JP2012169512A - Electronic circuit - Google Patents

Electronic circuit Download PDF

Info

Publication number
JP2012169512A
JP2012169512A JP2011030427A JP2011030427A JP2012169512A JP 2012169512 A JP2012169512 A JP 2012169512A JP 2011030427 A JP2011030427 A JP 2011030427A JP 2011030427 A JP2011030427 A JP 2011030427A JP 2012169512 A JP2012169512 A JP 2012169512A
Authority
JP
Japan
Prior art keywords
coil
electronic circuit
oscillator
coupled
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011030427A
Other languages
Japanese (ja)
Other versions
JP5643673B2 (en
Inventor
Tadahiro Kuroda
忠広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2011030427A priority Critical patent/JP5643673B2/en
Publication of JP2012169512A publication Critical patent/JP2012169512A/en
Application granted granted Critical
Publication of JP5643673B2 publication Critical patent/JP5643673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide an electronic circuit which can distribute accurately synchronized clocks to respective substrates despite its simple structure.SOLUTION: An electronic circuit comprises: a first substrate 11 which has a first oscillator 21 including a first resonance circuit made up of a first coil L1 and a first capacitor C1; and a second substrate 12 which has a second oscillator 22 including a second resonance circuit made up of a second coil L2 and a second capacitor C2. The first coil L1 and the second coil L2 are inductively coupled to each other so that the first oscillator 21 and the second oscillator 22 resonate in a coupled manner.

Description

本発明は、複数の半導体チップ(又は電子回路基板)を同一装置内に多層に積層した(又は横に配置して磁性体材料などを用いて磁束を導いた)際に、あるいは半導体チップ(又は電子回路基板)を備えた複数の装置を近接配置(装置をスロットに挿入したり所定の面に密着することで近接配置)した際に、無線で半導体チップ(又は電子回路基板)にクロックを分配することができる電子回路に関するものである。各基板に分配されたクロックは、各基板のシステムクロックとして用いることができる。例えば、複数のチップが積層実装されたシステムを構築し、各チップを共通のシステムクロックで同期して動作させるのに好適である。また、そのクロックを用いて高速なシリアルデータ伝送をすることができる例えば、NANDフラッシュメモリやDRAMなどの同一メモリーチップをパッケージ内に積層実装した際のチップ間のシリアルデータ通信のタイミング制御に利用できる。あるいは、プロセッサとDRAMなど、異なるチップをパッケージ内に積層実装した際のチップ間のシリアルデータ通信のタイミング制御にも同様に利用できる。更に、例えばメモリカードとパーソナルコンピュータの間のように、挿抜や着脱できるプリント回路基板が、互いに近接配置されてインタフェースを構成した際の基板間のシリアルデータ通信のタイミング制御にも利用できる。   The present invention can be used when a plurality of semiconductor chips (or electronic circuit boards) are stacked in multiple layers in the same apparatus (or arranged sideways and a magnetic material is used to guide magnetic flux), or semiconductor chips (or When a plurality of devices equipped with an electronic circuit board) are placed close together (closely placed by inserting the device into a slot or in close contact with a predetermined surface), the clock is wirelessly distributed to the semiconductor chip (or electronic circuit board) The present invention relates to an electronic circuit that can be used. The clock distributed to each board can be used as a system clock for each board. For example, it is suitable to construct a system in which a plurality of chips are stacked and mounted, and to operate each chip in synchronization with a common system clock. Further, high-speed serial data transmission can be performed using the clock. For example, it can be used for timing control of serial data communication between chips when the same memory chip such as a NAND flash memory or DRAM is stacked and mounted in a package. . Alternatively, it can also be used for timing control of serial data communication between chips when different chips such as a processor and DRAM are stacked in a package. Further, for example, a printed circuit board that can be inserted and removed, such as between a memory card and a personal computer, can be used for timing control of serial data communication between boards when they are arranged close to each other to form an interface.

本発明者らは、半導体集積回路チップや電子回路基板の配線により形成されるコイルの誘導結合を用いて、積層されるチップや基板間でデータ通信を行う電子回路を提案している(特許文献1〜13、非特許文献1〜3参照)。   The present inventors have proposed an electronic circuit that performs data communication between stacked chips and substrates by using inductive coupling of coils formed by wiring of a semiconductor integrated circuit chip and an electronic circuit substrate (Patent Literature). 1-13, a nonpatent literature 1-3 reference).

その中の代表的なものを例示すると次のとおりである。
(1).3つ以上の基板を積層実装した際に、基板上の配線で形成されたコイルの誘導結合を用いて、3つ以上の基板間で無線データ通信できる電子回路(特許文献1)。
The typical ones are as follows.
(1). Electronic circuit capable of wireless data communication between three or more substrates using inductive coupling of coils formed by wiring on the substrate when three or more substrates are stacked and mounted (Patent Document 1) .

(2).基本的な構造が同一であって積層実装される基板間で誘導結合を用いてデータ通信を行い配線で電源供給できる電子回路(特許文献5)。 (2). An electronic circuit having the same basic structure and capable of performing data communication using inductive coupling between substrates mounted in layers and supplying power by wiring (Patent Document 5).

(3).半導体チップ間で誘導結合を用いて、システムクロックよりも高速にデータのバースト転送ができる電子回路(特許文献6)。この電子回路は、送信側で高速なタイミング信号を生成し、これを用いて送信データを並列直列変換して多重化し、多重化されたデータをタイミング信号と共に誘導結合を用いて送信チップから受信チップにシリアルデータ転送し、受信されたタイミング信号から作られたタイミングで受信信号を直列並列変換して元のデータを復元できる。送信チップの簡易な発振器で発生されたタイミング信号は、デバイスのばらつきや電源電圧や温度などの変動で周波数が一定に定まらず、あるいはノイズ起因の比較的大きなジッタを含むが、タイミング信号をデータと並走させて送る信号源同期(ソースシンクロナス)方式を用いることにより、確実に高速データ伝送できる。 (3). An electronic circuit capable of performing burst transfer of data at a speed higher than the system clock by using inductive coupling between semiconductor chips (Patent Document 6). This electronic circuit generates a high-speed timing signal on the transmission side, and uses this to multiplex transmission data by parallel-serial conversion, and the multiplexed data is combined with the timing signal from the transmission chip to the reception chip using inductive coupling. The original data can be restored by serial-to-parallel conversion of the received signal at the timing generated from the received timing signal. The timing signal generated by a simple oscillator on the transmitter chip does not have a constant frequency due to device variations or fluctuations in power supply voltage or temperature, or contains relatively large jitter due to noise. High-speed data transmission can be ensured by using a signal source synchronous method that sends the signals in parallel.

(4).送信器からの信号を受信して送信元と受信先とを認識して、送信元と受信先との間にチップが存在する場合は受信信号を中継することで、コイルの寸法よりも遠くのチップまでデータを高速に転送できる電子回路(特許文献9)。 (4) Receiving the signal from the transmitter, recognizing the transmission source and the reception destination, and if there is a chip between the transmission source and the reception destination, the received signal is relayed, so that the dimensions of the coil An electronic circuit that can transfer data to a farther chip at a high speed (Patent Document 9).

(5).プロセッサとSRAMチップをパッケージ内に積層実装してチップ間無線データ通信によりプロセッサがSRAMにデータを読み書きできる電子回路(非特許文献1)。 (5) An electronic circuit in which a processor and an SRAM chip are stacked and mounted in a package so that the processor can read and write data to and from the SRAM by wireless data communication between chips (Non-patent Document 1).

(6).NANDフラッシュメモリをパッケージ内に積層実装してチップ間無線データ通信によりメモリにデータを読み書きできる電子回路(非特許文献2)。 (6) An electronic circuit in which a NAND flash memory is stacked and mounted in a package, and data can be read from and written to the memory by inter-chip wireless data communication (Non-Patent Document 2).

(7).パソコンとそのスロットに挿入されたメモリカードの間で非接触に高速なデータ転送ができる電子回路(非特許文献3)。 (7) An electronic circuit capable of high-speed data transfer without contact between a personal computer and a memory card inserted in the slot (Non-patent Document 3).

特開2005−228981号公報JP 2005-228981 A 特開2005−348264号公報JP 2005-348264 A 特開2006−066454号公報JP 2006-066644 A 特開2006−173986号公報JP 2006-173986 A 国際公開第2009/069532号International Publication No. 2009/069532 特開2009−188468号公報JP 2009-188468 A 特開2009−266109号公報JP 2009-266109 A 特開2009−277842号公報JP 2009-277842 A 特開2009−295699号公報JP 2009-295699 A 特開2010−015654号公報JP 2010-015654 A 特開2010−045166号公報JP 2010-045166 A 特開2010−199280号公報JP 2010-199280 A 特開2010−287113号公報JP 2010-287113 A

K. Niitsu, Y. Shimazaki, Y.Sugimori, Y. Kohama, K. Kasuga, I. Nonomura, M. Saen, S. Komatsu, K. Osada, N.Irie, T. Hattori, A. Hasegawa, and T. Kuroda, "An Inductive-Coupling Linkfor 3D Integration of a 90nm CMOS Processor and a 65nm CMOS SRAM," IEEEInternational Solid-State Circuits Conference (ISSCC'09), Dig. Tech. Papers,pp.480-481, Feb. 2009.K. Niitsu, Y. Shimazaki, Y. Sugimori, Y. Kohama, K. Kasuga, I. Nonomura, M. Saen, S. Komatsu, K. Osada, N. Irie, T. Hattori, A. Hasegawa, and T Kuroda, "An Inductive-Coupling Link for 3D Integration of a 90nm CMOS Processor and a 65nm CMOS SRAM," IEEE International Solid-State Circuits Conference (ISSCC'09), Dig. Tech. Papers, pp.480-481, Feb. 2009 . Y. Sugimori, Y. Kohama, M.Saito, Y. Yoshida, N. Miura, H. Ishikuro, T. Sakurai and T. Kuroda, "A2Gb/s 15pJ/b/chip Inductive-Coupling Programmable Bus for NAND Flash MemoryStacking," IEEE International Solid-State Circuits Conference (ISSCC'09),Dig. Tech. Papers, pp.244-245, Feb. 2009.Y. Sugimori, Y. Kohama, M. Saito, Y. Yoshida, N. Miura, H. Ishikuro, T. Sakurai and T. Kuroda, "A2Gb / s 15pJ / b / chip Inductive-Coupling Programmable Bus for NAND Flash MemoryStacking , "IEEE International Solid-State Circuits Conference (ISSCC'09), Dig. Tech. Papers, pp.244-245, Feb. 2009. S. Kawai, H. Ishikuro, and T.Kuroda, “A 2.5Gb/s/ch Inductive-Coupling Transceiverfor Non-Contact Memory Card,” IEEE International Solid-State Circuits Conference (ISSCC'10), Dig.Tech. Papers, pp.264-265, Feb. 2010.S. Kawai, H. Ishikuro, and T. Kuroda, “A 2.5Gb / s / ch Inductive-Coupling Transceiver for Non-Contact Memory Card,” IEEE International Solid-State Circuits Conference (ISSCC'10), Dig.Tech. Papers , pp.264-265, Feb. 2010. Takayuki Shibasaki, Hirotaka Tamura, Kouichi Kanda, HisakatuYamaguchi, Junji Ogawa, and Tadahiro Kuroda, “18-GHz ClockDistribution Using a Coupled VCO Array,” IEICE Trans.Electron, Vol. E90-C, No.4, pp.811-822, April 2007.Takayuki Shibasaki, Hirotaka Tamura, Kouichi Kanda, HisakatuYamaguchi, Junji Ogawa, and Tadahiro Kuroda, “18-GHz ClockDistribution Using a Coupled VCO Array,” IEICE Trans. Electron, Vol. E90-C, No. 4, pp.811-822 , April 2007.

これら従来の発明における、データのシリアル通信のためのタイミング信号に着目すると、データと並走して誘導結合によって基板から基板に転送するものであった。すなわち、第1基板において生成されたタイミング信号は、第1基板の送信回路から第2基板の受信回路に転送され、つぎに、第2基板の送信回路から第3基板の受信回路に転送され、以下同様にして基板から基板にタイミング信号が転送され分配されていた(特許文献9参照)。その結果、転送の度に送信回路及び受信回路が電力を消費して、消費電力が比較的大きかった。また、送信回路から受信回路に意図しない信号の受信がないようにするためには、送信用のコイルと受信用のコイルと使用しないコイルという3つのコイルが各チップに必要であった。   Focusing on the timing signals for serial communication of data in these conventional inventions, the signals are transferred from the substrate to the substrate by inductive coupling in parallel with the data. That is, the timing signal generated on the first board is transferred from the transmission circuit on the first board to the reception circuit on the second board, and then transferred from the transmission circuit on the second board to the reception circuit on the third board, In the same manner, timing signals were transferred and distributed from substrate to substrate (see Patent Document 9). As a result, the transmission circuit and the reception circuit consume power every transfer, and the power consumption is relatively large. Further, in order to prevent an unintended signal from being received from the transmission circuit to the reception circuit, each chip requires three coils: a transmission coil, a reception coil, and an unused coil.

この問題を解決するために、仮に各基板に発振回路を備えたとしても、製造ばらつきによる素子特性の違いや電源電圧の違いなどに起因して、発振回路の発振周波数は典型的には10%程度のばらつきがあり、正確なクロックを分配したり、シリアル通信の同期を取ることが困難であった。   In order to solve this problem, even if each substrate is provided with an oscillation circuit, the oscillation frequency of the oscillation circuit is typically 10% due to differences in device characteristics due to manufacturing variations, differences in power supply voltage, and the like. There were variations of the degree, and it was difficult to distribute an accurate clock and to synchronize serial communication.

また、クロックの分配を無線ではなく有線で行ったとしても、一つの基板でクロックを生成して他の基板にクロックを分配する際に、チップ間の配線による遅延によってクロックの位相がずれたり、チップ間の配線に寄生する容量やチップ間の配線に必要な静電破壊を防ぐための回路によって消費電力が増大するなどの問題があった。   Also, even if the clock is distributed over the wire instead of wirelessly, when generating the clock on one board and distributing the clock to the other board, the phase of the clock may shift due to the delay due to the wiring between the chips, There has been a problem that power consumption increases due to a parasitic capacitance in wiring between chips and a circuit for preventing electrostatic breakdown necessary for wiring between chips.

さらに別の観点として、同一チップ上に具備された複数のLC発振器の出力信号を伝送線路を介して結合して結合発振する例が知られているが(非特許文献4参照)、伝送線路を介して結合発振するものであるので、チップ間のクロックの分配には適用できないものであった。
本発明は、上記問題点に鑑み、簡易な構成でありながら正確に同期したクロックを各基板に分配することができる電子回路を提供することを目的とする。
As another viewpoint, there is known an example in which output signals of a plurality of LC oscillators provided on the same chip are coupled through a transmission line to oscillate (see Non-Patent Document 4). Therefore, it cannot be applied to clock distribution between chips.
In view of the above problems, an object of the present invention is to provide an electronic circuit that can distribute clocks accurately synchronized to each board with a simple configuration.

請求項1記載の本発明の電子回路は、第1コイルと第1キャパシタによる第1共振回路を含む第1発振器を有する第1基板と、第2コイルと第2キャパシタによる第2共振回路を含む第2発振器を有する第2基板とを備え、前記第1コイルと第2コイルが誘導結合して前記第1発振器と第2発振器が結合共振することを特徴とする。   An electronic circuit according to a first aspect of the present invention includes a first substrate having a first oscillator including a first resonance circuit including a first coil and a first capacitor, and a second resonance circuit including a second coil and a second capacitor. And a second substrate having a second oscillator, wherein the first coil and the second coil are inductively coupled, and the first oscillator and the second oscillator are coupled and resonated.

請求項2記載の本発明の電子回路は、結合共振するすべての前記コイルを貫通する磁束の変化が同相であることを特徴とする。   The electronic circuit of the present invention according to claim 2 is characterized in that the change in magnetic flux passing through all the coils that are coupled and resonated is in phase.

請求項3記載の本発明の電子回路は、前記共振回路の結合共振周波数において、すべての前記共振回路のインピーダンスよりすべての前記発振器の負性抵抗の絶対値が小さく、前記結合共振周波数以外の周波数において、前記インピーダンスより前記負性抵抗の絶対値が大きいことを特徴とする。   The electronic circuit of the present invention according to claim 3 is characterized in that the absolute values of the negative resistances of all the oscillators are smaller than the impedances of all the resonance circuits at the coupling resonance frequency of the resonance circuit, and the frequencies other than the coupling resonance frequency. The absolute value of the negative resistance is larger than the impedance.

請求項4記載の本発明の電子回路は、前記第1から第n基板が順に積層され(nは、n≧4の整数。以下、各基板のコイルを「第kコイル」などと言う。)、第1コイルと第2コイルとの結合度及び第(n−1)コイルと第nコイルとの結合度が、第2コイルから第(n−1)コイルの隣接間の結合度より大きいことを特徴とする。   In the electronic circuit according to a fourth aspect of the present invention, the first to nth substrates are sequentially stacked (n is an integer of n ≧ 4. Hereinafter, the coils of each substrate are referred to as “kth coils” or the like). The degree of coupling between the first coil and the second coil and the degree of coupling between the (n-1) th coil and the nth coil are greater than the degree of coupling between the second coil and the adjacent (n-1) th coil. It is characterized by.

請求項5記載の本発明の電子回路は、すべての前記基板が同一の構造を有する半導体チップであることを特徴とする。   The electronic circuit of the present invention according to claim 5 is characterized in that all the substrates are semiconductor chips having the same structure.

請求項6記載の本発明の電子回路は、前記発振器によって前記基板間において周波数及び位相が等しいクロックが各前記基板に生成されることを特徴とする。   The electronic circuit of the present invention according to claim 6 is characterized in that a clock having the same frequency and phase is generated between the substrates by the oscillator.

請求項7記載の本発明の電子回路は、前記クロックによるタイミングによって前記基板間でシリアルデータ通信を行うことを特徴とする。   The electronic circuit of the present invention according to claim 7 is characterized in that serial data communication is performed between the substrates according to the timing by the clock.

請求項8記載の本発明の電子回路は、前記クロックの周波数において受信信号から位相を抽出してシリアルデータ通信に必要なタイミングを生成することを特徴とする。   An electronic circuit according to an eighth aspect of the present invention is characterized in that a phase necessary for serial data communication is generated by extracting a phase from a received signal at the frequency of the clock.

請求項9記載の本発明の電子回路は、コイルとキャパシタによる共振回路を含む発振器を有する基板を備え、前記コイルが他のコイルと誘導結合して前記発振器が結合共振し、前記発振器によって生成されるクロックによるタイミングによってシリアルデータ通信を行うことを特徴とする。   An electronic circuit according to a ninth aspect of the present invention includes a substrate having an oscillator including a resonance circuit including a coil and a capacitor, the coil is inductively coupled to another coil, and the oscillator is coupled and resonated, and is generated by the oscillator. Serial data communication is performed according to the timing of the clock.

本発明によれば、従来よりも小さな電力とレイアウト面積を使って正確に同期したクロックを各基板に分配することができる。この発明によって各基板に分配されたクロックは、各基板のシステムクロックとして用いることができる。例えば、複数のチップが積層実装されたシステムを構築し、各チップを共通のシステムクロックで同期して動作させるのに好適である。また、そのクロック信号に同期して各基板相互の間においてデータのシリアル通信をする用途に適用するのに好適である。   According to the present invention, it is possible to distribute clocks that are accurately synchronized with each other using a smaller power and layout area than in the past. The clock distributed to each board according to the present invention can be used as a system clock for each board. For example, it is suitable to construct a system in which a plurality of chips are stacked and mounted, and to operate each chip in synchronization with a common system clock. Further, it is suitable for application to serial communication of data between the substrates in synchronization with the clock signal.

本発明の実施例1による電子回路の構成を示す図である。It is a figure which shows the structure of the electronic circuit by Example 1 of this invention. 本発明の実施例1の具体的な回路例を示す図である。It is a figure which shows the specific circuit example of Example 1 of this invention. 本発明の実施例1のテール電流を変えたときの発振の実測結果を示す図である。It is a figure which shows the measurement result of the oscillation when the tail current of Example 1 of this invention is changed. 本発明の実施例1の結合共振の波形の例を示す図である。It is a figure which shows the example of the waveform of the coupling resonance of Example 1 of this invention. 本発明の実施例1のキャパシタの値を変えたときの発振の実測結果を示す図である。It is a figure which shows the measurement result of the oscillation when the value of the capacitor of Example 1 of this invention is changed. 本発明の実施例2を説明するための図である。It is a figure for demonstrating Example 2 of this invention. 本発明の実施例3による電子回路の構成を示す図である。It is a figure which shows the structure of the electronic circuit by Example 3 of this invention. 本発明の実施例3の通信品質の実測結果を示す図である。It is a figure which shows the actual measurement result of the communication quality of Example 3 of this invention. 本発明の実施例3の受信信号の波形の例を示す図である。It is a figure which shows the example of the waveform of the received signal of Example 3 of this invention.

以下、添付図面を参照しながら本発明を実施するための形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施例1による電子回路の構成を示す図である。図1(a)は、電子回路の全体を示す概念図であり、図1(b)は、各基板上の具体的な回路を示す回路図である。コイルL1とキャパシタC1のLC共振回路を含む発振器21を有する基板11と、同様にコイルL2とキャパシタC2のLC共振回路を含む発振器22を有する基板12が上下に積層されている。各発振器21、22は、コイル31とキャパシタ32のLC共振回路と、ゲートをたすきがけにした2つのNMOSトランジスタ33、34及び電流源35から成る値が−1/gmの負性抵抗を備え、LC共振回路の共振周波数で発振する。2つのコイルL1、L2の中心軸がおよそ一致して近接することでコイルL1、L2の相互インダクタンスM12により、発生する磁束が双方のコイルL1、L2で共有され、結合共振を生じる。LC共振回路は、図に示した回路以外にもいろいろな回路が知られており、本実施例に限られない。   1 is a diagram illustrating a configuration of an electronic circuit according to a first embodiment of the present invention. FIG. 1A is a conceptual diagram showing the entire electronic circuit, and FIG. 1B is a circuit diagram showing a specific circuit on each substrate. A substrate 11 having an oscillator 21 including an LC resonance circuit of a coil L1 and a capacitor C1, and a substrate 12 having an oscillator 22 including an LC resonance circuit of a coil L2 and a capacitor C2 are stacked one above the other. Each of the oscillators 21 and 22 includes an LC resonance circuit of a coil 31 and a capacitor 32, a negative resistance having a value of −1 / gm, which includes two NMOS transistors 33 and 34 having a gate and a current source 35, Oscillates at the resonant frequency of the LC resonant circuit. When the central axes of the two coils L1 and L2 are approximately coincident and close to each other, the generated magnetic flux is shared by both the coils L1 and L2 due to the mutual inductance M12 of the coils L1 and L2, thereby causing coupled resonance. Various circuits other than the circuit shown in the figure are known as the LC resonance circuit, and the present invention is not limited to this embodiment.

図2は、本発明の実施例1の具体的な回路例を示す図である。図2(a)は図1(b)と同じである。LC共振回路のインピーダンスZLCに比べて負性抵抗の絶対値1/gmが小さいときに、発振が継続する。負性抵抗の絶対値は、NMOSトランジスタのドレイン電流、すなわち、テール電流Itailを変えることで、トランスコンダクタンスgmを変えて調整できる(トランスコンダクタンスgmはドレイン電流の平方根に比例する。)。つまり、テール電流Itailを増やすと、トランスコンダクタンスgmが大きくなり、負性抵抗の絶対値1/gmが小さくなる。   FIG. 2 is a diagram illustrating a specific circuit example of the first embodiment of the present invention. FIG. 2 (a) is the same as FIG. 1 (b). Oscillation continues when the absolute value 1 / gm of the negative resistance is smaller than the impedance ZLC of the LC resonance circuit. The absolute value of the negative resistance can be adjusted by changing the transconductance gm by changing the drain current of the NMOS transistor, that is, the tail current Itail (the transconductance gm is proportional to the square root of the drain current). That is, when the tail current Itail is increased, the transconductance gm increases and the absolute value 1 / gm of the negative resistance decreases.

ここで、テール電流Itailを大きくするほど、コイルが発生する磁束が強くなり、コイル間の結合の強さである結合度は大きくなる。また、結合度は、図2(b)に示すコイル間の結合係数kijによっても決まる。図2(b)は、負性抵抗41〜4NとLC共振回路インピーダンスZLC,1〜ZLC,Nから成る各基板の発振器を示し(キャパシタは図示省略)、結合係数kijは、各コイルの形状及び配置(主にコイルの直径とコイル間隔)によって決まる。したがって、テール電流Itailが大きいほど、及び結合係数kが大きいほど、コイル間の結合度は強くなる。しかし、消費電力はより大きくなり、又はレイアウト面積がより大きくなる。図2(c)は、結合共振して発振する条件をシミュレーションした結果を示す。結合共振するためには、コイルの結合係数kを大きくするか、又はテール電流Itailを大きくする必要があることが分かる。   Here, as the tail current Itail is increased, the magnetic flux generated by the coils is increased, and the degree of coupling, which is the strength of coupling between the coils, is increased. The degree of coupling is also determined by the coupling coefficient kij between the coils shown in FIG. FIG. 2 (b) shows an oscillator of each substrate composed of negative resistors 41 to 4N and LC resonance circuit impedances ZLC, 1 to ZLC, N (capacitors are not shown), and the coupling coefficient kij represents the shape of each coil and It depends on the arrangement (mainly coil diameter and coil spacing). Therefore, the greater the tail current Itail and the greater the coupling coefficient k, the stronger the degree of coupling between the coils. However, the power consumption becomes larger or the layout area becomes larger. FIG. 2 (c) shows the result of simulating the condition for oscillation by coupled resonance. It can be seen that it is necessary to increase the coupling coefficient k of the coil or increase the tail current Itail in order to resonate.

図3は、本発明の実施例1のテール電流を変えたときの発振の実測結果を示す図である。実際にテストチップを0.18μm CMOS技術で製造して実測した。テール電流Itailをある値以上にすると結合共振が起こる。4つの発振器の出力信号Clk1〜Clk4の周波数は元々異なっているが、テール電流Itailを大きくしていって、所定値(ここでは、Itail=0.21mA)に達して結合共振が起こると、一致することが分かる。結合共振したときの各発振器の出力信号のジッタは一周期の2.4%以下であり、通信などのクロックとして利用するに足るほどに十分に小さい。   FIG. 3 is a diagram showing an actual measurement result of oscillation when the tail current of Example 1 of the present invention is changed. A test chip was actually manufactured with 0.18 μm CMOS technology and measured. When the tail current Itail is set to a certain value or more, coupling resonance occurs. Although the frequencies of the output signals Clk1 to Clk4 of the four oscillators are originally different, they coincide when the tail current Itail is increased and reaches a predetermined value (here, Itail = 0.21 mA) and coupling resonance occurs. I understand that The jitter of the output signal of each oscillator at the time of coupled resonance is 2.4% or less of one period, and is small enough to be used as a clock for communication or the like.

図4は、本発明の実施例1の結合共振の波形の例を示す図である。すなわち、図3に示す実測で用いた4つの発振器が結合共振したときの出力信号Clk1〜Clk4の波形を撮影したものである。横軸は時間、縦軸は任意目盛りである。結合共振すると、各出力信号の周波数及び位相がそろっていることが分かる。   FIG. 4 is a diagram illustrating an example of a waveform of coupling resonance according to the first embodiment of the present invention. That is, the waveforms of the output signals Clk1 to Clk4 when the four oscillators used in the actual measurement shown in FIG. The horizontal axis is time, and the vertical axis is an arbitrary scale. When coupled resonance occurs, it can be seen that the frequency and phase of each output signal are aligned.

図5は、本発明の実施例1のキャパシタの値を変えたときの発振の実測結果を示す図である。図3の実測で用いた各発振器のキャパシタのみを異ならせて、他の値は同じになるようにチップを製造し、結合共振の様子を実測した。テール電流Itail=0.3mAとした。キャパシタの値が変わると当然に発振周波数fLCが変わる。キャパシタの値がばらついて発振器の元々の発振周波数fLCが大きく異なると結合共振できないが、キャパシタの値のばらつきΔCが、±17.5%未満であれば結合共振することが分かる。これは、キャパシタの製造ばらつきΔCが通常の範囲(10%)以内の場合は、十分に結合共振することを示している。   FIG. 5 is a diagram showing an actual measurement result of oscillation when the value of the capacitor of Example 1 of the present invention is changed. A chip was manufactured by changing only the capacitor of each oscillator used in the actual measurement of FIG. 3 so that other values were the same, and the state of coupling resonance was actually measured. The tail current Itail = 0.3 mA. When the value of the capacitor changes, the oscillation frequency fLC naturally changes. It can be seen that if the capacitor value varies and the oscillation frequency fLC of the oscillator is greatly different, coupled resonance cannot be achieved, but if the variation ΔC in the capacitor value is less than ± 17.5%, coupled resonance occurs. This indicates that when the capacitor manufacturing variation ΔC is within the normal range (10%), the coupling resonance is sufficiently achieved.

このようにして周波数と位相の揃った発振器の出力は、各チップのシステムクロックとして用いることができる。複数のチップが積層実装されたシステムを構築し、各チップが共通のシステムクロックで同期して動作できる。   Thus, the output of the oscillator having the same frequency and phase can be used as the system clock of each chip. A system in which a plurality of chips are stacked and built is constructed, and each chip can operate in synchronization with a common system clock.

また、周波数と位相の揃った発振器の出力は、チップ間通信のクロックとして用いることができる。第1チップのクロックのタイミングで送信されたデータを第2チップのクロックから生成されたタイミング信号で受信することができる。   The output of the oscillator having the same frequency and phase can be used as a clock for inter-chip communication. Data transmitted at the timing of the clock of the first chip can be received by a timing signal generated from the clock of the second chip.

図6は、本発明の実施例2を説明するための図である。横軸の周波数に対して、負性抵抗の絶対値1/gm(3種類)及び実施例1に示す4枚の基板上のLC共振回路が結合共振したときの各共振回路のインピーダンスを示す。これは、電磁界解析と電子回路解析のシミュレーションを組み合わせて求めた結果である。上述のようにLC共振回路のインピーダンスに比べて負性抵抗の絶対値1/gmが小さいときに発振が継続する。また、テール電流Itailを増やすとトランスコンダクタンスgmが大きくなり、負性抵抗の絶対値1/gmが小さくなる。   FIG. 6 is a diagram for explaining a second embodiment of the present invention. The absolute value 1 / gm (three types) of the negative resistance and the impedance of each resonance circuit when the LC resonance circuits on the four substrates shown in Example 1 are coupled to the frequency on the horizontal axis are shown. This is a result obtained by combining electromagnetic field analysis and electronic circuit analysis simulation. As described above, oscillation continues when the absolute value 1 / gm of the negative resistance is smaller than the impedance of the LC resonance circuit. Further, when the tail current Itail is increased, the transconductance gm increases, and the absolute value 1 / gm of the negative resistance decreases.

図6において、2本の実線は、両端に配置された基板上の共振回路のインピーダンスZLC,1、ZLC,4を表し、2本の破線は、間に挟まれた基板上の共振回路のインピーダンスZLC,2、ZLC,3を示す。インピーダンスの周波数応答には、2.5GHzの他に5.2GHzあたりと6.6GHzあたりと7.5GHzあたりにピークが出現する。2.5GHzのピークにおいては、4つの発振器の位相が全て同相である。5.2GHzあたりのピークにおいては、3つの隣接した発振器の位相が同相であり、一番端に配置された発振器の位相がそれと逆相になっている。つまり例えば1番目と2番目と3番目が同相で4番目が逆相になる。6.6GHzあたりのピークにおいては、2つの隣接した発振器の位相、例えば1番目と2番目、が同相であり、他の2つの隣接した発振器、3番目と4番目の位相がそれらと逆相である。7.5GHzあたりのピークにおいては、交互に同相、逆相になっている。つまり1番目と3番目が同相で、2番目と4番目がそれらと逆相である。位相が隣同士で異なる境界の数が増えるほど、互いの磁束が打ち消されてインダクタンスが小さく見えるので、発振周波数は高くなる。
共振角周波数ω=√(1/LC) (1)
Q=ωL/R=√(L/C)/R (2)
ただし、L:共振回路のインダクタンス
C:共振回路のキャパシタンス
R:共振回路の寄生抵抗
Q:共振回路のQ値
もし、インダクタンスLが1/4に小さく見えると、発振周波数は2倍に高くなるが、寄生抵抗Rが変わらなければ、Q値は1/2に小さくなり、ピーク値も小さくなる。
In FIG. 6, the two solid lines represent the impedances ZLC, 1, ZLC, 4 of the resonance circuits on the substrate disposed at both ends, and the two broken lines represent the impedances of the resonance circuits on the substrate sandwiched between them. ZLC, 2 and ZLC, 3 are shown. In the frequency response of the impedance, peaks appear around 5.2 GHz, 6.6 GHz, and 7.5 GHz in addition to 2.5 GHz. At the 2.5 GHz peak, the four oscillators are all in phase. At the peak of 5.2 GHz, the phases of three adjacent oscillators are in phase, and the phase of the oscillator arranged at the extreme end is in reverse phase. That is, for example, the first, second and third are in phase and the fourth is out of phase. At the peak around 6.6 GHz, the phases of two adjacent oscillators, eg the first and second, are in phase, the other two adjacent oscillators, the third and fourth phases are out of phase with them. is there. At the peak around 7.5 GHz, they are alternately in-phase and anti-phase. That is, the first and third are in phase, and the second and fourth are in reverse phase. As the number of boundaries whose phases are different from each other increases, the mutual magnetic flux cancels out and the inductance appears to be small, so the oscillation frequency increases.
Resonance angular frequency ω = √ (1 / LC) (1)
Q = ωL / R = √ (L / C) / R (2)
Where L: Resonance circuit inductance
C: Resonance circuit capacitance
R: Parasitic resistance of resonant circuit
Q: If the inductance L appears to be ¼, the oscillation frequency is doubled if the inductance L appears to be ¼, but if the parasitic resistance R does not change, the Q value becomes ½ and the peak value. Becomes smaller.

以上のことから、テール電流Itailを増やして負性抵抗の絶対値1/gmが結合共振する周波数である2.5GHzにおける共振回路のインピーダンスよりも小さくなるように調整すると、2.5GHzで発振する。同時に、それ以外の周波数、とりわけ、その2倍の周波数である5GHz以上の周波数領域において負性抵抗の絶対値1/gmが共振回路のインピーダンスよりも大きければ、発振回路は2.5GHz以外の周波数で発振することはない。   From the above, if the tail current Itail is increased and the absolute value 1 / gm of the negative resistance is adjusted to be smaller than the impedance of the resonant circuit at 2.5 GHz, which is the frequency at which the coupling resonance occurs, oscillation occurs at 2.5 GHz. . At the same time, if the absolute value 1 / gm of the negative resistance is larger than the impedance of the resonance circuit in other frequencies, particularly in the frequency region of 5 GHz or more which is twice that frequency, the oscillation circuit has a frequency other than 2.5 GHz. Will not oscillate.

図7は、本発明の実施例3による電子回路の構成を示す図である。N枚のチップ1〜Nの各チップは同じ基本構成を有するが、ここではチップ1の送信器71からチップNの受信器73に信号を送る場合を説明するために動作する構成を実線で示し、ここでは動作しない構成を破線で示した。各チップ1〜Nは、負性抵抗41〜4NとLC共振回路インピーダンスZLC,1〜ZLC,Nから成りクロックを発生する発振器を有する。チップ1は、フリップフロップ(FF)74が送信データを発振器からのクロック(例えば5GHz)を分周回路75によって1/m(mは自然数であり、例えば、2)に分周した送信クロックTxc(例えば2.5GHz)によって並列直列変換して、直列信号Txdを送信器71に送る。送信器71は、チップ2の中継器72を介して、又は介さずにチップNの受信器73に直列信号Txdを送信する。チップNでは、まず、分周回路75が、結合共振発振器からのクロックを1/m×n分周する(nは自然数であり、例えば4、したがって、この場合、2×4=8分周した結果625MHzとなる。)。さらに、位相周波数検出回路77、1/n分周回路78、チャージポンプ79、及び電圧制御発振器80から成る位相同期ループ(PLL)76は、位相周波数検出回路77が電圧制御発振器80の発振信号(例えば2.5GHz)を1/n分周回路78が1/n分周した信号(例えば625MHz)及び分周回路75からのクロックの周波数及び位相を検出して、これらが同じになるようにチャージポンプ79を介して電圧制御発振器80に制御電圧VCTを供給する。さらに、位相同期ループ76は、その制御電圧VCTを電圧制御発振器81にも供給して、電圧制御発振器81を電圧制御発振器80と同一の周波数、かつ任意の位相で発振するように制御する。他方、受信器73が受信した信号の立上がり又は立下りのエッジをエッジ検出回路82が検出して、そのタイミングで電圧制御発振器81を注入同期する。FF83は、直列受信信号Rxdを並列変換して受信データを得る。その際に、電圧制御発振器81からのクロックは、FF83が十分な時間マージンでデータを取り込むことができる位相に調整されている。   FIG. 7 is a diagram showing a configuration of an electronic circuit according to the third embodiment of the present invention. Each of the N chips 1 to N has the same basic configuration, but here, a configuration that operates to explain a case where a signal is transmitted from the transmitter 71 of the chip 1 to the receiver 73 of the chip N is indicated by a solid line. A configuration that does not operate here is indicated by a broken line. Each of the chips 1 to N has an oscillator that is composed of negative resistors 41 to 4N and LC resonance circuit impedances ZLC, 1 to ZLC, N and generates a clock. In the chip 1, a transmission clock Txc (flip-flop (FF) 74) divides transmission data from a clock (for example, 5 GHz) from an oscillator into 1 / m (m is a natural number, for example, 2) by a frequency dividing circuit 75. For example, the serial signal Txd is sent to the transmitter 71. The transmitter 71 transmits the serial signal Txd to the receiver 73 of the chip N through or without the relay 72 of the chip 2. In the chip N, first, the frequency dividing circuit 75 divides the clock from the coupled resonant oscillator by 1 / m × n (n is a natural number, for example, 4; therefore, in this case, 2 × 4 = 8). The result is 625 MHz.) Further, the phase-locked loop (PLL) 76 including the phase frequency detection circuit 77, the 1 / n frequency divider 78, the charge pump 79, and the voltage control oscillator 80 is connected to the oscillation signal ( For example, the signal (for example, 625 MHz) obtained by dividing the 1 / n frequency divider 78 by 1 / n and the frequency and phase of the clock from the frequency divider 75 are detected and charged so that they are the same. A control voltage VCT is supplied to the voltage controlled oscillator 80 via the pump 79. Further, the phase-locked loop 76 supplies the control voltage VCT to the voltage controlled oscillator 81, and controls the voltage controlled oscillator 81 to oscillate at the same frequency and arbitrary phase as the voltage controlled oscillator 80. On the other hand, the edge detection circuit 82 detects the rising or falling edge of the signal received by the receiver 73, and the voltage controlled oscillator 81 is injection-locked at that timing. The FF 83 converts the serial reception signal Rxd into parallel data to obtain reception data. At that time, the clock from the voltage controlled oscillator 81 is adjusted to a phase at which the FF 83 can capture data with a sufficient time margin.

この実施例3は、結合共振によって各チップのクロックの周波数をそろえ、受信信号によってクロックの位相を調整するものである。これによって、チップ1からチップNにデータを送信する場合に、並列直列変換、送信、(中継)、受信、及び直列並列変換などで信号が遅延しても、また、製造ばらつき又は環境の時間変化によってその遅延量が変動しても、受信に適切なタイミングのクロックを作ることができる。   In the third embodiment, the clock frequency of each chip is adjusted by coupling resonance, and the clock phase is adjusted by the received signal. As a result, when data is transmitted from chip 1 to chip N, even if the signal is delayed due to parallel-serial conversion, transmission, (relay), reception, serial-parallel conversion, etc., manufacturing variations or environmental time changes Even if the delay amount fluctuates, a clock having an appropriate timing for reception can be generated.

図8は、本発明の実施例3の通信品質の実測結果を示す図である。実際にテストチップを0.18μm CMOS技術で製造して、16枚のチップを積層し結合発振させて並列な8チャネル分をシリアルデータ通信したときの、ビット誤り率を示す。データ転送速度が2.4Gb/sまでは確実に高速シリアル通信ができることを実証している。   FIG. 8 is a diagram illustrating actual measurement results of communication quality according to the third embodiment of this invention. The bit error rate when a test chip is actually manufactured by 0.18 μm CMOS technology, 16 chips are stacked and coupled and oscillated and serial data communication is performed for 8 channels in parallel is shown. It has been demonstrated that high-speed serial communication can be reliably performed up to a data transfer rate of 2.4 Gb / s.

図9は、本発明の実施例3の受信信号の波形の例を示す図である。図7に示す測定に続けてデータ転送速度が2.4Gb/sにおける受信信号の多数の波形を重ねて撮影した。これは、いわゆるアイパターンと言われるものであり、窓が大きいことから、やはり確実に高速シリアル通信ができることを実証している。
なお、本発明は上記実施例に限定されるものではない。
FIG. 9 is a diagram illustrating an example of a waveform of a reception signal according to the third embodiment of the present invention. Following the measurement shown in FIG. 7, a large number of waveforms of received signals at a data transfer rate of 2.4 Gb / s were superimposed and photographed. This is a so-called eye pattern, and since the window is large, it has been demonstrated that high-speed serial communication can be reliably performed.
In addition, this invention is not limited to the said Example.

74、83 フリップフロップ
76 位相同期ループ
77 位相周波数検出回路
78 n分周回路
79 チャージポンプ
80、81 電圧制御発振器
82 エッジ検出回路
74, 83 Flip-flop 76 Phase-locked loop 77 Phase frequency detection circuit 78 n frequency division circuit 79 Charge pump 80, 81 Voltage controlled oscillator 82 Edge detection circuit

Claims (9)

第1コイルと第1キャパシタによる第1共振回路を含む第1発振器を有する第1基板と、
第2コイルと第2キャパシタによる第2共振回路を含む第2発振器を有する第2基板と
を備え、前記第1コイルと第2コイルが誘導結合して前記第1発振器と第2発振器が結合共振することを特徴とする電子回路。
A first substrate having a first oscillator including a first resonant circuit with a first coil and a first capacitor;
A second substrate having a second oscillator including a second resonance circuit including a second coil and a second capacitor, wherein the first coil and the second coil are inductively coupled, and the first oscillator and the second oscillator are coupled and resonated. An electronic circuit characterized by:
結合共振するすべての前記コイルを貫通する磁束の変化が同相であることを特徴とする請求項1記載の電子回路。   2. The electronic circuit according to claim 1, wherein changes in magnetic flux passing through all the coils that are coupled and resonated are in phase. 前記共振回路の結合共振周波数において、すべての前記共振回路のインピーダンスよりすべての前記発振器の負性抵抗の絶対値が小さく、前記結合共振周波数以外の周波数において、前記インピーダンスより前記負性抵抗の絶対値が大きいことを特徴とする請求項1又は2記載の電子回路。   The absolute value of the negative resistance of all the oscillators is smaller than the impedance of all the resonant circuits at the coupled resonant frequency of the resonant circuit, and the absolute value of the negative resistance than the impedance at a frequency other than the coupled resonant frequency. The electronic circuit according to claim 1, wherein the electronic circuit is large. 前記第1から第n基板が順に積層され(nは、n≧4の整数。以下、各基板のコイルを「第kコイル」などと言う。)、第1コイルと第2コイルとの結合度及び第(n−1)コイルと第nコイルとの結合度が、第2コイルから第(n−1)コイルの隣接間の結合度より大きいことを特徴とする請求項1乃至3いずれかに記載の電子回路。   The first to nth substrates are sequentially stacked (n is an integer of n ≧ 4. Hereinafter, a coil of each substrate is referred to as a “kth coil” or the like), and the degree of coupling between the first coil and the second coil. The coupling degree between the (n-1) th coil and the nth coil is larger than the coupling degree between the second coil and the adjacent (n-1) th coil. The electronic circuit described. すべての前記基板が同一の構造を有する半導体チップであることを特徴とする請求項1乃至4いずれかに記載の電子回路。   5. The electronic circuit according to claim 1, wherein all the substrates are semiconductor chips having the same structure. 前記発振器によって前記基板間において周波数及び位相が等しいクロックが各前記基板に生成されることを特徴とする請求項1乃至5いずれかに記載の電子回路。   6. The electronic circuit according to claim 1, wherein clocks having the same frequency and phase are generated between the substrates by the oscillator. 前記クロックによるタイミングによって前記基板間でシリアルデータ通信を行うことを特徴とする請求項6記載の電子回路。   The electronic circuit according to claim 6, wherein serial data communication is performed between the substrates according to timing based on the clock. 前記クロックの周波数において受信信号から位相を抽出してシリアルデータ通信に必要なタイミングを生成することを特徴とする請求項7記載の電子回路。   8. The electronic circuit according to claim 7, wherein a phase necessary for serial data communication is generated by extracting a phase from a received signal at the frequency of the clock. コイルとキャパシタによる共振回路を含む発振器を有する基板を備え、前記コイルが他のコイルと誘導結合して前記発振器が結合共振し、前記発振器によって生成されるクロックによるタイミングによってシリアルデータ通信を行うことを特徴とする電子回路。
A substrate having an oscillator including a resonance circuit including a coil and a capacitor, wherein the coil is inductively coupled to another coil, the oscillator is coupled and resonated, and serial data communication is performed at a timing based on a clock generated by the oscillator. A featured electronic circuit.
JP2011030427A 2011-02-16 2011-02-16 Electronic circuit Active JP5643673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030427A JP5643673B2 (en) 2011-02-16 2011-02-16 Electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030427A JP5643673B2 (en) 2011-02-16 2011-02-16 Electronic circuit

Publications (2)

Publication Number Publication Date
JP2012169512A true JP2012169512A (en) 2012-09-06
JP5643673B2 JP5643673B2 (en) 2014-12-17

Family

ID=46973373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030427A Active JP5643673B2 (en) 2011-02-16 2011-02-16 Electronic circuit

Country Status (1)

Country Link
JP (1) JP5643673B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175329A (en) * 1997-08-29 1999-03-16 Hitachi Ltd Non-contact type ic card system
JP2005203657A (en) * 2004-01-19 2005-07-28 Atsushi Iwata Semiconductor device
JP2005327931A (en) * 2004-05-14 2005-11-24 Sony Corp Integrated inductor and receiving circuit using it
JP2010109111A (en) * 2008-10-30 2010-05-13 Hitachi Ltd Semiconductor integrated circuit
JP2010171092A (en) * 2009-01-21 2010-08-05 Hitachi Ltd Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175329A (en) * 1997-08-29 1999-03-16 Hitachi Ltd Non-contact type ic card system
JP2005203657A (en) * 2004-01-19 2005-07-28 Atsushi Iwata Semiconductor device
JP2005327931A (en) * 2004-05-14 2005-11-24 Sony Corp Integrated inductor and receiving circuit using it
JP2010109111A (en) * 2008-10-30 2010-05-13 Hitachi Ltd Semiconductor integrated circuit
JP2010171092A (en) * 2009-01-21 2010-08-05 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JP5643673B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
US11341067B2 (en) Coordinating memory operations using memory-device-generated reference signals
Poulton et al. A 0.54 pJ/b 20 Gb/s ground-referenced single-ended short-reach serial link in 28 nm CMOS for advanced packaging applications
CN102592166B (en) Signal transmission apparatus, electronic equipment and method for transmitting signals
US7511588B2 (en) Flux linked LC tank circuits forming distributed clock networks
Take et al. 3D NoC with inductive-coupling links for building-block SiPs
US9178725B2 (en) Multi-band interconnect for inter-chip and intra-chip communications
JPWO2007086285A1 (en) Signal transmission method and semiconductor integrated circuit device
US9749020B2 (en) Integrated circuit and layered circuit provided therewith
US20080204104A1 (en) Clocking architecture in stacked and bonded dice
WO2006022172A1 (en) Electronic circuit
Miura et al. A 1 TB/s 1 pJ/b 6.4${\rm mm}^{2}/{\rm TB/s} $ QDR Inductive-Coupling Interface Between 65-nm CMOS Logic and Emulated 100-nm DRAM
Take et al. A 30 Gb/s/Link 2.2 Tb/s/mm $^{2} $ Inductively-Coupled Injection-Locking CDR for High-Speed DRAM Interface
Miura et al. A 2.7 Gb/s/mm 2 0.9 pJ/b/chip 1coil/channel ThruChip interface with coupled-resonator-based CDR for NAND Flash memory stacking
CN109791928A (en) Separate type chip solution for bare die to bare die SerDes
JP5643673B2 (en) Electronic circuit
CN102577098A (en) An oscillator, a frequency synthesizer and a network node for use in a telecommunication network
Papistas et al. Contactless heterogeneous 3-D ICs for smart sensing systems
Miura et al. Inductive coupled communications
US20160105034A1 (en) Device for chip-to-chip wireless power transmission using oscillator
Gopal et al. A hybrid 3D interconnect with 2X bandwidth density employing orthogonal simultaneous bidirectional signaling for 3D NoC
JP2011066515A (en) Integrated circuit
JP5616813B2 (en) Electronic circuit
Take et al. Relay transmission thruchip interface with low-skew 3d clock distribution network
Yahalom et al. Analog-digital partitioning and coupling in 3D-IC for RF applications
Swaminathan Signal integrity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250