JP2012167876A - Energy generation mechanism - Google Patents
Energy generation mechanism Download PDFInfo
- Publication number
- JP2012167876A JP2012167876A JP2011029441A JP2011029441A JP2012167876A JP 2012167876 A JP2012167876 A JP 2012167876A JP 2011029441 A JP2011029441 A JP 2011029441A JP 2011029441 A JP2011029441 A JP 2011029441A JP 2012167876 A JP2012167876 A JP 2012167876A
- Authority
- JP
- Japan
- Prior art keywords
- water
- slaked lime
- generated
- reaction
- lime
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V30/00—Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel Cell (AREA)
Abstract
Description
この発明は、新規なエネルギー発生機構に関するものである。 The present invention relates to a novel energy generation mechanism.
従来、発電機と貯湯タンクとを排熱回収ラインで接続し、発電機が発電時に発生する熱で加熱した湯を貯湯タンクに貯湯するコジェネレーションシステムに関する提案があった(特許文献1)。
すなわち、従来より、コジェネレーションシステムが家庭用や業務用向けに開発されている。当該システムは、ガスエンジンや燃料電池などの発電機を需要家に設置し、その発電機が都市ガスなどの一次エネルギーを供給されて発電する電気によって需要家の電力需要を賄うとともに、発電機が発電と同時に発生する熱を利用して貯湯タンクに湯を貯め、貯めた湯によって需要家の給湯・暖房需要を賄う。そのため、コジェネレーションシステムは、商用電力使用量や都市ガス使用量などの一次エネルギー消費量を減少させ、経済性や省エネ性の向上を図る点で優れている。近年、コジェネレーションシステムの経済性及び省エネ性をより一層向上させるため、各種提案がなされている、・・・というものである。
しかし、省エネにより寄与することが出来るエネルギー発生機構の要望があった。
That is, conventionally, cogeneration systems have been developed for home use and business use. The system installs generators such as gas engines and fuel cells in consumers, and the generators supply the primary energy, such as city gas, to cover the customers' power demand and generate electricity. Hot water is stored in hot water storage tanks using the heat generated at the same time as power generation, and the hot water stored covers the demand for hot water and heating for consumers. For this reason, the cogeneration system is superior in that it reduces primary energy consumption such as commercial power consumption and city gas usage, thereby improving economy and energy saving. In recent years, various proposals have been made to further improve the economic efficiency and energy saving of the cogeneration system.
However, there has been a demand for an energy generation mechanism that can contribute to energy saving.
そこでこの発明は、省エネに寄与することが出来るエネルギー発生機構を提供しようとするものである。 Therefore, the present invention intends to provide an energy generation mechanism that can contribute to energy saving.
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明のエネルギー発生機構は、生石灰と水とにより反応生成熱を発生させ、前記生石灰と水との反応により生成した消石灰を昇温させて生石灰と水蒸気とに分解せしめ、再生した生石灰と新たに供給した水を接触させることにより継続して反応生成熱を発生させるようにしたことを特徴とする。
このエネルギー発生機構では、生石灰と水とにより反応生成熱を発生させ、前記生石灰と水との反応により生成した消石灰を昇温させて生石灰と水蒸気とに分解せしめるようにしたので、前記反応生成熱(熱源として利用)や水蒸気(動力として利用)をエネルギーとして利用することができる。
また、再生した生石灰と新たに供給した水を接触させることにより継続して反応生成熱を発生させるようにしたので、生石灰と水とが反応して消石灰に化学変化する際の反応生成熱を消石灰の昇温・分解に利用することにより連続してエネルギーを取り出すことが出来る。
ここで、化石燃料に由来する重油やガスでは燃焼させると二酸化炭素などに変化して元の燃料は消失するが、このエネルギー発生機構では生石灰と消石灰との間で化学構造を変換させながら連続的に反応させることができる。
In order to solve the above problems, the present invention takes the following technical means.
(1) The energy generation mechanism of the present invention generates heat generated by reaction with quicklime and water, raises the temperature of the slaked lime generated by the reaction between the quicklime and water, decomposes it into quicklime and water vapor, and regenerated quicklime. And the newly supplied water is brought into contact with each other to continuously generate heat of reaction generation.
