JP2012172877A - Outside air-cooling air conditioning system - Google Patents

Outside air-cooling air conditioning system Download PDF

Info

Publication number
JP2012172877A
JP2012172877A JP2011034106A JP2011034106A JP2012172877A JP 2012172877 A JP2012172877 A JP 2012172877A JP 2011034106 A JP2011034106 A JP 2011034106A JP 2011034106 A JP2011034106 A JP 2011034106A JP 2012172877 A JP2012172877 A JP 2012172877A
Authority
JP
Japan
Prior art keywords
air
outside air
circuit
electric damper
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011034106A
Other languages
Japanese (ja)
Other versions
JP5044705B2 (en
Inventor
Motoyuki Gondo
素之 權藤
Keiju Ishigaki
恵寿 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2011034106A priority Critical patent/JP5044705B2/en
Publication of JP2012172877A publication Critical patent/JP2012172877A/en
Application granted granted Critical
Publication of JP5044705B2 publication Critical patent/JP5044705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent clogging and freezing of a filter by snow in an outside air introduction circuit, and generation of vapor in an air conditioner by optimally controlling temperature/humidity in an air-conditioned room.SOLUTION: This outside air-cooling air conditioning system includes an air supply flow channel and an air return flow channel, the outside air introduction circuit, and an exhaust flow channel and a recirculation flow channel. A vaporization type humidifier and a cold water coil at a downstream side of the humidifier are disposed in the recirculation flow channel, a first bypass circuit and a first electric damper are disposed for connecting the upstream side and the downstream side of the vaporization type humidifier, a second bypass circuit and a second electric damper are disposed for connecting the downstream side of the vaporization type humidifier and the outside air introduction circuit, and a third bypass circuit and a third electric damper are disposed for connecting the upstream side of the vaporization type humidifier and the outside air introduction circuit. A snow sensor is disposed near an outside air inlet of the outside air introduction circuit. A humidification amount supplied to the air-conditioned room is controlled by the first electric damper, and the outside air introduction circuit is controlled by the second electric damper when intrusion of snow is detected by the snow sensor.

Description

本発明は空気調和システムに関し、特に外気を導入して冷房を行うと共に、寒冷地での雪によるフィルターの目詰まりや凍結・霧の発生を防止するための空調システムに関する。   The present invention relates to an air conditioning system, and more particularly, to an air conditioning system that cools air by introducing outside air and prevents clogging of a filter due to snow and freezing / mist generation in a cold region.

外気を導入して空調を行うシステムは広く利用されているが、外気の温度・湿度は広範囲にわたって変動するため、空調対象室内の温度・湿度を最適に制御することは困難である。特に寒冷地においては、外気導入回路で雪(パウダースノー)によるフィルターの目詰まりや凍結、空調機内での霧の発生など、解決すべき課題が多い。   Systems that perform air conditioning by introducing outside air are widely used. However, since the temperature and humidity of the outside air fluctuate over a wide range, it is difficult to optimally control the temperature and humidity in the air-conditioned room. Especially in cold regions, there are many problems to be solved such as clogging and freezing of the filter by snow (powder snow) in the outside air introduction circuit, and generation of fog in the air conditioner.

特開2006−349276「空気調和機および外気冷房運転方法」には、給気系と還気系と外気系の通路を備え、還気系からの戻り流路に水スプレー式・気化式・超音波式などの水加湿器を設け、その上流側に還気冷却コイルを設けた空調システムが記載されている。ただし、寒冷地における低温対策、霧の発生対策、雪対策などについての言及はない。Japanese Patent Application Laid-Open No. 2006-349276 “Air conditioner and outside air cooling operation method” includes a passage of an air supply system, a return air system, and an outside air system, and a water spray type / vaporization type / super An air conditioning system in which a water humidifier such as a sonic type is provided and a return air cooling coil is provided upstream thereof is described. However, there is no mention of low-temperature countermeasures, fog generation countermeasures, snow countermeasures, etc. in cold regions.

特開2003−148782「外気冷房システム」には、給気系と還気系と外気系の通路を備え、還気系からの戻り流路に水スプレー式の加湿器を設け、空気線図上で負荷ラインを設定して加湿量を制御し、還流空気と外気の混合量を制御するシステムが記載されている。ただし、寒冷地における低温対策、霧の発生対策、雪対策などについての言及はない。Japanese Patent Application Laid-Open No. 2003-148882 “Outside Air Cooling System” includes a supply air system, a return air system, and an outside air system passage, and a water spray humidifier is provided in a return flow path from the return air system. Describes a system in which the load line is set to control the humidification amount and the mixing amount of the reflux air and the outside air is controlled. However, there is no mention of low-temperature countermeasures, fog generation countermeasures, snow countermeasures, etc. in cold regions.

図12は従来の一般的な外気導入式空調システムを表している。その基本的構成として、空調対象室10に接続された給気流路12及び還気流路14と、給気流路12上の合流点13で給気流路12に接続された外気導入回路16と、還気流路14上の分流点15で還気流路14に接続された排気流路18及び再循環流路20とを備え、再循環流路20が合流点13で給気流路12及び外気導入回路16に接続されている外気冷房空調システムである。
図13は図12の空調システムの空気線図上での操作方法を表している。横軸は乾球温度、縦軸は絶対湿度を表している。
FIG. 12 shows a conventional general outside air introduction type air conditioning system. As its basic configuration, an air supply passage 12 and a return air passage 14 connected to the air-conditioning target room 10, an outside air introduction circuit 16 connected to the air supply passage 12 at a junction 13 on the air supply passage 12, and a return An exhaust passage 18 and a recirculation passage 20 connected to the return air passage 14 at a branch point 15 on the air passage 14 are provided, and the recirculation passage 20 is an air supply passage 12 and an outside air introduction circuit 16 at a junction 13. It is the outside air cooling air-conditioning system connected to.
FIG. 13 shows an operation method on the air diagram of the air conditioning system of FIG. The horizontal axis represents dry bulb temperature and the vertical axis represents absolute humidity.

本発明の目的は、空調対象室内の温度・湿度を最適に制御するとともに、外気導入回路の雪によるフィルターの目詰まりや凍結、空調機内での霧の発生などを防止することが可能な空調システムを提供することにある。   An object of the present invention is to provide an air conditioning system capable of optimally controlling the temperature and humidity in an air-conditioning target room, and preventing clogging or freezing of the filter due to snow in the outside air introduction circuit, generation of fog in the air conditioner, and the like. Is to provide.

