JP2012167342A - Corrosion control method of metal - Google Patents

Corrosion control method of metal Download PDF

Info

Publication number
JP2012167342A
JP2012167342A JP2011030359A JP2011030359A JP2012167342A JP 2012167342 A JP2012167342 A JP 2012167342A JP 2011030359 A JP2011030359 A JP 2011030359A JP 2011030359 A JP2011030359 A JP 2011030359A JP 2012167342 A JP2012167342 A JP 2012167342A
Authority
JP
Japan
Prior art keywords
silane coupling
metal
metal substrate
corrosion
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011030359A
Other languages
Japanese (ja)
Other versions
JP5372983B2 (en
Inventor
Katsumi Mabuchi
勝美 馬渕
Haruo Akaboshi
晴夫 赤星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011030359A priority Critical patent/JP5372983B2/en
Priority to US13/369,323 priority patent/US20120205010A1/en
Publication of JP2012167342A publication Critical patent/JP2012167342A/en
Application granted granted Critical
Publication of JP5372983B2 publication Critical patent/JP5372983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/58Treatment of other metallic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of preventing a metal from corroding by giving a high corrosion resistance while retaining the functions of a surface of a thin film material.SOLUTION: The method include forming a silane coupling reaction layer of a very thin film having a robust bond on a metal substrate by using a silane coupling agent and an oxidizer in combination, or forming a silane coupling reaction layer of a very thin film having a robust bond on a metal substrate by bringing the metal substrate into contact with a silane coupling liquid after the metal substrate has been oxidatively treated in advance.

Description

本発明は、金属表面の腐食を防止する表面処理に関する。この方法は、1または複数の有機官能性シランと酸化剤とを併用することにより、有機コーティング層を金属表面に形成することにより耐食性を向上させるのみならず、耐熱性,耐溶剤性,摺動性,平滑性に優れた表面を提供する。本発明で対象とする金属表面は、磁気ディスク表面で代表されるように非常に平滑でかつ機能性を有する特性を示すものであり、また薄膜を対象としている。   The present invention relates to a surface treatment for preventing corrosion of a metal surface. This method not only improves the corrosion resistance by forming an organic coating layer on the metal surface by using one or more organofunctional silanes and an oxidizing agent in combination, but also heat resistance, solvent resistance, sliding Provides a surface with excellent properties and smoothness. The metal surface targeted by the present invention exhibits very smooth and functional characteristics as represented by the magnetic disk surface, and is intended for thin films.

従来から実施されている耐腐食性の表面処理としては、クロム酸や重クロム酸などの6価のクロムを使用したクロメート処理がある。しかしながら、近年の環境問題の観点から6価のクロムを含む表面処理は規制されており、ノンクロムの表面処理の開発が精力的に実施されている。このような6価のクロムを使用しない表面処理として、たとえば特許文献1には金属表面を少なくとも1つの三価クロムキレート錯体の溶液で処理する方法が知られている。クロム以外の無機成分を用いる技術としては、例えば特許文献2にバナジウム化合物と;ジルコニウム,チタニウム,モリブデン,タングステン,マンガン、およびセリウムから選ばれる少なくとも1種の金属を含む金属化合物:を含有する金属表面処理剤による処理が開示されている。シランカップリング剤を使用した防食法としては、例えば特許文献3に低濃度の有機官能シランおよび架橋剤を含有する水溶液による金属板を処理する方法が、特許文献4に2官能性ポリサルファシランを使用して金属の腐食を防止する方法、特許文献5にアミノシランおよび多シリル官能シランを含有する溶液と接触させた後に溶剤を除去することにより金属基材に長期コーティングを施し方法も開示されている。更に特許文献6には、特定の樹脂化合物(A)と、第1〜3アミノ基および第4アンモニウム塩基から選ばれる少なくとも1種のカチオン性官能基を有するカチオン性ウレタン樹脂(B)と、特定の反応性官能基を有する1種以上のシランカップリング剤(C)と、特定の酸化合物(E)とを含有し、なおかつカチオン性ウレタン樹脂(B)およびシランカップリング剤(C)の含有量が所定の範囲内である表面処理剤を用いて、耐食性に優れ、さらに耐指紋性,耐黒変性および塗装密着性に優れたノンクロム系表面処理鋼板を製造する方法が開示されている。   As a conventional corrosion-resistant surface treatment, there is a chromate treatment using hexavalent chromium such as chromic acid or dichromic acid. However, surface treatments containing hexavalent chromium have been regulated from the viewpoint of environmental problems in recent years, and the development of non-chromium surface treatments has been vigorously carried out. As such a surface treatment not using hexavalent chromium, for example, Patent Document 1 discloses a method of treating a metal surface with a solution of at least one trivalent chromium chelate complex. As a technique using an inorganic component other than chromium, for example, Patent Document 2 discloses a metal surface containing a vanadium compound and a metal compound containing at least one metal selected from zirconium, titanium, molybdenum, tungsten, manganese, and cerium. A treatment with a treating agent is disclosed. As an anticorrosion method using a silane coupling agent, for example, Patent Document 3 discloses a method of treating a metal plate with an aqueous solution containing a low concentration of an organofunctional silane and a crosslinking agent, and Patent Document 4 discloses a bifunctional polysulfursilane. A method of using and preventing metal corrosion, and a method of applying a long-term coating to a metal substrate by removing the solvent after contacting with a solution containing aminosilane and polysilyl functional silane is also disclosed in Patent Document 5. . Furthermore, Patent Document 6 discloses a specific resin compound (A), a cationic urethane resin (B) having at least one cationic functional group selected from a primary to tertiary amino group and a quaternary ammonium base, and Containing at least one silane coupling agent (C) having a reactive functional group and a specific acid compound (E), and containing a cationic urethane resin (B) and a silane coupling agent (C) There has been disclosed a method for producing a non-chromium surface-treated steel sheet that is excellent in corrosion resistance and further excellent in fingerprint resistance, blackening resistance and paint adhesion by using a surface treatment agent whose amount is within a predetermined range.

耐食性を向上させるのみならず、耐熱性,耐溶剤性,摺動性に優れた表面を提供することが求められている。しかしながら、これら従来の技術は、三価クロムキレート錯体やバナジウム化合物等を使用する方法では、自己修復性は低いもののクロメート皮膜に匹敵する程度の耐食性は得られるものの、数ミクロン程度の厚い皮膜が生成すること、処理環境が強い酸性領域であることから薄膜に適応した場合、処理工程の途中で対象とする金属が消失してしまうこと、また消失しなくとも表面に厚い生成物が堆積するために従来有する金属表面の機能が消失してしまう問題がある。また、シランカップリング剤を使用した防食法では、耐食性,耐熱性,耐溶剤性,摺動性、とりわけ耐食性に関しては満足するものが得られていない。さらに有機官能性シランが金属表面にあまり良好に結合しないために、すすぎ等により容易に除去されるという問題がある。また、シランカプリング剤を使用して防食性能を高めるためには、複数のシランカップリング剤を次いで処理することが多く、より多くの工程を経ることが多い。このためにエネルギー的に非効率であり、時間を有する。従って実用化に関しては多くの問題点を有している。このために、総合的に満足のいく表面処理剤および表面処理法が強く求められている。   There is a need to provide a surface that not only improves corrosion resistance but also has excellent heat resistance, solvent resistance, and slidability. However, although these conventional techniques use a trivalent chromium chelate complex or vanadium compound, a self-healing property is low, but a corrosion resistance comparable to a chromate film is obtained, but a thick film of several microns is formed. When the thin film is applied to the thin film because the processing environment is a strong acidic region, the target metal disappears in the middle of the processing process, and even if it does not disappear, a thick product is deposited on the surface. There is a problem that the function of the conventional metal surface is lost. Moreover, the anticorrosion method using a silane coupling agent has not been satisfactory in terms of corrosion resistance, heat resistance, solvent resistance, slidability, and particularly corrosion resistance. Furthermore, since the organofunctional silane does not bind well to the metal surface, there is a problem that it is easily removed by rinsing or the like. Moreover, in order to improve anticorrosion performance using a silane coupling agent, a plurality of silane coupling agents are often treated next, and many steps are often required. This is energetically inefficient and time consuming. Therefore, it has many problems regarding practical use. For this reason, there is a strong demand for surface treatment agents and surface treatment methods that are totally satisfactory.

