JP2012167664A - Operation method for supercharged internal combustion engine - Google Patents

Operation method for supercharged internal combustion engine Download PDF

Info

Publication number
JP2012167664A
JP2012167664A JP2012008724A JP2012008724A JP2012167664A JP 2012167664 A JP2012167664 A JP 2012167664A JP 2012008724 A JP2012008724 A JP 2012008724A JP 2012008724 A JP2012008724 A JP 2012008724A JP 2012167664 A JP2012167664 A JP 2012167664A
Authority
JP
Japan
Prior art keywords
water
exhaust gas
internal combustion
combustion engine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012008724A
Other languages
Japanese (ja)
Other versions
JP5562987B2 (en
Inventor
Fridrich Wirz
フリードリッヒ・ヴィルツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of JP2012167664A publication Critical patent/JP2012167664A/en
Application granted granted Critical
Publication of JP5562987B2 publication Critical patent/JP5562987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F15/00Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like
    • G09F15/0006Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like planar structures comprising one or more panels
    • G09F15/0012Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like planar structures comprising one or more panels frames therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F15/00Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like
    • G09F15/0006Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like planar structures comprising one or more panels
    • G09F15/0018Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like planar structures comprising one or more panels panel clamping or fastening means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F15/00Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like
    • G09F15/0006Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like planar structures comprising one or more panels
    • G09F15/0025Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like planar structures comprising one or more panels display surface tensioning means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F15/00Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like
    • G09F15/0068Modular articulated structures, e.g. stands, and articulation means therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F15/00Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like
    • G09F15/0087Boards, hoardings, pillars, or like structures for notices, placards, posters, or the like including movable parts, e.g. movable by the wind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To create a novel method for operating a supercharged internal combustion engine.SOLUTION: In the method for operating the supercharged internal combustion engine, particularly, a marine diesel engine to be operated with heavy oil, exhaust gas from the internal combustion engine (10) is supplied to a turbine (15) of a turbocharger for expanding the exhaust gas, and energy obtained at this time is used in a compressor (12) of the turbocharger for compressing supercharged air to be supplied to the internal combustion engine (10). To limit supercharging pressure on the supercharged air, water is introduced into the exhaust gas downstream of the internal combustion engine (10) and upstream of the turbine (15). The water is introduced while it is evaporated at least partially.

Description

本発明は請求項1のおいて書き部に記載の、過給式内燃機関を作動させるための方法に関する。   The invention relates to a method for operating a supercharged internal combustion engine according to claim 1.

過給式内燃機関、例えば過給式船舶用ディーゼルエンジンは、実用化されたものが十分に知られている。すなわち過給式内燃機関において、内燃機関の排ガスは、ターボチャージャのタービンに供給されるとともに、タービンにおいて膨張させられる。このようにタービンにおいて排ガスが膨張する際に得られるエネルギーは、ターボチャージャの圧縮機を駆動するために用いられ、それによって、圧縮機を介して内燃機関に供給すべき過給空気を圧縮する。   A supercharged internal combustion engine, for example, a supercharged marine diesel engine, is well known in practice. That is, in the supercharged internal combustion engine, the exhaust gas of the internal combustion engine is supplied to the turbine of the turbocharger and is expanded in the turbine. The energy obtained when the exhaust gas expands in the turbine is used to drive the turbocharger compressor, thereby compressing the supercharged air to be supplied to the internal combustion engine via the compressor.

従来技術からさらに、内燃機関の出力を高めるために圧縮された過給空気を、圧縮後に給気冷却器を介して導き、それによって内燃機関に、圧縮かつ冷却された空気を供給することが知られている。   It is further known from the prior art that supercharged air that has been compressed in order to increase the output of the internal combustion engine is guided via a charge air cooler after compression, thereby supplying the internal combustion engine with compressed and cooled air. It has been.

内燃機関に供給すべき過給空気の過給圧を制限するために、内燃機関から出た排ガスの一部を、いわゆるウェイストゲートを介してタービンの傍らを通過するように導き、それによってタービン内で生成可能なエネルギーを減少させることが、実際の業務からすでに知られている。このように過給圧を制限するために排ガス側で行われる介入に加えて、過給圧を制限するために過給空気側で行われる介入も、実際の業務から知られており、例えば内燃機関の上流において、圧縮された過給空気の一部に対して、いわゆる過給空気排出が行われる。   In order to limit the supercharging pressure of the supercharged air to be supplied to the internal combustion engine, a part of the exhaust gas emitted from the internal combustion engine is led through a so-called wastegate to pass by the turbine, thereby It is already known from actual work to reduce the energy that can be produced in In addition to the intervention performed on the exhaust gas side to limit the supercharging pressure in this way, the intervention performed on the supercharged air side to limit the supercharging pressure is also known from actual work, for example, internal combustion In the upstream of the engine, so-called supercharged air discharge is performed on a part of the compressed supercharged air.