特に、本発明は気化式加湿器を使用した外気冷房空調システム(寒冷地での高顕熱負荷対応)に向けられており、その広範な目的とするところは、
1.外気冷房の利用範囲拡大による省エネルギ
2.外気冷房時の加湿不足の回避
3.加湿スペースの削減によるコンパクト化
4.電動ダンパーの動作による風量変動を風量センサーを用いた風量制御システムで抑える
5.空調機機内抵抗の削減
6.寒冷地でのフィルターの目詰まりや凍結、霧発生防止
7.寒冷地のデータセンターなど、である。
In particular, the present invention is directed to an outdoor air-conditioning air conditioning system using a vaporizing humidifier (compatible with a high sensible heat load in cold regions), and its broad purpose is
1. 1. Energy saving by expanding the range of use of outside air cooling. 2. Avoiding insufficient humidification during outdoor air cooling. Compact by reducing humidification space 4. 4. Suppress fluctuations in airflow due to the operation of the electric damper with an airflow control system using an airflow sensor. 5. Reduction of air conditioner internal resistance 6. Prevention of filter clogging, freezing, and fog generation in cold regions Such as a data center in a cold region.

本発明は、その基本的構成として、空調対象室に接続された給気流路及び還気流路と、前記給気流路上の合流点で前記給気流路に接続された外気導入回路と、前記還気流路上の分流点で前記還気流路に接続された排気流路及び再循環流路とを備え、前記再循環流路が前記合流点で前記給気流路及び前記外気導入回路に接続されている外気冷房空調システムである。   The basic configuration of the present invention is that an air supply channel and a return air channel connected to an air-conditioning target room, an outside air introduction circuit connected to the air supply channel at a confluence on the air supply channel, and the return air flow Outside air having an exhaust passage and a recirculation passage connected to the return air passage at a branch point on the road, and the recirculation passage being connected to the supply passage and the outside air introduction circuit at the junction This is an air conditioning system.

本発明の特徴点として、前記再循環流路内に気化式加湿器とその下流側の冷水コイルとが配置され、前記気化式加湿器の上流側と下流側とを接続する第1のバイパス回路が設けられて当該バイパス回路内に第1の電動ダンパーが配置され、前記気化式加湿器の下流側と前記外気導入回路とを接続する第2のバイパス回路が設けられて当該バイパス回路内に第2の電動ダンパーが配置され、前記気化式加湿器の上流側と前記外気導入回路とを接続する第3のバイパス回路が設けられて当該バイパス回路内に第3の電動ダンパーが配置されている。
さらに、前記外気導入回路の外気取入口付近に雪(パウダースノー)の有無を検出するスノーセンサー(光学的検出装置,煤煙濃度計など)が設けられており、前記第1の電動ダンパーで空調対象室内に供給される加湿量を制御し、前記スノーセンサーが雪の侵入を検出した場合は前記第2の電動ダンパーで外気導入回路を制御することを特徴としている。
As a feature of the present invention, a first bypass circuit in which a vaporizing humidifier and a cold water coil on the downstream side thereof are arranged in the recirculation flow path, and connects the upstream side and the downstream side of the vaporizing humidifier. Is provided, a first electric damper is disposed in the bypass circuit, a second bypass circuit is provided to connect the downstream side of the vaporizing humidifier and the outside air introduction circuit, and the second bypass circuit is provided in the bypass circuit. The second electric damper is disposed, a third bypass circuit is provided to connect the upstream side of the vaporizing humidifier and the outside air introduction circuit, and the third electric damper is disposed in the bypass circuit.
Further, a snow sensor (optical detector, smoke concentration meter, etc.) for detecting the presence or absence of snow (powder snow) is provided in the vicinity of the outside air inlet of the outside air introduction circuit, and the air conditioner is subject to air conditioning by the first electric damper. The humidification amount supplied into the room is controlled, and when the snow sensor detects the intrusion of snow, the outside air introduction circuit is controlled by the second electric damper.

本発明はその好適な態様として、空調対象室内に対して変風量方式を適用し、インバータファン又はいくつかの電動ダンパーを制御して送風量を変動させ、室内負荷に見合った風量まで減少させることにより搬送動力の低減を図ることができる。   As a preferred aspect of the present invention, the variable air volume method is applied to the air-conditioning target room, the inverter fan or some electric dampers are controlled to vary the air flow volume, and the air volume is matched to the indoor load. Therefore, the conveyance power can be reduced.

さらに本発明はその好適な態様として、前記給気流路内に露点センサーが設けられ、前記露点センサーの検出した露点温度に基づき前記第1の電動ダンパーで空調対象室内に供給される加湿量を制御することができる。   Further, as a preferred aspect of the present invention, a dew point sensor is provided in the air supply flow path, and the amount of humidification supplied to the air conditioned room is controlled by the first electric damper based on the dew point temperature detected by the dew point sensor. can do.

さらに本発明はその好適な態様として、屋外に降雪センサーを設けることにより、降雪を検知し、外気導入量を最小に制御することができる。   Furthermore, as a suitable aspect of the present invention, by providing a snowfall sensor outdoors, it is possible to detect snowfall and to control the amount of outside air introduced to a minimum.

かかる構成に基づき本発明による空調システムでは、外気冷房可能条件で次のような運転が可能となる。
1.外気冷房対応空調機で還気流路に設置した気化式加湿器の能力をバイパス空気と混合することにより所定の露点温度を確保し、その加湿能力に見合った外気を導入する。低温時の外気は冷水コイル下流に供給し、コイルの圧力損失を低減する。
2.還気と外気の混合後の温度が給気温度設定値より低くなる場合は送風量を低減する。
3.外気温度が上昇し、送風温度が上昇した場合は外気をコイル上流に供給し、冷水コイルで不足分を冷却する。
Based on such a configuration, the air-conditioning system according to the present invention can be operated as follows under conditions that allow outdoor air cooling.
1. A predetermined dew point temperature is ensured by mixing the ability of the vaporizing humidifier installed in the return air flow path with an air-cooling-compatible air conditioner with bypass air, and outside air corresponding to the humidifying ability is introduced. Outside air at a low temperature is supplied downstream of the cold water coil to reduce the pressure loss of the coil.
2. When the temperature after mixing the return air and the outside air becomes lower than the supply air temperature setting value, the air flow rate is reduced.
3. When the outside air temperature rises and the blowing temperature rises, the outside air is supplied upstream of the coil, and the deficiency is cooled by the cold water coil.