特開2004−3019号公報JP 2004-3019 A 特開2002−30460号公報JP 2002-30460 A 米国特許第5292549号US Pat. No. 5,292,549 特表2002−519505号公報Special table 2002-519505 gazette 特開2007−291531号公報JP 2007-291931 A

本発明の目的は、金属表面の機能を有した状態で、高耐食性を付与した金属の腐食防止方法を提供することにある。   An object of the present invention is to provide a method for preventing corrosion of a metal imparted with high corrosion resistance in a state having a metal surface function.

本発明は、少なくとも部分的に加水分解している有機官能性シラン,酸化剤および溶剤を含有する溶液に金属基材を接触させた後、溶剤を除去することにより金属基材にシランカップリング反応層を施すことを特徴とする。   The present invention provides a silane coupling reaction to a metal substrate by contacting the metal substrate with a solution containing an organofunctional silane that is at least partially hydrolyzed, an oxidizing agent, and a solvent, and then removing the solvent. It is characterized by applying a layer.

本発明によれば、金属とくに遷移金属もしくはその金属合金に対してシランカップリング剤を酸化剤と併用することにより耐食性に優れた、しかも金属表面の機能をそのまま有する表面を与えることを実現できる。   According to the present invention, by using a silane coupling agent in combination with an oxidizing agent for a metal, particularly a transition metal or a metal alloy thereof, it is possible to provide a surface having excellent corrosion resistance and having a metal surface function as it is.

本発明で対象とする金属防食法は、耐食性を向上させるのみならず、耐熱性,耐溶剤性,摺動性に優れた表面を提供することであり、さらに磁気ディスク表面で代表されるように非常に平滑でかつ機能性を有する特性をそのまま維持する表面を与えるものである。従って、金属表面をコーティングする物質として必要な特性は
(1)対象とする金属またはそれら合金の腐食抑制作用を示すこと。
(2)欠陥ができるだけ少なく、平滑で緻密な膜が構成されること。
(3)金属表面の機能をそのまま有すること。例えば、ハードディスクを例にすれば磁気ヘッドと磁気記録媒体の磁気的距離の増加による磁気記録特性の劣化を引き起こさない構造を有すること。センサーを例にするのであれば、センシング機能をそのまま有することが挙げられる。
The metal anticorrosion method targeted by the present invention is not only to improve the corrosion resistance but also to provide a surface excellent in heat resistance, solvent resistance, and slidability, and as represented by the magnetic disk surface. It provides a surface that remains very smooth and functional. Therefore, the characteristics required as a material for coating the metal surface are (1) exhibiting the corrosion inhibiting action of the target metal or their alloys.
(2) A smooth and dense film having as few defects as possible is formed.
(3) It has the function of the metal surface as it is. For example, taking a hard disk as an example, it has a structure that does not cause deterioration of magnetic recording characteristics due to an increase in the magnetic distance between the magnetic head and the magnetic recording medium. If a sensor is taken as an example, it may be mentioned that it has a sensing function as it is.

腐食環境としては基本的には大気系または水系であるが、周辺物質や大気汚染物質等の分解・溶解による酸性化またはアルカリ化,塩化物の混入等の要素があることから、幅広いpH環境での耐食性が要求される。   The corrosive environment is basically the air system or water system, but there are factors such as acidification or alkalinization due to decomposition and dissolution of surrounding substances and air pollutants, and contamination with chlorides. Corrosion resistance is required.

(1)に関しては、種々検討した結果、耐食性をのみならず、耐熱性,耐溶剤性,摺動性,平滑性に優れた表面を付与させるためには、シランカップリング層を安定に金属表面上に保持することにより達成できることを見出した。さらにシランカップリング剤を安定に金属表面上に保持するためには金属表面に極薄い酸化物を生成させることが重要であることを見出した。金属表面に極薄い酸化物を生成させ、その上にシランカップリング層を形成させるためには以下の3つの手法がある。
[1]シランカップリング剤を含む溶液中に金属を酸化させる作用を有する酸化剤を共存させること。
[2]シランカプリング剤を含む溶液に金属を浸漬させる前に、該金属を酸化させる作用を有する溶液に浸漬させること。
[3]シランカプリング剤を含む溶液に金属を浸漬させる前に、該金属をドライ環境で酸化させること。
As for (1), as a result of various investigations, in order to give a surface excellent not only in corrosion resistance but also in heat resistance, solvent resistance, slidability and smoothness, the silane coupling layer is stably provided on the metal surface. We have found that it can be achieved by holding on. Furthermore, it has been found that it is important to form an extremely thin oxide on the metal surface in order to stably hold the silane coupling agent on the metal surface. There are the following three methods for forming a very thin oxide on the metal surface and forming a silane coupling layer thereon.
[1] An oxidant having an action of oxidizing a metal is allowed to coexist in a solution containing a silane coupling agent.
[2] Before immersing a metal in a solution containing a silane coupling agent, the metal is immersed in a solution having an action of oxidizing the metal.
[3] Before the metal is immersed in a solution containing a silane coupling agent, the metal is oxidized in a dry environment.

(2)に関しては、シランカップリング剤たとえば1,2−ビス−(トリエトキシシリル)エタン(以下BTSE)を使用し、酸化剤として過酸化水素水を使用した場合、金属の表面に極薄い酸化物が形成されBTSE分子はこの酸化物と強い配位結合を形成すると共に、熱処理を施すことによりBTSE分子同士も共有結合を形成して、金属表面に強固なBTSE分子膜を形成するために、極めて緻密な欠陥のない、しかも。密着性に優れた皮膜が形成される。   Regarding (2), when a silane coupling agent such as 1,2-bis- (triethoxysilyl) ethane (hereinafter referred to as BTSE) is used and hydrogen peroxide is used as the oxidizing agent, an extremely thin oxidation is performed on the surface of the metal. In order to form a strong coordinate bond with this oxide and form a strong BTSE molecule film on the metal surface by forming a covalent bond between the BTSE molecules by performing heat treatment. There are no extremely precise defects. A film with excellent adhesion is formed.

(3)に関しては、BTSEは分子オーダで配列することから非常に平滑でかつ機能性を有する特性をそのまま維持する表面を与える状態で、腐食を高度に抑制させることが可能となる。   Regarding (3), since BTSE is arranged in molecular order, corrosion can be suppressed to a high degree in a state that provides a surface that maintains a very smooth and functional characteristic as it is.

本発明は、シランカップリング剤と酸化剤とを併用することにより、金属表面に安定なシランカップリング層を形成させることにより耐食性に優れた、しかも金属表面の機能をそのまま有する表面を与えることを実現することに関する。本発明は、大きく分けて2つの方法に分類することができる。   By using a silane coupling agent and an oxidizing agent in combination, the present invention provides a surface having excellent corrosion resistance and having the function of the metal surface as it is by forming a stable silane coupling layer on the metal surface. It is about realizing. The present invention can be broadly classified into two methods.

一つは、シランカップリング剤と酸化剤とを共存させた溶液中に、対象とする金属を浸漬することにより金属表面にシランカップリング層を形成する方法である。もう一つは、予めドライ環境に暴露することにより対象とする金属の表面を酸化処理するか、または酸化剤を含む溶液中に対象とする金属を浸漬し表面に酸化物を形成する。ついで、シランカップリング剤を含む溶液中に、酸化処理させた金属を浸漬させることにより表面にシランカップリング層を形成する方法である。それぞれの場合に分けて以下に記述する。   One is a method of forming a silane coupling layer on a metal surface by immersing the target metal in a solution in which a silane coupling agent and an oxidizing agent coexist. In another method, the surface of the target metal is oxidized by exposing it to a dry environment in advance, or the target metal is immersed in a solution containing an oxidizing agent to form an oxide on the surface. Next, the silane coupling layer is formed on the surface by immersing the oxidized metal in a solution containing a silane coupling agent. Each case is described below.

