JP2012171218A - Method of manufacturing injection molded product of thermoplastic resin having glittering material and injection molded product - Google Patents

Method of manufacturing injection molded product of thermoplastic resin having glittering material and injection molded product Download PDF

Info

Publication number
JP2012171218A
JP2012171218A JP2011035643A JP2011035643A JP2012171218A JP 2012171218 A JP2012171218 A JP 2012171218A JP 2011035643 A JP2011035643 A JP 2011035643A JP 2011035643 A JP2011035643 A JP 2011035643A JP 2012171218 A JP2012171218 A JP 2012171218A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
mold
temperature
injection
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011035643A
Other languages
Japanese (ja)
Inventor
Yukako Akeyama
悠香子 明山
Kiyoshi Okabe
清志 岡部
Takashi Okuya
隆 奥谷
Akihiro Nozue
章浩 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011035643A priority Critical patent/JP2012171218A/en
Publication of JP2012171218A publication Critical patent/JP2012171218A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an injection molded product that prevents orientation disorder of a glittering material even in a relative complicated shape such as a material having rib or boss, in molding a thermoplastic resin having the glittering material.SOLUTION: The injection molding machine uses a mold designed so that the thickness of a part 14 having the rib 12 or boss 13 is 0.1-3.0 mm thicker than a part 15 having no rib or boss, to mold the thermoplastic resin having the glittering material having <120 μm average particle diameter. The method of manufacturing the injection molding machine includes: a step of increasing the temperature of the mold to keep the temperature of the mold so that the temperature of the thermoplastic resin in a cavity is equal to or above the deflection temperature under load; a step of injecting and casting the molten thermoplastic resin into the cavity of the mold; and a step of hardening the thermoplastic resin by lowering the temperature of the mold.

Description

本発明は、光輝材を有する熱可塑性樹脂の射出成形体の製造方法、及び射出成形体に関するものである。   The present invention relates to a method for producing an injection molded body of a thermoplastic resin having a glittering material, and an injection molded body.

従来、樹脂成形品の外観品位向上手段としては、塗装を用いることが多い。しかしながら塗装は、揮発性有機化合物や二酸化炭素の排出、リサイクル性の悪化等による環境負荷が大きく、また、塗料との親和性が高い樹脂の選定の必要性や、親和性が低い樹脂を用いる場合に樹脂と塗膜の親和性を高めるためのプライマー処理の必要性、工数増などによりコストが増大するという問題がある。また、外部から擦れやぶつけなどの刺激を受けやすい部品は、塗装がはがれるリスクがあるため、塗装の適用は難しく、外観品位を上げるのが難しかった。これらの問題から、様々な分野で塗装代替技術が検討されている。   Conventionally, painting is often used as a means for improving the appearance quality of a resin molded product. However, painting has a large environmental impact due to emissions of volatile organic compounds and carbon dioxide, deterioration of recyclability, etc. In addition, it is necessary to select a resin with a high affinity with paint, or when using a resin with a low affinity In addition, there is a problem that the cost increases due to the necessity of primer treatment for increasing the affinity between the resin and the coating film, and the increase in man-hours. Also, parts that are susceptible to external irritation such as rubbing and bumping have a risk of peeling off the paint, making it difficult to apply the paint and making it difficult to improve the appearance quality. Because of these problems, painting alternative technologies are being studied in various fields.

塗装代替技術の一つに「光輝材と呼ばれる材料を樹脂に練り込み、成形することによって光輝感を演出する技術」がある。塗装に比べて環境負荷が小さく、工数減によるコストダウンも見込める。   One of the painting alternative technologies is “a technology that creates a glittering feeling by kneading a material called a glittering material into a resin and molding it”. Compared to painting, the environmental impact is small, and cost reductions due to a reduction in man-hours can be expected.

しかしながら、本技術には、光輝材の配向乱れによって外観不良が発生するという課題があり、射出成形においては、金型のキャビティ内での樹脂の流れ方により、光輝材の配向が乱れることがある。   However, this technique has a problem that appearance failure occurs due to disorder of the glitter material, and in injection molding, the orientation of the glitter material may be disturbed due to the flow of resin in the mold cavity. .

例えば、別方向から流れる樹脂のフローフロントが合流する場合においては、熱可塑性樹脂の合流部で光輝材の配向が乱れるため、光輝材表面での反射強度や反射角度に差が生じ、外観が悪化する。   For example, when the flow front of resin flowing from different directions merges, the orientation of the glitter material is disturbed at the junction of the thermoplastic resin, resulting in a difference in the reflection intensity and reflection angle on the glitter material surface, and the appearance deteriorates To do.

また、ボスやリブなど、成形品の形状に凹凸がある場合は、該当部で樹脂の流れが乱れるのに伴って光輝材の配向も乱れるため、光輝材表面での反射強度や反射角度に差が生じ、外観が悪化する。   Also, if there are irregularities in the shape of the molded product, such as bosses and ribs, the orientation of the glittering material will be disturbed as the resin flow is disturbed in the corresponding part, so there is a difference in the reflection intensity and reflection angle on the surface of the glittering material. Occurs and the appearance deteriorates.

そのため、従来より、外観を向上させる技術が検討されている。   Therefore, conventionally, techniques for improving the appearance have been studied.

射出成形時には光輝材の配向乱れの発生原因(リブ、ボスなど)を出来るだけ排除した形状とし、後加工により所望の形状とする技術がある(例えば、特許文献1参照)。   There is a technique in which the cause of occurrence of disorder in the orientation of the glittering material (ribs, bosses, etc.) is eliminated as much as possible during injection molding, and a desired shape is obtained by post-processing (see, for example, Patent Document 1).

また、成形品の意匠裏面とリブとを離間して配設した設計とすることで、リブ起因の光輝材の配向乱れを意匠面に発生させない技術がある(例えば、特許文献2参照)。   In addition, there is a technique in which the design rear surface of the molded product and the ribs are arranged so as to be spaced apart from each other so that the orientation surface of the glittering material due to the ribs is not generated on the design surface (see, for example, Patent Document 2).

また、樹脂の合流部を成形品の非外観部に形成させ、後で切り捨てる技術がある(例えば、特許文献3参照)。   In addition, there is a technique in which a merged portion of resin is formed on a non-external portion of a molded product and is discarded later (for example, see Patent Document 3).

図7は特許文献1に記載された従来の射出成形体を示すものである。図7に示すように、射出成形体1は、光沢材が混在された熱可塑性樹脂材により成形され、成形体本体2と取付部3とをそれぞれ別途に成形した後、成形体本体2と取付部3とを互いに接合する。これにより、成形体本体2の射出成形時には、金型に凹部が形成されていないため、樹脂材の流れに乱れが生じず、ウェルドマークは発生しない。   FIG. 7 shows a conventional injection-molded article described in Patent Document 1. As shown in FIG. 7, the injection molded body 1 is molded from a thermoplastic resin material in which a gloss material is mixed, and after the molded body body 2 and the mounting portion 3 are separately molded, the molded body body 2 and the mounting body 1 are attached. The parts 3 are joined to each other. Thereby, at the time of injection molding of the molded body 2, since the recess is not formed in the mold, the flow of the resin material is not disturbed, and no weld mark is generated.

また、図8は特許文献2に記載された従来の樹脂成形品の側面図である。図8に示すように、樹脂成形品4は、意匠面を構成する本体部5と、本体部5の裏面に突設した補強構造部6とを備え、それらを射出成形で一体成形してなり、補強構造部6は、射出成形時の樹脂流動方向と交差する方向に配向された複数の横リブ7と、横リブ7と直行して延在し横リブ7を相互に連結する縦リブ8との結合体で構成され、各横リブ7は意匠裏面に接続され、縦リブ8は意匠裏面から離間して設置されている。これにより、本体部5の意匠面側で発生するウェルドラインを防止可能であるとともに、射出成形時にゲート部が設定された横リブ7を経由して本体部5に樹脂が流入し、その際に横リブ7から縦リブ8に樹脂が分流して流入速度が低減されることにより、樹脂が噴流状態で意匠面に到達することがなく、フローマークやヒケ等の外観不良を防止できる。   FIG. 8 is a side view of a conventional resin molded product described in Patent Document 2. As shown in FIG. 8, the resin molded product 4 includes a main body portion 5 constituting a design surface and a reinforcing structure portion 6 protruding from the back surface of the main body portion 5, and these are integrally formed by injection molding. The reinforcing structure 6 includes a plurality of horizontal ribs 7 oriented in a direction intersecting the resin flow direction during injection molding, and vertical ribs 8 extending perpendicularly to the horizontal ribs 7 and connecting the horizontal ribs 7 to each other. The horizontal ribs 7 are connected to the back of the design, and the vertical ribs 8 are spaced from the back of the design. As a result, it is possible to prevent the weld line generated on the design surface side of the main body part 5 and the resin flows into the main body part 5 via the lateral rib 7 in which the gate part is set at the time of injection molding. Since the resin flows from the horizontal ribs 7 to the vertical ribs 8 and the inflow speed is reduced, the resin does not reach the design surface in a jet state, and poor appearance such as flow marks and sink marks can be prevented.