4.極端に気温が低い外気と加湿空気を混合すると空気線図上で飽和線と交わり霧が発生する。これを防止するため、加湿空気との混合前に霧の発生しない条件まで外気と還気を混合し温度を上げる。
5.寒冷時の降雪(パウダースノー)が外気とともに侵入するとフィルターが目詰まりする。好適にはこれを検出し、防止する。屋外に設けた降雪センサーで降雪を感知した場合、最小外気量に制限するとともに、ダクトに取り付けた光学的検出装置(例えば煤煙濃度計)が雪の侵入を検出する。その場合フィルターをバイパスさせ還気と混合することで雪を融解し排出する。
6.電動ダンパーで外気、還気、排気を制御するので、空調機送風量が変動する。これを防止するため、風速(風量)センサーによるINV(インバータ)制御やVAV(変風量装置)を使用したINV制御を行う。
4). When outside air with extremely low temperature and humidified air are mixed, fog is generated by crossing the saturation line on the air diagram. In order to prevent this, outside air and return air are mixed to a condition where no fog is generated before mixing with humidified air to raise the temperature.
5. The filter is clogged when cold snowfall (powder snow) enters with outside air. This is preferably detected and prevented. When snowfall is detected by a snowfall sensor provided outdoors, the amount of outside air is limited, and an optical detection device (for example, a smoke concentration meter) attached to the duct detects snow intrusion. In that case, the snow is melted and discharged by bypassing the filter and mixing with the return air.
6). Since the outside air, return air, and exhaust are controlled by the electric damper, the air flow of the air conditioner fluctuates. In order to prevent this, INV (inverter) control using a wind speed (air volume) sensor and INV control using a VAV (variable air volume device) are performed.

本発明による空調システムの冷房パターンAの回路図。The circuit diagram of the cooling pattern A of the air conditioning system by this invention. 本発明による空調システムの冷房パターンBの回路図。The circuit diagram of the cooling pattern B of the air conditioning system by this invention. 本発明による空調システムの冷房パターンCの回路図。The circuit diagram of the cooling pattern C of the air conditioning system by this invention. 本発明による空調システムの冷房パターンDの回路図。The circuit diagram of the cooling pattern D of the air conditioning system by this invention. 本発明による空調システムの冷房パターンEの回路図。The circuit diagram of the cooling pattern E of the air conditioning system by this invention. 本発明による空調システムの冷房パターンFの回路図。The circuit diagram of the cooling pattern F of the air conditioning system by this invention. 本発明による空調システムの上部の構成を表す平面図。The top view showing the structure of the upper part of the air-conditioning system by this invention. 図7の線A−Aに沿う水平断面図。FIG. 8 is a horizontal sectional view taken along line AA in FIG. 7. 本発明による空調システムの下部の構成を表す平面図。The top view showing the structure of the lower part of the air conditioning system by this invention. 図7の線B−Bに沿う水平断面図。FIG. 8 is a horizontal sectional view taken along line BB in FIG. 7. 本発明の空調システムの制御方法を表す空気線図。The air line figure showing the control method of the air-conditioning system of this invention. 従来の外気導入式空調システムの概要を表す回路図。The circuit diagram showing the outline | summary of the conventional external air introduction type | formula air conditioning system. 従来の空調システムの制御方法を表す空気線図。The air line figure showing the control method of the conventional air conditioning system. 図13を簡略化した空気線図。The airline diagram which simplified FIG.

最初に、本発明による気化式加湿を利用した外気冷房空調システムの特徴について説明する。
(1)加湿器の能力を最大限利用し、その能力に見合った外気量を導入する。シンプルな制御で外気の冷却熱量を最大限利用できるため、データセンターのような高顕熱負荷の建物に適している。
(2)加湿量を広範囲に比例制御することが可能。
(3)過加湿を回避することができる。
(4)加湿不足を回避することができる。
First, the features of the outside air-conditioning air conditioning system using vaporizing humidification according to the present invention will be described.
(1) Utilize the capacity of the humidifier to the maximum and introduce an outside air volume that matches the capacity. Simple control can maximize the amount of cooling air from outside, making it suitable for buildings with high sensible heat loads such as data centers.
(2) The humidification amount can be proportionally controlled over a wide range.
(3) Excessive humidification can be avoided.
(4) Insufficient humidification can be avoided.

(5)気化式加湿器は例えば2流体加湿、高圧水噴霧加湿、蒸気加湿などで必要な蒸発吸収距離が不要であり、空調機をコンパクトにすることができる。
(6)加湿器および冷却コイルが不要な期間はそれらをバイパスさせることで、その抵抗を削減でき送風機動力の低減が可能。
(7)冬期は冷却コイルをバイパスさせることで冷水コイルの凍結を防止できる。
(8)バイパスダンパーの開閉は機内抵抗を変化させる。その機内抵抗の変化による風量の変動を、風量センサーによる送風機のインバータ制御で防止することができる。
(5) The vaporization type humidifier does not require the evaporation absorption distance required by, for example, two-fluid humidification, high-pressure water spray humidification, steam humidification, etc., and the air conditioner can be made compact.
(6) By bypassing the humidifier and the cooling coil during periods when they are not needed, the resistance can be reduced and the fan power can be reduced.
(7) Freezing of the cold water coil can be prevented by bypassing the cooling coil in winter.
(8) Opening and closing the bypass damper changes the in-flight resistance. Fluctuation in the air volume due to the change in the in-machine resistance can be prevented by inverter control of the blower by the air volume sensor.

本発明における空調システムの温湿度制御は、図14に示すように、空気線図上で外気条件を以下のように4つのゾーンに分けて考えることができる。外気冷房はゾーン1で利用可能であり、ゾーン2,3,3’では外気冷房は不可だが外気を換気に利用するため最小外気量を導入する。   As shown in FIG. 14, the temperature and humidity control of the air conditioning system according to the present invention can be considered by dividing the outdoor air condition into the following four zones on the air diagram. Outside air cooling can be used in Zone 1, and in Zones 2, 3, and 3 ', outside air cooling is not possible, but a minimum amount of outside air is introduced to use outside air for ventilation.