(1)シランカップリング剤と酸化剤を共存させる方法に関して
[溶媒]:いくつかのシランカップリング剤の水への溶解性は制限されるために、基本的にはシランカップリング剤の溶解性を向上させるためには、溶媒として1ないし2つ以上のアルコール等の溶媒が使用される。アルコールはさらい処理溶液の安定性並びに金属基材の湿潤性をも向上させる。シヒランカップリング剤は、基本的には加水分解させる必要があるために水との親和性が高い溶剤が好ましい。具体的には、メタノール,エタノール,プロパノール,ブタノールおよびそれらの異性体,アセトン,メチルエチルケトン,ジエチルケトン等のケトン類,ジメチルエーテル,エチルメチルエーテル,ジエチルエーテル,テトラヒドロフラン等のエーテル類,エチレングリコール,プリピレングリコール,ジエチレングリコール等のグリコール類等が使用される。
(1) Regarding the method of coexisting a silane coupling agent and an oxidizing agent [solvent]: Since the solubility of some silane coupling agents in water is limited, basically the solubility of the silane coupling agent In order to improve the solvent, a solvent such as one or two or more alcohols is used as a solvent. Alcohol also improves the stability of the wiping solution as well as the wettability of the metal substrate. Since the Sihilane coupling agent basically needs to be hydrolyzed, a solvent having high affinity with water is preferable. Specifically, methanol, ethanol, propanol, butanol and isomers thereof, ketones such as acetone, methyl ethyl ketone and diethyl ketone, ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and tetrahydrofuran, ethylene glycol and propylene glycol , Glycols such as diethylene glycol are used.

[酸化剤]:一般的な酸化剤であればいずれも使用することができる。酸化剤として要求される項目としては、当然のことながら金属表面を酸化させる能力があることが必要である。しかしながら、酸化力が強すぎると上記に記述した溶媒をも酸化させてしまうために、種類と濃度が非常に重要となる。また当然ながら、溶液の主成分は上記溶媒となり、水は下記のシランカップリング剤を加水分解させる分しか存在しないために、低濃度でも酸化作用があり、しかも溶解度が高いものが供給される。過酸化水素,塩素酸,過塩素酸,過硫酸,硝酸およびそれらの塩や硝酸第二アンモニウムセリウムなどが使用される。 [Oxidizing agent]: Any general oxidizing agent can be used. As an item required as an oxidant, it is a matter of course that it must be capable of oxidizing a metal surface. However, if the oxidizing power is too strong, the above-described solvent is also oxidized, so the type and concentration are very important. Naturally, the main component of the solution is the above solvent, and water is present only to hydrolyze the silane coupling agent described below, so that a solution having an oxidizing action and a high solubility is supplied even at a low concentration. Hydrogen peroxide, chloric acid, perchloric acid, persulfuric acid, nitric acid and their salts, diammonium cerium nitrate, etc. are used.

[シランカップリング剤]
シランカップリング剤として使用されるものとしては、大きく下記の2つのタイプに分類される。一つは、X3-nSiR′SiX3-nの構造で示され、nは0または1であり、Xは加水分解基(メトキシ,エトキシ,メトキシエトキシ,プロピル,ブチル,イソブチル,s−ブチル,t−ブチルおよびアセチル)から成る群から選択され、Xどうしが同じでも異なっていてもよい。またR′はアルキル,アルケニル、少なくとも1個のアミノ基またはS基で置換されたアルケニルから成る群から選択される。たとえば、ビストリエトキシシルエタン(BTSE)(H52O)3Si−CH2CH2−Si(OC25)3,ビストリエトキシシルプロピルアミン(BTSPA)(H52O)3Si−(CH2)3−NH−(CH2)3−(OC25)3,ビストリエトキシシルプロピルテトラスルフィド(BTSPS)(H22O)3Si−(CH2)3−S4−(CH2)3−Si(OC25)3などが挙げられる。もう一つのタイプは、有機官能性シランとして、X3-nnSi−Yの構造で示され、nは0または1であり、Xは加水分解基(メトキシ,エトキシ,メトキシエトキシ,プロピル,ブチル,イソブチル,s−ブチル,t−ブチルおよびアセチル)から成る群から選択され、Xどうしが同じでも異なっていてもよくYはアミノ,メルカプト,フェニル,ビニル,エポキシ,メタクリル,イソシアネート,ウレイド,サルファーで代表される有機官能基やアリキル基から成る群から選択される。たとえば
ビニルシランCH2=CHSi(OCH2CH3)3
3−グリシドキシプロピルトリメトキシシラン
CH2−(O)−CHCH2OCH2CH2CH2Si(OCH3)3
3−メルカプトプロピルトリエトキシシラン
HSCH2CH2CH2Si(OCH2CH3)3
3−アミノプロピルトリエトキシシラン
2NCH2CH2CH2Si(OCH2CH3)3
フェニルトリエトキシシラン
(C25O)3Si−C65
3−メタクリロキシプロピルトリエトキシシラン
CH2=C(CH3)COOCH2CH2CH2Si(OCH2CH3)3
3−イソシアネートプロピルトリメトキシシラン
O=C=NCH2CH2CH2Si(OCH2CH3)3
デシルトリメトキシシラン
CH3(CH2)9Si(OCH3)3
3−ウレイドプロピルトリエトキシシラン
(C25)3SiC36NHC(O)NH2
などが挙げられる。
[Silane coupling agent]
The materials used as silane coupling agents are roughly classified into the following two types. One is represented by the structure of X 3-n SiR′SiX 3-n , n is 0 or 1, and X is a hydrolyzable group (methoxy, ethoxy, methoxyethoxy, propyl, butyl, isobutyl, s-butyl). , T-butyl and acetyl), and X may be the same or different. R 'is also selected from the group consisting of alkyl, alkenyl, alkenyl substituted with at least one amino group or S group. For example, bis-triethoxysilylpropyl sill ethane (BTSE) (H 5 C 2 O) 3 Si-CH 2 CH 2 -Si (OC 2 H 5) 3, bis-triethoxysilylpropyl sill propylamine (BTSPA) (H 5 C 2 O) 3 Si - (CH 2) 3 -NH- ( CH 2) 3 - (OC 2 H 5) 3, bis-triethoxysilylpropyl sill tetrasulfide (BTSPS) (H 2 C 2 O) 3 Si- (CH 2) 3 -S 4 - (CH 2) 3 -Si ( OC 2 H 5) 3 and the like. Another type is an organofunctional silane represented by the structure X 3 -n R n Si—Y, where n is 0 or 1 and X is a hydrolyzable group (methoxy, ethoxy, methoxyethoxy, propyl, Butyl, isobutyl, s-butyl, t-butyl and acetyl), X may be the same or different and Y is amino, mercapto, phenyl, vinyl, epoxy, methacryl, isocyanate, ureido, sulfur Are selected from the group consisting of organic functional groups and alkaryl groups represented by For example, vinylsilane CH 2 ═CHSi (OCH 2 CH 3 ) 3 ,
3-glycidoxypropyltrimethoxysilane CH 2 - (O) -CHCH 2 OCH 2 CH 2 CH 2 Si (OCH3) 3,
3-mercaptopropyltriethoxysilane HSCH 2 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 ,
3-aminopropyltriethoxysilane H 2 NCH 2 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 ,
Phenyltriethoxysilane
(C 2 H 5 O) 3 Si-C 6 H 5,
3-methacryloxypropyl triethoxy silane CH 2 = C (CH 3) COOCH 2 CH 2 CH 2 Si (OCH 2 CH 3) 3,
3-isocyanatopropyltrimethoxysilane O═C═NCH 2 CH 2 CH 2 Si (OCH 2 CH 3 ) 3 ,
Decyltrimethoxysilane CH 3 (CH 2 ) 9 Si (OCH 3 ) 3 ,
3-Ureidopropyltriethoxysilane
(C 2 H 5 ) 3 SiC 3 H 6 NHC (O) NH 2
Etc.

それ以外にもオクタデシルトリエトキシシラン,ビストリエトキシシルエタン,ビストリエトキシシルヘキサン,ビストリエトキシシルエチレン,ビストリメトキキシルエチルベンゼンなども有効である。上述のシランカップリング剤は、少なくとも部分的に、好ましくは完全に加水分解される。これらシランカップリング剤の濃度は、約0.05〜10重量%、より好ましくは0.2〜1重量%である。シランカップリング剤を加水分解させる必要があるために水を添加する必要がある。使用する水の量は、処理液全体に対して数%〜10%程度の範囲が適している。過酸化水素水の場合、一般的には30%程度の状態で添加するために、それ自身に既に水が含まれているので新たに水を添加する必要はない。   In addition, octadecyltriethoxysilane, bistriethoxysilethane, bistriethoxysilhexane, bistriethoxysilethylene, bistrimethoxylethylbenzene, etc. are also effective. The above-mentioned silane coupling agent is at least partially, preferably fully hydrolyzed. The concentration of these silane coupling agents is about 0.05 to 10% by weight, more preferably 0.2 to 1% by weight. Since it is necessary to hydrolyze the silane coupling agent, it is necessary to add water. The amount of water to be used is suitably in the range of several percent to 10% with respect to the entire treatment liquid. In the case of hydrogen peroxide water, since it is generally added in a state of about 30%, it is not necessary to newly add water since it already contains water.

この処理液は、浸漬することを基本とするがスプレー,ロール被覆でも適用することができる。   This treatment solution is basically immersed, but can also be applied by spraying or roll coating.

[シランカップリング溶液のpH調整剤]
溶液のpHは加水分解反応速度および酸化物生成速度に大きく関係する。加水分解反応の観点からはpHが7以下程度に維持されるのが好ましい半面、酸化物はPourbaixダイヤグラム(文献 Atlas of Electrochemical Equilibria in Aqueous Solutions, Marcel Pourbaix, NACE International Cebelcor)によれば、たとえばCoに関してはpH7〜13、Niに関してはpH8〜12、Feに関してはpH7〜12程度の領域でそれぞれが安定に存在することができることから、処理溶液のpHは、3〜12の範囲に維持されるのが好ましい。pH調整剤としては、水酸化カリウム等の水酸化物,アンモニア,硫酸,塩酸,硝酸等が適している。
[PH adjuster of silane coupling solution]
The pH of the solution is largely related to the hydrolysis reaction rate and oxide formation rate. From the viewpoint of the hydrolysis reaction, it is preferable that the pH is maintained at about 7 or less. On the other hand, according to the Pourbaix diagram (Document Atlas of Electrochemical Equilibria in Aqueous Solutions, Marcel Pourbaix, NACE International Cebelcor) Can be stably present in the range of pH 7-13, pH 8-12 for Ni, and pH 7-12 for Fe. Therefore, the pH of the treatment solution is maintained in the range 3-12. preferable. As the pH adjusting agent, hydroxides such as potassium hydroxide, ammonia, sulfuric acid, hydrochloric acid, nitric acid and the like are suitable.

(2)酸化処理を施した後にシランカップリング剤溶液に浸漬させる方法に関して
[酸化剤]:一般的な酸化剤であればいずれも使用することができる。酸化剤として要求される項目としては、当然のことながら金属表面を酸化させる能力があることが必要である。この方法では、(1)の方法とは異なり、ウエット環境で処理する場合は溶媒を共存させる必要がないために強い酸化剤を使用することができる。ウエット環境で使用する酸化剤としては、過酸化水素水を初め、過マンガン酸,塩素酸,二クロム酸,臭素酸,硝酸,次亜塩素酸,塩素酸およびそれらの塩,過酢酸,オゾン水などが使用できる。ドライの環境では、加熱下での空気酸化,オゾンによる酸化の方法が挙げられる。
(2) Regarding the method of immersing in the silane coupling agent solution after the oxidation treatment [Oxidizing agent]: Any general oxidizing agent can be used. As an item required as an oxidant, it is a matter of course that it must be capable of oxidizing a metal surface. In this method, unlike the method (1), when the treatment is performed in a wet environment, a strong oxidizing agent can be used because it is not necessary to coexist a solvent. Oxidizing agents used in the wet environment include hydrogen peroxide, permanganic acid, chloric acid, dichromic acid, bromic acid, nitric acid, hypochlorous acid, chloric acid and their salts, peracetic acid, ozone water. Etc. can be used. In a dry environment, air oxidation under heating and oxidation by ozone can be used.

[シランカップリング剤]
(1)の方法で記述したシランカップリング剤を使用することができる。(1)の方法では、シランカップリング剤を加水分解させることが必要であるが、(2)の方法のウエットの方法で酸化処理をした場合、生成させた酸化物表面には多くの水酸基が存在し、それがシランカップリング剤の加水分解反応を引き起こすためにあえて水を添加する必要はない。ただし、ドライ環境で酸化物を生成させた場合は、(1)の方法と同様に水を添加する必要がある。
[Silane coupling agent]
The silane coupling agent described in the method (1) can be used. In the method (1), it is necessary to hydrolyze the silane coupling agent. However, when oxidation treatment is performed by the wet method (2), many hydroxyl groups are formed on the surface of the generated oxide. There is no need to add water in order for it to be present and cause a hydrolysis reaction of the silane coupling agent. However, when an oxide is generated in a dry environment, it is necessary to add water as in the method (1).

[シランカップリング溶液のpH調整剤]
(1)の方法の場合とは異なり、シランカップリングの際に酸化物を生成させる必要がないために、加水分解反応を促進させることにのみ注目し、pHを調整すればよい。加水分解反応を向上させるためには好ましくはpHを7以下に維持するのが良く、できれば3〜6の間に維持するのが好ましい。pH調整剤としては、水酸化カリウム等の水酸化物,アンモニア,硫酸,塩酸,硝酸等が適している。
[PH adjuster of silane coupling solution]
Unlike the case of the method (1), since it is not necessary to generate an oxide during silane coupling, it is only necessary to adjust the pH while paying attention only to promoting the hydrolysis reaction. In order to improve the hydrolysis reaction, the pH is preferably maintained at 7 or less, and preferably between 3 and 6 if possible. As the pH adjusting agent, hydroxides such as potassium hydroxide, ammonia, sulfuric acid, hydrochloric acid, nitric acid and the like are suitable.

(1)または(2)いずれの手法を用いた場合においても、シランカップリング剤に浸漬させる時間は、1時間程度が適しているが、シランカップリング剤の濃度を1wt%以下にした場合などは、24時間程度に延長したほうが耐食性が向上する場合がある。   In the case of using either method (1) or (2), the time for immersion in the silane coupling agent is suitably about 1 hour, but the concentration of the silane coupling agent is 1 wt% or less. In some cases, the corrosion resistance may be improved by extending to about 24 hours.

シランカップリング処理後は、使用した溶媒(酸化剤およびシランカップリング剤を含有しない)で洗浄した後に、エアーを吹付けることにより乾燥させる。または、室温〜50℃の温度範囲に維持することにより乾燥させてもよい。   After the silane coupling treatment, the substrate is washed with the used solvent (containing no oxidizing agent and silane coupling agent) and then dried by blowing air. Or you may make it dry by maintaining in the temperature range of room temperature-50 degreeC.

またシランカプリング処理後に、後処理として熱処理を施すことにより耐食性を向上させることができる。熱処理としては、温度100〜200℃,時間30分〜2時間が好ましく、温度100〜150℃,時間30分〜1時間がより好ましい。   Further, after the silane coupling treatment, the corrosion resistance can be improved by performing a heat treatment as a post-treatment. As heat processing, the temperature of 100-200 degreeC and time 30 minutes-2 hours are preferable, and the temperature of 100-150 degreeC and time 30 minutes-1 hour are more preferable.

さらに、更に熱処理後、または乾燥後に再度、シランカップリング処理を複数回重ねることによりさらに耐食性を向上させることも可能である。この場合、最初のシランカップリング処理液とその後のシランカプリング液が同じでなくてもよい。   Furthermore, the corrosion resistance can be further improved by repeating the silane coupling treatment a plurality of times after heat treatment or after drying. In this case, the first silane coupling treatment liquid and the subsequent silane coupling liquid may not be the same.

腐食評価として以下のことを実施した。試料としては、シリコンウエハ上に密着層として酸化チタンをスパッタした後に、その上に対象とする金属、たとえばコバルト,ニッケル,鉄などをスパッタし、成膜したものを試料とした。上記の2種類の方法でシランカップリング層を形成させた。一部の試料に関しては、シランカップリング層を形成させた後に、熱処理、例えば空気中、100℃,1hで熱処理を施した。   The following was performed as a corrosion evaluation. As a sample, titanium oxide was sputtered as an adhesion layer on a silicon wafer, and then a target metal such as cobalt, nickel, iron, etc. was sputtered thereon to form a sample. A silane coupling layer was formed by the above two methods. For some samples, after the silane coupling layer was formed, heat treatment was performed, for example, in air at 100 ° C. for 1 h.

耐食性の評価は以下の2つの方法を評価した。
(1)恒温恒湿試験:温度65℃,相対湿度90%RH以上の高温多湿状態の条件下にシランカップリング処理を施したサンプルを96時間放置する。試料に、2.5インチのシリコンウエハ上に成膜させたものを使用した。次に、Optical Surface Analyzerを用いて半径14mmから25mmまでの範囲内における腐食点の数をカウントし、以下のようにランク付けした。カウント数が50未満のものをA、50以上200未満のものをB、200以上500未満のものをC、500以上のものをDとして評価した。実用的にはB以上のランクが望ましい。
Corrosion resistance was evaluated by the following two methods.
(1) Constant temperature and humidity test: A sample subjected to a silane coupling treatment under conditions of a high temperature and high humidity state at a temperature of 65 ° C. and a relative humidity of 90% RH or more is allowed to stand for 96 hours. A sample formed on a 2.5 inch silicon wafer was used. Next, the number of corrosion points within a radius range of 14 mm to 25 mm was counted using an Optical Surface Analyzer and ranked as follows. A sample having a count number of less than 50 was evaluated as A, a sample having a count of 50 or more and less than 200 was evaluated as B, a sample having a count of 200 or more and less than 500 was evaluated as C, and a sample having a count number of 500 or more was evaluated as D. In practice, a rank of B or higher is desirable.

(2)電気化学試験:シランカップリング処理を施したサンプルを1cm2残し、他の部分をシールした。それをpH7.47のホウ酸塩水溶液または3%NaCl水溶液に浸漬した。10分間浸漬し、電位が安定した時点で、浸漬電位から−100mVの低い電位を基準とし、アノード方向に30mV/minのスキャン速度で電位を走査させ、電流を測定した。測定後、ターフェルの関係式を使用して腐食電流密度を求めた。未処理の場合に対して、腐食電流密度が10%未満の場合をA、10%以上20%未満のものをB、20%以上50%未満のものをC、50%以上のものをDとして評価した。 (2) Electrochemical test: 1 cm 2 of the sample subjected to the silane coupling treatment was left and the other part was sealed. It was immersed in an aqueous borate solution having a pH of 7.47 or an aqueous 3% NaCl solution. When immersed for 10 minutes and the potential was stabilized, the potential was scanned at a scanning speed of 30 mV / min in the anode direction with reference to a potential of −100 mV lower than the immersion potential, and the current was measured. After the measurement, the corrosion current density was determined using Tafel's relational expression. When the corrosion current density is less than 10%, A is 10% or more but less than 20%, B is 20% or more but less than 50%, C is 50% or more, and D is untreated. evaluated.

以下、本発明を適用した具体的な実施例について、表を参照して説明する。   Hereinafter, specific examples to which the present invention is applied will be described with reference to tables.

(比較例1−4)
未処理のCo,Ni,Fe,Cuに関しては、比較例1−4(表1)に示すように、恒温・恒湿試験を実施した場合の、耐食性に関する評価はDレベルであり、耐食性は非常に悪い。この試験結果を以下の腐食評価結果の基準にする。
(Comparative Example 1-4)
For untreated Co, Ni, Fe, and Cu, as shown in Comparative Example 1-4 (Table 1), the evaluation regarding the corrosion resistance when the constant temperature / humidity test is performed is D level, and the corrosion resistance is very high. It ’s bad. This test result is used as a standard for the following corrosion evaluation results.

Figure 2012167342
Figure 2012167342

(実施例1−4)
実施例1−4は、試料にCo,Ni,FeまたはCuを使用し、シランカップリング剤として1wt%のBTSEを、共存させる酸化剤として30%H22を10%添加した処理液を使用し、金属上にシランカップリング層を生成させた。pHは4.2、浸漬時間は1hとした。溶媒にはエタノールを使用した。腐食評価結果は、恒温恒湿度試験,電気化学試験(ホウ酸塩中)に関して、Co,Ni,Cuに関しては全てAであり、良い耐食性を示した。Feに関しては、恒温恒湿試験および電気化学試験では腐食評価はBであり、他の金属と比較して若干耐食性は落ちるものの、未処理の場合と比較すると、格段に良い耐食性を示した。溶媒にアセトン,トルエン,エチルエーテルを使用しても同様の結果が得られた。
(Example 1-4)
Example 1-4 uses a treatment liquid in which Co, Ni, Fe or Cu is used as a sample, 1 wt% BTSE is added as a silane coupling agent, and 10% of 30% H 2 O 2 is added as a coexisting oxidizing agent. Used to produce a silane coupling layer on the metal. The pH was 4.2 and the immersion time was 1 h. Ethanol was used as the solvent. The results of the corrosion evaluation were constant temperature and humidity test, electrochemical test (in borate), Co, Ni and Cu were all A, indicating good corrosion resistance. Regarding Fe, the corrosion evaluation was B in the constant temperature and humidity test and the electrochemical test, and although the corrosion resistance was slightly lower than that of other metals, the corrosion resistance was markedly better than that of the untreated case. Similar results were obtained when acetone, toluene, or ethyl ether was used as the solvent.

Figure 2012167342
Figure 2012167342

(実施例3,5−6)
実施例3および5−6は、試料にFeを使用し、シランカップリング剤として1wt%のBTSEを、共存させる酸化剤として30%H22を10%添加した処理液を使用し、金属上にシランカップリング層を生成させた場合の、腐食評価におよぼす浸漬時間の影響を示す。溶媒にはエタノールを使用した。浸漬時間が1h(実施例3)の場合は、全ての試験において腐食評価はBであったが、浸漬時間4hにおいては恒温恒湿試験での腐食評価がAに、24h浸漬することにより全ての試験において腐食評価はAになり、時間とともに耐食性が向上していることが分かる。
(Examples 3, 5-6)
Examples 3 and 5-6 use Fe as a sample, use a treatment liquid to which 1% by weight of BTSE is added as a silane coupling agent, and 10% of 30% H 2 O 2 is added as a coexisting oxidizing agent. The influence of the immersion time on the corrosion evaluation when a silane coupling layer is formed is shown. Ethanol was used as the solvent. In the case where the immersion time was 1 h (Example 3), the corrosion evaluation was B in all tests. However, in the immersion time 4 h, the corrosion evaluation in the constant temperature and humidity test was A. In the test, the corrosion evaluation is A, and it can be seen that the corrosion resistance is improved with time.

Figure 2012167342
Figure 2012167342

(実施例7−15)
実施例7−15は、試料にCoを使用し、1wt%の各種のシランカップリング剤を使用し、共存させる酸化剤として30%H22を10%添加した処理液を使用し、金属上にシランカップリング層を生成させた場合の、腐食評価結果を示す。溶媒にはエタノールを使用した。使用したシランカップリング剤は、それぞれ多官能性シラン系,ビニルシラン系,ウレイド系,エポキシシラン系,メルカプトシラン系,サルファーシラン系等である。いずれの場合においても、各種腐食評価結果はAであり、良い耐食性を示した。ここでは、データを示していないが、Fe,Ni,Cuに関しても同様の結果が得られた。
(Examples 7-15)
Examples 7 to 15 use Co as a sample, use 1 wt% of various silane coupling agents, use a treatment solution to which 10% of 30% H 2 O 2 is added as a coexisting oxidizing agent, The corrosion evaluation result when a silane coupling layer is formed on the top is shown. Ethanol was used as the solvent. The silane coupling agents used are polyfunctional silane, vinyl silane, ureido, epoxy silane, mercapto silane, sulfur silane and the like. In any case, the various corrosion evaluation results were A, indicating good corrosion resistance. Although data are not shown here, similar results were obtained for Fe, Ni, and Cu.

Figure 2012167342
Figure 2012167342

(実施例12)
実施例3,16−19は、試料にCoを使用し、シランカップリング剤として1wt%のBTSEを、共存させる酸化剤として30%H22を10%添加した処理液を使用し、金属上にシランカップリング層を生成させた場合の、腐食評価におよぼすpHの影響を示す。溶媒にはエタノールを使用した。pHが1.5の場合、Coの溶解速度が速いために1h浸漬では溶出するために、浸漬時間を5minとした。恒温恒湿度試験では腐食評価はBであったが、電気化学試験での腐食評価はCであった。未処理の場合と比較して耐食性向上は確認されたものの、腐食抑制作用は小さい。これは、溶液のpHが低いために、Co上に十分な酸化物が生成されなかったためである。処理溶液のpHが4.0以上の場合では、いずれも腐食評価結果はAであり、良い耐食性を示した。ここでは、データを示していないが、Fe,Ni,Cuに関しても同様の結果が得られた。
(Example 12)
Examples 3 and 16-19 use Co as a sample, use a treatment solution to which 1 wt% of BTSE is added as a silane coupling agent and 10% of 30% H 2 O 2 is added as an oxidant to coexist. The influence of pH on corrosion evaluation when a silane coupling layer is formed on the top is shown. Ethanol was used as the solvent. When the pH was 1.5, the dissolution rate of Co was so fast that it was eluted by immersion for 1 hour, so the immersion time was set to 5 minutes. The corrosion evaluation was B in the constant temperature and humidity test, but the corrosion evaluation in the electrochemical test was C. Although an improvement in corrosion resistance was confirmed as compared with the case of no treatment, the corrosion inhibiting action was small. This is because sufficient oxide was not formed on Co due to the low pH of the solution. In all cases where the pH of the treatment solution was 4.0 or higher, the corrosion evaluation result was A, indicating good corrosion resistance. Although data are not shown here, similar results were obtained for Fe, Ni, and Cu.

Figure 2012167342
Figure 2012167342

(実施例20−23)
実施例20−23は、試料にCoを使用し、シランカップリング剤として1wt%のBTSEを、共存させる酸化剤を変化させ、金属上にシランカップリング層を生成させた場合の、腐食評価におよぼす酸化剤の種類の影響を示す。溶媒にはエタノールを使用した。酸化剤として使用したものは、過硫酸アンモニウム,過塩素酸ナトリウム,硝酸二アンモニウムセリウムおよび塩素酸ナトリウムである。これらは強い酸化剤であるために、過酸化水素を使用した場合より濃度を低く設定している。腐食評価は、いずれの酸化剤を使用した場合においても、恒温恒湿試験および電気化学試験ともに腐食評価結果はAであり、良い耐食性を示した。ここでは、データを示していないが、Fe,Ni,Cuに関しても同様の結果が得られた。
(Examples 20-23)
Examples 20-23 are used for corrosion evaluation when Co is used as a sample, 1 wt% of BTSE is used as a silane coupling agent, and an oxidizing agent is changed to form a silane coupling layer on a metal. The effect of the type of oxidant on Ethanol was used as the solvent. Those used as oxidizing agents are ammonium persulfate, sodium perchlorate, cerium diammonium nitrate and sodium chlorate. Since these are strong oxidizing agents, their concentrations are set lower than when hydrogen peroxide is used. Corrosion evaluation showed that the corrosion evaluation result was A for both the constant temperature and humidity test and the electrochemical test, regardless of which oxidizing agent was used, indicating good corrosion resistance. Although data are not shown here, similar results were obtained for Fe, Ni, and Cu.

Figure 2012167342
Figure 2012167342

(実施例24−26)
実施例24−26は、試料にFeまたはCoを使用し、シランカップリング剤として1wt%のBTSEを、共存させる酸化剤として30%H22を10%添加した処理液を使用し、金属上にシランカップリング層を生成させた場合後に、熱処理を施した試料の腐食評価を実施した結果を示している。実施例3で示したFeでは、各種の腐食試験評価結果はBであったが、熱処理を施すことにより腐食評価結果Aになった。またCoに関する腐食評価結果もAのままであることから、熱処理を施すことにより耐食性が向上することが分かる、これは、縮合反応が促進したためである。
(Examples 24-26)
Examples 24-26 use Fe or Co as a sample, use a treatment liquid containing 1 wt% BTSE as a silane coupling agent and 10% of 30% H 2 O 2 as an coexisting oxidizing agent. The result of performing the corrosion evaluation of the heat-treated sample after the formation of the silane coupling layer is shown. In Fe shown in Example 3, various corrosion test evaluation results were B, but the corrosion evaluation result A was obtained by heat treatment. Moreover, since the corrosion evaluation result regarding Co is still A, it can be seen that the heat resistance improves the corrosion resistance. This is because the condensation reaction has been promoted.

Figure 2012167342
Figure 2012167342

(実施例27−31)
実施例27−30は、前述した(2)の方法に関するものである。シランカップリング処理を実施する前に、ウエット環境での前酸化処理を実施した。酸化剤としては、30%H0%H22/10%,硫酸アンモニウム/10%,過塩素酸ナトリウム/10%,過マンガン酸ナトリウム/10%,オゾン/水10%であり、ウエット環境で酸化処理を実施した場合である。シランカップリング処理剤としては、pH4.2のBTSE(浸漬時間1h−溶媒にエタノール)を使用した。前述したように、前酸化処理により使用表面には多くの水酸基が導入されるために、BTSE溶液に加水分解用の水を添加しなくとも良い。いずれの場合においても、腐食評価結果は、Aであり良い耐食性を示した。ここでは、データを示していないが、Fe,Ni,Cuに関しても同様の結果が得られた。
(Examples 27-31)
Examples 27-30 relate to the method (2) described above. Prior to the silane coupling process, a pre-oxidation process in a wet environment was performed. Oxidizing agents are 30% H0% H 2 O 2 /10%, ammonium sulfate / 10%, sodium perchlorate / 10%, sodium permanganate / 10%, ozone / water 10%. Oxidation in wet environment This is a case where processing is performed. As the silane coupling agent, BTSE having a pH of 4.2 (immersion time: 1 h—ethanol as a solvent) was used. As described above, since many hydroxyl groups are introduced to the surface to be used by the pre-oxidation treatment, it is not necessary to add water for hydrolysis to the BTSE solution. In either case, the corrosion evaluation result was A, indicating good corrosion resistance. Although data are not shown here, similar results were obtained for Fe, Ni, and Cu.