実際の業務から、過給圧を制限するための様々な可能性がすでに知られてはいるが、過給式内燃機関に供給すべき過給空気の過給圧を制限するための新規な方法が求められている。   Although various possibilities for limiting the supercharging pressure are already known from actual work, a new method for limiting the supercharging pressure of supercharged air to be supplied to a supercharged internal combustion engine Is required.

上記の点に鑑み、本発明は、過給式内燃機関を作動させるための新規な方法を創出することを課題とする。   In view of the above points, an object of the present invention is to create a new method for operating a supercharged internal combustion engine.

上記の課題は、請求項1に記載の過給式内燃機関を作動させるための方法によって解決される。本発明によれば、過給空気の過給圧を制限するために、内燃機関の下流で、かつ、タービンの上流において、排ガスに対して水が導入され、当該水は少なくとも部分的に蒸発する状態で導入される。本願発明によって、内燃機関の下流で、かつ、タービンの上流において、排ガスに対して水を、当該水を少なくとも部分的に蒸発させながら導入することが初めて提案される。これによって排ガスの温度を低下させることができ、それによって最終的に、タービン内で生成可能なエネルギーを低減させることができる。当該方法によって実現可能な過給圧の制限は、特に容易に、内燃機関、例えば重油で作動される船舶用ディーゼルエンジンにおいて実用化され得る。   The above problem is solved by a method for operating a supercharged internal combustion engine according to claim 1. According to the invention, water is introduced into the exhaust gas downstream of the internal combustion engine and upstream of the turbine in order to limit the supercharging pressure of the supercharged air, and the water evaporates at least partially. Introduced in the state. The present invention proposes for the first time that water is introduced into the exhaust gas downstream of the internal combustion engine and upstream of the turbine, while at least partially evaporating the water. This can reduce the temperature of the exhaust gas, which ultimately can reduce the energy that can be generated in the turbine. The supercharging pressure limitation achievable by the method can be put into practical use particularly easily in internal combustion engines, for example marine diesel engines operated with heavy oil.

好適に水は、所定の圧力および所定の温度で排ガスに導入される。このとき当該水の所定の温度は、周囲圧力または内燃機関の下流の排気圧力において、当該水の沸騰温度を20K乃至5Kの範囲で下回る温度であり、当該水の所定の圧力は、内燃機関の下流の排気圧力の2倍乃至5倍の範囲の大きさである。水が、所定の圧力および所定の温度で排ガスに導入されると、特に有効な過給圧の制限を行うことができる。すなわち、所定の温度を介して水は、出来る限り沸点に接近させられ、それによって排ガスにおいて水を完全かつ迅速に蒸発させることができる。当該圧力を介して水を排ガスに導入する際、当該水を細かい霧状にすることができる。   Preferably, the water is introduced into the exhaust gas at a predetermined pressure and a predetermined temperature. At this time, the predetermined temperature of the water is a temperature lower than the boiling temperature of the water in the range of 20K to 5K at ambient pressure or exhaust pressure downstream of the internal combustion engine. The size is in the range of 2 to 5 times the downstream exhaust pressure. When water is introduced into the exhaust gas at a predetermined pressure and a predetermined temperature, a particularly effective supercharging pressure restriction can be performed. That is, the water is brought as close to the boiling point as possible through the predetermined temperature, so that the water can be completely and quickly evaporated in the exhaust gas. When introducing water into the exhaust gas via the pressure, the water can be made into a fine mist.