図1は本発明による外気冷房空調システムの回路図(システムフロー図)であり、その基本的回路構成として、空調対象室10に接続された給気流路12及び還気流路14と、給気流路12上の合流点13で給気流路12に接続された外気導入回路16と、還気流路14上の分流点15で還気流路14に接続された排気流路18及び還気の一部が流れる再循環流路20とを備える。   FIG. 1 is a circuit diagram (system flow diagram) of an outside air cooling and air conditioning system according to the present invention. As a basic circuit configuration thereof, an air supply passage 12 and a return air passage 14 connected to an air-conditioning target room 10, and an air supply passage. The outside air introduction circuit 16 connected to the supply air flow path 12 at the confluence 13 on the flow path 12, the exhaust flow path 18 connected to the return air flow path 14 at the diversion point 15 on the return air flow path 14, and a part of the return air are And a flowing recirculation flow path 20.

再循環流路20は合流点13で給気流路12及び外気導入回路16に接続されている。再循環流路20内に気化式加湿器22とその下流側の冷水コイル24とが配置され、気化式加湿器22の上流側と下流側とを接続する第1のバイパス回路31が設けられて当該バイパス回路内に第1の電動ダンパー32が配置されている。また、気化式加湿器22の下流側と外気導入回路16とを接続する第2のバイパス回路33が設けられて当該バイパス回路内に第2の電動ダンパー34が配置されている。また、気化式加湿器22の上流側と外気導入回路16とを接続する第3のバイパス回路35が設けられて当該バイパス回路内に第3の電動ダンパー36が配置されている。気化式加湿器22には加湿給水用電動弁55が取り付けられ、冷水コイル24には制御用電動弁56が取り付けられている。   The recirculation flow path 20 is connected to the air supply flow path 12 and the outside air introduction circuit 16 at the junction 13. A vaporizing humidifier 22 and a cold water coil 24 on the downstream side thereof are disposed in the recirculation flow path 20, and a first bypass circuit 31 that connects the upstream side and the downstream side of the vaporizing humidifier 22 is provided. A first electric damper 32 is disposed in the bypass circuit. Moreover, the 2nd bypass circuit 33 which connects the downstream of the vaporization type humidifier 22 and the external air introduction circuit 16 is provided, and the 2nd electric damper 34 is arrange | positioned in the said bypass circuit. In addition, a third bypass circuit 35 that connects the upstream side of the vaporizing humidifier 22 and the outside air introduction circuit 16 is provided, and a third electric damper 36 is disposed in the bypass circuit. The vaporizing humidifier 22 is provided with a humidified water supply electric valve 55, and the cold water coil 24 is provided with a control electric valve 56.

また、冷水コイル24の上流側と外気導入回路16とを接続する第4のバイパス回路37が設けられて当該バイパス回路内に第4の電動ダンパー38が配置されている。外気導入回路16が合流点13に接続される直前の位置に第5の電動ダンパー40が配置されている。   In addition, a fourth bypass circuit 37 that connects the upstream side of the cold water coil 24 and the outside air introduction circuit 16 is provided, and a fourth electric damper 38 is disposed in the bypass circuit. A fifth electric damper 40 is disposed at a position immediately before the outside air introduction circuit 16 is connected to the junction 13.

給気流路12内には、図示のように、上流側から、流路を流れる風量を測定する風量センサー54,インバータファン52,温度センサー59,露点センサー58が取り付けられている。還気流路14内には、上流側から、風量センサー54とインバータファン53が取り付けられている。排気流路18には、排気用電動ダンパー26が配置されている。空調対象室10内には、温度を検出するための温度センサー57が取り付けられ送風温度のカスケード制御に用いられる。さらに、再循環流路20内にはエアフィルター50が配置され、外気導入回路16内には、エアフィルター51が配置されている。   As shown in the figure, an air flow sensor 54, an inverter fan 52, a temperature sensor 59, and a dew point sensor 58 for measuring the air flow flowing through the flow channel are mounted in the air supply flow channel 12 from the upstream side. An air flow sensor 54 and an inverter fan 53 are attached in the return air flow path 14 from the upstream side. An exhaust electric damper 26 is disposed in the exhaust passage 18. A temperature sensor 57 for detecting the temperature is attached in the air-conditioning target room 10 and is used for cascade control of the blowing temperature. Further, an air filter 50 is disposed in the recirculation flow path 20, and an air filter 51 is disposed in the outside air introduction circuit 16.

外気導入流路16の外気取入口は41,42の2個所が設けられており、第1の外気取入口41には定風量装置(CAV)46が配置され、その下流側に雪の有無を検出するスノーセンサー48,温度センサー59,露点センサー58が設けられている。第2の外気取入口42には外気取入用電動ダンパー44が配置されている。   The outside air intake passage 16 has two outside air inlets 41 and 42, and a constant air volume device (CAV) 46 is arranged at the first outside air inlet 41, and the presence or absence of snow is detected downstream thereof. A snow sensor 48, a temperature sensor 59, and a dew point sensor 58 for detection are provided. An electric damper 44 for taking in outside air is arranged at the second outside air inlet 42.

第1の電動ダンパー32は露点センサー58が検出した露点温度に基づき空調対象室10へと供給される加湿量を制御し、第2の電動ダンパー34はスノーセンサー48が雪の侵入を検出し、外気を加湿器22の下流へ導入する。外気ダクトに設置した温度センサー59と露点センサー58により、加湿前必要還気風量を導入し、霧の発生を防止する。   The first electric damper 32 controls the amount of humidification supplied to the air-conditioned room 10 based on the dew point temperature detected by the dew point sensor 58, and the second electric damper 34 detects the snow intrusion by the snow sensor 48, Outside air is introduced downstream of the humidifier 22. The temperature sensor 59 and dew point sensor 58 installed in the outside air duct introduce the necessary return air volume before humidification to prevent the generation of fog.

図1はパターンAとして冷水コイルが不要な場合の外気冷房システムの回路を表している。図2はパターンBとして冷水コイルが必要な場合の外気冷房システムの回路を表している。図14のゾーン1での操作に対応する。
(1)露点温度を一定に制御する場合
気化式加湿器22の最大能力に見合った外気を導入するため、外気露点温度で外気取入用電動ダンパー44を制御する。
外気露点温度が高い場合は、露点センサー58で検出される送風空気露点温度(DP)が一定になるように、第1のバイパス回路31内のバイパスMD(第1の電動ダンパー)32を調整して気化式加湿器22の通過風量を制御し、かつ気化式加湿器22に取り付けられた加湿給水電動弁55を操作して加湿量の制御を行う。
FIG. 1 shows a circuit of the outside air cooling system when the cold water coil is unnecessary as the pattern A. FIG. 2 shows a circuit of the outside air cooling system when a cold water coil is required as the pattern B. This corresponds to the operation in zone 1 in FIG.
(1) When the dew point temperature is controlled to be constant In order to introduce the outside air corresponding to the maximum capacity of the vaporizing humidifier 22, the outside air intake electric damper 44 is controlled at the outside air dew point temperature.
When the outside air dew point temperature is high, the bypass MD (first electric damper) 32 in the first bypass circuit 31 is adjusted so that the blown air dew point temperature (DP) detected by the dew point sensor 58 is constant. Then, the amount of air passing through the vaporizing humidifier 22 is controlled, and the humidification / water supply electric valve 55 attached to the vaporizing humidifier 22 is operated to control the humidification amount.

最大加湿能力が必要な場合は、バイパスMD32を全閉とし、全還気風量が加湿器22を通過するように制御する。
外気露点温度が高い場合は、加湿給水電動弁55を段階制御しかつバイパスMD32を比例制御する。
加湿不要な場合は、加湿給水電動弁55を全閉とし、バイパスMD32を全開とする。
When the maximum humidification capacity is required, the bypass MD 32 is fully closed, and control is performed so that the total return air volume passes through the humidifier 22.
When the outside air dew point temperature is high, the humidified water supply electric valve 55 is stepwise controlled and the bypass MD32 is proportionally controlled.
When humidification is unnecessary, the humidified water supply electric valve 55 is fully closed and the bypass MD32 is fully opened.

(2)室温を一定に制御する場合
室温が設定値より低い場合、送風量を減らす。
送風量が下限値に到達後、空調対象室10内の室温センサー57で検出した室内温度により送風温度設定値を制御(カスケード制御)し、送風温度設定値になるように外気量と還気量の混合比を変化させる。その方法は外気取入用電動ダンパー44,排気用電動ダンパー26及び還気用電動ダンパー30を逆動作で制御する。
外気量が多く露点温度が設定値より低い場合は外気量を制限する(最大外気量)。
送風温度が設定値より高い場合は第4の電動ダンパー38を開、第5の電動ダンパー40を閉とし、冷水コイル24の制御用電動弁56を制御して冷却する。
(2) When the room temperature is controlled to be constant If the room temperature is lower than the set value, the air flow rate is reduced.
After the air flow reaches the lower limit value, the air temperature setting value is controlled (cascade control) based on the room temperature detected by the room temperature sensor 57 in the air-conditioning target room 10, and the outside air amount and the return air amount are set so as to become the air temperature setting value. The mixing ratio is changed. In this method, the outside air intake electric damper 44, the exhaust electric damper 26, and the return air electric damper 30 are controlled in reverse operation.
When the outside air volume is large and the dew point temperature is lower than the set value, the outside air volume is limited (maximum outside air volume).
When the blowing temperature is higher than the set value, the fourth electric damper 38 is opened and the fifth electric damper 40 is closed, and the control electric valve 56 of the cold water coil 24 is controlled to cool.

ただし、室内からの排気が多い場合、室圧制御などで加圧空気が多い場合のように、必要最小外気量が大風量になる場合、外気条件により加湿能力が不足する可能性がある。その場合は、室内条件にあわせて外気処理設備を設置するか、室内に直接加湿を行うか、絶対湿度の低下は許容し温度制御だけを行う、といった対応が必要となる。   However, when there is a large amount of exhaust from the room, and the required minimum outside air volume becomes a large volume of air, such as when there is a large amount of pressurized air due to room pressure control or the like, there is a possibility that the humidifying capacity may be insufficient due to the outside air conditions. In such a case, it is necessary to take measures such as installing an outside air treatment facility according to the indoor conditions, directly humidifying the room, or allowing a decrease in absolute humidity and performing only temperature control.

図3はパターンCとして外気冷房が不可の場合の外気冷房システムの回路を表している。図14のゾーン2,3,3’での操作に対応する。
1.ゾーン2では、加湿+冷却(外気冷房不可)の操作を行う。
(1)露点温度を一定に制御する場合
送風空気露点温度(DP)が一定になるようにバイパスMD32と加湿給水電動弁55を制御する。外気は定風量装置(CAV)46により必要最小外気量とする(電動ダンパー44全閉、電動ダンパー38開、電動ダンパー40閉)。
(2)室温を一定に制御する場合
室内温度により送風温度設定値を制御(カスケード制御)し、送風温度が設定値になるように制御用電動弁56を制御する。
FIG. 3 shows a circuit of the outside air cooling system when outside air cooling is impossible as pattern C. This corresponds to the operation in the zones 2, 3, 3 ′ of FIG.
1. In zone 2, the operation of humidification + cooling (outside air cooling is impossible) is performed.
(1) When the dew point temperature is controlled to be constant The bypass MD32 and the humidified water supply electric valve 55 are controlled so that the blown air dew point temperature (DP) becomes constant. The outside air is set to a necessary minimum outside air amount by a constant air volume device (CAV) 46 (electric damper 44 fully closed, electric damper 38 opened, electric damper 40 closed).
(2) When the room temperature is controlled to be constant The blower temperature set value is controlled (cascade control) according to the room temperature, and the control motor-operated valve 56 is controlled so that the blower temperature becomes the set value.

2.ゾーン3,3’では冷却(外気冷房不可)の操作を行う。
(1)露点温度を一定に制御する場合
通常は除湿制御には行わないが、必要な場合は、外気導入系統に除湿コイルを付加する(外気処理ユニットなど )。
(2)室温を一定に制御する場合
室内温度により送風温度設定値を制御(カスケード制御)し、送風温度が設定値になるように制御用電動弁56を制御する。
2. In zones 3 and 3 ', cooling (outside air cooling is impossible) is performed.
(1) When the dew point temperature is controlled to be constant Normally, dehumidification control is not performed, but if necessary, a dehumidification coil is added to the outside air introduction system (outside air processing unit, etc.).
(2) When the room temperature is controlled to be constant The blower temperature set value is controlled (cascade control) according to the room temperature, and the control motor-operated valve 56 is controlled so that the blower temperature becomes the set value.