In this energy generating mechanism, reaction heat is generated by quick lime and water, and the slaked lime generated by the reaction between the quick lime and water is heated to decompose into quick lime and water vapor. (Used as a heat source) and water vapor (used as power) can be used as energy.
In addition, since the reaction product heat is generated by continuously contacting the regenerated quicklime and the newly supplied water, the reaction product heat generated when the quicklime and water react to chemically change to slaked lime is reduced to slaked lime. Energy can be taken out continuously by using it for temperature rise and decomposition.
Here, when burned with heavy oil or gas derived from fossil fuel, it changes to carbon dioxide etc., and the original fuel disappears, but this energy generation mechanism continuously converts the chemical structure between quick lime and slaked lime. Can be reacted.
(2) 前記消石灰を分解温度の580℃以上に昇温させるように熱量の不足分を外部から補給するようにしてもよい。
このように構成すると、生石灰・消石灰を貯留して水を供給し水蒸気を発生させる“反応槽”を消石灰の分解温度の580℃以上の高温に維持することにより、生石灰と消石灰とが渾然一体となった反応を継続させることができる。この反応槽は、生石灰と消石灰を攪拌するようにしてもよい。
(2) A shortage of heat may be supplied from the outside so as to raise the slaked lime to a decomposition temperature of 580 ° C. or higher.
By constructing in this way, quick lime and slaked lime are kept together by maintaining a "reaction tank" that stores quick lime and slaked lime and supplies water to generate water vapor at a high temperature of 580 ° C or higher, which is the decomposition temperature of slaked lime. The reaction can be continued. You may make it this reaction tank stir quicklime and slaked lime.
(3)前記消石灰が熱分解することにより発生した水蒸気をエネルギーとして利用するようにしてもよい。
このように構成し、高温で熱分解することにより発生した水蒸気を加圧してタービンを回転させることにより発電を行うことができる。消石灰の分解温度は580℃であるので、高温の水蒸気を得ることができる。
ここで、前記消石灰Ca(OH)2が分解することによって発生する水蒸気の他に、生石灰CaOと水H2Oとの反応生成熱による発熱により水が蒸発して発生する水蒸気を利用することができる。
(3) You may make it utilize the water vapor | steam which generate | occur | produced when the said slaked lime thermally decomposes as energy.
Power generation can be performed by pressurizing water vapor generated by thermal decomposition at a high temperature and rotating the turbine. Since the decomposition temperature of slaked lime is 580 ° C., high-temperature steam can be obtained.
Here, in addition to the water vapor generated by the decomposition of the slaked lime Ca (OH) 2, it is possible to use water vapor generated by evaporation of water due to heat generated by reaction heat of quick lime CaO and water H 2 O. it can.
(4) 前記継続して発生する反応生成熱を熱源として利用するようにしてもよい。このように構成し、この生石灰と消石灰を貯留する“反応槽”の周壁から(例えば液体等を介して)熱を取り出すようにすることが出来る。 (4) The reaction product heat generated continuously may be used as a heat source. With this configuration, heat can be extracted from the peripheral wall of the “reaction tank” that stores the quicklime and slaked lime (for example, via a liquid or the like).
(5)前記水として排水を供給するようにしてもよい。このように構成すると、エネルギーの取り出しと同時に排水の浄化処理を行うことができる。
すなわち、排水は生石灰と発熱反応することにより、一部は水蒸気となって蒸発し、一部は生石灰と結合して消石灰に化学変化する。この消石灰が高温で生石灰と分離することにより水蒸気となる。そして、排水中の汚れ成分、特に有機成分は高温に晒されることにより熱分解して浄化されることとなる。
(5) Waste water may be supplied as the water. If comprised in this way, the purification | cleaning process of waste_water | drain can be performed simultaneously with extraction of energy.
That is, the waste water undergoes an exothermic reaction with quick lime, part of which is evaporated as water vapor, and part of it is combined with quick lime and chemically changed to slaked lime. When this slaked lime is separated from quick lime at a high temperature, it becomes water vapor. And the dirt component in waste_water | drain, especially an organic component will be thermally decomposed and purified by being exposed to high temperature.
この発明は上述のような構成であり、次の効果を有する。
化石燃料に由来する重油やガスでは燃焼させると二酸化炭素などに変化して元の燃料は消失するが、このエネルギー発生機構では生石灰と消石灰との間で化学構造を変換させながら連続的に反応させることができるので、省エネに寄与することが出来るエネルギー発生機構を提供することができる。
The present invention is configured as described above and has the following effects.
When burned with heavy oil or gas derived from fossil fuel, it changes to carbon dioxide etc. when burned, but this energy generation mechanism makes it react continuously while converting the chemical structure between quick lime and slaked lime Therefore, an energy generation mechanism that can contribute to energy saving can be provided.
以下、この発明の実施の形態を説明する。
(実施形態1)
この実施形態のエネルギー発生機構は、生石灰1と水2とにより反応生成熱を発生させ、前記生石灰1と水2との反応により生成した消石灰3を昇温させて生石灰1と水蒸気4とに分解せしめ、再生した生石灰1と新たに供給した水2を接触させることにより継続して反応生成熱を発生させるようにしている。
Embodiments of the present invention will be described below.
(Embodiment 1)
The energy generation mechanism of this embodiment generates heat of reaction generation by quick lime 1 and water 2, raises the temperature of slaked lime 3 generated by the reaction of quick lime 1 and water 2, and decomposes into quick lime 1 and water vapor 4. The regenerated quicklime 1 and the newly supplied water 2 are brought into contact with each other to continuously generate heat generated by the reaction.
そして、前記消石灰3を分解温度の580℃以上に昇温させるように熱量の不足分を外部から補給するようにしている(図示せず)。したがって、生石灰1・消石灰3を貯留して水2を供給し水蒸気4を発生させる“反応槽5”を消石灰3の分解温度の580℃以上の高温に維持することにより、生石灰1と消石灰3とが渾然一体となった反応を継続させることができる。この反応槽5は、生石灰1と消石灰3を回転羽根6により攪拌するようにしいる。 Then, a shortage of heat is supplied from the outside so as to raise the slaked lime 3 to a decomposition temperature of 580 ° C. or higher (not shown). Therefore, by maintaining the “reaction tank 5” that stores quick lime 1 and slaked lime 3, supplies water 2 and generates water vapor 4 at a high temperature of 580 ° C. or higher, the decomposition temperature of slaked lime 3, However, it is possible to continue the reaction that is suddenly united. In the reaction tank 5, the quick lime 1 and the slaked lime 3 are stirred by the rotary blade 6.
また、前記消石灰3が熱分解することにより発生した水蒸気4をエネルギーとして利用するようにしている。すなわち、高温で熱分解することにより発生した水蒸気4を加圧してタービンを回転させることにより発電を行うことができる(図示せず)。消石灰3の分解温度は580℃であるので、高温の水蒸気4を得ることができる。
ここで、前記消石灰Ca(OH)2が分解することによって発生する水蒸気4の他に、生石灰CaOと水H2Oとの反応生成熱による発熱により水2が蒸発して発生する水蒸気4を利用することができる。
Further, the steam 4 generated by the thermal decomposition of the slaked lime 3 is used as energy. That is, power generation can be performed by pressurizing the steam 4 generated by thermal decomposition at a high temperature and rotating the turbine (not shown). Since the decomposition temperature of slaked lime 3 is 580 ° C., high-temperature water vapor 4 can be obtained.
Here, in addition to the water vapor 4 generated by the decomposition of the slaked lime Ca (OH) 2, the water vapor 4 generated by evaporation of the water 2 due to heat generated by the reaction product heat of quick lime CaO and water H 2 O is used. can do.
その上、前記継続して発生する反応生成熱を熱源として利用するようにしている。すなわち、この生石灰1と消石灰3を貯留する“反応槽5”の周壁から(例えば液体等を介して)熱を取り出すようにすることが出来る(図示せず)。 In addition, the continuously generated heat of reaction generation is used as a heat source. That is, heat can be extracted from the peripheral wall of the “reaction tank 5” that stores the quicklime 1 and the slaked lime 3 (not shown).
次に、この実施形態のエネルギー発生機構の使用状態を説明する。
このエネルギー発生機構では、生石灰1と水2とにより反応生成熱を発生させ、前記生石灰1と水2との反応により生成した消石灰3を昇温させて生石灰1と水蒸気4とに分解せしめるようにしたので、前記反応生成熱(熱源として利用)や水蒸気4(動力として利用)をエネルギーとして利用することができる。
また、再生した生石灰1と新たに供給した水2を接触させることにより継続して反応生成熱を発生させるようにしたので、生石灰1と水2とが反応して消石灰3に化学変化する際の反応生成熱を消石灰3の昇温・分解に利用することにより連続してエネルギーを取り出すことが出来る。
Next, the usage state of the energy generation mechanism of this embodiment will be described.
In this energy generating mechanism, reaction heat is generated by the quicklime 1 and water 2, and the slaked lime 3 generated by the reaction of the quicklime 1 and water 2 is heated to be decomposed into quicklime 1 and water vapor 4. Therefore, the reaction product heat (used as a heat source) and water vapor 4 (used as power) can be used as energy.
Moreover, since it was made to generate | occur | produce reaction production | generation heat | fever by making the regenerated quicklime 1 and the newly supplied water 2 contact, when quicklime 1 and the water 2 react and it chemically changes to the slaked lime 3. Energy can be continuously taken out by utilizing the heat generated in the reaction for heating and decomposition of the slaked lime 3.
ここで、化石燃料に由来する重油やガスでは燃焼させると二酸化炭素などに変化して元の燃料は消失するが、このエネルギー発生機構では生石灰1と消石灰3との間で化学構造を変換させながら連続的に反応させることができ、省エネに寄与することが出来るという利点を有する。 Here, when burned with heavy oil or gas derived from fossil fuel, it changes to carbon dioxide etc. and the original fuel disappears, but this energy generation mechanism converts the chemical structure between quick lime 1 and slaked lime 3 It has the advantage of being able to react continuously and contributing to energy saving.
(実施形態2)
前記水2として排水(図示せず)を供給するようにしており、エネルギーの取り出しと同時に排水の浄化処理を行うことができる。
すなわち、排水は生石灰1と発熱反応することにより、一部は水蒸気4となって蒸発し、一部は生石灰1と結合して消石灰3に化学変化する。この消石灰3が高温で生石灰1と分離することにより水蒸気4となる。そして、排水中の汚れ成分、特に有機成分は高温に晒されることにより熱分解して浄化されることとなる。
(Embodiment 2)
Waste water (not shown) is supplied as the water 2, and the waste water can be purified simultaneously with the extraction of energy.
In other words, the wastewater undergoes an exothermic reaction with quick lime 1 to partially evaporate as water vapor 4, and partly combines with quick lime 1 to chemically change to slaked lime 3. When this slaked lime 3 separates from quick lime 1 at a high temperature, it becomes steam 4. And the dirt component in waste_water | drain, especially an organic component will be thermally decomposed and purified by being exposed to high temperature.
生石灰と消石灰との間で化学構造を変換させながら連続的に反応させることができ、省エネに寄与することが出来るという利点を有することによって、コジェネその他の省エネルギー関連の用途に適用することができる。 By having the advantage of being able to continuously react while converting the chemical structure between quick lime and slaked lime, and contributing to energy saving, it can be applied to cogeneration and other energy saving related applications.
1 生石灰
2 水
3 消石灰
4 水蒸気
1 Quicklime 2 Water 3 Slaked lime 4 Water vapor
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011029441A JP2012167876A (en) | 2011-02-15 | 2011-02-15 | Energy generation mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011029441A JP2012167876A (en) | 2011-02-15 | 2011-02-15 | Energy generation mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012167876A true JP2012167876A (en) | 2012-09-06 |
Family
ID=46972207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011029441A Pending JP2012167876A (en) | 2011-02-15 | 2011-02-15 | Energy generation mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012167876A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111664603A (en) * | 2020-06-12 | 2020-09-15 | 柴皓静 | Waste heat collecting and utilizing device of hydrated lime production equipment |
JP7108959B1 (en) * | 2022-01-05 | 2022-07-29 | 好三 山本 | Quicklime heater |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5285728A (en) * | 1976-01-09 | 1977-07-16 | Akinobu Ueno | Heat accumulator |
JPS5429311B2 (en) * | 1975-06-23 | 1979-09-21 | ||
JPS54142401A (en) * | 1978-04-28 | 1979-11-06 | Iwane Fujii | Heating unit conversion apparatus |
JPS5444261B2 (en) * | 1976-07-19 | 1979-12-25 | ||
JPH0925479A (en) * | 1995-07-11 | 1997-01-28 | Mitsubishi Electric Corp | Chemical heat generator and chemical heat generation |
JP2002119996A (en) * | 2000-10-12 | 2002-04-23 | Kurita Water Ind Ltd | Method and apparatus for treating excretion and/or septic tank sludge |
JP2008290041A (en) * | 2007-05-28 | 2008-12-04 | Toshiba Corp | Organic waste treatment method and apparatus |
-
2011
- 2011-02-15 JP JP2011029441A patent/JP2012167876A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5429311B2 (en) * | 1975-06-23 | 1979-09-21 | ||
JPS5285728A (en) * | 1976-01-09 | 1977-07-16 | Akinobu Ueno | Heat accumulator |
JPS5444261B2 (en) * | 1976-07-19 | 1979-12-25 | ||
JPS54142401A (en) * | 1978-04-28 | 1979-11-06 | Iwane Fujii | Heating unit conversion apparatus |
JPH0925479A (en) * | 1995-07-11 | 1997-01-28 | Mitsubishi Electric Corp | Chemical heat generator and chemical heat generation |
JP2002119996A (en) * | 2000-10-12 | 2002-04-23 | Kurita Water Ind Ltd | Method and apparatus for treating excretion and/or septic tank sludge |
JP2008290041A (en) * | 2007-05-28 | 2008-12-04 | Toshiba Corp | Organic waste treatment method and apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111664603A (en) * | 2020-06-12 | 2020-09-15 | 柴皓静 | Waste heat collecting and utilizing device of hydrated lime production equipment |
JP7108959B1 (en) * | 2022-01-05 | 2022-07-29 | 好三 山本 | Quicklime heater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Safari et al. | Development and analysis of a novel biomass-based integrated system for multigeneration with hydrogen production | |
JP5183119B2 (en) | Power generation system | |
RU2010111716A (en) | SYSTEMS AND METHODS FOR PRODUCING SYNTHETIC HYDROCARBON COMPOUNDS | |
WO2015033583A1 (en) | Manufacturing device and manufacturing method for hydrogen and synthetic natural gas | |
KR20110048747A (en) | Integrated process for water-hydrogen-electricity nuclear gas-cooled reactor | |
JP6194143B2 (en) | Hydrogen and synthetic natural gas production apparatus and production method | |
JP2017157442A (en) | By-product hydrogen utilization system | |
JPH07267601A (en) | Hydrogen generating method and device for its implementation | |
KR20150112279A (en) | Waste heat recycling system for ship mounted with generator and fuel cell | |
Su et al. | Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process | |
JP2012167876A (en) | Energy generation mechanism | |
JP2007246369A (en) | Apparatus, system and method for producing hydrogen | |
CN103912452B (en) | Electricity, heat and water co-production method and system | |
JP5660946B2 (en) | Wastewater treatment method | |
JP2016044107A (en) | Hydrogen production system, hydrogen production method and ammonia production method using the same | |
EA029923B1 (en) | Method for converting energy with fuel regeneration in a cyclic process of a heat engine | |
US11214486B2 (en) | Desalination methods and devices using geothermal energy | |
JP5879091B2 (en) | Combined thermal power generation system | |
RU2386819C2 (en) | Method of energy conversion with regeneration of energy sources in barchan cyclic process | |
JP2008002725A (en) | Hydrogen fuel combustion device and operation method | |
JP5048857B1 (en) | Hydrogen production equipment | |
RU2323351C2 (en) | Method of conversing energy emanating during exothermic process, into mechanical work | |
JP5946551B2 (en) | Method for producing electrical energy by producing metal electrodes from seawater | |
Khalid et al. | Methanol production by high‐temperature thermochemical cycle | |
JP7373054B2 (en) | manufacturing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140919 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150202 |