本発明の好適なさらなる構成によれば、過給空気の実際の過給圧が閾値よりも小さいとき、排ガスに水は導入されず、それに対して過給空気の実際の過給圧が閾値よりも大きいとき、排ガスへの水の導入は、当該導入される水の量または質量流量が、実際の過給圧と閾値との偏差に依存するように行われる。排ガスに導入される水の量もしくは質量流量を上記のように調整もしくは制御することは、特に容易かつ効率的である。   According to a further preferred configuration of the invention, when the actual supercharging pressure of the supercharged air is smaller than the threshold value, no water is introduced into the exhaust gas, whereas the actual supercharging pressure of the supercharged air is below the threshold value. Is larger, the introduction of water into the exhaust gas is performed such that the amount of water introduced or the mass flow rate depends on the deviation between the actual supercharging pressure and the threshold value. It is particularly easy and efficient to adjust or control the amount or mass flow rate of water introduced into the exhaust gas as described above.

本発明の好適なさらなる構成は従属請求項および以下の詳細な説明に記載されている。本発明の実施の形態を図面に基づいてより詳しく説明するが、本発明は当該実施の形態に制限されるものではない。図面に示すのは以下の通りである。   Preferred further configurations of the invention are described in the dependent claims and in the following detailed description. Embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the embodiments. The drawings show the following.

本発明に係る過給式内燃機関を作動させるための方法を明瞭化するために、過給式内燃機関を概略的に示す図である。In order to clarify the method for operating a supercharged internal combustion engine according to the present invention, FIG. 本発明に係る方法をさらに明瞭化するためのグラフである。It is a graph for further clarifying the method according to the present invention.

図1は過給式内燃機関を極めて概略的に示している。当該内燃機関は好適に、重油で作動される船舶用ディーゼルエンジンである。   FIG. 1 very schematically shows a supercharged internal combustion engine. The internal combustion engine is preferably a marine diesel engine operated with heavy oil.

図1によれば本来の内燃機関10に過給空気11が供給される。当該過給空気は内燃機関への供給に先立って、ターボチャージャの圧縮機12において圧縮され、当該圧縮機12における圧縮の後に、給気冷却器13において所定の温度に冷却されている。内燃機関10を出た排ガス14は、ターボチャージャのタービン15において膨張させられ、このとき得られるエネルギーは、ターボチャージャの圧縮機12を駆動するために用いられる。   According to FIG. 1, the supercharged air 11 is supplied to the original internal combustion engine 10. Prior to the supply to the internal combustion engine, the supercharged air is compressed by the compressor 12 of the turbocharger, and after being compressed by the compressor 12, it is cooled to a predetermined temperature by the supply air cooler 13. The exhaust gas 14 leaving the internal combustion engine 10 is expanded in a turbine 15 of the turbocharger, and the energy obtained at this time is used to drive the compressor 12 of the turbocharger.

内燃機関10に供給される過給空気11の過給圧を制限するために、本願発明では、排ガス14に対して、内燃機関10の下流で、かつ、タービン15の上流において水が導入され、当該水は少なくとも部分的に蒸発する状態で導入される。このとき排ガス14に導入される水は、当該排ガス14への当該水の導入の際に、好ましくは完全に蒸発させられる。   In order to limit the supercharging pressure of the supercharged air 11 supplied to the internal combustion engine 10, in the present invention, water is introduced into the exhaust gas 14 downstream of the internal combustion engine 10 and upstream of the turbine 15, The water is introduced in an at least partially evaporated state. At this time, the water introduced into the exhaust gas 14 is preferably completely evaporated when the water is introduced into the exhaust gas 14.

図1は装置16を示しており、当該装置を用いて、排ガス14に対して、内燃機関10の下流で、かつ、タービン15の上流において、水が導入され得る。このような水導入装置16は、別個の噴射装置あるいは、場合によっていずれにしても設けられるターボチャージャの洗浄装置であってもよい。   FIG. 1 shows a device 16 with which water can be introduced into the exhaust gas 14 downstream of the internal combustion engine 10 and upstream of the turbine 15. Such a water introduction device 16 may be a separate injection device or a turbocharger cleaning device provided in any case.

本発明に係る方法の作用を以下に図2を参照しながら説明する。図2では、タービン15内で膨張させられる排ガス14のエントロピーsに対して、排ガス14のエンタルピーhと温度Tとが図示されている。図2にはさらに、等圧線、すなわち一定の圧力pの曲線が示されている。   The operation of the method according to the present invention will be described below with reference to FIG. In FIG. 2, the enthalpy h and the temperature T of the exhaust gas 14 are illustrated with respect to the entropy s of the exhaust gas 14 that is expanded in the turbine 15. FIG. 2 further shows an isobar, ie a curve with a constant pressure p.