ここで風量変動の防止について説明する。外気取り入れ量の変化やコイルや加湿器を通過する風量の変化により機内抵抗が変動し、給気風量の変動が起きる。その対策として、次の方法が考えられる。
1.空気加熱ユニット(AHU)に風量センサーを取り付け、インバーターで送風機風量を制御する。プラグファンを使用する場合、ファンベルマウスの差圧で風量を換算し制御する。
2.ダクトにVAVや風速センサーを取り付け、ファンをインバーター制御する。
Here, prevention of air volume fluctuation will be described. In-machine resistance fluctuates due to changes in the amount of outside air taken in or changes in the amount of air passing through the coil or humidifier, causing fluctuations in the air supply air volume. As a countermeasure, the following method can be considered.
1. An air volume sensor is attached to the air heating unit (AHU), and the air volume of the blower is controlled by an inverter. When a plug fan is used, the air volume is converted and controlled by the differential pressure of the fan bell mouth.
2. VAV and wind speed sensor are installed in the duct, and the fan is controlled by inverter.

図4はパターンDとして降雪センサーで降雪を感知した場合の外気冷房システムの回路を表している。図5はパターンEとして降雪センサーで降雪を感知しかつスノーセンサーで雪の侵入を感知した場合の外気冷房システムの回路を表している。
雪の吹込み対策として、屋外に設置した降雪センサー(図示無し)で降雪を検出したら最小外気量とする(電動ダンパー44閉、電動ダンパー38閉)。
光学的スノーセンサー(煤煙濃度計)48で雪の侵入を感知した場合、雪対策MD(電動ダンパー34)を開とし、エアフィルター51を通さずに還気と混合して雪を溶かす(電動ダンパー38閉、電動ダンパー40閉)。
FIG. 4 shows a circuit of the outside air cooling system when the snowfall sensor detects snowfall as the pattern D. FIG. 5 shows a circuit of the outside air cooling system when the snowfall sensor detects snowfall as the pattern E and the snow sensor detects snow intrusion.
As a measure against snow blowing, when snowfall is detected by a snowfall sensor (not shown) installed outdoors, the minimum outside air amount is set (the electric damper 44 is closed and the electric damper 38 is closed).
When the intrusion of snow is detected by the optical snow sensor (smoke concentration meter) 48, the snow countermeasure MD (electric damper 34) is opened and mixed with the return air without passing through the air filter 51 to melt the snow (electric damper) 38 closed, electric damper 40 closed).

図6はパターンFとして外気とレターン空気との混合点で霧発生の可能性がある場合の外気冷房システムの回路を表している。
霧の発生について考察すると、空気線図において還気加湿空気と厳寒時の外気の混合線が飽和線と交わると霧が発生する。その対策として、次の方法が考えられる。
1.加湿前還気を低温外気と混合し、乾球温度を上げて飽和線と交わらないようにする。すなわち、取入れ外気の絶対湿度と乾球温度を計測し、外気とレターン空気との混合点の乾球温度が計画した目標点となるよう霧対策MD(電動ダンパー36)を制御する。
2.ブラインコイルを使用しランアラウンド方式で外気と還気を熱交換する(ただし機内抵抗が増加する)。
FIG. 6 shows a circuit of the outside air cooling system when there is a possibility of fog generation at the mixing point of outside air and return air as the pattern F.
Considering the generation of mist, the mist is generated when the mixed line of the return-humidified air and the outside air during severe cold intersects the saturation line in the air diagram. As a countermeasure, the following method can be considered.
1. Mix the return air before humidification with cold ambient air and raise the dry bulb temperature so that it does not cross the saturation line. That is, the absolute humidity and dry bulb temperature of the outside air taken in are measured, and the fog countermeasure MD (electric damper 36) is controlled so that the dry bulb temperature at the mixing point of the outside air and the return air becomes the planned target point.
2. A brine coil is used to exchange heat between the outside air and return air in a run-around manner (however, the in-flight resistance increases).

図7〜図10は、本発明による外気冷房空調システムの構成要素のレイアウトを表している。図7は本発明による空調システムの上部の構成を表す平面図、図8は図7の線A−Aに沿う水平断面図、図9は本発明による空調システムの下部の構成を表す平面図、図10は図7の線B−Bに沿う水平断面図である。各構成要素には図1〜図6に示した符号が付してある。   7 to 10 show the layout of the components of the outside air cooling and air conditioning system according to the present invention. 7 is a plan view showing the configuration of the upper part of the air conditioning system according to the present invention, FIG. 8 is a horizontal sectional view taken along line AA in FIG. 7, and FIG. 9 is a plan view showing the configuration of the lower part of the air conditioning system according to the present invention. 10 is a horizontal sectional view taken along line BB in FIG. Each component is denoted by the reference numerals shown in FIGS.

図11は本発明の空調システムの制御方法を表す空気線図である。横軸は乾球温度、縦軸は絶対湿度を表している。動作を説明すると、室内空気条件1(例えば25℃、湿度50%)に気化式加湿器による加湿を加えることにより、1から3へと移行し、気化式加湿器を通過した空気3と外気2のミキシングポイント4を室内温湿度条件の露点温度になるように風量比を制御する。本発明では気化式加湿器の飽和効率を有効に利用できるため、加湿量が増加する。図13の従来システムと比べて送風ポイントの位置が飽和ラインに近づいていることを理解されたい。   FIG. 11 is an air line diagram showing the control method of the air conditioning system of the present invention. The horizontal axis represents dry bulb temperature and the vertical axis represents absolute humidity. The operation will be described. By adding humidification by the vaporizing humidifier to the indoor air condition 1 (for example, 25 ° C., humidity 50%), the air shifts from 1 to 3, and the air 3 and the outside air 2 that have passed through the vaporizing humidifier. The air volume ratio is controlled so that the mixing point 4 becomes a dew point temperature under indoor temperature and humidity conditions. In this invention, since the saturation efficiency of a vaporization type humidifier can be utilized effectively, humidification amount increases. It should be understood that the position of the air blowing point is closer to the saturation line compared to the conventional system of FIG.