Figure 2012167342
Figure 2012167342

(実施例31−32)
実施例31−32は、前述した(2)の方法に関するものである。シランカップリング処理を実施する前に、ドライ環境での前酸化処理を実施した。酸化剤としては、空気またはオゾンを使用した。シランカップリング処理剤としては、pH4.2のBTSE(浸漬時間1h−溶媒にエタノール+10%H2O)を使用した。シランカップリング剤を加水分解させる必要があることから、シランカップリング処理液には、10%の水を含有させた。いずれの場合においても、腐食評価結果は、Aであり良い耐食性を示した。ここでは、データを示していないが、Fe,Ni,Cuに関しても同様の結果が得られた。
(Examples 31-32)
Examples 31-32 relate to the method (2) described above. Prior to the silane coupling process, a pre-oxidation process in a dry environment was performed. Air or ozone was used as the oxidant. As the silane coupling agent, BTSE having a pH of 4.2 (immersion time: 1 h—ethanol + 10% H 2 O as a solvent) was used. Since it was necessary to hydrolyze the silane coupling agent, the silane coupling treatment liquid contained 10% water. In either case, the corrosion evaluation result was A, indicating good corrosion resistance. Although data are not shown here, similar results were obtained for Fe, Ni, and Cu.

Figure 2012167342
Figure 2012167342

(比較例5−13)
比較例5−13は、酸化剤を含まないシランカップリング剤で処理した場合の腐食評価を実施した場合である。酸化剤は含まないもののシランカップリング剤を加水分解させるために10%の水を添加している。主溶媒はエタノールである。いずれのシランカップリング剤で処理した場合でも、恒温恒湿試験および電気化学試験のどちらの場合においても腐食評価はC以下であり、耐食性を示さなかった。ここでは、データを示していないが、Fe,Ni,Cuに関しても同様の結果が得られた。
(Comparative Example 5-13)
Comparative Example 5-13 is a case where a corrosion evaluation was performed in the case of treatment with a silane coupling agent not containing an oxidizing agent. Although not containing an oxidizing agent, 10% of water is added to hydrolyze the silane coupling agent. The main solvent is ethanol. Regardless of the treatment with any silane coupling agent, the corrosion evaluation was C or less in both the constant temperature and humidity test and the electrochemical test, and the corrosion resistance was not exhibited. Although data are not shown here, similar results were obtained for Fe, Ni, and Cu.

Figure 2012167342
Figure 2012167342

(比較例14−17)
比較例14−17は、シランカップリング処理を実施せず、酸化処理のみを実施した場合の腐食評価結果を示す。恒温恒湿試験および電気化学試験のどちらの場合においても腐食評価はDであり、耐食性を示さなかった。ここでは、データを示していないが、Fe,Ni,Cuに関しても同様の結果が得られた。
(Comparative Example 14-17)
Comparative Examples 14-17 show the corrosion evaluation results when only the oxidation treatment is performed without performing the silane coupling treatment. In both cases of the constant temperature and humidity test and the electrochemical test, the corrosion evaluation was D, indicating no corrosion resistance. Although data are not shown here, similar results were obtained for Fe, Ni, and Cu.

Figure 2012167342
Figure 2012167342

(実施例33−35,比較例17−19)
実施例33−35は、耐食性を示したシランカップリング剤+酸化剤の系に関して、処理後のCoの表面上をXPSで測定・同定した結果を示す。また比較例17−19は、耐食性を示さなかったシランカップリング剤のみの処理に関して、処理後のCoの表面をXPSで測定・同定した結果を示す。耐食性を示した実施例においては、耐食性を示さなかった比較例の場合と比較して、O1sピークにおけるOxideの占める割合が多く、酸化物がより多く生成していることが分かる。実施例27に示した、前酸化処理による場合に関しても同様の結果が得られた。従って、シランカップリング剤により耐食性を付与させるためには、酸化剤を共存させまたはあらかじめ酸化処理をすることが必要であることが分かる。
(Examples 33-35 and Comparative Examples 17-19)
Examples 33-35 show the results of measurement and identification by XPS on the surface of Co after the treatment with respect to the system of silane coupling agent + oxidizing agent that showed corrosion resistance. Comparative Examples 17-19 show the results of measuring and identifying the surface of Co after the treatment by XPS with respect to the treatment of only the silane coupling agent that did not exhibit corrosion resistance. In the examples showing the corrosion resistance, it can be seen that the ratio of Oxide in the O1s peak is larger and the oxide is generated more than in the comparative example which does not show the corrosion resistance. Similar results were obtained with respect to the case of the pre-oxidation treatment shown in Example 27. Therefore, it can be seen that in order to impart corrosion resistance with the silane coupling agent, it is necessary to coexist an oxidizing agent or to perform an oxidation treatment in advance.

Figure 2012167342
Figure 2012167342

Figure 2012167342
Figure 2012167342

(実施例36−38)
実施例36−38は、試料に各種遷移金属を含有する合金を使用し、シランカップリング剤として1wt%のBTSEを、共存させる酸化剤として30%H22を10%添加した処理液を使用し、金属上にシランカップリング層を生成させた。pHは4.2、浸漬時間は1hとした。溶媒にはエタノールを使用した。腐食評価結果は、恒温恒湿度試験,電気化学試験(ホウ酸塩中)に関して、各種遷移金属を含有する合金に関しては全てAであり、良い耐食性を示した。溶媒にアセトン,トルエン,エチルエーテルを使用しても同様の結果が得られた。
(Examples 36-38)
In Examples 36-38, an alloy containing various transition metals was used as a sample, and 1 wt% of BTSE was added as a silane coupling agent, and 10% of 30% H 2 O 2 was added as a coexisting oxidizing agent. Used to produce a silane coupling layer on the metal. The pH was 4.2 and the immersion time was 1 h. Ethanol was used as the solvent. The results of the corrosion evaluation were A for the constant temperature and humidity test and the electrochemical test (in borate), and all of the alloys containing various transition metals showed good corrosion resistance. Similar results were obtained when acetone, toluene, or ethyl ether was used as the solvent.

Figure 2012167342
Figure 2012167342

Claims (10)

少なくとも部分的に加水分解している有機官能性シラン,酸化剤および溶剤を含有する溶液に金属基材を接触させた後、溶剤を除去することにより金属基材にシランカップリング反応層を施すことを特徴とする金属の腐食防止方法。   Applying a silane coupling reaction layer to the metal substrate by contacting the metal substrate with a solution containing an organofunctional silane that has been at least partially hydrolyzed, an oxidant and a solvent, and then removing the solvent. A method for preventing metal corrosion. 金属基材を酸化処理し、次いで、少なくとも部分的に加水分解している有機官能性シランおよび溶剤を含有する溶液に前記金属基材を接触させ後に、溶剤を除去することにより金属基材にシランカップリング反応層を施すことを特徴とする金属の腐食防止方法。   After contacting the metal substrate with a solution containing an organofunctional silane that is at least partially hydrolyzed and the solvent, the metal substrate is contacted with the silane by removing the solvent. A method for preventing corrosion of a metal, comprising applying a coupling reaction layer. 酸化剤を含む溶液に金属基材を浸漬させた後に、少なくとも1種の有機官能性シランを含有する溶液に接触させることにより金属基材にシランカップリング反応層を施すことを特徴とする金属の腐食防止方法。   A metal substrate characterized by applying a silane coupling reaction layer to a metal substrate by immersing the metal substrate in a solution containing an oxidizing agent and then contacting the solution with a solution containing at least one organofunctional silane. Corrosion prevention method. 請求項1または3において、前記酸化剤が、過酸化水素,硝酸,過硫酸アンモニウム,2アンモニウムセリウムおよびその塩から選ばれる少なくとも1種であることを特徴とする金属の腐食防止方法。   4. The method for preventing corrosion of metal according to claim 1, wherein the oxidizing agent is at least one selected from hydrogen peroxide, nitric acid, ammonium persulfate, diammonium cerium, and salts thereof. 請求項2において、前記酸化処理で使用する酸化剤が、空気,オゾンであることを特徴とする金属の腐食防止方法。   3. The method for preventing corrosion of metal according to claim 2, wherein the oxidizing agent used in the oxidation treatment is air or ozone. 請求項1において、前記金属基材にシランカップリング反応層を施した後に、さらに、熱処理を施すことを特徴とする金属の腐食防止方法。   2. The method for preventing corrosion of metal according to claim 1, wherein after the silane coupling reaction layer is applied to the metal substrate, a heat treatment is further performed. 請求項2において、前記金属基材にシランカップリング反応層を施した後に、さらに、熱処理を施すことを特徴とする金属の腐食防止方法。   3. The method for preventing corrosion of metal according to claim 2, wherein after the silane coupling reaction layer is applied to the metal substrate, heat treatment is further performed. 請求項3において、前記金属基材にシランカップリング反応層を施した後に、さらに、熱処理を施すことを特徴とする金属の腐食防止方法。   4. The method for preventing corrosion of metal according to claim 3, wherein after the silane coupling reaction layer is applied to the metal substrate, a heat treatment is further performed. 請求項2または3において、前記有機官能性シランが、下記式(1)で示されることを特徴とする金属の腐食防止方法。
3-nnSi−YまたはX3-nSiR′SiX3-n …(1)
(式中、nは0または1、Xは加水分解性基(メトキシ,エトキシ,メトキシエトキシ,プロピル,ブチル,イソブチル,s−ブチル,t−ブチルおよびアセチル)から選択され、Xどうしが同じでも異なっていてもよい。Yはアミノ,メルカプト,フェニル,ビニル,エポキシ,メタクリル,イソシアネート,ウレイド,サルファーで代表される有機官能基またはアルキル基から選択され、Rはメチル基であり、R′はアルキル,アルケニル、少なくとも1個のアミノ基またはS基で置換されたアルケニルから選択される)
4. The method for preventing corrosion of a metal according to claim 2, wherein the organofunctional silane is represented by the following formula (1).
X 3-n R n Si- Y or X 3-n SiR'SiX 3-n ... (1)
(Wherein n is 0 or 1, X is selected from hydrolyzable groups (methoxy, ethoxy, methoxyethoxy, propyl, butyl, isobutyl, s-butyl, t-butyl and acetyl), and X is the same or different Y is selected from an organic functional group represented by amino, mercapto, phenyl, vinyl, epoxy, methacryl, isocyanate, ureido, and sulfur, or an alkyl group, R is a methyl group, R 'is an alkyl, Selected from alkenyl, alkenyl substituted with at least one amino group or S group)
請求項1−9のいずれかにおいて、前記金属基材が、Fe,Co,Ni,Cuまたはそれらの合金であることを特徴とする金属の腐食防止方法。   10. The method for preventing corrosion of a metal according to claim 1, wherein the metal substrate is Fe, Co, Ni, Cu or an alloy thereof.
JP2011030359A 2011-02-16 2011-02-16 How to prevent metal corrosion Expired - Fee Related JP5372983B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011030359A JP5372983B2 (en) 2011-02-16 2011-02-16 How to prevent metal corrosion
US13/369,323 US20120205010A1 (en) 2011-02-16 2012-02-09 Corrosion control method of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030359A JP5372983B2 (en) 2011-02-16 2011-02-16 How to prevent metal corrosion

Publications (2)

Publication Number Publication Date
JP2012167342A true JP2012167342A (en) 2012-09-06
JP5372983B2 JP5372983B2 (en) 2013-12-18

Family

ID=46635994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030359A Expired - Fee Related JP5372983B2 (en) 2011-02-16 2011-02-16 How to prevent metal corrosion

Country Status (2)

Country Link
US (1) US20120205010A1 (en)
JP (1) JP5372983B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137406A (en) * 2014-01-23 2015-07-30 岩谷産業株式会社 Method for treating surface of metal base material, metal code and transmission belt
JP2016211036A (en) * 2015-05-08 2016-12-15 富士通株式会社 Metal surface treatment liquid, wiring structure, and method of manufacturing wiring structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786894A (en) * 2023-01-06 2023-03-14 广东腐蚀科学与技术创新研究院 Vanadium-containing treatment fluid and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152369A (en) * 1984-08-21 1986-03-15 Pentel Kk Surface treatment of aluminum or aluminum alloy
JPH10298788A (en) * 1997-04-25 1998-11-10 Japan Energy Corp Tarnishing preventing solution for copper or copper alloy and tarnishing preventing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311738A (en) * 1980-05-27 1982-01-19 Dow Corning Corporation Method for rendering non-ferrous metals corrosion resistant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152369A (en) * 1984-08-21 1986-03-15 Pentel Kk Surface treatment of aluminum or aluminum alloy
JPH10298788A (en) * 1997-04-25 1998-11-10 Japan Energy Corp Tarnishing preventing solution for copper or copper alloy and tarnishing preventing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137406A (en) * 2014-01-23 2015-07-30 岩谷産業株式会社 Method for treating surface of metal base material, metal code and transmission belt
JP2016211036A (en) * 2015-05-08 2016-12-15 富士通株式会社 Metal surface treatment liquid, wiring structure, and method of manufacturing wiring structure

Also Published As

Publication number Publication date
US20120205010A1 (en) 2012-08-16
JP5372983B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
TWI447264B (en) Surface-treating agent for metallic material
JP5579269B2 (en) Aqueous silane systems for bare and metal corrosion protection
KR101055596B1 (en) Metal coating composition for corrosion protection
EP2653507B1 (en) Corrosion-proof aluminum material and method for producing the same
JP5754104B2 (en) Hot-dip galvanized steel sheet and method for producing the same
Barthwal et al. Robust and chemically stable superhydrophobic aluminum-alloy surface with enhanced corrosion-resistance properties
Harb et al. Organic-inorganic hybrid coatings for corrosion protection of metallic surfaces
Li et al. Superhydrophobic surface containing cerium salt and organosilane for corrosion protection of galvanized steel
Sui et al. Comparative anti-corrosion properties of alkylthiols SAMs and mercapto functional silica sol–gel coatings on copper surface in sodium chloride solution
JP2018521199A (en) Antibacterial primer coating agent for vacuum deposition and multiple coating method using the same
JP5372983B2 (en) How to prevent metal corrosion
Al-Kharafi et al. Inhibition of corrosion of Al 6061, aluminum, and an aluminum-copper alloy in chloride-free aqueous media: part 2—behavior in basic solutions
JP2016194134A (en) Chromium-free chemical conversion coating
WO2014068688A1 (en) Surface modified metal member obtained using fluorine-containing silane coupling agent
Sugama Cerium acetate-modified aminopropylsilane triol: A precursor of corrosion-preventing coating for aluminum-finned condensers
Aramaki An attempt to prepare nonchromate, self-healing protective films containing molybdate on iron
Heshmati et al. Synthesis and characterization of superhydrophobic-superoleophobic and anti-corrosion coatings via sol-gel process
JP6275975B2 (en) Chrome-free chemical coating
AU2011336173A1 (en) Surface coating with perfluorinated compounds as antifouling
Owczarek Comparison studies of the protective properties of silane/polyrhodanine and polyrhodanine/silane bilayer coatings applied on stainless steel
WO2015011778A1 (en) Anti-corrosion coating film structure, metallic member equipped with same, anti-corrosion treatment method, and surface-treating agent
Shi et al. Fabrication of silane-based surface coating with Ag/TiO2 hybridization and its anti-corrosion performance on metal surface
Masmoudi Infrared Characterization and Electrochemical Study of Silanes Grafted into Surface of Copper
Mabuchi Inhibition of Cobalt Corrosion by Silane Coatings
JP5434777B2 (en) Cage-type silsesquioxane-peroxotitanium composite aqueous coating solution and coating for hydrophilic film formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

LAPS Cancellation because of no payment of annual fees