点17,18および19によって、タービン15における排ガス14の膨張が示されており、当該膨張は、従来技術に従って排ガス14に水を導入しない場合に想定されるように形成されている。すなわち点17は、圧力pと、温度Tもしくはエンタルピーhとを有する、膨張させるべき排ガス14、すなわち内燃機関10のすぐ下流における排ガス14の排気状態を視覚化している。 The points 17, 18 and 19 indicate the expansion of the exhaust gas 14 in the turbine 15, which is formed as expected when no water is introduced into the exhaust gas 14 according to the prior art. That is, the point 17 visualizes the exhaust state of the exhaust gas 14 to be expanded, that is, the exhaust gas 14 immediately downstream of the internal combustion engine 10, having a pressure p z and a temperature T z or enthalpy h z .

等エントロピー効率が100%である理想的なタービン15において、点17によって表される排ガス(圧力p、温度T、エンタルピーh)は、点18に膨張させられ、等エントロピー効率が100%よりも小さい現実のタービンにおいては、点19(圧力p、温度T、エンタルピーh)に膨張させられる。タービン15におけるこのような膨張の際に、出力もしくはエネルギーが獲得され得、当該出力もしくはエネルギーはエンタルピー差Δh=h−hzに依存している。 In an ideal turbine 15 with an isentropic efficiency of 100%, the exhaust gas (pressure p z , temperature T z , enthalpy h z ) represented by point 17 is expanded to point 18 and the isentropic efficiency is 100%. In smaller real turbines, it is expanded to point 19 (pressure py , temperature Ty , enthalpy hy ). During such expansion in the turbine 15, output or energy can be obtained, which depends on the enthalpy difference Δh = h y −hz.

本発明によれば、排ガス14に対して、内燃機関10の下流で、かつ、タービン15の上流において水が導入され、当該水は蒸発する状態で導入される。すなわち、水の導入および蒸発によって、排ガスは点17(圧力p、温度T、エンタルピーh)から、例えば点17’(圧力p、温度T、エンタルピーh)に、図2に表された等圧線(p=p)に沿って移動され得る。こうして、水の導入および蒸発によって、排ガス14の温度(T>T)のみならず、エンタルピー(h>h)も低減される According to the present invention, water is introduced into the exhaust gas 14 downstream of the internal combustion engine 10 and upstream of the turbine 15, and the water is introduced in an evaporated state. That is, due to the introduction and evaporation of water, the exhaust gas is changed from point 17 (pressure p z , temperature T z , enthalpy h z ) to point 17 ′ (pressure p x , temperature T x , enthalpy h x ), for example, in FIG. It can be moved along the represented isobaric line (p z = p x ). Thus, by introducing and evaporating water, not only the temperature of the exhaust gas 14 (T z > T x ) but also the enthalpy (h z > h x ) is reduced.

タービン15において上記の排ガス17’(圧力p、温度T、エンタルピーh)が膨張するとき、当該排ガスは等エントロピー効率が100%である理想的なタービンにおいて、点18’に膨張させられ、等エントロピー効率が100%よりも小さい現実のタービンにおいては、点19’(圧力p、温度T、エンタルピーh)に膨張させられる。このとき形成されるエンタルピー差Δh’は、タービン15において水の導入および蒸発を行わない場合に形成されると想定されるエンタルピー差Δhよりも小さい。従って本発明により、排ガス14の膨張の際にタービン15によって生成されるエネルギーもしくは出力は低減され得る。 When the exhaust gas 17 ′ (pressure p x , temperature T x , enthalpy h x ) is expanded in the turbine 15, the exhaust gas is expanded to a point 18 ′ in an ideal turbine having an isentropic efficiency of 100%. In an actual turbine with an isentropic efficiency of less than 100%, it is expanded to point 19 ′ (pressure py , temperature Ty , enthalpy hy ). The enthalpy difference Δh ′ formed at this time is smaller than the enthalpy difference Δh assumed to be formed when water is not introduced and evaporated in the turbine 15. Thus, according to the present invention, the energy or power produced by the turbine 15 during the expansion of the exhaust gas 14 can be reduced.

さらに、本発明によって過給圧が減少されているとき、新たな平衡が調整されるまで圧力pも低下する。 Furthermore, when the supercharging pressure is reduced according to the invention, the pressure p z also decreases until a new equilibrium is adjusted.