ここで、本発明による空調システムの特徴点を整理する。
1.気化式加湿器を使用し、その最大加湿能力に見合った外気量を導入する。還気流路でバイパスダンパーと電動弁の段階制御を合わせた比例制御を行う。
2.低温外気のとき、外気を冷水コイル下流で混合する。これにより、コイルを通過する風量が外気風量分少なくなり、コイルの圧力損失が小さくなり、ファン動力が削減できる。
3.電動ダンパーで外気量、還気量、排気量を変えた際に生じる空調機の送風量や室圧の変動を防止するための制御を加える。
Here, the characteristic points of the air conditioning system according to the present invention will be summarized.
1. Use a vaporizer-type humidifier and introduce the amount of outside air commensurate with its maximum humidification capacity. Proportional control that combines the step control of the bypass damper and motor-operated valve is performed in the return air flow path.
2. When it is cold outside air, the outside air is mixed downstream of the cold water coil. As a result, the amount of air passing through the coil is reduced by the amount of outside air, the pressure loss of the coil is reduced, and the fan power can be reduced.
3. Control is performed to prevent fluctuations in the air flow and room pressure of the air conditioner that occur when the outside air volume, return air volume, and exhaust volume are changed by the electric damper.

4.外気冷房可能な外気温湿度条件を広範囲とするため、霧の発生する条件では、外気に加湿前の還気を少量混合し、加湿還気と外気の混合線が空気線図の飽和線と交わらないようにする。これにより、外気冷房可能な外気温湿度条件が広範囲となり、寒冷時でも外気冷房が可能となる。
5.屋外に降雪センサーを設けることにより、降雪を検知し、最小外気量に制御する。同時に雪の侵入を外気ダクトに取付けた光学式の粉塵検出装置(煤煙濃度計・スノーセンサー)で判断し、外気フィルターをバイパスし加湿器下流の還気と混合して融解し、ドレンとして排出する。これにより、寒冷時の降雪時でも最小外気量による外冷運転が可能になる。
4). In order to cover a wide range of outside air temperature and humidity conditions that allow the outside air to be cooled, a small amount of return air before humidification is mixed with the outside air under conditions where fog is generated, and the mixed line of humidified return air and outside air crosses the saturation line in the air diagram. Do not. As a result, the outside air temperature and humidity conditions in which the outside air can be cooled become wide, and the outside air can be cooled even when it is cold.
5. By installing a snowfall sensor outdoors, snowfall is detected and controlled to the minimum amount of outside air. At the same time, the intrusion of snow is judged by an optical dust detector (smoke concentration meter / snow sensor) attached to the outside air duct, bypassing the outside air filter, mixing with the return air downstream of the humidifier, melting, and discharging as drain. . As a result, it is possible to perform an outside cooling operation with a minimum amount of outside air even during snowfall during cold weather.

以上詳細に説明した如く、本発明による外気冷房空調システムによれば、空調対象室内の温度・湿度を最適に制御するとともに、外気導入回路の雪によるフィルターの目詰まりや凍結、空調対象室内での霧の発生などを防止することが可能な空調システムが提供されることになり、その技術的効果には極めて顕著なものがある。   As described above in detail, according to the outside air-conditioning air conditioning system according to the present invention, the temperature and humidity in the air-conditioning target room are optimally controlled, and the filter is clogged or frozen due to snow in the outside air introduction circuit. An air conditioning system capable of preventing generation of fog and the like will be provided, and its technical effect is extremely remarkable.

10 空調対象室 12 給気流路
13 合流点 14 還気流路
15 分流点 16 外気導入回路
18 還気流路 20 再循環流路
22 気化式加湿器 24 冷水コイル
31,33,35,37 バイパス回路
26,32,34,36,38,40,44 電動ダンパー
41,42 外気取入口 46 定風量装置
48 スノーセンサー 50,51 エアフィルター
52,53 インバータファン 54 風量センサー
55,56 電動弁 57,59 温度センサー
58 露点センサー
DESCRIPTION OF SYMBOLS 10 Air-conditioning object room 12 Supply air flow path 13 Junction point 14 Return air flow path 15 Shunt point 16 Outside air introduction circuit 18 Return air flow path 20 Recirculation flow path 22 Evaporative humidifier 24 Chilled water coil 31, 33, 35, 37 Bypass circuit 26, 32, 34, 36, 38, 40, 44 Electric damper 41, 42 Outside air intake 46 Constant air volume device 48 Snow sensor 50, 51 Air filter 52, 53 Inverter fan 54 Air volume sensor 55, 56 Motorized valve 57, 59 Temperature sensor 58 Dew point sensor

Claims (4)

空調対象室(10)に接続された給気流路(12)及び還気流路(14)と、
前記給気流路上の合流点(13)で前記給気流路に接続された外気導入回路(16)と、
前記還気流路上の分流点(15)で前記還気流路に接続された排気流路(18)及び再循環流路(20)とを備え、
前記再循環流路は前記合流点で前記給気流路及び前記外気導入回路に接続されている外気冷房空調システムであって、
前記再循環流路内に気化式加湿器(22)とその下流側の冷水コイル(24)とが配置され、
前記気化式加湿器の上流側と下流側とを接続する第1のバイパス回路(31)が設けられて当該バイパス回路内に第1の電動ダンパー(32)が配置され、
前記気化式加湿器の下流側と前記外気導入回路とを接続する第2のバイパス回路(33)が設けられて当該バイパス回路内に第2の電動ダンパー(34)が配置され、
前記気化式加湿器の上流側と前記外気導入回路とを接続する第3のバイパス回路(35)が設けられて当該バイパス回路内に第3の電動ダンパー(36)が配置され、
前記外気導入回路の外気取入口付近に雪の有無を検出するスノーセンサー(48)が設けられており、
前記第1の電動ダンパーで空調対象室内に供給される加湿量を制御し、
前記スノーセンサーで雪の侵入を検出し前記第2の電動ダンパーで外気導入回路を制御することを特徴とする外気冷房空調システム。
An air supply channel (12) and a return air channel (14) connected to the air-conditioning target room (10);
An outside air introduction circuit (16) connected to the air supply flow path at a confluence (13) on the air supply flow path;
An exhaust passage (18) and a recirculation passage (20) connected to the return air passage at a diversion point (15) on the return air passage;
The recirculation flow path is an outside air cooling air conditioning system connected to the supply air flow path and the outside air introduction circuit at the junction point,
A vaporizing humidifier (22) and a cold water coil (24) downstream thereof are disposed in the recirculation flow path,
A first bypass circuit (31) for connecting the upstream side and the downstream side of the vaporizing humidifier is provided, and the first electric damper (32) is disposed in the bypass circuit,
A second bypass circuit (33) for connecting the downstream side of the vaporizing humidifier and the outside air introduction circuit is provided, and a second electric damper (34) is disposed in the bypass circuit,
A third bypass circuit (35) for connecting the upstream side of the vaporizing humidifier and the outside air introduction circuit is provided, and a third electric damper (36) is disposed in the bypass circuit,
A snow sensor (48) for detecting the presence or absence of snow is provided near the outside air inlet of the outside air introduction circuit,
Control the amount of humidification supplied to the air-conditioned room with the first electric damper,
An outside air-conditioning air conditioning system, wherein the snow sensor detects an intrusion of snow and the outside electric introduction circuit is controlled by the second electric damper.
空調対象室内に対して変風量方式を適用し、インバータファン(52,53)又はいくつかの電動ダンパーを制御して送風量を変動させ、室内負荷に見合った風量まで減少させることにより搬送動力を低減させる請求項1記載の外気冷房空調システム。   Applying a variable air flow method to the air-conditioned room, controlling the inverter fans (52, 53) or some electric dampers to vary the air flow and reducing the air flow to match the indoor load, thereby reducing the conveyance power. The outside air-conditioning air conditioning system according to claim 1 to be reduced. 前記給気流路内に露点センサー(58)が設けられ、前記露点センサーの検出した露点温度に基づき前記第1の電動ダンパーで空調対象室内に供給される加湿量を制御する請求項1又は2記載の外気冷房空調システム。   The dew point sensor (58) is provided in the air supply flow path, and the amount of humidification supplied to the air-conditioned room is controlled by the first electric damper based on the dew point temperature detected by the dew point sensor. Outdoor air conditioning system. 屋外に降雪センサーを設けることにより、降雪を検知し、外気導入量を最小に制御する請求項1乃至3のいずれかに記載の外気冷房空調システム。   The outdoor air-conditioning air conditioning system according to any one of claims 1 to 3, wherein a snowfall sensor is provided outdoors to detect snowfall and to control the amount of outside air introduced to a minimum.
JP2011034106A 2011-02-21 2011-02-21 Outside air conditioning system Active JP5044705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034106A JP5044705B2 (en) 2011-02-21 2011-02-21 Outside air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034106A JP5044705B2 (en) 2011-02-21 2011-02-21 Outside air conditioning system

Publications (2)

Publication Number Publication Date
JP2012172877A true JP2012172877A (en) 2012-09-10
JP5044705B2 JP5044705B2 (en) 2012-10-10

Family

ID=46975951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034106A Active JP5044705B2 (en) 2011-02-21 2011-02-21 Outside air conditioning system

Country Status (1)

Country Link
JP (1) JP5044705B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161111A (en) * 2016-03-07 2017-09-14 株式会社東芝 Air conditioning system
JP6901643B1 (en) * 2021-01-06 2021-07-14 東京瓦斯株式会社 Air conditioning system
JP7317687B2 (en) 2019-12-12 2023-07-31 株式会社竹中工務店 Air conditioner
JP7469025B2 (en) 2019-11-12 2024-04-16 荏原実業株式会社 Air conditioners and air conditioning systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134010A (en) * 2003-10-29 2005-05-26 Sanki Eng Co Ltd Air conditioning device and air conditioning method
JP2009058177A (en) * 2007-08-31 2009-03-19 Shinpei Yu Ventilation unit and ventilation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134010A (en) * 2003-10-29 2005-05-26 Sanki Eng Co Ltd Air conditioning device and air conditioning method
JP2009058177A (en) * 2007-08-31 2009-03-19 Shinpei Yu Ventilation unit and ventilation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161111A (en) * 2016-03-07 2017-09-14 株式会社東芝 Air conditioning system
JP7469025B2 (en) 2019-11-12 2024-04-16 荏原実業株式会社 Air conditioners and air conditioning systems
JP7317687B2 (en) 2019-12-12 2023-07-31 株式会社竹中工務店 Air conditioner
JP6901643B1 (en) * 2021-01-06 2021-07-14 東京瓦斯株式会社 Air conditioning system
JP2022106063A (en) * 2021-01-06 2022-07-19 東京瓦斯株式会社 Air-conditioning system

Also Published As

Publication number Publication date
JP5044705B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
EP2867588B1 (en) Direct evaporative air handler
US9420725B2 (en) Air conditioning apparatus and air conditioning control method
CN103574812B (en) A kind of direct-ventilation equipment room air conditioning system and control method thereof
US9185829B2 (en) Air-conditioning system and air-conditioning method for server room management
US11187429B2 (en) Integrated heat and energy recovery ventilator system
US9188356B2 (en) Air conditioning system and method for managing server room
CN103574858B (en) A kind of central air conditioner system outdoor return preprocess method
KR101471494B1 (en) Apparatus and method for cooling sever room using outside air
JP5759808B2 (en) Air conditioning system and air conditioning control method for server room management
JP2013092298A (en) Outside air cooling system and data center
JP2011242011A (en) Air conditioning system for server
CN107576004A (en) Conditioner and its control method
JP5044705B2 (en) Outside air conditioning system
US20180224152A1 (en) Heat pipe air-conditioning apparatus using bypass passage
US11162706B2 (en) Systems and methods for energy recovery of an HVAC system
JP6275928B1 (en) Disc type air ecological box and climate ecological air conditioning method
WO2020244207A1 (en) Air conditioning system
WO2012124367A1 (en) Air conditioning system for server room management
JP3753182B1 (en) Divergent air conditioner and control system therefor
US9615489B2 (en) Arrangement for providing air to a room
JP2011208887A (en) Air conditioner
JP2016114310A (en) Air conditioning system
JP2020139711A (en) Air conditioning system
JP2017161111A (en) Air conditioning system
KR20210124740A (en) Apparatus for cooling server room indirectly using outside air

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5044705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250