また、図9は特許文献3に記載された従来の成形方法における、切り取り部を設けた成形品を成形した様子を示した模式図である。図9に示すように、成形品9は、外縁部に角を有する成形品であって、外縁部を延長して切り取り部10を設け、切り取り部にウェルドを発生させる。これにより、切り取り部10を削除することで、ウェルドラインのない成形品が得られる。   FIG. 9 is a schematic view showing a state in which a molded product provided with a cut-out portion in the conventional molding method described in Patent Document 3 is molded. As shown in FIG. 9, the molded product 9 is a molded product having a corner at an outer edge portion, and the outer edge portion is extended to provide a cutout portion 10 to generate a weld at the cutout portion. Thereby, by removing the cut-out portion 10, a molded product without a weld line is obtained.

特開2004−188885号公報JP 2004-188885 A 特開2008−49652号公報JP 2008-49652 A 特開2006−103052号公報JP 2006-103052 A

しかしながら、前記従来の特許文献1の方法では、成形品の形状が限定される、別部品の成形や接合が必要なために工数が増える、別部品を成形する場合には別途金型が必要なために金型費用がかかる、などの課題を有していた。   However, in the conventional method of Patent Document 1, the shape of the molded product is limited, the number of man-hours increases due to the need for molding or joining of another part, and a separate mold is required when molding another part. Therefore, there was a problem that the mold cost was high.

また、前記従来の特許文献2の方法では、本体とリブが離れて形成されているため、強度が弱く、強度が必要な用途には適用できない、などの課題を有していた。   In addition, the conventional method of Patent Document 2 has problems that the main body and the rib are formed apart from each other, so that the strength is low and the method cannot be applied to uses requiring strength.

また、前記従来の特許文献3の方法では、使用材料が増えることによりコストUPになり、また切り取り部はごみとなるため環境負荷も増える、などの課題を有していた。   Further, the conventional method of Patent Document 3 has problems such as an increase in cost due to an increase in materials used, and an increase in environmental load because the cut-out portion becomes dust.

また、光輝材の平均粒径が120μm以上の場合は、単位体積当たりの粒子の数が少ないので、光輝材の配向の状態は目視にて認識しにくくなるために、金型形状や工法での工夫をあまり必要としないが、外観品位という観点では塗装の質感とは程遠い。一方で、塗装同等の品位を目指して光輝材の粒径を小さくすると、単位体積当たりの粒子数が多くなるため、光輝材の配向の状態が目視にて認識しやすくなる。この場合は、金型形状や工法での工夫がかなり必要になる。   In addition, when the average particle size of the glittering material is 120 μm or more, the number of particles per unit volume is small, so that the orientation state of the glittering material is difficult to visually recognize. It does not require much ingenuity, but it is far from the texture of the paint in terms of appearance quality. On the other hand, if the particle size of the glittering material is made small in order to achieve the same quality as the coating, the number of particles per unit volume increases, so that the orientation state of the glittering material is easily recognized visually. In this case, considerable contrivance is required in the mold shape and construction method.

本発明は、前記従来の課題を解決するもので、塗装に近い質感を演出するために比較的粒径が小さい、すなわち平均粒径120μm未満の光輝材を有する熱可塑性樹脂を、リブやボスを有するような比較的複雑な形状に成形する場合において、光輝材の配向乱れが抑制された成形品を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in order to produce a texture close to coating, a thermoplastic resin having a relatively small particle size, that is, a bright material having an average particle size of less than 120 μm, is provided with ribs and bosses. An object of the present invention is to provide a molded product in which the orientation disorder of the glittering material is suppressed when it is molded into a relatively complicated shape.

前記従来の課題を解決するために、本発明の光輝材を有する熱可塑性樹脂の射出成形体の製造方法は、リブやボスを有する部位の厚みを、有しない部位の厚みより0.1mmから3.0mm厚くした形状に設計した金型を用いて、平均粒径が120μm未満の光輝材を有する熱可塑性樹脂を成形するための射出成形体の製造方法であって、前記金型の温度をキャビティ内の前記熱可塑性樹脂を荷重たわみ温度以上に保てる温度まで上げる工程と、前記キャビティ内に溶融した前記熱可塑性樹脂を射出して流し込む工程と、前記金型の温度を下げて前記熱可塑性樹脂を硬化させる工程とを含む射出成形体の製造方法により、射出成形体を得るものである。   In order to solve the above-described conventional problems, the method for producing a thermoplastic resin injection-molded body having a glittering material according to the present invention has a thickness of a portion having ribs or bosses in a range from 0.1 mm to 3 mm. A method of manufacturing an injection-molded body for molding a thermoplastic resin having a bright material having an average particle diameter of less than 120 μm using a mold designed to have a thickness of 0.0 mm thick, wherein the temperature of the mold is set to a cavity Increasing the temperature of the thermoplastic resin to a temperature at which the deflection temperature under the load can be maintained, a step of injecting and pouring the molten thermoplastic resin into the cavity, and lowering the temperature of the mold to reduce the temperature of the thermoplastic resin. An injection molded body is obtained by a method for producing an injection molded body including a curing step.

平均粒径が120μm未満の光輝材を有する熱可塑性樹脂を成形する場合であっても、リブやボスを有する部位の厚みを、有しない部位の厚みより0.1mmから3.0mm厚くした形状に設計した金型を用いること、及び、金型の温度を、キャビティ内の熱可塑性樹脂の温度を荷重たわみ温度以上に保てる温度まで上げることにより、キャビティ内の熱可塑性樹脂の流れの初期段階でリブやボスにより光輝材の配向が乱れても、乱れた光輝材の配向は固定されることなく、その後キャビティ内全体が充填されるまでの流れによって、熱可塑性樹脂が光輝材ごと押し流すように流れるため、光輝材の配向乱れが射出成形体に残らない。   Even when molding a thermoplastic resin having a bright material with an average particle size of less than 120 μm, the thickness of the portion having ribs or bosses is made 0.1 mm to 3.0 mm thicker than the thickness of the portion not having By using the designed mold and raising the mold temperature to a temperature that keeps the temperature of the thermoplastic resin in the cavity at or above the deflection temperature under load, ribs are introduced at the initial stage of the flow of the thermoplastic resin in the cavity. Even if the orientation of the glitter material is disturbed by the boss or the boss, the orientation of the disordered glitter material is not fixed, and the thermoplastic resin flows by the flow until the entire cavity is filled afterwards. The orientation disorder of the glittering material does not remain in the injection molded product.

本発明の熱可塑性樹脂の射出成形体の製造方法は、平均粒径が120μm未満の光輝材を有する熱可塑性樹脂を成形する場合において、得ようとする射出成形体の形状が、リブやボスを有するような比較的複雑な形状であっても、光輝材の配向乱れが射出成形体に残らないため、塗装を行うことなく、外観品位に優れた射出成形体を得ることができる。   The method for producing an injection molded article of a thermoplastic resin according to the present invention is such that, when molding a thermoplastic resin having a bright material having an average particle size of less than 120 μm, the shape of the injection molded article to be obtained is a rib or a boss. Even with such a relatively complicated shape, the disordered orientation of the glittering material does not remain in the injection molded body, so that an injection molded body excellent in appearance quality can be obtained without coating.

本発明の実施の形態1における射出成形体の表面の外観図External view of the surface of the injection-molded body in Embodiment 1 of the present invention 本発明の実施の形態1における射出成形体の裏面の外観図External view of the back surface of the injection-molded body in Embodiment 1 of the present invention 本発明の実施の形態1における金型のキャビティ内における熱可塑性樹脂の流れを示す模式図Schematic diagram showing the flow of thermoplastic resin in the cavity of the mold according to the first embodiment of the present invention. 実施例1における金型のキャビティ内における熱可塑性樹脂の流れを示す模式図The schematic diagram which shows the flow of the thermoplastic resin in the cavity of the metal mold | die in Example 1. FIG. 実施例4における射出成形体裏面の外観図External view of the back surface of the injection-molded product in Example 4 実施例4における金型のキャビティ内における熱可塑性樹脂の流れを示す模式図The schematic diagram which shows the flow of the thermoplastic resin in the cavity of the metal mold | die in Example 4. 従来の射出成形体の断面図Sectional view of a conventional injection molded product 従来の樹脂成形品の側面図Side view of conventional resin molded product 従来の切り取り部を設けた成形品を成形した様子を示した模式図Schematic diagram showing the appearance of a molded product with a conventional cutout

第1の発明は、リブやボスを有する部位の厚みを、有しない部位の厚みより0.1mmから3.0mm厚くした形状に設計した金型を用いること、及び、金型の温度を、キャビティ内の熱可塑性樹脂を荷重たわみ温度以上に保つ温度まで上げることにより、平均粒径が120μm未満の光輝材を有する熱可塑性樹脂を成形する場合であっても、キャビティ内の熱可塑性樹脂の流れの初期段階でリブやボスにより光輝材の配向が乱れても、乱れた光輝材の配向は固定されることなく、その後キャビティ内全体が充填されるまでの熱可塑性樹脂の流れによって、熱可塑性樹脂が光輝材ごと押し流すように流れるため、射出成形体から光輝材の配向乱れを消すことができる。   1st invention uses the metal mold | die designed in the shape which made thickness of the site | part which has a rib and boss | hub the thickness of 0.1 mm-3.0 mm thicker than the thickness of the site | part which does not have, and the temperature of a metal mold | die Even when molding a thermoplastic resin having a glitter material having an average particle size of less than 120 μm by raising the temperature of the thermoplastic resin in the cavity to a temperature that maintains the deflection temperature under load or higher, the flow of the thermoplastic resin in the cavity Even if the orientation of the glittering material is disturbed by ribs or bosses in the initial stage, the orientation of the disturbing glittering material is not fixed, and the thermoplastic resin flows by the flow of the thermoplastic resin until the entire cavity is filled thereafter. Since the glitter material flows so as to flow away, the disorder of orientation of the glitter material can be eliminated from the injection molded body.

第2の発明は、特に、請求項1の発明の射出成形体の製造方法を、ゲートを、前記金型の厚みを厚くした部位に直結した部位に設けたことにより、より速度差をつけることができるため、より光輝材の配向乱れが消えやすくなる。   In the second invention, in particular, in the method of manufacturing an injection molded article according to the invention of claim 1, a speed difference is further increased by providing a gate in a part directly connected to a part where the thickness of the mold is increased. Therefore, the disorder of the orientation of the glittering material is more likely to disappear.

第3の発明は、特に、請求項1または2の発明の射出成形体の製造方法により得られる射出成形体である。   The third invention is an injection-molded product obtained by the method for producing an injection-molded product according to the first or second invention.

射出成形体がリブやボスを有する形状であると、リブやボスへの熱可塑性樹脂の流れ込みや、リブやボスを迂回する流れなど、該当部での熱可塑性樹脂の流れる速度が変化することなどにより熱可塑性樹脂の流れが乱れ、それに伴って光輝材の配向が乱れるが、射出成形体がリブやボスを有する形状であっても請求項1または2に記載の射出成形体の製造方法により、外観品位に優れた射出成形体を得ることができる。   If the injection-molded product has a rib or boss, the flow rate of the thermoplastic resin at the relevant part changes, such as the flow of thermoplastic resin into the rib or boss, or the flow around the rib or boss. The flow of the thermoplastic resin is disturbed, and accordingly the orientation of the glittering material is disturbed, but even if the injection molded body has a shape having ribs or bosses, the method for producing an injection molded body according to claim 1 or 2, An injection-molded article excellent in appearance quality can be obtained.

第4の発明は、特に、請求項1から3の熱可塑性樹脂が、ABSであることを特徴とする射出成形体の製造方法、または射出成形体である。   According to a fourth aspect of the present invention, there is provided an injection molded body manufacturing method or an injection molded body characterized in that the thermoplastic resin of claims 1 to 3 is ABS.

ABSは、塗装をされて用いられることが多いが、外部から擦れやぶつけなどの力を受けやすい部品は、塗装がはがれるリスクがあるため、塗装の適用は難しく、外観品位を向上させるのが難しいという課題があった。   ABS is often used after being painted, but it is difficult to apply the paint and improve the appearance quality because there is a risk that the parts that are subject to external rubbing and bumping may be peeled off. There was a problem.

一方で、ABSは、樹脂の中でも得られる製品の光沢が高く、強度やコストとのバランスにも優れ、外観部品としての使用が望まれる樹脂である。   On the other hand, ABS is a resin that has a high gloss of products obtained among resins, is excellent in balance between strength and cost, and is desired to be used as an external part.

本発明の方法では、熱可塑性樹脂がABSであることにより、外観品位を向上することができる。   In the method of the present invention, the appearance quality can be improved because the thermoplastic resin is ABS.

第5の発明は、特に、請求項1から3の熱可塑性樹脂が、PPであることを特徴とする射出成形体の製造方法、または射出成形体である。   According to a fifth aspect of the present invention, there is provided a method for manufacturing an injection-molded article, or an injection-molded article, wherein the thermoplastic resin of claims 1 to 3 is PP.

PPは塗膜との密着性が悪いことから一般的に塗装が難しく、外観品位を上げるのは難しかった。また、塗装をする場合には、密着性を上げるためのプライマー処理が必要となるため、他の樹脂に塗装を施すよりもコストUPになるという課題があった。   Since PP has poor adhesion to a coating film, it is generally difficult to paint and it is difficult to improve the appearance quality. Further, in the case of coating, since a primer treatment for increasing the adhesion is required, there is a problem that the cost is higher than when coating other resins.

一方で、PPは、樹脂の中でも耐薬品性が高く、コストにも優れ、耐薬品性を必要とする外観部品としての使用が望まれる樹脂である。   On the other hand, PP is a resin that has high chemical resistance among resins, is excellent in cost, and is desired to be used as an external part that requires chemical resistance.

本発明の方法では、熱可塑性樹脂がPPであることにより、外観品位を向上することができる。   In the method of the present invention, the appearance quality can be improved because the thermoplastic resin is PP.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における射出成形体の表面の外観図、図2の(1)と(2)は、射出成形体の裏面の外観図、図3は、金型のキャビティ内における熱可塑性樹脂の流れを示す模式図である。
(Embodiment 1)
FIG. 1 is an external view of the surface of an injection molded body according to the first embodiment of the present invention, FIGS. 2 (1) and 2 (2) are external views of the back surface of the injection molded body, and FIG. 3 is a mold. It is a schematic diagram which shows the flow of the thermoplastic resin in the cavity.

図1、2において、射出成形体11は、平均粒径が120μm未満の光輝材を有する熱可塑性樹脂からなり、リブ12やボス13を有する部位14の厚みを、有しない部位15の厚みより0.1mmから3.0mm厚くしている。   1 and 2, the injection-molded body 11 is made of a thermoplastic resin having a bright material having an average particle diameter of less than 120 μm, and the thickness of the portion 14 having the ribs 12 and the bosses 13 is smaller than the thickness of the portion 15 having no ribs. The thickness is increased from 1 mm to 3.0 mm.

次に、本実施の形態の射出成形体の製造方法について説明する。   Next, the manufacturing method of the injection molded body of this Embodiment is demonstrated.

まず、金型を開いた状態で、金型の温度を熱可塑性樹脂が荷重たわみ温度以上の温度を保てるような温度まで上げる。次に、金型を閉じて、溶融した熱可塑性樹脂を金型のキャビティ内に射出して流し込む。   First, in a state where the mold is opened, the temperature of the mold is raised to a temperature at which the thermoplastic resin can maintain a temperature higher than the deflection temperature under load. Next, the mold is closed, and the molten thermoplastic resin is injected and poured into the cavity of the mold.

このとき、熱可塑性樹脂は、図3の(1)から(7)に示すように、ゲート16から射出され、キャビティ内を、厚みが厚いリブ12やボス13を有する部位14に優先的に流れ、その後、厚みが薄いリブ12やボス13を有しない部位15に流れていく。   At this time, as shown in (1) to (7) of FIG. 3, the thermoplastic resin is injected from the gate 16 and preferentially flows in the cavity to the portion 14 having the ribs 12 and the bosses 13 having a large thickness. Then, it flows to the site | part 15 which does not have the rib 12 and the boss | hub 13 with thin thickness.

このとき、光輝材の配向乱れは、リブ12やボス13を有する部位14に熱可塑性樹脂が到達したとき(図3の(1)から(4))には、射出成形体11の表面に発生する。   At this time, the alignment disorder of the glitter material occurs on the surface of the injection molded body 11 when the thermoplastic resin reaches the portion 14 having the ribs 12 and the bosses 13 ((1) to (4) in FIG. 3). To do.

しかしながら、リブ12やボス13を有しない部位15に熱可塑性樹脂のフローフロントが到達したとき(図3の(5)と(6))には、光輝材の配向乱れは熱可塑性樹脂ごと押し流され、熱可塑性樹脂のフローフロントに移動する。   However, when the flow front of the thermoplastic resin reaches the portion 15 that does not have the ribs 12 and the bosses 13 ((5) and (6) in FIG. 3), the orientation disorder of the glittering material is washed away together with the thermoplastic resin. Go to the thermoplastic flow front.

さらに、キャビティ内に熱可塑性樹脂が充填されたとき(図3の(7))には、光輝材の配向乱れが消える。   Further, when the cavity is filled with the thermoplastic resin ((7) in FIG. 3), the alignment disorder of the glittering material disappears.

熱可塑性樹脂がキャビティ内全体に充填されたら、金型の温度を下げて熱可塑性樹脂を硬化させ、金型を開き、射出成形体11を得る。   When the entire inside of the cavity is filled with the thermoplastic resin, the temperature of the mold is lowered to cure the thermoplastic resin, the mold is opened, and the injection molded body 11 is obtained.

以上のように、本実施の形態においては、用いる材料が光輝材を有する熱可塑性樹脂であり、射出成形体の形状がリブやボスを有する比較的複雑な形状であっても、リブやボスを有する部位の厚みを、有しない部位の厚みより0.1mmから3.0mm厚くした形状に設計した金型を用いること、及び、金型の温度を、キャビティ内の熱可塑性樹脂を荷重たわみ温度以上に保てる温度まで上げることにより、キャビティ内の熱可塑性樹脂の流れの初期段階でリブやボスにより光輝材の配向が乱れても、光輝材の配向乱れは固定されることなく、その後キャビティ内全体が充填されるまでの流れによって、熱可塑性樹脂が光輝材ごと押し流すように流れるため、射出成形体には光輝材の乱れが残らない。   As described above, in the present embodiment, the material to be used is a thermoplastic resin having a glittering material, and even if the shape of the injection molded body is a relatively complicated shape having ribs and bosses, the ribs and bosses are not used. Use a mold that is designed to have a thickness of 0.1 mm to 3.0 mm thicker than the thickness of the part that does not have, and the temperature of the mold exceeds the temperature at which the thermoplastic resin in the cavity is bent Even if the orientation of the glitter material is disturbed by ribs or bosses in the initial stage of the thermoplastic resin flow in the cavity, the orientation disorder of the glitter material is not fixed, and the entire inside of the cavity is thereafter fixed. Due to the flow until filling, the thermoplastic resin flows so as to be washed away together with the glitter material, so that the disorder of the glitter material does not remain in the injection molded body.

ここで、本発明の光輝材は、反射、透過、屈折等の作用により光輝感を演出するものであり、具体的には、金属顔料(アルミニウム粉、ブロンズ粉、など)やパール顔料(マイカに金属酸化物を被覆したもの、アルミナに金属酸化物を被覆したもの、ガラスに金属酸化物を被覆したもの、など)などがあるが、特に指定するものではなく、求める外観、コスト、等から自由に選択でき、これらを複数種混合して使用することも可能である。   Here, the glitter material of the present invention produces a glitter feeling by the action of reflection, transmission, refraction, and the like. Specifically, metallic pigments (aluminum powder, bronze powder, etc.) and pearl pigments (for mica). There are metal oxide-coated, alumina-coated metal oxide, glass-coated metal oxide, etc.), but it is not specified and is free from the required appearance, cost, etc. It is also possible to use a mixture of a plurality of these.

なお、光輝材は、アスペクト比が大きいほど高い光輝感が得られ、小さいほど配向乱れが目立ちにくくなる。また、粒径は、大きいほど熱可塑性樹脂の単位体積あたりの粒子数が少なくなるため、光輝材の配向乱れは認識しづらくなるが、塗装に近い質感を得るためには、粒径が小さい光輝材を用いるのが望ましく、このときは、単位体積あたりの粒子数が多くなることにより光輝材の配向乱れが見えやすくなる。したがって、本発明の方法は、特に粒径が小さい場合に効果が高い。   Note that the glitter material has a higher glitter feeling as the aspect ratio is larger, and the disorder is less noticeable as the aspect ratio is smaller. In addition, the larger the particle size, the smaller the number of particles per unit volume of the thermoplastic resin, so it is difficult to recognize the disorder of orientation of the glitter material. It is desirable to use a material. In this case, the number of particles per unit volume increases, so that the disorder of the orientation of the glittering material can be easily seen. Therefore, the method of the present invention is particularly effective when the particle size is small.

また、熱可塑性樹脂に対する光輝材の添加量も、特に指定するものではないが、少なすぎると光輝感が得られず、多すぎると射出成形体の機械的強度が悪化することから、熱可塑性樹脂に対して、重量比で0.2%から7%が望ましい。   Also, the amount of the glittering material added to the thermoplastic resin is not particularly specified, but if it is too small, the glittering feeling cannot be obtained, and if it is too large, the mechanical strength of the injection molded product deteriorates. On the other hand, the weight ratio is preferably 0.2% to 7%.

また、本発明の熱可塑性樹脂は、PP(ポリプロピレン)、ABS(アクリロニトリルブタジェンスチレン共重合樹脂)、PS(ポリスチレン)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)など、特に指定するものではなく、コスト、外観、機械的物性などを考慮して自由に選択できる。   In addition, the thermoplastic resin of the present invention is not particularly specified, such as PP (polypropylene), ABS (acrylonitrile butadiene styrene copolymer resin), PS (polystyrene), PC (polycarbonate), PET (polyethylene terephthalate), It can be freely selected in consideration of cost, appearance, mechanical properties, etc.

また、本発明の熱可塑性樹脂は、光輝材の他に、付与したい性能などに合わせて他のフィラーや添加剤など、例えば、繊維状フィラー、酸化防止剤、顔料、難燃剤などを有していてもよい。   In addition to the glittering material, the thermoplastic resin of the present invention has other fillers and additives such as fibrous fillers, antioxidants, pigments, flame retardants, etc. in accordance with the performance desired to be imparted. May be.

また、リブやボスは、補強や他の部品との接合のために設けられる突起状の部位を指すものであり、本実施の形態では、リブとボスの両方を有する形状としたが、いずれかだけを有する形状であってもかまわない。   In addition, the ribs and bosses refer to projecting portions provided for reinforcement and joining with other parts. In this embodiment, the ribs and bosses have both ribs and bosses. It may be a shape having only.

なお、射出成形体の厚みは、特に指定するものではないが、0.5mmから4.0mm程度が一般的であり、厚いほうを2.0mmから2.5mm、薄いほうを1.5mmから1.8mmとするのが、強度とコストと光輝材の配向乱れ抑制の観点から望ましい。   The thickness of the injection-molded body is not particularly specified, but is generally about 0.5 mm to 4.0 mm. The thicker one is 2.0 mm to 2.5 mm and the thinner one is 1.5 mm to 1. .8 mm is desirable from the viewpoints of strength, cost, and suppression of disorder in the alignment of the glittering material.

また、射出成形体における厚みの差は、0.1mm未満であると配向乱れが消えず、3.0mmを超えると成形体の厚みが厚くなることで、リブがなくても強度保持が可能となるため、0.1mmから3.0mmの範囲が望ましい。   In addition, if the difference in thickness in the injection-molded product is less than 0.1 mm, the disorder of orientation does not disappear, and if it exceeds 3.0 mm, the thickness of the molded product becomes thick, so that the strength can be maintained without ribs. Therefore, the range of 0.1 mm to 3.0 mm is desirable.

また、リブやボスを有する部位と有しない部位の間の厚みは、両者の間の厚みにしても良いし、どちらかと同じ厚みとしても良いし、傾斜をつけて徐々に厚みが変わるようにしても良く、特に指定するものではない。   In addition, the thickness between the part having ribs and bosses and the part not having them may be the thickness between them, or the same thickness as either, or the thickness may be gradually changed with an inclination. Is not particularly specified.

また、両者の間の部位には、リブやボスがあってもなくても良いが、リブやボスを有する部位よりは、リブやボスが占める体積が少ないことが望ましい。   Moreover, although the rib or boss | hub does not need to exist in the site | part between both, it is desirable for the volume which a rib and boss | occupy have less than the site | part which has a rib and boss | hub.

なお、荷重たわみ温度とは、別名熱変形温度ともいい、JIS K7191の方法により得られる。具体的には、試験片の両端を加熱浴槽中で支え、中央の荷重棒によって試験片に所定の曲げ応力(荷重)を加えつつ、加熱媒体の温度を2℃/分の速度で上昇させ、試験片のたわみが所定の量に達したときの加熱媒体の温度を指す。   The deflection temperature under load is also called a heat distortion temperature, and is obtained by the method of JIS K7191. Specifically, both ends of the test piece are supported in a heating bath, and the temperature of the heating medium is increased at a rate of 2 ° C./min while applying a predetermined bending stress (load) to the test piece by a central load rod, The temperature of the heating medium when the deflection of the test piece reaches a predetermined amount.

なお、JIS K7191−2においては、荷重が3種記載されているが、本発明では、JIS K7191−2 B法に基づき、0.45MPaを基準とする。   In JIS K7191-2, three types of loads are described, but in the present invention, 0.45 MPa is used as a reference based on the JIS K7191-2 B method.

また、本発明の金型の温度は、上限温度は特に規定していないが、熱可塑性樹脂の分解温度まで上げると、変質してしまうため、分解温度以下であることが必要である。   In addition, the upper limit temperature of the mold of the present invention is not particularly specified, but if it is raised to the decomposition temperature of the thermoplastic resin, it will be altered, so it is necessary that the temperature be below the decomposition temperature.

なお、金型の温度は、キャビティ内の熱可塑性樹脂の温度を荷重たわみ温度以上に保つためには、金型の形状にもよるが、荷重たわみ温度+20〜70℃とすることが望ましい。   In order to keep the temperature of the thermoplastic resin in the cavity equal to or higher than the deflection temperature under load, the temperature of the mold is preferably set to +20 to 70 ° C. under the load deflection temperature, although it depends on the shape of the mold.

実施例にて、本発明をさらに具体的に説明する。なお、この実施例によって本発明が限定されるものではない。   The present invention will be described more specifically with reference to examples. In addition, this invention is not limited by this Example.

金型の厚み差、金型の温度、熱可塑性樹脂の種類、金型の形状について、[表1]のように検証を行った。   The thickness difference of the mold, the temperature of the mold, the type of the thermoplastic resin, and the shape of the mold were verified as shown in [Table 1].

Figure 2012171218
Figure 2012171218

(実施例1)
実施例1は、実施の形態1と同じ形状の金型(金型Aとする)を用いて成形を行った。
Example 1
In Example 1, molding was performed using a mold having the same shape as that of Embodiment 1 (referred to as mold A).

厚みは、リブ12やボス13を有する部位14の厚みを2.2mmとし、有しない部位15の厚みを1.8mmとした。すなわち厚みの差は0.4mmである。   Regarding the thickness, the thickness of the portion 14 having the ribs 12 and the bosses 13 was set to 2.2 mm, and the thickness of the portion 15 having no ribs was set to 1.8 mm. That is, the difference in thickness is 0.4 mm.

材料は、平均粒径が40μmのアルミニウム粉末0.5%と70μmのマイカベースのパール顔料3%を、荷重たわみ温度が96℃のABSに混合したものを使用した。   The material used was a mixture of 0.5% aluminum powder having an average particle diameter of 40 μm and 3% mica-based pearl pigment having a particle diameter of 70 μm and ABS having a deflection temperature under load of 96 ° C.

なお、金型の温度は、キャビティ内のABSの温度が荷重たわみ温度以上となるよう、140℃とした。   The mold temperature was set to 140 ° C. so that the ABS temperature in the cavity was higher than the deflection temperature under load.

まず、あえてショートショットとし、キャビティ内での熱可塑性樹脂の流れと、光輝材の配向の状態を目視にて確認した。   First, a short shot was made, and the flow of the thermoplastic resin in the cavity and the orientation state of the glittering material were visually confirmed.

熱可塑性樹脂は、図3の(1)から(7)に示すように、ゲート16から射出され、キャビティ内を、厚みが厚いリブ12やボス13を有する部位14に優先的に流れ、その後、厚みが薄いリブ12やボス13を有しない部位15に流れた。   As shown in (1) to (7) of FIG. 3, the thermoplastic resin is injected from the gate 16 and preferentially flows in the cavity to the portion 14 having the ribs 12 and the bosses 13 having a large thickness. It flowed to a portion 15 having no thin rib 12 or boss 13.

光輝材の配向乱れは、リブ12やボス13を有する部位14に熱可塑性樹脂が到達したとき(図3の(1)から(4))には、射出成形体11の表面に発生した。   The alignment disorder of the glitter material occurred on the surface of the injection molded body 11 when the thermoplastic resin reached the portion 14 having the ribs 12 and the bosses 13 ((1) to (4) in FIG. 3).

しかしながら、リブ12やボス13を有しない部位15に熱可塑性樹脂のフローフロントが到達したとき(図3の(5)と(6))には、乱れた光輝材の配向は熱可塑性樹脂ごと押し流され、熱可塑性樹脂のフローフロントに移動した。   However, when the flow front of the thermoplastic resin reaches the portion 15 that does not have the ribs 12 and the bosses 13 ((5) and (6) in FIG. 3), the orientation of the disturbed glitter material is washed away together with the thermoplastic resin. It moved to the thermoplastic resin flow front.

さらに、キャビティ内に熱可塑性樹脂が充填されたとき(図3の(7))には、光輝材の配向乱れが消えた。   Further, when the cavity was filled with the thermoplastic resin ((7) in FIG. 3), the alignment disorder of the glittering material disappeared.

金型の温度が高いことで、いったん光輝材の配向に乱れが生じても、金型と接する表面層が冷やされて固化することがなく、その後の熱可塑性樹脂の流れによって容易に流され、光輝材の配向乱れが消えたと考える。   Due to the high temperature of the mold, once the orientation of the glittering material is disturbed, the surface layer in contact with the mold is not cooled and solidified, and is easily flown by the subsequent flow of the thermoplastic resin, I think that the disorder in the orientation of the glitter material has disappeared.

このように、金型を、リブ12やボス13を有する部分14と、有しない部分15に厚みの差をつけた設計としたこと、及び、金型の温度を、熱可塑性樹脂の温度が荷重たわみ温度以上となる温度としたことで射出成形体11の光輝材の配向乱れを消すことができた。   As described above, the mold is designed to have a thickness difference between the portion 14 having the ribs 12 and the bosses 13 and the portion 15 not having the ribs 12 and the portion 15 having no ribs, and the temperature of the mold is determined by the temperature of the thermoplastic resin. By setting the temperature to be equal to or higher than the deflection temperature, the alignment disorder of the glitter material of the injection molded body 11 could be eliminated.

次に、金型の温度の検討を行った。なお、このとき金型の温度以外のパラメーターは変化させていない。   Next, the temperature of the mold was examined. At this time, parameters other than the mold temperature are not changed.

検討の結果、[表2]のように、金型の温度が140℃以上で、キャビティ内の熱可塑性樹脂の温度は荷重たわみ温度以上となることを確認し、このときに光輝材の配向乱れが消えることを確認した。   As a result of the examination, as shown in [Table 2], it was confirmed that the temperature of the mold was 140 ° C. or higher and the temperature of the thermoplastic resin in the cavity was higher than the deflection temperature under load. Confirmed that disappeared.

Figure 2012171218
Figure 2012171218

なお、配向が×という結果であった金型の温度、80℃において、ショートショットでキャビティ内での熱可塑性樹脂の流れと光輝材の配向の状態を確認した。   The flow of the thermoplastic resin in the cavity and the state of orientation of the glittering material were confirmed by short shots at a mold temperature of 80 ° C., which resulted in an orientation of x.

熱可塑性樹脂の流れは同様であったが、光輝材の配向の状態は異なっていた。   The flow of the thermoplastic resin was the same, but the orientation of the glitter material was different.

光輝材の配向乱れは、リブ12やボス13を有する部位14に熱可塑性樹脂が到達したときには、射出成形体11の表面に発生した。   The disordered alignment of the glitter material occurred on the surface of the injection molded body 11 when the thermoplastic resin reached the portion 14 having the ribs 12 and the bosses 13.

その後、リブ12やボス13を有しない部位15に熱可塑性樹脂のフローフロントが到達しても、光輝材の配向乱れは上記の場所のまま動かなかった。   Thereafter, even if the thermoplastic resin flow front arrived at the portion 15 having no ribs 12 or bosses 13, the orientation disorder of the glittering material did not move as described above.

さらに、キャビティ内全体に熱可塑性樹脂が充填されても、光輝材の配向乱れは上記の場所のまま動かなかった。   Further, even when the entire cavity was filled with the thermoplastic resin, the alignment disorder of the glittering material did not move as described above.

金型の温度が低いことで、いったん光輝材の配向が乱れると、金型と接する表面層が先に冷やされて固化するため、乱れた光輝材の配向乱れが固定され、その後の熱可塑性樹脂の流れによって流されることなく、射出成形体の表面に光輝材の配向乱れが残ってしまったと考える。   If the temperature of the mold is low, once the orientation of the glitter material is disturbed, the surface layer in contact with the mold is first cooled and solidified, so that the disorder of the disordered glitter material is fixed, and then the thermoplastic resin It is considered that the disorder of the orientation of the glittering material remained on the surface of the injection molded body without being caused to flow by the flow of.

よって、金型の温度は、キャビティ内の熱可塑性樹脂を荷重たわみ温度以上に保つ温度とすることが必要である。   Therefore, the mold temperature needs to be a temperature that keeps the thermoplastic resin in the cavity at or above the deflection temperature under load.

(実施例2)
実施例2は、実施の形態1と同じ形状の金型(金型A)を用いて成形を行った。
(Example 2)
In Example 2, molding was performed using a mold (mold A) having the same shape as in the first embodiment.

厚みは、リブ12やボス13を有する部位14の厚みを1.5mmとし、有しない部位15の厚みを2.5mmとした。すなわち厚みの差は1.0mmである。   Regarding the thickness, the thickness of the portion 14 having the rib 12 and the boss 13 was 1.5 mm, and the thickness of the portion 15 not having the thickness was 2.5 mm. That is, the difference in thickness is 1.0 mm.

材料は、平均粒径が5μmのアルミニウム粉末0.3%と50μmのマイカベースのパール顔料1.5%を、荷重たわみ温度が112℃のPPに混合したものを使用した。   The material used was a mixture of 0.3% aluminum powder having an average particle size of 5 μm and 1.5% mica-based pearl pigment having a particle size of 50 μm and PP having a deflection temperature under load of 112 ° C.

なお、金型の温度は、キャビティ内のPPの温度が荷重たわみ温度以上となるよう、140℃とした。   The temperature of the mold was 140 ° C. so that the temperature of PP in the cavity was not less than the deflection temperature under load.

まず、あえてショートショットとし、キャビティ内での熱可塑性樹脂の流れと、光輝材の配向の状態を目視にて確認した。   First, a short shot was made, and the flow of the thermoplastic resin in the cavity and the orientation state of the glittering material were visually confirmed.

熱可塑性樹脂の流れ、光輝材の配向の状態、ともに実施例1と同様であった。   Both the flow of the thermoplastic resin and the state of orientation of the glittering material were the same as in Example 1.

このように、金型を、リブ12やボス13を有する部位14と、有しない部位15に厚みの差をつけた設計としたこと、及び、金型の温度を、熱可塑性樹脂の温度が荷重たわみ温度以上となる温度としたことで射出成形体11の光輝材の配向乱れを消すことができた。   As described above, the mold is designed to have a thickness difference between the portion 14 having the ribs 12 and the bosses 13 and the portion 15 not having the ribs 12 and the portion 15 not having the ribs, and the temperature of the mold is the load of the thermoplastic resin. By setting the temperature to be equal to or higher than the deflection temperature, the alignment disorder of the glitter material of the injection molded body 11 could be eliminated.

次に、金型の温度の検討を行った。なお、このとき金型の温度以外のパラメーターは変化させていない。   Next, the temperature of the mold was examined. At this time, parameters other than the mold temperature are not changed.

検討の結果、[表3]のように、金型の温度が140℃以上で、キャビティ内の熱可塑性樹脂の温度は荷重たわみ温度以上となることを確認し、このときに光輝材の配向乱れが消えることを確認した。   As a result of the examination, as shown in [Table 3], it was confirmed that the temperature of the mold was 140 ° C. or higher and the temperature of the thermoplastic resin in the cavity was higher than the deflection temperature under load. Confirmed that disappeared.

Figure 2012171218
Figure 2012171218

なお、配向が×という結果であった金型の温度、80℃において、ショートショットでキャビティ内での熱可塑性樹脂の流れと光輝材の配向の状態を確認した。   The flow of the thermoplastic resin in the cavity and the state of orientation of the glittering material were confirmed by short shots at a mold temperature of 80 ° C., which resulted in an orientation of x.

これも実施例1と同様であった。   This was the same as in Example 1.

金型の温度が低いことで、いったん光輝材の配向が乱れると、金型と接する表面層が先に冷やされて固化するため、乱れた光輝材の配向が固定され、その後の熱可塑性樹脂の流れによって流されることなく、射出成形体の表面に光輝材の乱れが残ってしまったと考える。   Due to the low temperature of the mold, once the orientation of the glitter material is disturbed, the surface layer in contact with the mold is first cooled and solidified, so that the orientation of the disturbed glitter material is fixed, and the thermoplastic resin thereafter It is considered that the brilliant material remains on the surface of the injection molded body without being swept away by the flow.

よって、金型の温度は、キャビティ内の熱可塑性樹脂を荷重たわみ温度以上に保つ温度とすることが必要である。   Therefore, the mold temperature needs to be a temperature that keeps the thermoplastic resin in the cavity at or above the deflection temperature under load.

(実施例3)
実施例3は、実施の形態1と同じ形状の金型(金型A)と実施例1と同じ材料を用いて成形を行った。
(Example 3)
In Example 3, molding was performed using a mold having the same shape as that of Embodiment 1 (Mold A) and the same material as in Example 1.

金型の温度は、キャビティ内のABSの温度が荷重たわみ温度以上となる温度の代表値として、140℃に固定し、厚みの検討を行った。なお、このとき厚み以外のパラメーターは変化させていない。   The mold temperature was fixed at 140 ° C. as a representative value of the temperature at which the ABS temperature in the cavity was equal to or higher than the deflection temperature under load, and the thickness was examined. At this time, parameters other than the thickness are not changed.

検討の結果、[表4]のように、厚みの差が0.1mm以上で、配向乱れが消えることを確認した。   As a result of the examination, as shown in [Table 4], it was confirmed that the alignment disorder disappeared when the difference in thickness was 0.1 mm or more.

Figure 2012171218
Figure 2012171218

なお、配向が×という結果であった厚みの差、リブやボスを有する部位の厚み2.2mm、有さない部位の厚み2.2mm、厚みの差は0mm、において、ショートショットでキャビティ内での熱可塑性樹脂の流れと光輝材の配向の状態を確認した。   In addition, the difference in thickness, which was the result of orientation x, the thickness of the portion having ribs and bosses of 2.2 mm, the thickness of the portion not having 2.2 mm, and the thickness difference of 0 mm, was short shot in the cavity. The flow of the thermoplastic resin and the orientation of the glittering material were confirmed.

図4は、実施例3における金型のキャビティ内における熱可塑性樹脂の流れを示す模式図である。   FIG. 4 is a schematic diagram illustrating the flow of the thermoplastic resin in the cavity of the mold according to the third embodiment.

熱可塑性樹脂はゲートから射出され、まず、図4の(1)のように流れた。   The thermoplastic resin was injected from the gate and first flowed as shown in FIG.

その後、リブ12やボス13を有さない部位15では配向が乱れないが、リブ12やボス13を有する部位14では配向が乱れ、図4の(2)のように充填された。   Thereafter, the orientation was not disturbed in the portion 15 having no rib 12 or boss 13, but the orientation was disturbed in the portion 14 having the rib 12 or boss 13 and was filled as shown in FIG. 4 (2).

このとき、熱可塑性樹脂が最後に流れる部位にリブ12やボス13を有しているため、乱れた光輝材の配向が流される距離が不十分であり、射出成形体11から光輝材の配向乱れは消えなかった。   At this time, since the thermoplastic resin has the rib 12 and the boss 13 at the part where the thermoplastic resin flows last, the distance through which the orientation of the disturbed glitter material flows is insufficient, and the orientation of the glitter material from the injection molded body 11 is disturbed. Did not disappear.

また、金型の厚み管理は一般的に0.01mm単位でおこなうものであり、リブ12やボス13を有する部位14の厚みを2.2mm、有さない部位15の厚みを2.11mmとして、厚みの差を0.09mm設けた場合でもわずかに配向乱れが残った。   In addition, the thickness control of the mold is generally performed in units of 0.01 mm, the thickness of the portion 14 having the ribs 12 and the bosses 13 is 2.2 mm, and the thickness of the portion 15 not having the thickness is 2.11 mm. Even when a thickness difference of 0.09 mm was provided, a slight alignment disorder remained.

従って、厚みの差は0.1mm以上必要であると判断する。   Therefore, it is determined that a difference in thickness of 0.1 mm or more is necessary.

なお、厚みの差が0.1mm未満であっても、従来特許文献3のように、射出成形体の外縁部に切り取る形状を作って、そこに熱可塑性樹脂が流れるようにすれば光輝材の配向乱れは消えるが、使用する材料が増える、ごみが増えるなどの理由から、望ましい方法ではない。   Even if the difference in thickness is less than 0.1 mm, as in the case of the conventional patent document 3, if the shape to be cut out is formed on the outer edge of the injection molded body and the thermoplastic resin flows there, Although the disorder of orientation disappears, it is not a desirable method because of the increase in materials used and the increase in dust.

また、厚みの差が3.0mmを超える範囲は、射出成形体11の厚みが厚くなることで、リブ12を設けることなく必要強度が確保できるため、厚み差をつける必要性が低くなる。このため、本発明では3.0mmを上限と規定した。   Moreover, since the required intensity | strength can be ensured without providing the rib 12 because the thickness of the injection molded object 11 becomes thick in the range where the difference in thickness exceeds 3.0 mm, the necessity for providing a thickness difference becomes low. For this reason, in the present invention, 3.0 mm is defined as the upper limit.

(実施例4)
実施例4は、実施の形態1とは異なる形状の金型(金型Bとする)を用いて成形を行った。
Example 4
In Example 4, molding was performed using a mold (mold B) having a shape different from that of the first embodiment.

図5の(1)と(2)は、実施例4における射出成形体の裏面の外観図であり、図6は、金型のキャビティ内における熱可塑性樹脂の流れを示す模式図である。   (1) and (2) in FIG. 5 are external views of the back surface of the injection-molded product in Example 4, and FIG. 6 is a schematic diagram showing the flow of the thermoplastic resin in the cavity of the mold.

図5において、射出成形体17は、リブ18やボス19を有する部位20の厚みを、有しない部位21より厚くした設計となっている。   In FIG. 5, the injection molded body 17 is designed such that the thickness of the portion 20 having the ribs 18 and the bosses 19 is thicker than the portion 21 not having the ribs 18 and the bosses 19.

本実施例では、リブ18やボス19を有する部位20の厚みを2.4mmとし、有しない部位21の厚み21を1.6mmとした。すなわち厚みの差は0.8mmである。   In the present embodiment, the thickness of the portion 20 having the ribs 18 and the bosses 19 is 2.4 mm, and the thickness 21 of the portion 21 not having the ribs 18 and the bosses 19 is 1.6 mm. That is, the difference in thickness is 0.8 mm.

材料は、平均粒径が20μmのアルミニウム粉末0.2%と20μmのマイカベースのパール顔料1%を、荷重たわみ温度が80℃のPPに混合したものを使用した。   The material used was a mixture of 0.2% aluminum powder having an average particle diameter of 20 μm and 1% of mica-based pearl pigment having a particle diameter of 20 μm and PP having a deflection temperature under load of 80 ° C.

なお、金型の温度は、キャビティ内のPPの温度が荷重たわみ温度以上となるよう、120℃とした。   The temperature of the mold was 120 ° C. so that the temperature of PP in the cavity was equal to or higher than the deflection temperature under load.

まず、あえてショートショットとし、キャビティ内の熱可塑性樹脂の流れと、光輝材の配向の状態を目視にて確認した。   First, a short shot was intentionally made, and the flow of the thermoplastic resin in the cavity and the state of orientation of the glittering material were visually confirmed.

熱可塑性樹脂は、図6の(1)から(6)に示すように、リブ18やボス19を有する部位20に直結したゲート22から射出され、厚みの厚いリブ18やボス19を有する部位20に優先的に流れ、その後、厚みの薄い有しない部位21に流れた。   As shown in FIGS. 6 (1) to (6), the thermoplastic resin is injected from the gate 22 directly connected to the portion 20 having the rib 18 and the boss 19, and the portion 20 having the thick rib 18 and boss 19 is present. Flowed preferentially, and then flowed to a portion 21 having a small thickness.

光輝材の配向乱れは、リブ18やボス19を有する部位20に熱可塑性樹脂が到達したとき(図6の(1)と(2))には射出成形体17の表面に発生していた。   The alignment disorder of the glittering material occurred on the surface of the injection molded body 17 when the thermoplastic resin reached the portion 20 having the ribs 18 and the bosses 19 ((1) and (2) in FIG. 6).

しかしながら、リブ18やボス19を有しない部位21に熱可塑性樹脂のフローフロントが到達したとき(図6の(3)から(5))には、乱れた光輝材の配向は熱可塑性樹脂ごと押し流され、熱可塑性樹脂のフローフロントに移動した。   However, when the flow front of the thermoplastic resin reaches the portion 21 that does not have the ribs 18 and the bosses 19 ((3) to (5) in FIG. 6), the disordered glitter material orientation is washed away together with the thermoplastic resin. It moved to the thermoplastic resin flow front.

さらに、キャビティ内に熱可塑性樹脂が充填されたとき(図3の(6))には、光輝材の配向乱れが消えた。   Further, when the cavity was filled with the thermoplastic resin ((6) in FIG. 3), the alignment disorder of the glittering material disappeared.

金型の温度が高いことで、いったん光輝材の配向に乱れが生じても、金型と接する表面層が冷やされて固化することがなく、その後の熱可塑性樹脂の流れによって容易に流され、光輝材の配向乱れが消えたと考える。   Due to the high temperature of the mold, once the orientation of the glittering material is disturbed, the surface layer in contact with the mold is not cooled and solidified, and is easily flown by the subsequent flow of the thermoplastic resin, I think that the disorder in the orientation of the glitter material has disappeared.

このように、金型を、リブ18やボス19を有する部分20と、有しない部分21に厚みの差をつけた設計としたこと、及び、金型の温度を、熱可塑性樹脂の温度が荷重たわみ温度以上となる温度としたことで射出成形体17の光輝材の配向乱れを消すことができた。   Thus, the mold is designed to have a thickness difference between the portion 20 having the ribs 18 and the bosses 19 and the portion 21 not having the ribs 18 and the portion 21 having no ribs, and the temperature of the mold is the load of the thermoplastic resin. By setting the temperature to be equal to or higher than the deflection temperature, the alignment disorder of the glittering material of the injection molded body 17 could be eliminated.

この金型にて、金型の温度の検討を行った。なお、このとき金型の温度以外のパラメーターは変化させていない。   With this mold, the temperature of the mold was examined. At this time, parameters other than the mold temperature are not changed.

検討の結果、[表5]のように、金型の温度が100℃以上で、キャビティ内の熱可塑性樹脂の温度は荷重たわみ温度以上となることを確認し、このときに光輝材の配向乱れが消えることを確認した。   As a result of the examination, as shown in [Table 5], it was confirmed that the temperature of the mold was 100 ° C. or higher and the temperature of the thermoplastic resin in the cavity was higher than the deflection temperature under load. Confirmed that disappeared.

Figure 2012171218
Figure 2012171218

次に、金型の温度を120℃に固定し、厚みについて検討を行った。なお、このとき厚み以外のパラメーターは変化させていない。   Next, the temperature of the mold was fixed at 120 ° C., and the thickness was examined. At this time, parameters other than the thickness are not changed.

検討の結果、[表6]のように、厚みの差が0.1mm以上で光輝材の配向乱れが消えることを確認した。   As a result of the investigation, as shown in [Table 6], it was confirmed that the alignment disorder of the glittering material disappeared when the difference in thickness was 0.1 mm or more.

Figure 2012171218
Figure 2012171218

このように、金型の形状が変わっても、金型の温度と厚み差に対する光輝材の配向の状態の傾向は同じであった。   Thus, even when the shape of the mold changed, the tendency of the orientation state of the glittering material with respect to the temperature and thickness difference of the mold was the same.

なお、本実施例においては、ゲート22は、リブ18やボス19を有する部位20と直結した部位に設けた。本発明の直結した部位とは、射出直後の熱可塑性樹脂のフローフロントが真っ先に厚みの厚い部位に入るような部位を指す。本実施の形態のように、射出成形体の形状によっては、厚みの厚い部位と直結していなくてもかまわないが、直結した部位にゲートを設けると、より配向乱れが消えやすくなるのでより望ましい。   In this embodiment, the gate 22 is provided at a portion directly connected to the portion 20 having the rib 18 and the boss 19. The directly connected portion of the present invention refers to a portion where the thermoplastic resin flow front immediately after injection enters the thickest portion first. As in this embodiment, depending on the shape of the injection-molded body, it may not be directly connected to a thick part, but it is more desirable to provide a gate at the directly connected part because the alignment disorder is more likely to disappear. .

以上のように、本発明にかかる光輝材を有する熱可塑性樹脂の射出成形体の製造方法及び射出成形体は、塗装を行うことなく、熱可塑性樹脂中の光輝材により塗装同等の質感を演出することができるため、外観品位を要求される用途に適用できる。例えば、掃除機、冷蔵庫、エアコン、洗濯機、温水洗浄便座、電子レンジ、などの家電製品に利用可能である。また、家電製品に限らず自動車用部品など他の製品にも利用可能である。   As described above, the method for producing an injection molded article of a thermoplastic resin having a glitter material according to the present invention and the injection molded article produce a texture equivalent to painting by the glitter material in the thermoplastic resin without performing painting. Therefore, it can be applied to applications that require appearance quality. For example, it can be used for home appliances such as a vacuum cleaner, a refrigerator, an air conditioner, a washing machine, a hot water washing toilet seat, and a microwave oven. Moreover, it can be used not only for home appliances but also for other products such as automobile parts.

11 射出成形体
12 リブ
13 ボス
14 リブやボスを有する部位
15 リブやボスを有しない部位
17 射出成形体
18 リブ
19 ボス
20 リブやボスを有する部位
21 リブやボスを有しない部位
DESCRIPTION OF SYMBOLS 11 Injection molded object 12 Rib 13 Boss 14 The part which has a rib and a boss 15 The part which does not have a rib and a boss 17 The injection molded object 18 Rib 19 Boss 20 The part which has a rib and a boss 21 The part which does not have a rib and a boss

Claims (5)

リブやボスを有する部位の厚みを、リブやボスを有しない部位の厚みよりも0.1mmから3.0mm厚くした形状に設計した金型を用いて、平均粒径が120μm未満の光輝材を有する熱可塑性樹脂を成形する射出成形体の製造方法において、前記金型の温度をキャビティ内の前記熱可塑性樹脂温度が荷重たわみ温度以上を保てるような温度に上げる工程と、前記金型のキャビティ内に溶融した前記熱可塑性樹脂を射出して流し込む工程と、前記金型の温度を下げて前記熱可塑性樹脂を硬化させる工程とを含む射出成形体の製造方法。 A glitter material having an average particle size of less than 120 μm is used by using a mold designed to have a thickness of a portion having ribs and bosses 0.1 to 3.0 mm thicker than a portion having no ribs or bosses. In the method of manufacturing an injection-molded article for molding a thermoplastic resin having, a step of raising the temperature of the mold to a temperature at which the temperature of the thermoplastic resin in the cavity can be maintained above the deflection temperature under load; A method for producing an injection-molded article, comprising: a step of injecting and pouring the thermoplastic resin melted into a portion; and a step of lowering the temperature of the mold to cure the thermoplastic resin. 前記金型の厚みを厚くした部位に直結した部位にゲートを設けた請求項1に記載の射出成形体の製造方法。 The method for producing an injection-molded article according to claim 1, wherein a gate is provided at a portion directly connected to a portion where the thickness of the mold is increased. 請求項1または2に記載の射出成形体の製造方法にて得られる射出成形体。 An injection-molded product obtained by the method for producing an injection-molded product according to claim 1 or 2. 前記熱可塑性樹脂が、ABSであることを特徴とする請求項1から3に記載の射出成形体の製造方法または射出成形体。 The said thermoplastic resin is ABS, The manufacturing method or injection molding body of the injection molded body of Claim 1 to 3 characterized by the above-mentioned. 前記熱可塑性樹脂が、PPであることを特徴とする請求項1から3に記載の射出成形体の製造方法または射出成形体。 The said thermoplastic resin is PP, The manufacturing method or injection molded body of the injection molded body of Claim 1 to 3 characterized by the above-mentioned.
JP2011035643A 2011-02-22 2011-02-22 Method of manufacturing injection molded product of thermoplastic resin having glittering material and injection molded product Withdrawn JP2012171218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035643A JP2012171218A (en) 2011-02-22 2011-02-22 Method of manufacturing injection molded product of thermoplastic resin having glittering material and injection molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035643A JP2012171218A (en) 2011-02-22 2011-02-22 Method of manufacturing injection molded product of thermoplastic resin having glittering material and injection molded product

Publications (1)

Publication Number Publication Date
JP2012171218A true JP2012171218A (en) 2012-09-10

Family

ID=46974563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035643A Withdrawn JP2012171218A (en) 2011-02-22 2011-02-22 Method of manufacturing injection molded product of thermoplastic resin having glittering material and injection molded product

Country Status (1)

Country Link
JP (1) JP2012171218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020003535A1 (en) * 2018-06-29 2021-02-18 昭和電工マテリアルズ株式会社 Resin molded products and manufacturing methods for resin molded products
CN114258226A (en) * 2021-12-31 2022-03-29 珠海格力电器股份有限公司 Appearance part, household appliance and mold

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020003535A1 (en) * 2018-06-29 2021-02-18 昭和電工マテリアルズ株式会社 Resin molded products and manufacturing methods for resin molded products
CN114258226A (en) * 2021-12-31 2022-03-29 珠海格力电器股份有限公司 Appearance part, household appliance and mold
CN114258226B (en) * 2021-12-31 2023-02-24 珠海格力电器股份有限公司 Appearance part, household appliance and mold

Similar Documents

Publication Publication Date Title
US9718226B2 (en) Method of injection molding
US20150290850A1 (en) Injection molding method and injection molded article
US20080164635A1 (en) Method for making multi-finish thermoplastic articles
JP2009285893A (en) Injection molding method and injection molding die
CN102869488A (en) Method for producing coated molded bodies
JP2012171218A (en) Method of manufacturing injection molded product of thermoplastic resin having glittering material and injection molded product
JP5463622B2 (en) Metallic resin molded product manufacturing method and mold
CN104725765A (en) Scratch-resistant ABS plastic and preparation method thereof
US11938659B2 (en) Insert to reduce weld line appearance defect in injection molding
JP6259644B2 (en) Metal / resin composite structure
JP6334319B2 (en) Manufacturing method of metallic resin molded product
JP6428582B2 (en) Molding method of resin molded products
JP2011005743A (en) Injection mold and method of producing injection molding
JP2011161040A (en) Toilet cover and sanitary cleaning device with the same
JP2011083986A (en) Resin component for vehicle and injection molding die for the same
US20120315822A1 (en) Figure and a Composition for Forming the Figure
US20140087144A1 (en) Resin molded product
JP5625523B2 (en) Plastic molded product
KR20070025012A (en) A radiator grill of automobile and preparation method thereof
JP2012158128A (en) Injection molded article of thermoplastic resin with luminous material
JP2011088284A (en) Injection molding method for thermoplastic resin, and molded product by the injection molding method
JP3540921B2 (en) Resin molding
JP2011140206A (en) Method for injection molding of thermoplastic resin containing metallic pigment and molding molded with the method
KR20150124598A (en) Synthetic resin composition of metal texture comprising polymer beads filled with metal pigments
JP2017094589A (en) Method for molding resin molding and primary molding using molding thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513