このように本発明により、過給空気11の過給圧を制限するために、タービン15によって生成されるとともに、圧縮機12において過給空気11を圧縮するために用いられる、出力もしくはエネルギーは低減される。当該低減はすなわち、排ガス14に対してタービン15の上流で、かつ、内燃機関10の下流において水を導入および蒸発させることによって行われる。   Thus, according to the present invention, the output or energy generated by the turbine 15 and used to compress the supercharged air 11 in the compressor 12 to limit the supercharging pressure of the supercharged air 11 is reduced. Is done. That is, the reduction is performed by introducing and evaporating water with respect to the exhaust gas 14 upstream of the turbine 15 and downstream of the internal combustion engine 10.

水は、所定の圧力および所定の温度で排ガス14内に導入され、好ましくは噴射される。当該水の所定の温度は、周囲圧力における当該水の沸騰温度を20K乃至5Kの範囲で下回る温度であり、特に、周囲圧力における当該水の沸騰温度を15K乃至10Kの範囲で下回る温度である。同様に、当該水の温度は、内燃機関10の下流で、従って、タービン15の上流における排気圧力における水の沸騰温度を20K乃至5Kの範囲で下回る温度であり、特に、15K乃至10Kの範囲で下回る温度であってよい。当該水の所定の圧力であって、当該所定の圧力によって当該水が排ガス14に導入される所定の圧力は、内燃機関10の下流で、従って、タービン15の上流における排気圧力の2倍乃至5倍の範囲、好ましくは3倍乃至4倍の範囲の大きさである。   Water is introduced into the exhaust gas 14 at a predetermined pressure and a predetermined temperature and is preferably injected. The predetermined temperature of the water is a temperature below the boiling temperature of the water at ambient pressure in the range of 20K to 5K, and in particular, a temperature below the boiling temperature of the water at ambient pressure in the range of 15K to 10K. Similarly, the temperature of the water is a temperature below the boiling temperature of the water at the exhaust pressure downstream of the internal combustion engine 10 and thus upstream of the turbine 15 in the range of 20K to 5K, in particular in the range of 15K to 10K. The temperature may be lower. The predetermined pressure at which the water is introduced into the exhaust gas 14 by the predetermined pressure is 2 to 5 times the exhaust pressure downstream of the internal combustion engine 10 and thus upstream of the turbine 15. The size is in the range of double, preferably in the range of 3 to 4 times.

排ガス14に導入すべき水の量もしくは質量流量は、好適に以下のように決定される。すなわち、過給空気の実際の過給圧が閾値よりも小さいとき、排ガス14に水は導入されず、それに対して過給空気の実際の過給圧が閾値よりも大きいとき、排ガスへの水の導入は、実際の過給圧と閾値との偏差に依存するように行われる。好適に過給圧pに対して、閾値pL,MAXを上回る際に導入される水の質量流量mは、以下の式によって決定される。
=k(pL,MAX−p) ・・・数式(1)
上記の式は、閾値を上回る際に、排ガス14に導入される水の質量流量mと、実際の過給圧pと閾値もしくは最大許容過給圧pL,MAXの差、との間の直線関係を表しており、当該式においてkは一定の比例定数を表す。
The amount or mass flow rate of water to be introduced into the exhaust gas 14 is preferably determined as follows. That is, when the actual supercharging pressure of the supercharged air is smaller than the threshold value, no water is introduced into the exhaust gas 14, whereas when the actual supercharging pressure of the supercharged air is larger than the threshold value, the water to the exhaust gas Is introduced so as to depend on the deviation between the actual supercharging pressure and the threshold value. Against suitably boost pressure p L, the threshold p L, the mass flow rate m w of water introduced in excess of MAX is determined by the following equation.
m w = k * (p L, MAX −p L ) (1)
The above equation, when above a threshold, between the mass flow rate m w of water introduced into the exhaust gas 14, the actual boost pressure p L and the threshold or the maximum permissible boost pressure p L, the difference MAX, and In this formula, k represents a constant proportionality constant.

10 内燃機関
11 過給空気
12 圧縮機
13 給気冷却器
14 排ガス
15 タービン
16 水導入装置
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Supercharged air 12 Compressor 13 Supply air cooler 14 Exhaust gas 15 Turbine 16 Water introduction apparatus

Claims (9)

過給式内燃機関、特に重油で作動される船舶用ディーゼルエンジンを作動させるための方法であって、前記内燃機関(10)の排ガスは、ターボチャージャのタービン(15)に、前記排ガスを膨張させるために供給され、このとき得られるエネルギーは、前記ターボチャージャの圧縮機(12)において、前記内燃機関(10)に供給されるべき過給空気を圧縮するために用いられる方法において、
前記過給空気の過給圧を制限するために、前記排ガスに対して、前記内燃機関(10)の下流で、かつ、前記タービン(15)の上流において水が導入され、当該水は少なくとも部分的に蒸発する状態で導入されることを特徴とする方法。
A method for operating a supercharged internal combustion engine, in particular a marine diesel engine operated with heavy oil, wherein the exhaust gas of the internal combustion engine (10) expands the exhaust gas into a turbine (15) of a turbocharger. In the method used for compressing the supercharged air to be supplied to the internal combustion engine (10) in the compressor (12) of the turbocharger,
In order to limit the supercharging pressure of the supercharged air, water is introduced into the exhaust gas downstream of the internal combustion engine (10) and upstream of the turbine (15), the water being at least partly The method is characterized in that it is introduced in a vaporized state.
前記水は、前記排ガスに導入される際に、完全に蒸発させられることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the water is completely evaporated when introduced into the exhaust gas. 前記水は、所定の圧力および所定の温度で前記排ガスに導入され、特に噴射され、かつ、噴霧されることを特徴とする請求項1または2に記載の方法。   3. A method according to claim 1 or 2, characterized in that the water is introduced into the exhaust gas at a predetermined pressure and a predetermined temperature, in particular injected and sprayed. 前記水の前記所定の温度は、周囲圧力における当該水の沸騰温度を20K乃至5Kの範囲で下回る温度であることを特徴とする請求項3に記載の方法。   4. The method of claim 3, wherein the predetermined temperature of the water is a temperature below the boiling temperature of the water at ambient pressure in a range of 20K to 5K. 前記水の前記所定の温度は、前記内燃機関(10)の下流での排気圧力における当該水の沸騰温度を20K乃至5Kの範囲で下回る温度であることを特徴とする請求項3に記載の方法。   The method according to claim 3, characterized in that the predetermined temperature of the water is a temperature below the boiling temperature of the water at an exhaust pressure downstream of the internal combustion engine (10) in the range of 20K to 5K. . 前記水の前記所定の圧力は、前記内燃機関(10)の下流における排気圧力の2倍乃至5倍の範囲の大きさであることを特徴とする請求項3から5のいずれか一項に記載の方法。   The said predetermined pressure of the said water is a magnitude | size of the range of 2 to 5 times the exhaust pressure downstream of the said internal combustion engine (10), It is any one of Claim 3 to 5 characterized by the above-mentioned. the method of. 前記過給空気の実際の過給圧が閾値よりも小さいとき、排ガスに水は導入されず、前記過給空気の実際の過給圧が閾値よりも大きいとき、排ガスへの水の導入は、当該導入される水の量または質量流量が、実際の過給圧と閾値との偏差に依存するように行われることを特徴とする請求項1から6のいずれか一項に記載の方法。   When the actual supercharging pressure of the supercharged air is smaller than the threshold value, no water is introduced into the exhaust gas, and when the actual supercharging pressure of the supercharged air is larger than the threshold value, the introduction of water into the exhaust gas is The method according to any one of claims 1 to 6, characterized in that the amount of water introduced or the mass flow rate is made dependent on the deviation between the actual supercharging pressure and the threshold value. 前記水は前記ターボチャージャの洗浄装置(16)を介して、前記排ガスに導入されることを特徴とする請求項1から7のいずれか一項に記載の方法。   The method according to any one of claims 1 to 7, characterized in that the water is introduced into the exhaust gas via a cleaning device (16) of the turbocharger. 前記水は前記ターボチャージャの別個の噴射装置(16)を介して、前記排ガスに導入されることを特徴とする請求項1から7のいずれか一項に記載の方法。   The method according to any one of claims 1 to 7, characterized in that the water is introduced into the exhaust gas via a separate injection device (16) of the turbocharger.
JP2012008724A 2011-02-11 2012-01-19 Method of operating a supercharged internal combustion engine Expired - Fee Related JP5562987B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011003980.5 2011-02-11
DE102011003980A DE102011003980A1 (en) 2011-02-11 2011-02-11 Method for operating supercharged internal combustion engine, involves limiting boost pressure of charge air supplied to engine so that exhaust gas in downstream/upstream of turbine is introduced under proportionate evaporation of water

Publications (2)

Publication Number Publication Date
JP2012167664A true JP2012167664A (en) 2012-09-06
JP5562987B2 JP5562987B2 (en) 2014-07-30

Family

ID=46579475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008724A Expired - Fee Related JP5562987B2 (en) 2011-02-11 2012-01-19 Method of operating a supercharged internal combustion engine

Country Status (5)

Country Link
JP (1) JP5562987B2 (en)
KR (1) KR20120092504A (en)
CN (1) CN102635434B (en)
DE (1) DE102011003980A1 (en)
FI (1) FI126695B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636362C1 (en) * 2016-11-22 2017-11-22 Никишин ГмбХ Internal combustion engine turbosupercharge control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154883A (en) * 2005-11-30 2007-06-21 Ford Global Technologies Llc Controller for engine
JP2009508055A (en) * 2005-09-16 2009-02-26 ワルトシラ フィンランド オサケユキチュア Piston engine with turbo compressor and method related to the piston engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932563A (en) * 1995-07-21 1997-02-04 Shin Caterpillar Mitsubishi Ltd Emergency actuating device of turbocharger in engine
JP3825269B2 (en) * 2001-03-13 2006-09-27 三菱重工業株式会社 Turbo cooling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508055A (en) * 2005-09-16 2009-02-26 ワルトシラ フィンランド オサケユキチュア Piston engine with turbo compressor and method related to the piston engine
JP2007154883A (en) * 2005-11-30 2007-06-21 Ford Global Technologies Llc Controller for engine

Also Published As

Publication number Publication date
CN102635434A (en) 2012-08-15
KR20120092504A (en) 2012-08-21
DE102011003980A1 (en) 2012-08-16
FI20125136A (en) 2012-08-12
FI126695B (en) 2017-04-13
JP5562987B2 (en) 2014-07-30
CN102635434B (en) 2016-06-29

Similar Documents

Publication Publication Date Title
Zheng et al. A theoretical and experimental study on the effects of parameters of two-stage turbocharging system on performance of a heavy-duty diesel engine
MX2007003932A (en) Method and device for increasing the torque of a reciprocating piston internal combustion engine, especially a diesel engine.
US20040182330A1 (en) Method for operating an internal combustion engine
RU2016139489A (en) METHOD (OPTIONS) FOR USING CONDENSATE TO INCREASE ENGINE EFFICIENCY
JP2006517636A (en) Operation method of gas turbine group
US10851704B2 (en) Systems and methods for increasing power output in a waste heat driven air brayton cycle turbocharger system
WO2011002697A3 (en) Turbocharger system for air-throttled engines
RU2014122766A (en) METHOD FOR OPERATING AN ENGINE WITH A COOLED EXHAUST GAS RECIRCULATION SYSTEM
KR20150145198A (en) Method for increasing the power of a combined-cycle power plant, and combined-cycle power plant for conducting said method
WO2014141501A1 (en) Working gas circulation engine system
JP5943848B2 (en) Multistage supercharging system, control device therefor and control method therefor
JP5562987B2 (en) Method of operating a supercharged internal combustion engine
JP2017002867A (en) Exhaust gas recirculation device for lng engine
US10815930B2 (en) Internal combustion engine and a method for enhancing the yield of an internal combustion engine
GB2415469A (en) Turbocharger compressor cooling
JP2001503121A (en) Reciprocating engine using carbon black exhaust gas as fuel
FI129817B (en) Internal combustion engine and method for operating the same
RU2599082C1 (en) Gas turbine expander power plant of compressor station of main gas line
RU2008108083A (en) METHOD AND DEVICE FOR STARTING A GAS-TURBINE UNIT
KR20220147071A (en) Method and related apparatus for production of liquefied gas
JP2009115024A (en) Reciprocating internal combustion engine using isothermal compression cylinder
CN102720586B (en) Without shock free-piston burst emission engine
Eilts Investigation of Engine Processes with Extreme Pressures and Turbocompounding
JP2014047729A5 (en)
JP2015048758A (en) Exhaust pressure reduction mechanism of internal combustion engine and exhaust pressure reduction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees