, for example, C.I. Are specified, and the RSSI calculator 2 (14) calculates the RSSI of the RRSI in that region. As a result, RSSI # 1, RSSI # 2, RSSI # 3, and RSSI # 4 are obtained. Using these, the variable band RSSI at this AP is obtained.

今回、傾きg、あるいは分散値が所定の閾値を満たすか否かにより、該当のAPを測位計算に用いるか否かの判定に用いる方法について示したが、さらに、傾きg、あるいは分散値の値、通信路の他の環境要素等を評価し、図3、図4で述べたAP毎に測位計算に適用する重みを決定するパラメータを用いて移動端末の位置を推定する事も考えられる。   This time, the method used to determine whether or not the corresponding AP is used for positioning calculation depending on whether the slope g or the variance value satisfies a predetermined threshold has been described. It is also conceivable to evaluate the other environmental elements of the communication channel and estimate the position of the mobile terminal using the parameters for determining the weight applied to the positioning calculation for each AP described in FIGS.

以上より、帯域可変した受信信号のRSSIのCDF、あるいは分散によるLOS、NLOS判定評価により、フェージング、移動端末とAP間での障害物による影響(障害物による吸収、端部での回折)、あるいは他の物体に反射して迂回される等の距離減衰以外の減衰を受けた電波による影響(電波環境指標のばらつき、雑音等)を低減することにより、移動端末の位置推定の誤差を低減し、位置推定を精度良く実現できる。   From the above, the RSSI CDF of the received signal with variable bandwidth, or the LOS and NLOS judgment evaluation by dispersion, fading, the influence of the obstacle between the mobile terminal and the AP (absorption by the obstacle, diffraction at the end), or By reducing the effects of radio waves that have been attenuated other than distance attenuation, such as being reflected by other objects (such as variations in radio wave environment indicators, noise, etc.) Position estimation can be realized with high accuracy.

1 無線ネットワーク
2 移動端末
3−1、3−2、3−i AP(アクセスポイント)
4 移動端末位置推定装置
10 受信機
11 RSSI計算部1
12 測位計算部
13 帯域幅可変部
14 RSSI計算部2
15 電波環境指標計算・判定部
16 DB(データベース)

DESCRIPTION OF SYMBOLS 1 Wireless network 2 Mobile terminal 3-1, 3-2, 3-i AP (access point)
4 Mobile terminal location estimation device 10 Receiver 11 RSSI calculation unit 1
12 Position Calculation Unit 13 Bandwidth Variable Unit 14 RSSI Calculation Unit 2
15 Radio wave environment index calculation / determination unit 16 DB (database)

Claims (10)

無線通信システムの移動端末の周辺に在る複数アクセスポイントから前記無線通信システムに係る信号を受信する信号受信手段と、
前記各アクセスポントから受信した信号から各アクセスポイントの受信電界強度を算出する受信電界強度算出手段と、
前記各アクセスポントから受信した前記信号の帯域幅を可変させる帯域幅可変手段と、
前記帯域幅可変手段で得られた受信信号の電界強度を算出する帯域幅可変電界強度算出手段と、
前記帯域幅可変電界強度算出手段から各アクセスポイントの電波環境指標を算出して、前記電波環境指標を評価・判定する電波環境指標計算・判定手段と、
前記算出した各アクセスポイントの電波環境指標の判定結果に応じて前記各アクセスポイントの受信電界強度より前記移動端末の位置推定を行なう位置推定計算部と、
を備えて前記移動端末の位置を推定することを特徴とする移動端末位置推定装置。
Signal receiving means for receiving a signal related to the wireless communication system from a plurality of access points in the vicinity of a mobile terminal of the wireless communication system;
A received electric field strength calculating means for calculating a received electric field strength of each access point from a signal received from each of the access points;
Bandwidth varying means for varying the bandwidth of the signal received from each access point;
Bandwidth variable electric field strength calculating means for calculating the electric field strength of the received signal obtained by the bandwidth variable means;
Radio wave environment index calculation / determination means for calculating / determining the radio wave environment index by calculating the radio wave environment index of each access point from the bandwidth variable electric field strength calculation means;
A position estimation calculation unit that estimates the position of the mobile terminal from the received electric field strength of each access point according to the determination result of the radio wave environment index of each calculated access point;
A mobile terminal position estimation apparatus comprising: a mobile terminal position estimation apparatus comprising:
無線通信システムの移動端末の周辺に在る複数アクセスポイントから前記無線通信システムに係る信号を受信し、
前記各アクセスポントから受信した信号から各アクセスポイントの受信電界強度を算出する受信電界強度を算出し、
前記各アクセスポントから受信した前記信号の帯域幅を可変し、
前記帯域幅可変して得られた受信信号の電界強度を算出し、
前記帯域幅可変電界強度算出結果から各アクセスポイントの電波環境指標を算出して前記電波環境指標を評価・判定し、
前記算出した各アクセスポイントの電波環境指標の判定結果に応じて前記各アクセスポイントの受信電界強度より前記移動端末の位置推定を行なって、
前記移動端末の位置を推定することを特徴とする移動端末位置推定方法。
Receiving a signal related to the wireless communication system from a plurality of access points in the vicinity of a mobile terminal of the wireless communication system;
Calculate the received electric field strength to calculate the received electric field strength of each access point from the signal received from each access point,
Varying the bandwidth of the signal received from each access point;
Calculate the electric field strength of the received signal obtained by varying the bandwidth,
Calculate and evaluate the radio wave environment index by calculating the radio wave environment index of each access point from the bandwidth variable electric field strength calculation result,
According to the determination result of the radio wave environment index of each access point calculated, the position of the mobile terminal is estimated from the received electric field strength of each access point,
A mobile terminal position estimation method, wherein the mobile terminal position is estimated.
請求項2に記載の移動端末位置推定方法において、
前記各アクセスポイントから受信した前記信号の帯域幅の可変は前記信号の有する通常の帯域幅より狭い帯域に変化させることを特徴とする請求項2記載の移動端末位置推定方法。
In the mobile terminal position estimation method according to claim 2,
3. The mobile terminal position estimation method according to claim 2, wherein the bandwidth of the signal received from each access point is changed to a bandwidth narrower than a normal bandwidth of the signal.
請求項2に記載の移動端末位置推定方法において、
前記算出する電波環境指標は、前記帯域幅を可変した受信電界強度の累積確率密度分布の傾き、あるいは分散値であることを特徴とする請求項2記載の移動端末位置推定方法。
In the mobile terminal position estimation method according to claim 2,
3. The mobile terminal position estimation method according to claim 2, wherein the calculated radio wave environment index is a slope or a variance value of a cumulative probability density distribution of received electric field strength with a variable bandwidth.
請求項2に記載の移動端末位置推定方法において、
前記受信信号のサンプリング間隔を変化させて前記帯域幅を可変にすることを特徴とする請求項2記載の移動端末位置推定方法。
In the mobile terminal position estimation method according to claim 2,
The mobile terminal position estimation method according to claim 2, wherein the bandwidth is made variable by changing a sampling interval of the received signal.
請求項2に記載の移動端末位置推定方法において、
前記受信信号の周波数応答を複数の帯域に分割して前記帯域幅を可変にすることを特徴とする請求項2記載の移動端末位置推定方法。
In the mobile terminal position estimation method according to claim 2,
3. The mobile terminal position estimation method according to claim 2, wherein the bandwidth is made variable by dividing a frequency response of the received signal into a plurality of bands.
請求項2に記載の移動端末位置推定方法において、
前記電波環境指標に応じて前記移動端末の位置推定に用いる前記各アクセスポイントの受信電界強度は前記電波環境指標の条件を満たすか否かで選択して前記移動端末の位置を推定することを特徴とする請求項2記載の移動端末位置推定方法。
In the mobile terminal position estimation method according to claim 2,
The received electric field strength of each access point used for position estimation of the mobile terminal according to the radio wave environment index is selected depending on whether the radio wave environment index satisfies the condition, and the position of the mobile terminal is estimated. The mobile terminal position estimation method according to claim 2.
請求項2に記載の移動端末位置推定方法において、
前記電波環境指標に応じて前記移動端末の位置推定を行う際には前記各アクセスポイントの電波環境指標の値に対応して重みを付けて用いることで前記移動端末の位置を推定することを特徴とする請求項2記載の移動端末位置推定方法。
In the mobile terminal position estimation method according to claim 2,
When estimating the position of the mobile terminal according to the radio wave environment index, the position of the mobile terminal is estimated by using a weight corresponding to the value of the radio wave environment index of each access point. The mobile terminal position estimation method according to claim 2.
請求項4に記載の移動端末位置推定方法において、
前記移動端末の位置推定に用いる前記アクセスポイント毎の前記受信電界強度は、前記帯域幅を可変した受信電界強度の累積確率密度分布の傾きが所定以上である、又は前記帯域幅を可変した受信電界強度の分散値が所定以下であることを特徴とする請求項4記載の移動端末位置推定方法。
In the mobile terminal position estimation method according to claim 4,
The received electric field strength for each access point used for position estimation of the mobile terminal has a slope of a cumulative probability density distribution of the received electric field strength with variable bandwidth or a received electric field with variable bandwidth. 5. The mobile terminal position estimation method according to claim 4, wherein the intensity variance value is equal to or less than a predetermined value.
無線通信システムのアクセスポイントから前記無線通信システムに係る信号を受信し、
前記アクセスポント毎の受信信号から受信電界強度を算出する受信電界強度を算出し、
前記アクセスポント毎の前記受信信号の帯域幅を可変して受信し、
前記帯域幅の可変で得られた受信信号の電界強度を算出し、
前記帯域幅可変電界強度算出結果から電波環境指標を算出して前記電波環境指標を評価・判定することを特徴とする電波環境指標算出方法。

Receiving a signal related to the wireless communication system from an access point of the wireless communication system;
Calculate the received electric field strength from the received signal for each access point to calculate the received electric field strength,
Receiving a variable bandwidth of the received signal for each access point;
Calculate the electric field strength of the received signal obtained by varying the bandwidth,
A radio wave environment index calculation method comprising: calculating a radio wave environment index from the bandwidth variable electric field strength calculation result, and evaluating and determining the radio wave environment index.

JP2011033973A 2011-02-18 2011-02-18 Mobile terminal position estimation apparatus, mobile terminal position estimation method, and radio wave environment index calculation method Expired - Fee Related JP5691613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033973A JP5691613B2 (en) 2011-02-18 2011-02-18 Mobile terminal position estimation apparatus, mobile terminal position estimation method, and radio wave environment index calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033973A JP5691613B2 (en) 2011-02-18 2011-02-18 Mobile terminal position estimation apparatus, mobile terminal position estimation method, and radio wave environment index calculation method

Publications (2)

Publication Number Publication Date
JP2012173070A true JP2012173070A (en) 2012-09-10
JP5691613B2 JP5691613B2 (en) 2015-04-01

Family

ID=46976116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033973A Expired - Fee Related JP5691613B2 (en) 2011-02-18 2011-02-18 Mobile terminal position estimation apparatus, mobile terminal position estimation method, and radio wave environment index calculation method

Country Status (1)

Country Link
JP (1) JP5691613B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101673172B1 (en) * 2015-09-23 2016-11-07 영남대학교 산학협력단 Indoor position measuring system
JP2017507330A (en) * 2014-02-20 2017-03-16 マイクロソフト テクノロジー ライセンシング,エルエルシー Positioning of wireless user equipment devices in the target zone
JP2017207295A (en) * 2016-05-16 2017-11-24 株式会社ケアコム Location detection system and location detection device
JP2017227600A (en) * 2016-06-24 2017-12-28 株式会社東芝 Wireless device position estimation device
CN107660044A (en) * 2017-10-20 2018-02-02 深圳和而泰智能控制股份有限公司 A kind of interior lighting system and control method based on mesh networks
KR20180090646A (en) * 2017-02-03 2018-08-13 현대모비스 주식회사 Method and apparatus for location estimating using gis information
JP2018182434A (en) * 2017-04-06 2018-11-15 富士電機株式会社 Radio wave quality measurement apparatus and radio wave quality measurement method
CN108933875A (en) * 2017-05-23 2018-12-04 佳能株式会社 Mobile terminal, the control method of mobile terminal and storage medium
JP2019039791A (en) * 2017-08-25 2019-03-14 富士通株式会社 Simulator, simulation method, and simulation program
WO2019107388A1 (en) * 2017-11-29 2019-06-06 日本電気株式会社 Location estimation system, location estimation method, and program
CN110007264A (en) * 2019-04-19 2019-07-12 中国矿业大学(北京) A kind of mine personnel accurate positioning non-market value determination method
US10667085B2 (en) 2018-01-05 2020-05-26 Canon Kabushiki Kaisha Information processing apparatus, method of controlling the same, and storage medium
US10715263B2 (en) 2017-08-25 2020-07-14 Fujitsu Limited Information processing apparatus, method and non-transitory computer-readable storage medium
WO2020158310A1 (en) * 2019-01-31 2020-08-06 株式会社デンソー Vehicular position estimating system
US10859671B2 (en) 2016-11-29 2020-12-08 Murata Manufacturing Co., Ltd. Position estimation apparatus and position estimation method
WO2020255272A1 (en) * 2019-06-18 2020-12-24 株式会社 東芝 Electronic apparatus and method
WO2020255271A1 (en) * 2019-06-18 2020-12-24 株式会社 東芝 Electronic apparatus and method
US10976403B2 (en) 2016-07-04 2021-04-13 Murata Manufacturing Co., Ltd. Position detection system and receiver
JP2022078334A (en) * 2019-06-18 2022-05-24 株式会社東芝 Electronic apparatus and method
JP2022081620A (en) * 2019-06-18 2022-05-31 株式会社東芝 Electronic apparatus, method, and program
US12028018B2 (en) 2021-03-01 2024-07-02 Kabushiki Kaisha Toshiba Electronic apparatus for determining correspondence between devices and positions at which devices are located using propagation characteristic of wireless communication between devices, and method, and electronic system for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266836A (en) * 1999-03-15 2000-09-29 Mitsumi Electric Co Ltd Method for compensating for gps multipath
WO2008081186A1 (en) * 2007-01-05 2008-07-10 University Of Bath Multipath detection
JP2008175574A (en) * 2007-01-16 2008-07-31 Seiko Epson Corp Positioning device, electronic device, filter passing band variation method, program and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266836A (en) * 1999-03-15 2000-09-29 Mitsumi Electric Co Ltd Method for compensating for gps multipath
WO2008081186A1 (en) * 2007-01-05 2008-07-10 University Of Bath Multipath detection
JP2008175574A (en) * 2007-01-16 2008-07-31 Seiko Epson Corp Positioning device, electronic device, filter passing band variation method, program and storage medium

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507330A (en) * 2014-02-20 2017-03-16 マイクロソフト テクノロジー ライセンシング,エルエルシー Positioning of wireless user equipment devices in the target zone
KR101673172B1 (en) * 2015-09-23 2016-11-07 영남대학교 산학협력단 Indoor position measuring system
JP2017207295A (en) * 2016-05-16 2017-11-24 株式会社ケアコム Location detection system and location detection device
JP2017227600A (en) * 2016-06-24 2017-12-28 株式会社東芝 Wireless device position estimation device
US10976403B2 (en) 2016-07-04 2021-04-13 Murata Manufacturing Co., Ltd. Position detection system and receiver
US10859671B2 (en) 2016-11-29 2020-12-08 Murata Manufacturing Co., Ltd. Position estimation apparatus and position estimation method
KR102584796B1 (en) * 2017-02-03 2023-10-05 현대모비스 주식회사 Method and apparatus for location estimating using gis information
KR20180090646A (en) * 2017-02-03 2018-08-13 현대모비스 주식회사 Method and apparatus for location estimating using gis information
JP2018182434A (en) * 2017-04-06 2018-11-15 富士電機株式会社 Radio wave quality measurement apparatus and radio wave quality measurement method
CN108933875A (en) * 2017-05-23 2018-12-04 佳能株式会社 Mobile terminal, the control method of mobile terminal and storage medium
US11474754B2 (en) 2017-05-23 2022-10-18 Canon Kabushiki Kaisha Mobile terminal that remotely controls a wireless communication apparatus and displays a notification from the wireless communication apparatus, method of controlling same, and storage medium
US10514869B2 (en) 2017-05-23 2019-12-24 Canon Kabushiki Kaisha Mobile terminal that remotely controls a wireless communication apparatus and that provides notification by wireless communication, method of controlling same, and storage medium
JP2019039791A (en) * 2017-08-25 2019-03-14 富士通株式会社 Simulator, simulation method, and simulation program
US10715263B2 (en) 2017-08-25 2020-07-14 Fujitsu Limited Information processing apparatus, method and non-transitory computer-readable storage medium
CN107660044A (en) * 2017-10-20 2018-02-02 深圳和而泰智能控制股份有限公司 A kind of interior lighting system and control method based on mesh networks
JPWO2019107388A1 (en) * 2017-11-29 2020-11-19 日本電気株式会社 Position estimation system, position estimation method and program
WO2019107388A1 (en) * 2017-11-29 2019-06-06 日本電気株式会社 Location estimation system, location estimation method, and program
US10667085B2 (en) 2018-01-05 2020-05-26 Canon Kabushiki Kaisha Information processing apparatus, method of controlling the same, and storage medium
JP7183830B2 (en) 2019-01-31 2022-12-06 株式会社Soken Vehicle localization system
WO2020158310A1 (en) * 2019-01-31 2020-08-06 株式会社デンソー Vehicular position estimating system
JP2020122727A (en) * 2019-01-31 2020-08-13 株式会社Soken Position estimation system for vehicle
CN110007264A (en) * 2019-04-19 2019-07-12 中国矿业大学(北京) A kind of mine personnel accurate positioning non-market value determination method
CN110007264B (en) * 2019-04-19 2021-09-21 中国矿业大学(北京) Non-line-of-sight error judgment method for accurate positioning of mine personnel
JPWO2020255272A1 (en) * 2019-06-18 2021-09-30 株式会社東芝 Electronic devices and methods
JP7053081B2 (en) 2019-06-18 2022-04-12 株式会社東芝 Electronic devices and methods
JP2022078334A (en) * 2019-06-18 2022-05-24 株式会社東芝 Electronic apparatus and method
JP2022081620A (en) * 2019-06-18 2022-05-31 株式会社東芝 Electronic apparatus, method, and program
JPWO2020255271A1 (en) * 2019-06-18 2021-09-30 株式会社東芝 Electronic devices and methods
WO2020255271A1 (en) * 2019-06-18 2020-12-24 株式会社 東芝 Electronic apparatus and method
JP7242935B2 (en) 2019-06-18 2023-03-20 株式会社東芝 Electronic device, method and program
JP7242937B2 (en) 2019-06-18 2023-03-20 株式会社東芝 Electronic device and method
WO2020255272A1 (en) * 2019-06-18 2020-12-24 株式会社 東芝 Electronic apparatus and method
US11959994B2 (en) 2019-06-18 2024-04-16 Kabushiki Kaisha Toshiba Electronic apparatus, method, and electronic system
US12028018B2 (en) 2021-03-01 2024-07-02 Kabushiki Kaisha Toshiba Electronic apparatus for determining correspondence between devices and positions at which devices are located using propagation characteristic of wireless communication between devices, and method, and electronic system for same

Also Published As

Publication number Publication date
JP5691613B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5691613B2 (en) Mobile terminal position estimation apparatus, mobile terminal position estimation method, and radio wave environment index calculation method
Wu et al. FILA: Fine-grained indoor localization
EP2549812B1 (en) RF Fingerprinting for Location Estimate
Han et al. Indoor localization with a single Wi-Fi access point based on OFDM-MIMO
Li et al. A passive WiFi source localization system based on fine-grained power-based trilateration
CN110191071B (en) Channel estimation-based measurement method and device in narrow-band Internet of things system
Braun et al. On the single-target accuracy of OFDM radar algorithms
CN116137952A (en) CIR peak threshold control for TOA estimation
Zhang et al. A novel fingerprinting using channel state information with MIMO–OFDM
Li et al. An iterative 5G positioning and synchronization algorithm in NLOS environments with multi-bounce paths
Tian et al. MIMO CSI-based super-resolution AoA estimation for Wi-Fi indoor localization
Astafiev et al. Algorithm for preliminary processing channel state information of the WIFI communication channel for building indoor positioning systems
Han et al. A new high precise indoor localization approach using single access point
CN107305225B (en) Method and apparatus for VSWR estimation using cross-correlation and real number sampling without time alignment
Wang et al. Ieee 802.11 wlan based indoor positioning algorithm using weight grey prediction model
Schützenhöfer et al. Experimental evaluation of the influence of fast movement on virtual antenna arrays
KR20120047694A (en) Methods of position tracking of mobile terminal using observed time difference of arrival and mobile terminal using the same
Abudabbousa et al. Multicarrier Technique-Based Super-Resolution TDOA Estimation
Ibrahim et al. Does multi-hop communication enhance localization accuracy?
JP5753605B1 (en) Interference wave power measuring apparatus, interference wave power measuring method, SIR measuring apparatus and SIR measuring method
WO2023032901A1 (en) Positioning system and positioning method
Wang et al. Indoor positioning method based on optimal channel state information subcarrier
EP4283933A1 (en) Method for providing at least one estimated parameter of a wireless communication channel and radio receiver device
Li et al. Weak multipath effect identification for indoor distance estimation
CN106130671B (en) The method of estimation of non-integral multiple multidiameter delay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees