JP2012168347A - Liquid crystal display element and method for manufacturing liquid crystal display element - Google Patents

Liquid crystal display element and method for manufacturing liquid crystal display element Download PDF

Info

Publication number
JP2012168347A
JP2012168347A JP2011029292A JP2011029292A JP2012168347A JP 2012168347 A JP2012168347 A JP 2012168347A JP 2011029292 A JP2011029292 A JP 2011029292A JP 2011029292 A JP2011029292 A JP 2011029292A JP 2012168347 A JP2012168347 A JP 2012168347A
Authority
JP
Japan
Prior art keywords
liquid crystal
region
crystal display
display element
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011029292A
Other languages
Japanese (ja)
Inventor
Takashi Kosakai
隆 小堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2011029292A priority Critical patent/JP2012168347A/en
Publication of JP2012168347A publication Critical patent/JP2012168347A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase flexibility between substrates and to suppress degradation in image quality due to birefringence or the like, by forming a step-like part in a sealing part on a substrate where pixel electrodes are formed, the step-like part in a different level from the pixel electrode surface, so as to increase the thickness of a sealing.SOLUTION: A liquid crystal display element 20 comprises a semiconductor substrate 21 having a display area on the surface thereof, where a plurality of pixel electrodes 2 having light-reflecting property is formed in a matrix, and a transparent substrate 4 having light-transmitting property on which a transparent electrode 5 having light-transmitting property and conductivity is formed on one surface thereof. The two substrates are disposed as spaced apart from each other with the pixel electrodes 2 and the transparent electrode 5 opposing to each other, and laminated to form a gap (A) called as a cell gap by an annular sealing part 23 enclosing the display area via alignment layers 9, 10. The gap (A) is filled with a liquid crystal 8. The semiconductor substrate 21 is formed in such a manner that the thickness of an annular adhesion area where the sealing part 23 is formed is smaller by a value represented by # in the figure than the thickness of other display areas where pixel electrodes and the like are formed, and thus, a step-like part 22 is formed.

Description

本発明は液晶表示素子及び液晶表示素子の製造方法に係り、特に反射型の液晶表示素子及び液晶表示素子の製造方法に関する。   The present invention relates to a liquid crystal display element and a method for manufacturing the liquid crystal display element, and more particularly to a reflective liquid crystal display element and a method for manufacturing the liquid crystal display element.

画像を大画面で高精細に表示できるディスプレイとして、プロジェクタやプロジェクションテレビ等の投射型の液晶表示装置が普及している。この投射型の液晶表示装置に用いられる液晶表示素子は、一般的に、液晶表示素子の一方から入射した光をこの液晶表示素子を透過して他方に出射する透過型と、液晶表示素子の一方から入射した光をこの液晶表示素子で反射させて入射した側に出射する反射型とがある。
透過型液晶表示素子は反射型の液晶表示素子と比較して開口率では劣る傾向にあるものの、光の入射と出射の面が異なるため投射の際に組み合わせる光学系が簡素化できるというメリットがある。
Projection-type liquid crystal display devices such as projectors and projection televisions are widely used as displays capable of displaying images on a large screen with high definition. The liquid crystal display element used in the projection type liquid crystal display device generally includes a transmission type in which light incident from one of the liquid crystal display elements is transmitted through the liquid crystal display element and emitted to the other, and one of the liquid crystal display elements. There is a reflection type in which the light incident from is reflected by the liquid crystal display element and emitted to the incident side.
Although transmissive liquid crystal display elements tend to be inferior in aperture ratio compared to reflective liquid crystal display elements, there is a merit that the optical system combined at the time of projection can be simplified because the light incident and exit surfaces are different. .

一方、反射型の液晶表示素子は、透過型の液晶表示素子と比較して、開口率を低下させずに高い解像度を実現する上で有利である。反射型の液晶表示素子は一般的にシリコン系の半導体基板の上に各画素に対応するMOS型トランジスタを配置し、その上層に金属配線を施し、その上に反射電極画素を形成する。   On the other hand, the reflective liquid crystal display element is more advantageous than the transmissive liquid crystal display element in realizing high resolution without reducing the aperture ratio. In the reflective liquid crystal display element, a MOS transistor corresponding to each pixel is generally arranged on a silicon-based semiconductor substrate, a metal wiring is provided on the upper layer, and a reflective electrode pixel is formed thereon.

図4は、従来の反射型液晶表示素子の一例の模式的断面図を示す。図4に示すように、従来の反射型液晶表示素子1は、表面の所定範囲に光反射性を有する画素電極2がマトリクス状に複数形成された半導体基板3と、表面(図4では、透明基板4の下面に相当する)に光透過性を有する透明電極5が形成された光透過性を有する透明基板4とが、画素電極2と透明電極5とが対向するように間隙Aを有して配置され、シール部7と透明基板及び半導体基板により囲われたこの間隙Aに液晶8が充填されている。シール部7は、半導体基板3の表面の所定範囲を最終的に囲むように形成されている。   FIG. 4 is a schematic cross-sectional view of an example of a conventional reflective liquid crystal display element. As shown in FIG. 4, a conventional reflective liquid crystal display element 1 includes a semiconductor substrate 3 in which a plurality of pixel electrodes 2 having light reflectivity are formed in a predetermined range on a surface, and a surface (in FIG. A transparent substrate 4 having a light transmitting property on a transparent electrode 5 having a light transmitting property (corresponding to the lower surface of the substrate 4) has a gap A so that the pixel electrode 2 and the transparent electrode 5 face each other. A liquid crystal 8 is filled in the gap A, which is disposed between the seal portion 7, the transparent substrate, and the semiconductor substrate. The seal portion 7 is formed so as to finally surround a predetermined range of the surface of the semiconductor substrate 3.

また、半導体基板3には、その表面の少なくとも所定範囲を覆う配向膜9が形成されている。また、透明基板4には、その表面の少なくとも上記所定範囲に対応する範囲における透明電極5を覆う配向膜10が形成されている。そして、透明基板4の裏面(図4では、透明基板4の上面に相当する)には、反射防止膜11が形成されている。また、この反射型液晶表示素子1において、上記の所定範囲は、画像を表示するための表示領域となる。また間隙Aの長さをセルギャップという。   In addition, an alignment film 9 is formed on the semiconductor substrate 3 so as to cover at least a predetermined range of the surface thereof. In addition, an alignment film 10 is formed on the transparent substrate 4 to cover the transparent electrode 5 in a range corresponding to at least the predetermined range on the surface. An antireflection film 11 is formed on the back surface of the transparent substrate 4 (corresponding to the upper surface of the transparent substrate 4 in FIG. 4). In the reflective liquid crystal display element 1, the predetermined range is a display area for displaying an image. The length of the gap A is called a cell gap.

なお、この液晶表示素子1に入射する光は完全な平行光ではないため、そのままでは表示領域以外の素子部に照射されてしまう。特にシール部7に当たった光は偏光方向がランダムになるため非駆動状態でも明るく光り、画像品位を非常に悪くしてしまう。そのため、反射型液晶表示素子1は、表示領域に対応する開口部を持ち、かつ、光を反射しない黒色のプレートであるアパチャーマスク12を反射防止膜11の上方に設置し、画像品位を下げる原因となる領域に光を入射しない構造をとる。   In addition, since the light which injects into this liquid crystal display element 1 is not perfect parallel light, it will be irradiated to element parts other than a display area as it is. In particular, the light that hits the seal portion 7 has a random polarization direction, so that it shines brightly even in a non-driven state, resulting in a very poor image quality. For this reason, the reflective liquid crystal display element 1 has an aperture corresponding to the display area, and an aperture mask 12 that is a black plate that does not reflect light is placed above the antireflection film 11, thereby reducing the image quality. The structure is such that light does not enter the region.

ここで、一般的に、液晶は外部から入り込む不純物を嫌うことが多く、そのために反射型液晶表示素子1は半導体基板3と透明基板4との間をシール部7を介して接着し、半導体基板3と透明基板4との間の空間に液晶8を封入するセル構造の構造物の構成とされるため、特にシール部7には高い遮断性が求められる。通常環境で液晶セル内部に侵入する不純物として水分が考えられ、シール部7は水分の浸入を防ぐための高い耐湿性を持つ。   Here, in general, the liquid crystal often dislikes impurities entering from the outside. For this reason, the reflective liquid crystal display element 1 is bonded between the semiconductor substrate 3 and the transparent substrate 4 via the seal portion 7, and the semiconductor substrate Since the liquid crystal 8 is sealed in the space between the transparent substrate 4 and the transparent substrate 4, the sealing portion 7 is particularly required to have a high barrier property. Moisture is considered as an impurity that enters the liquid crystal cell in a normal environment, and the seal portion 7 has high moisture resistance for preventing moisture from entering.

シール部7自身の耐湿性は非常に高いものの、接着される基板との界面から侵入する水分を完全に抑えることは難しく、多少の水分が不純物として存在する。侵入する水分量とシール部7には良い相関があり、特にシール部7の材質と幅は耐湿性を決める重要な因子となっている。   Although the moisture resistance of the seal portion 7 itself is very high, it is difficult to completely suppress moisture entering from the interface with the substrate to be bonded, and some moisture exists as impurities. There is a good correlation between the amount of entering water and the seal portion 7, and in particular, the material and width of the seal portion 7 are important factors that determine moisture resistance.

シール部7の塗布領域は特許文献1に示すように画素と同じ面上にあることが望ましい。これはセルギャップによって決まる諸特性を安定して得ることと面内ギャップ厚みムラによる画面輝度の不均一さを軽減することを主な目的とする。また、半導体基板3は下地にトランジスタを形成し、その上層部にポリシリコン膜、更に酸化膜と配線、もしくは表面電極となる金属膜を多層形成した構成となる。基本的な平坦化の手法としては、画素領域と周辺回路領域の回路密度やプロセスの違いから生じる段差を配線工程中に表面研磨を行うことで均一化を行う。   As shown in Patent Document 1, it is desirable that the application region of the seal portion 7 be on the same surface as the pixel. The main purpose of this is to stably obtain various characteristics determined by the cell gap and to reduce the unevenness of the screen luminance due to the in-plane gap thickness unevenness. The semiconductor substrate 3 has a structure in which a transistor is formed as a base, and a polysilicon film and an oxide film and wiring, or a metal film serving as a surface electrode are formed in multiple layers on the upper layer. As a basic flattening method, a level difference caused by a difference in circuit density and process between the pixel region and the peripheral circuit region is made uniform by performing surface polishing during the wiring process.

特許第3513410号公報Japanese Patent No. 3513410

ところで、通常、シール部7自身に高い耐湿性を求める場合、シール部7と透明電極5及び半導体基板3との界面と密着させる必要があり、結果として接着強度を上げることになるためシール部7の硬度は高くなり易い。しかし、あまり強固に接着してしまうと接着剤自身の収縮や接着される透明電極5及び半導体基板3間の熱膨張係数の違いによるストレスから透明基板4に複屈折が発生し、結果として表示品位を下げることになってしまう。逆に、シール部7にストレスを下げるために柔軟な材料、例えばゴム系の材料等を多く含有する材質を使用すると、多くの場合は接着強度が不足し、上記の界面からの水分の浸入を容易にすることになる。   By the way, normally, when high moisture resistance is required for the seal portion 7 itself, it is necessary to closely contact the interface between the seal portion 7, the transparent electrode 5, and the semiconductor substrate 3. The hardness of is likely to be high. However, if the adhesive is bonded too firmly, birefringence occurs in the transparent substrate 4 due to shrinkage of the adhesive itself or stress due to the difference in thermal expansion coefficient between the transparent electrode 5 and the semiconductor substrate 3 to be bonded, resulting in display quality. Will be lowered. On the other hand, if a flexible material, for example, a material containing a large amount of rubber material or the like is used to reduce the stress in the seal portion 7, in many cases, the adhesive strength is insufficient, and the intrusion of moisture from the above-mentioned interface. It will be easy.

シール部7の幅も耐湿性を決める非常に大きな要因である。基本的に水分の拡散はシール部7の幅の自乗に反比例する傾向にあり、どれだけ広い幅を確保できるかは非常に大きな意味を持つ。また、シール部7が与えるストレスに関して考えた場合、シール厚みが薄く幅が広くなると強固に固定されるため、2枚の基板3、4の自由度が下がり、複屈折の発生を起こし易い。   The width of the seal portion 7 is also a very large factor that determines moisture resistance. Basically, the diffusion of moisture tends to be inversely proportional to the square of the width of the seal portion 7, and it is very significant how much width can be secured. Further, when considering the stress applied by the seal portion 7, when the seal thickness is thin and the width is widened, the two substrates 3 and 4 have a reduced degree of freedom, and birefringence is likely to occur.

近年の液晶表示素子は低コスト化の要求が激しく、画素の小型化によって画素密度を上げてウェハあたりの配置数を増やすことでチップあたりの単価を下げる必要がある。そのような観点から、シール幅を広く取ることができずシール部7の性能向上とシール部7の塗布位置管理によって期待される耐湿性、信頼性の確保に取り組んできた。しかし、現在のシール部7の性能とそれによって得られる耐湿性を考えると大きな改善が難しいところにきており、特に従来の要求性能を全て満足させた上で実現することは困難である。   In recent years, liquid crystal display elements are highly demanded for cost reduction, and it is necessary to lower the unit cost per chip by increasing the pixel density and increasing the number of arrangements per wafer by downsizing the pixels. From such a point of view, the seal width cannot be widened and efforts have been made to secure the moisture resistance and reliability expected by the performance improvement of the seal portion 7 and the application position management of the seal portion 7. However, considering the current performance of the seal portion 7 and the moisture resistance obtained thereby, it has been difficult to make significant improvements, and it is particularly difficult to achieve it while satisfying all of the conventional required performance.

また、昨今の液晶表示素子に求められる性能として高速応答性や高コントラスト、ディスクリネーション量の低減があり、これらは全て液晶表示素子の狭セルギャップ化の方向へ向かう内容である。しかし、既に述べたように高耐湿性を持つシール部7は硬度が高い傾向にあり、また狭セルギャップ化のためにシール部7の厚みを薄くすると相対的に基板3及び4間の自由度が下がり、更に複屈折による画質低下を引き起こし易く、安易にシール部7の材質による改善を行うのが難しい状況にある。   Further, the performance required for recent liquid crystal display elements includes high-speed response, high contrast, and reduction of disclination amount, all of which are directed toward narrowing the cell gap of the liquid crystal display element. However, as described above, the seal portion 7 having high moisture resistance tends to have a high hardness, and when the thickness of the seal portion 7 is reduced to narrow the cell gap, the degree of freedom between the substrates 3 and 4 is relatively increased. However, it is easy to cause deterioration in image quality due to birefringence, and it is difficult to easily improve the material of the seal portion 7.

本発明は以上の点に鑑みなされたもので、画素電極が形成された基板上のシール部に画素電極面と異なる段差を設けてシール厚みを増やすことで基板間の自由度を増し、複屈折等による画像品位の劣化を抑えることが可能な液晶表示素子及び液晶表示素子の製造方法提供することを目的とする。   The present invention has been made in view of the above points, and the degree of freedom between the substrates is increased by increasing the seal thickness by providing a step different from the pixel electrode surface in the seal portion on the substrate on which the pixel electrode is formed. An object of the present invention is to provide a liquid crystal display element and a method for manufacturing the liquid crystal display element that can suppress degradation of image quality due to the above.

上記の目的を達成するため、本発明の液晶表示素子は、複数の画素電極が形成された表示領域を表面に有し、かつ、表示領域を囲む環状の接着領域が表示領域の表面に対して所定の高さだけ低い段差に形成された半導体基板と、複数の画素電極に所定の間隙(A)を有して対向配置された光透過性及び導電性を有する透明電極が一方の表面に形成された光透過性を有する透明基板と、半導体基板の接着領域と、透明基板の接着領域に対応した領域との間を所定の間隙を有して貼り合わせるシール部と、所定の間隙に充填された液晶とを備えることを特徴とする。   In order to achieve the above object, the liquid crystal display element of the present invention has a display area on which a plurality of pixel electrodes are formed on the surface, and an annular adhesion area surrounding the display area with respect to the surface of the display area. Formed on one surface is a semiconductor substrate formed with a step that is lower by a predetermined height, and a transparent electrode with light transmission and conductivity that is placed opposite to each other with a predetermined gap (A) between a plurality of pixel electrodes A transparent substrate having a light transmitting property, a bonding area of the semiconductor substrate, a seal portion to be bonded between a region corresponding to the bonding area of the transparent substrate with a predetermined gap, and a predetermined gap filled And a liquid crystal.

また、上記の目的を達成するため、本発明の液晶表示素子は、段差の所定の高さが、液晶が封入された間隙内の液晶層の平均厚みが1.5μm以下であるとき、0.5μm以上に設定されていることを特徴とする。   In order to achieve the above object, the liquid crystal display element of the present invention has a predetermined height of the level difference of 0.5 when the average thickness of the liquid crystal layer in the gap in which the liquid crystal is sealed is 1.5 μm or less. It is characterized by being set to 5 μm or more.

また、上記の目的を達成するため、本発明の液晶表示素子の製造方法は、半導体基板の表面に複数の画素電極が配置された表示領域と、表示領域を囲むように表示領域の表面に対して所定の高さだけ低い段差のある環状の接着領域とを形成する領域形成工程と、光透過性を有する透明基板の一方の表面に透明電極を形成する透明電極形成工程と、半導体基板の接着領域と、透明基板の接着領域に対応した領域との間を、シール材により半導体基板の表示領域と透明基板の透明電極とが所定の間隙を有して離間対向した状態で貼り合わせるシール部形成工程と、所定の間隙に液晶を充填する液晶充填工程とを含むことを特徴とする。   In order to achieve the above object, a method of manufacturing a liquid crystal display element according to the present invention includes a display region in which a plurality of pixel electrodes are arranged on the surface of a semiconductor substrate, and a surface of the display region so as to surround the display region. Forming an annular adhesive region having a step difference by a predetermined height, forming a transparent electrode on one surface of a transparent substrate having light transmissivity, and bonding a semiconductor substrate A seal portion is formed between the region and the region corresponding to the bonding region of the transparent substrate, with the sealing material and the display region of the semiconductor substrate and the transparent electrode of the transparent substrate facing each other with a predetermined gap therebetween And a liquid crystal filling step of filling a predetermined gap with liquid crystal.

また、上記の目的を達成するため、本発明の液晶表示素子の製造方法は、領域形成工程が、段差の所定の高さを、液晶が封入された間隙内の液晶層の平均厚みが1.5μm以下であるとき、0.5μm以上に形成することを特徴とする。   In order to achieve the above object, in the method of manufacturing a liquid crystal display element of the present invention, the region forming step has a predetermined height of the step, and the average thickness of the liquid crystal layer in the gap in which the liquid crystal is sealed is 1. When it is 5 μm or less, it is characterized by being formed to be 0.5 μm or more.

本発明によれば、画素電極が形成された基板上のシール部に画素電極面と異なる段差を設けてシール厚みを増やすことで貼り合わされる2つの基板間の自由度を増し、複屈折等による画像品位の劣化を抑えることができる。   According to the present invention, the degree of freedom between the two substrates to be bonded is increased by providing a step different from the pixel electrode surface in the seal portion on the substrate on which the pixel electrode is formed and increasing the seal thickness, and due to birefringence or the like. Degradation of image quality can be suppressed.

本発明の液晶表示素子の一実施の形態の模式的断面図である。It is typical sectional drawing of one Embodiment of the liquid crystal display element of this invention. 本発明の液晶表示素子の一実施の形態の模式的平面図である。1 is a schematic plan view of an embodiment of a liquid crystal display element of the present invention. 本発明の液晶表示素子の製造方法の一実施の形態の各工程の素子断面図である。It is element sectional drawing of each process of one Embodiment of the manufacturing method of the liquid crystal display element of this invention. 従来の液晶表示素子の一例の模式的断面図である。It is typical sectional drawing of an example of the conventional liquid crystal display element.

次に、本発明の実施の形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明になる液晶表示素子の一実施の形態の模式的断面図、図2は、本発明になる液晶表示素子の一実施の形態の模式的平面図を示す。両図中、同一構成部分には同一符号を付してある。   FIG. 1 is a schematic sectional view of an embodiment of a liquid crystal display element according to the present invention, and FIG. 2 is a schematic plan view of an embodiment of a liquid crystal display element according to the present invention. In both drawings, the same components are denoted by the same reference numerals.

図1に示すように、本実施の形態の液晶表示素子20は反射型液晶表示素子で、光反射性を有する複数の画素電極2がマトリクス状に形成された表示領域を表面に有する半導体基板21と、光透過性及び導電性を有する透明電極5が一方の表面に形成され、かつ、透明の反射防止膜11が他方の表面に形成された光透過性を有する透明基板4とが、画素電極2と透明電極5とが互いに向き合うように離間対向配置されると共に、配向膜9、10を介し上記表示領域を囲む環状のシール部23によってセルギャップと称される間隙Aを有して貼り合わされ、間隙Aには液晶8が充填されてなる構造を有する。   As shown in FIG. 1, the liquid crystal display element 20 of the present embodiment is a reflective liquid crystal display element, and has a display region on the surface of which a plurality of pixel electrodes 2 having light reflectivity are formed in a matrix. And a transparent substrate 4 having a light transmission property in which a transparent electrode 5 having light transparency and conductivity is formed on one surface, and a transparent antireflection film 11 is formed on the other surface, is a pixel electrode. 2 and the transparent electrode 5 are disposed so as to be opposed to each other so as to face each other, and are bonded to each other with a gap A called a cell gap by an annular seal portion 23 surrounding the display area via the alignment films 9 and 10. The gap A has a structure in which the liquid crystal 8 is filled.

半導体基板21は、シール部23が形成される環状の接着領域の厚さがそれ以外の画素電極などが形成されている表示領域の厚さより#で示す長さだけ薄く形成されており、それにより段差22が形成されている。画素電極2及び配向膜9が形成された半導体基板21は画素電極基板を構成している。また、この半導体基板21には、図2に示すように、複数の画素電極2がマトリクス状に配置された所定範囲Dの表示領域が形成され、更にその表示領域を覆うように図1に示した配向膜9が形成されている。   The semiconductor substrate 21 is formed so that the thickness of the annular bonding region where the seal portion 23 is formed is thinner than the thickness of the display region where the other pixel electrodes are formed by the length indicated by #. A step 22 is formed. The semiconductor substrate 21 on which the pixel electrode 2 and the alignment film 9 are formed constitutes a pixel electrode substrate. Further, as shown in FIG. 2, a display area of a predetermined range D in which a plurality of pixel electrodes 2 are arranged in a matrix is formed on the semiconductor substrate 21, and further, the display area is shown in FIG. An alignment film 9 is formed.

また、所定範囲Dの表示領域の周囲に駆動回路部24が形成され、更にその駆動回路部24上を一部含み、所定範囲Dの表示領域及び配向膜9を囲むように環状のシール部23が形成されている。また、駆動回路部24に隣接して、図1では図示を省略した、液晶表示素子20と外部を電気的に接続するワイヤボンディング用のパッド配置領域25が形成されている。なお、図1に示す配向膜10は、図2に示した所定範囲Dに対応する範囲における透明電極5を覆うように形成されている。上述した透明電極5及び反射防止膜11が形成された透明基板11と、配向膜10と、画素電極基板とは公知の液晶表示素子の製造方法を用いて形成することができる。   Further, a drive circuit section 24 is formed around the display area of the predetermined range D, and further includes a part of the drive circuit section 24, and an annular seal section 23 so as to surround the display area of the predetermined range D and the alignment film 9. Is formed. Further, adjacent to the drive circuit unit 24, a pad arrangement region 25 for wire bonding that electrically connects the liquid crystal display element 20 and the outside, which is not shown in FIG. 1, is formed. The alignment film 10 shown in FIG. 1 is formed so as to cover the transparent electrode 5 in a range corresponding to the predetermined range D shown in FIG. The transparent substrate 11 on which the transparent electrode 5 and the antireflection film 11 are formed, the alignment film 10 and the pixel electrode substrate can be formed using a known method for manufacturing a liquid crystal display element.

次に、本発明の要部をなすシール部23について説明する。シール部23の高さは画素面に対し略平行であることが要求される。その理由は、先に述べた特許文献1に記載されているように、セルギャップによって決まる諸特性を安定して得ることと、面内ギャップ厚みムラによる画面輝度の不均一さを軽減することが必要とされるからである。そのため、特許文献1に記載された手法を用いてシール部23を一度平坦化し、画素表面と同じ高さに揃える必要がある。   Next, the seal part 23 which forms the main part of the present invention will be described. The height of the seal portion 23 is required to be substantially parallel to the pixel surface. The reason is that, as described in Patent Document 1 described above, various characteristics determined by the cell gap can be stably obtained, and unevenness of screen luminance due to in-plane gap thickness unevenness can be reduced. It is necessary. Therefore, it is necessary to flatten the seal portion 23 once using the technique described in Patent Document 1 and to align it with the same height as the pixel surface.

高さを画素面と同じに揃えられたシール部23に対し、半導体製造プロセスで一般的に用いられるホトリソグラフィ、エッチング、レジスト除去の各工程を経て段差22を作成する。こうして作成した画素電極基板を用いて素子化を行う。本実施の形態では液晶8が封入された間隙A内の液晶層の平均厚みが1.5μm以下であるとき、半導体基板21上のシール部23の接着領域に形成された段差22の、図1に#で示す画素電極5の形成された領域の平面との差(高さ)は、0.5μm以上に設定される。これは、一般的な液晶8の屈折率と光学系の入射−出射角度を考慮した場合に、必要な寸法を概算で算出した結果に基づく。   A step 22 is created through the steps of photolithography, etching, and resist removal, which are generally used in the semiconductor manufacturing process, for the seal portion 23 having the same height as the pixel surface. An element is formed using the pixel electrode substrate thus prepared. In the present embodiment, when the average thickness of the liquid crystal layer in the gap A in which the liquid crystal 8 is sealed is 1.5 μm or less, the step 22 formed in the adhesion region of the seal portion 23 on the semiconductor substrate 21 is shown in FIG. The difference (height) from the plane of the region where the pixel electrode 5 is indicated by # is set to 0.5 μm or more. This is based on the result of calculating the required dimensions roughly in consideration of the refractive index of the general liquid crystal 8 and the incident / exit angle of the optical system.

このように、本実施の形態の液晶表示素子20によれば、半導体基板21上のシール部23の接着領域を段差22を設けた構造とすることで、シール部23の厚みを従来よりも増加させたため、半導体基板21を含む画素電極基板と、透明基板4を含む透明電極基板とをシール部23により貼り合わせる場合に、基板間の自由度が増し、複屈折等による画像品位の劣化を抑えることができ。これにより、本実施の形態の液晶表示素子20によれば、従来の素子構造を大きく変化させることなく、生産性の悪化や画素電極基板の取れ数減少によるコストの増大をさせることなく画像品位の悪化を抑制することができる。   As described above, according to the liquid crystal display element 20 of the present embodiment, the thickness of the seal portion 23 is increased as compared with the conventional structure by providing the step 22 with the bonding region of the seal portion 23 on the semiconductor substrate 21. Therefore, when the pixel electrode substrate including the semiconductor substrate 21 and the transparent electrode substrate including the transparent substrate 4 are bonded together by the seal portion 23, the degree of freedom between the substrates is increased, and deterioration in image quality due to birefringence or the like is suppressed. It is possible. As a result, according to the liquid crystal display element 20 of the present embodiment, the image quality can be improved without greatly changing the conventional element structure and without increasing the cost due to the deterioration of productivity and the reduction in the number of pixel electrode substrates. Deterioration can be suppressed.

なお、従来の液晶表示素子1と同様に、本実施の形態の液晶表示素子40もアパチャーマスク12を反射防止膜11の上方に設置し、画像品位を下げる原因となる領域に光を入射しない構造をとることも可能である。   As with the conventional liquid crystal display element 1, the liquid crystal display element 40 of the present embodiment also has a structure in which the aperture mask 12 is placed above the antireflection film 11 so that light does not enter a region that causes a reduction in image quality. It is also possible to take

次に、本実施の形態の液晶表示素子20の製造方法について図3の各工程の素子断面図と共に説明する。   Next, the manufacturing method of the liquid crystal display element 20 of this Embodiment is demonstrated with the element sectional drawing of each process of FIG.

まず、図3(a)に示すように、公知の方法で半導体基板21上の所定範囲Dにマトリクス状に複数の画素電極2を形成する。続いて、図3(b)に示すように、画素電極2が形成された半導体基板21の表面全体をレジスト膜31で被覆した後、図3(c)に示すように通常のフォト・リソグラフィ技術を適用して、露光用マスク32によりレジスト膜31の表示領域に対応した領域をマスクし、レジスト膜31の露光用マスク32によりマスクされていない部分に対して露光光を照射する。続いて、図3(d)に示すように、露光用マスク32を除去した後現像して露光光が照射されていない部分のレジスト膜31を残す。   First, as shown in FIG. 3A, a plurality of pixel electrodes 2 are formed in a matrix in a predetermined range D on the semiconductor substrate 21 by a known method. Subsequently, as shown in FIG. 3B, the entire surface of the semiconductor substrate 21 on which the pixel electrode 2 is formed is covered with a resist film 31, and then a normal photolithography technique is used as shown in FIG. , The region corresponding to the display region of the resist film 31 is masked by the exposure mask 32, and the portion of the resist film 31 that is not masked by the exposure mask 32 is irradiated with the exposure light. Subsequently, as shown in FIG. 3D, the exposure mask 32 is removed and then developed to leave a portion of the resist film 31 that is not irradiated with the exposure light.

次に、図3(e)に矢印33で示すように、レジスト膜31をマスクとして公知のエッチングを行い、レジスト膜31で覆われていない部分(すなわち、シール部23を形成する部分)を所定の深さ分除去する。続いて、図3(f)に示すように、塩素系のガスなどを用いた公知の方法によりレジスト膜31を除去することにより、レジスト膜31で覆われていない半導体基板21の接着領域の部分に段差22を形成する。この段差22の表面は、画素電極2の表面と平行になるように形成されている。また、後述する液晶8が封入された間隙A内の液晶層の平均厚みが1.5μm以下であるとき、段差22の表面は、画素電極2の平面との差が0.5μm以上になるように形成されている。   Next, as shown by an arrow 33 in FIG. 3E, known etching is performed using the resist film 31 as a mask, and a portion not covered with the resist film 31 (that is, a portion where the seal portion 23 is formed) is predetermined. Remove the depth of. Subsequently, as shown in FIG. 3 (f), the resist film 31 is removed by a known method using a chlorine-based gas or the like, so that a portion of the adhesion region of the semiconductor substrate 21 not covered with the resist film 31 is obtained. A step 22 is formed on the substrate. The surface of the step 22 is formed to be parallel to the surface of the pixel electrode 2. Further, when the average thickness of the liquid crystal layer in the gap A in which the liquid crystal 8 to be described later is enclosed is 1.5 μm or less, the difference between the surface of the step 22 and the plane of the pixel electrode 2 is 0.5 μm or more. Is formed.

次に、図3(g)に示すように、光透過性及び導電性を有する透明電極5が一方の表面に形成され、かつ、透明の反射防止膜11が他方の表面に形成された光透過性を有する透明基板4を用意する。透明電極5及び反射防止膜11は公知の液晶表示素子の製造方法を用いて透明基板の両面に容易に形成することが可能である。   Next, as shown in FIG. 3 (g), a light transmissive and electrically conductive transparent electrode 5 is formed on one surface, and a transparent antireflection film 11 is formed on the other surface. A transparent substrate 4 having properties is prepared. The transparent electrode 5 and the antireflection film 11 can be easily formed on both surfaces of the transparent substrate using a known liquid crystal display device manufacturing method.

続いて、図3(h)に示すように、透明電極5の表面の所定領域Dに配向膜10を被覆した対向電極基板と、画素電極2が形成された所定領域Dに配向膜9を被覆した画素電極基板とを、配向膜9と配向膜10とが互いに対向するように配置する。   Subsequently, as shown in FIG. 3H, the counter electrode substrate in which the predetermined region D on the surface of the transparent electrode 5 is coated with the alignment film 10 and the alignment region 9 in which the pixel electrode 2 is formed are coated with the alignment film 9. The pixel electrode substrate is arranged so that the alignment film 9 and the alignment film 10 face each other.

続いて、図3(i)に示すように、セルギャップA(図1参照)に対応する所定の直径を持つスペーサボールが紫外線硬化樹脂に混入されたシール材34を半導体基板31の段差22上に環状に塗布する。このシール材34は耐湿性を向上させやすい硬度の高い材料である。   Subsequently, as shown in FIG. 3 (i), a sealing material 34 in which a spacer ball having a predetermined diameter corresponding to the cell gap A (see FIG. 1) is mixed with the ultraviolet curable resin is disposed on the step 22 of the semiconductor substrate 31. Apply in a ring shape. The sealing material 34 is a material having high hardness that can easily improve moisture resistance.

そして、図3(j)に示すように、透明電極5、反射防止膜11及び配向膜10を含む透明基板4(対向電極基板)を、配向膜10及び配向膜9が対向した状態で、互いに接近する方向に所定の圧力を印加しつつ上記シール材34を紫外線(UV)光35の照射により硬化させることによってシール部23を形成して、半導体基板21の接着領域と対向電極基板の上記接着領域に対応する領域との間を貼り合わせる。このとき、シール部23は、セルギャップAの距離をスペーサの直径に応じて設定することができる。   Then, as shown in FIG. 3 (j), the transparent substrate 4 (counter electrode substrate) including the transparent electrode 5, the antireflection film 11 and the alignment film 10 is placed in a state where the alignment film 10 and the alignment film 9 face each other. The sealing material 34 is cured by irradiation with ultraviolet (UV) light 35 while applying a predetermined pressure in the approaching direction to form the seal portion 23, and the bonding region between the semiconductor substrate 21 and the counter electrode substrate is bonded. Paste the area corresponding to the area. At this time, the seal part 23 can set the distance of the cell gap A according to the diameter of the spacer.

この時に塗布されたシール材34の形状は、表示領域(図2の所定領域Dに相当)にある複数の画素電極2の周囲を完全に覆う場合と、後に液晶を注入する隙間を空けておく場合の2種類が考えられる。完全に覆う場合は画素電極基板と対向電極基板とを重ね合わせる前に、画素電極基板と対向電極基板との間に形成される空間の容積に対応する量の液晶をどちらかの基板の上へ事前に供給しておく必要がある。   The shape of the sealing material 34 applied at this time leaves a space for completely injecting liquid crystal later when the periphery of the plurality of pixel electrodes 2 in the display region (corresponding to the predetermined region D in FIG. 2) is completely covered. Two types of cases are conceivable. When completely covering, before superimposing the pixel electrode substrate and the counter electrode substrate, an amount of liquid crystal corresponding to the volume of the space formed between the pixel electrode substrate and the counter electrode substrate is placed on one of the substrates. It is necessary to supply in advance.

また、通常のシール材はシール材を硬化させるのに必要なエネルギーとして365nm換算で3000mJを目安とし、100mWのUV光源を用いて約30秒のUV光の照射によりシール材を硬化する。   Further, an ordinary sealing material uses 3000 mJ in terms of 365 nm as an energy necessary for curing the sealing material, and cures the sealing material by UV light irradiation for about 30 seconds using a 100 mW UV light source.

上記のようにしてUV光照射によりシール材34を硬化させてシール部23を形成した後、一般的に用いられる液晶注入装置へ導入し、真空注入の手法を用いて先の液晶を注入する隙間から液晶を配向膜9と配向膜10とシール部23とで囲まれた間隙内に注入する。液晶を注入した後、液晶を注入したシール部23の隙間に再度シール材を塗布し、硬化させて完全に封をする。その後、周囲に付着した液晶や他の有機物の異物を除去する。   After the sealing material 34 is cured by UV light irradiation as described above to form the seal portion 23, it is introduced into a generally used liquid crystal injection apparatus, and a gap for injecting the previous liquid crystal using a vacuum injection method. Then, the liquid crystal is injected into a gap surrounded by the alignment film 9, the alignment film 10, and the seal portion 23. After injecting the liquid crystal, a sealing material is again applied to the gap between the seal portions 23 into which the liquid crystal has been injected, and is cured and completely sealed. Thereafter, the liquid crystal and other foreign matters adhering to the periphery are removed.

この後に外部駆動基板との接続を行うFPC(Flexible Printed Circuit)を貼り付け、ワイヤボンディング等で液晶表示素子とFPCとの電気的な接続を行い、本実施の形態の図1及び図2に示したのと同様な液晶表示素子20が完成する。   After that, an FPC (Flexible Printed Circuit) for connecting to the external drive substrate is attached, and the liquid crystal display element and the FPC are electrically connected by wire bonding or the like, as shown in FIGS. 1 and 2 of the present embodiment. A liquid crystal display element 20 similar to the above is completed.

なお、本発明は以上の実施の形態に限定されるものではなく、例えば本発明は透過型液晶表示素子にも適用可能である。また、本発明は以上の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは言うまでもない。上記実施形態において、間隙Aの平均厚みは1.5μm以下であり、段差22の表面と画素電極2の平面との差を0.5μmとしたが、前後0.2μm程度の範囲は許容される。   Note that the present invention is not limited to the above embodiment, and for example, the present invention can be applied to a transmissive liquid crystal display element. Further, the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. In the above embodiment, the average thickness of the gap A is 1.5 μm or less, and the difference between the surface of the step 22 and the plane of the pixel electrode 2 is 0.5 μm, but a range of about 0.2 μm before and after is allowed. .

2 画素電極
4 透明基板
5 透明電極
8 液晶
9、10 配向膜
11 反射防止膜
20 液晶表示素子
21 半導体基板
22 段差
23 シール部
24 駆動回路部
A 間隙
2 pixel electrode 4 transparent substrate 5 transparent electrode 8 liquid crystal 9, 10 alignment film 11 antireflection film 20 liquid crystal display element 21 semiconductor substrate 22 step 23 seal part 24 drive circuit part A gap

Claims (4)

複数の画素電極が形成された表示領域を表面に有し、かつ、前記表示領域を囲む環状の接着領域が前記表示領域の表面に対して所定の高さだけ低い段差に形成された半導体基板と、
前記複数の画素電極に所定の間隙を有して対向配置された光透過性及び導電性を有する透明電極が一方の表面に形成された光透過性を有する透明基板と、
前記半導体基板の前記接着領域と、前記透明基板の前記接着領域に対応した領域との間を前記所定の間隙を有して貼り合わせるシール部と、
前記所定の間隙に充填された液晶と
を備えることを特徴とする液晶表示素子。
A semiconductor substrate having a display region having a plurality of pixel electrodes formed on the surface, and an annular adhesive region surrounding the display region formed at a step which is lower than the surface of the display region by a predetermined height; ,
A transparent substrate having a light transmitting property, wherein a transparent electrode having a light transmitting property and a conductive property disposed on a surface of the plurality of pixel electrodes with a predetermined gap therebetween is formed;
A seal portion for bonding between the adhesion region of the semiconductor substrate and a region corresponding to the adhesion region of the transparent substrate with the predetermined gap;
A liquid crystal display element comprising: a liquid crystal filled in the predetermined gap.
前記段差の前記所定の高さは、前記液晶が封入された前記間隙内の液晶層の平均厚みが1.5μm以下であるとき、0.5μm以上に設定されていることを特徴とする請求項1記載の液晶表示素子。   The predetermined height of the step is set to 0.5 μm or more when an average thickness of a liquid crystal layer in the gap in which the liquid crystal is sealed is 1.5 μm or less. 1. A liquid crystal display element according to 1. 半導体基板の表面に複数の画素電極が配置された表示領域と、前記表示領域を囲むように前記表示領域の表面に対して所定の高さだけ低い段差のある環状の接着領域とを形成する領域形成工程と、
光透過性を有する透明基板の一方の表面に透明電極を形成する透明電極形成工程と、
前記半導体基板の前記接着領域と、前記透明基板の前記接着領域に対応した領域との間を、シール材により前記半導体基板の前記表示領域と前記透明基板の前記透明電極とが所定の間隙を有して離間対向した状態で貼り合わせるシール部形成工程と、
前記所定の間隙に液晶を充填する液晶充填工程と
を含むことを特徴とする液晶表示素子の製造方法。
An area for forming a display area in which a plurality of pixel electrodes are arranged on the surface of a semiconductor substrate, and an annular adhesion area having a step that is lower than the surface of the display area by a predetermined height so as to surround the display area Forming process;
A transparent electrode forming step of forming a transparent electrode on one surface of a transparent substrate having light permeability;
A gap between the bonding region of the semiconductor substrate and a region corresponding to the bonding region of the transparent substrate has a predetermined gap between the display region of the semiconductor substrate and the transparent electrode of the transparent substrate. Then, a seal part forming step for bonding in a state of facing each other,
And a liquid crystal filling step of filling the predetermined gap with liquid crystal.
前記領域形成工程は、前記段差の前記所定の高さを、前記液晶が封入された前記間隙内の液晶層の平均厚みが1.5μm以下であるとき、0.5μm以上に形成することを特徴とする請求項3記載の液晶表示素子の製造方法。   In the region forming step, the predetermined height of the step is formed to be 0.5 μm or more when the average thickness of the liquid crystal layer in the gap in which the liquid crystal is sealed is 1.5 μm or less. A method for producing a liquid crystal display element according to claim 3.
JP2011029292A 2011-02-15 2011-02-15 Liquid crystal display element and method for manufacturing liquid crystal display element Withdrawn JP2012168347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029292A JP2012168347A (en) 2011-02-15 2011-02-15 Liquid crystal display element and method for manufacturing liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029292A JP2012168347A (en) 2011-02-15 2011-02-15 Liquid crystal display element and method for manufacturing liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2012168347A true JP2012168347A (en) 2012-09-06

Family

ID=46972565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029292A Withdrawn JP2012168347A (en) 2011-02-15 2011-02-15 Liquid crystal display element and method for manufacturing liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2012168347A (en)

Similar Documents

Publication Publication Date Title
TW482913B (en) Liquid crystal display and method of fabricating the same
JP4413191B2 (en) Substrate with spacer, panel, liquid crystal display panel, panel manufacturing method, and liquid crystal display panel manufacturing method
US7755717B2 (en) Polarizing element, polarizing element manufacturing method, liquid crystal device, and projection display
JP4927851B2 (en) Liquid crystal display panel with microlens array, manufacturing method thereof, and liquid crystal display device
CN105470406A (en) Organic light-emitting display device
US20110063561A1 (en) Liquid crystal display panel and manufacturing method thereof
US20100118227A1 (en) Liquid cystal display panel with microlens array and method for manufacturing the same
US10241363B2 (en) Lens array substrate, method of manufacturing lens array substrate, electro-optical device, and electronic apparatus
JP2000206894A (en) Plane display device
WO2018148991A1 (en) Liquid crystal display panel
JP6179235B2 (en) Electro-optical device and electronic apparatus
TW202008057A (en) Display panel and manufacturing method thereof
US9188805B2 (en) Liquid crystal display and production method thereof
TWI402586B (en) Liquid crystal display panel
JP2012168348A (en) Liquid crystal display element and method for manufacturing liquid crystal display element
JP2008250120A (en) Liquid crystal display element
CN110967856A (en) Display module, manufacturing method thereof and display device
JP2008216777A (en) Liquid crystal display element and manufacturing method therefor
JP2012168347A (en) Liquid crystal display element and method for manufacturing liquid crystal display element
JP2008224925A (en) Liquid crystal panel, and manufacturing method and manufacturing apparatus thereof
JP2007025066A (en) Manufacturing method for liquid crystal display panel
KR20070025430A (en) Base panel for liquid crystal dispaly panel and method of manufacturing liquid crystal dispaly panel using the same
JP2011141482A (en) Liquid crystal display element
JP2011221430A (en) Electro-optical device and electronic apparatus
TWI519875B (en) Liquid crystal display device and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513