WO2014068688A1 - Surface modified metal member obtained using fluorine-containing silane coupling agent - Google Patents

Surface modified metal member obtained using fluorine-containing silane coupling agent Download PDF

Info

Publication number
WO2014068688A1
WO2014068688A1 PCT/JP2012/078091 JP2012078091W WO2014068688A1 WO 2014068688 A1 WO2014068688 A1 WO 2014068688A1 JP 2012078091 W JP2012078091 W JP 2012078091W WO 2014068688 A1 WO2014068688 A1 WO 2014068688A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane coupling
metal
group
fluorine
coupling agent
Prior art date
Application number
PCT/JP2012/078091
Other languages
French (fr)
Japanese (ja)
Inventor
勝美 馬渕
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2014544108A priority Critical patent/JPWO2014068688A1/en
Priority to PCT/JP2012/078091 priority patent/WO2014068688A1/en
Publication of WO2014068688A1 publication Critical patent/WO2014068688A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates

Definitions

  • the present invention relates to a surface-modified metal member that not only improves corrosion resistance by forming a layer containing fluorine on the metal surface, but also has a surface excellent in heat resistance, water resistance, slidability, and smoothness. .
  • Patent Document 1 discloses a specific resin compound (A), a first to third amino group, and a fourth group.
  • a method for producing a non-chromium surface-treated steel sheet excellent in modification and paint adhesion is disclosed.
  • Patent Document 2 discloses a method in which a water- and oil-repellent film having a fluorinated hydrocarbon group is chemically bonded to a surface of a base material by a hydrolysis reaction and a hydrolysis condensation reaction of a silane coupling containing fluorine. Is disclosed. In the method of Patent Document 2, the hydrolysis reaction is promoted with hydrochloric acid and an amine catalyst. Further, Patent Document 3 discloses a method of forming a metal oxide layer between a fluorine-containing silane coupling layer and a base material in order to increase the bonding force between the fluorine silane coupling layer and the base material. Has been.
  • Metal materials used in various products are required not only to improve corrosion resistance, but also to provide surfaces with excellent heat resistance, solvent resistance, and slidability as needed.
  • these conventional techniques use a trivalent chromium chelate complex or vanadium compound, a self-healing property is low, but a corrosion resistance comparable to a chromate film is obtained, but a thick film of several microns is formed.
  • the target metal disappears in the middle of the processing process, and even if it does not disappear, a thick product is deposited on the surface. There is a problem that the function of the conventional metal surface is lost.
  • the anticorrosion method using a silane coupling agent has not been satisfactory in terms of corrosion resistance, heat resistance, solvent resistance, slidability, and particularly corrosion resistance. Furthermore, since the organofunctional silane does not bind well to the metal surface, there is a problem that it is easily removed by rinsing or the like.
  • JP 2007-291531 A Japanese Patent Laid-Open No. 11-158648 JP 2012-35411 A
  • An object of the present invention is to provide a surface-modified metal member having a surface excellent in heat resistance, solvent resistance, and slidability as well as improving corrosion resistance.
  • an intermediate layer made of an organic material and a silane coupling layer containing fluorine are sequentially laminated on a metal substrate, and the intermediate layer includes at least carbon atoms continuously or discontinuously on a straight chain. 6 or more are connected.
  • the intermediate layer is formed of any one of the following (1) to (4) or a combination thereof: Quality method.
  • a method of reacting a base metal with a silane coupling agent having alkoxy groups at both ends (2) A method of reacting an organic substance having an OH group at one end and a group capable of adsorbing with a metal at the opposite end with a base metal, (3) a method of reacting a base metal with a compound having an OH group at one end and a COO group capable of adsorbing to the base metal at the opposite end; (4) A method of reacting a base metal with a silane coupling agent having an alkoxy group at one end and a group capable of adsorbing to the base metal at the opposite end
  • an intermediate layer having a long molecular main chain is formed as a first step on a metal material, an OH group is introduced on the surface thereof, and then a fluorine-containing silane coupling layer is formed as a second step.
  • a surface having water repellency, excellent corrosion resistance, and a metal surface function as it is is provided.
  • the corrosive environment is basically the air system or water system, but there are factors such as acidification or alkalinization due to decomposition and dissolution of surrounding substances and air pollutants, contamination of chloride, etc. Corrosion resistance in a saltwater environment is required.
  • (1) can be achieved by forming a silane coupling layer containing fluorine having a long main chain.
  • a silane coupling containing fluorine having a long main chain is soluble only in a fluorine-based solvent, and when this is used, there is a problem that adhesion to a metal is lowered.
  • a fluorine-containing silane coupling agent having a short main chain it dissolves in an organic solvent such as alcohol, and adhesion with a metal is obtained, but there is a problem that corrosion resistance is not sufficient.
  • an intermediate layer having a long main chain with high anticorrosion properties is formed on the metal, and a silane coupling layer containing fluorine having a long chain is formed on the metal by reacting with a silane coupling agent containing fluorine. I was able to.
  • the film of the intermediate layer has as few defects as possible and should be a smooth and dense film.
  • bistriethoxysilpropyl tetrasulfide when bistriethoxysilpropyl tetrasulfide is used as a silane coupling agent containing sulfur, bistriethoxysilpropyl tetrasulfide forms a strong coordination bond with aluminum or an aluminum alloy, and is heat treated to give bistriethoxysil Since propyltetrasulfide molecules also form a covalent bond to form a strong bistriethoxysilpropyltetrasulfide molecular film on the metal surface, a film having excellent adhesion without a very dense defect is formed.
  • bistriethoxysilpropyl tetrasulfide is arranged in the molecular order, so that it has a very smooth and functional surface while maintaining a high level of corrosion. It can be suppressed.
  • an intermediate layer having a long molecular main chain is formed (an OH group needs to be introduced on the surface), and then, as a second step, a fluorine-containing silane coupling layer is formed. Details are given below for each step.
  • First step There are the following four methods for forming an intermediate layer having a long molecular main chain having an OH group on the surface. (1) A method in which a silane coupling agent having alkoxy groups at both ends is reacted with a metal. This is a reaction for forming a normal silane coupling layer. There is a (Z) group between Si and OH or Si and OH, which determines the length of the molecular main chain.
  • Z is a combination of a plurality of CH 2 , and may contain an S group or an N group.
  • Examples thereof include bistriethoxyethane (BTSE), trimethoxysilpropylamine (BTSPA), and bistriethoxysilpropyl tetrasulfide (BTSPS).
  • BTSE bistriethoxyethane
  • BTSPA trimethoxysilpropylamine
  • BTSPS bistriethoxysilpropyl tetrasulfide
  • these types are bifunctional polysulfursilanes, for example when S is included in a straight chain, and are represented by the structure of (OR) 3 —Si—Z—Si— (OR) 3 , respectively.
  • R is an alkyl or acetyl group
  • Z is -S X or -QS X -Q- (wherein each Q is an aliphatic group or an aromatic group, x is an integer of 2 to 9) .
  • R is represented by ethyl, methyl, propyl, isopropyl, butyl, isobutyl, S-butyl, t-butyl and acetyl.
  • Q is C1-C6 alkyl (straight or branched), C1-C6 alkenyl (straight or branched), C1-C6 alkyl substituted with one or more amino groups, substituted with one or more amino groups Represented by C1-C6 alkenyl, benzyl, and benzyl substituted with C1-C6 alkyl.
  • One of the preferred silanes used is bistriethoxysilpropyl sulfide (s) having 2 to 9 sulfur atoms, particularly bistriethoxysilpropyl tetrasulfide having 4 sulfur.
  • Preferred examples include sulfide and bis (2-trimethoxysilethyl) disulfide.
  • the molecular main chain of the intermediate layer can be lengthened by performing it a plurality of times, and OH groups can be introduced on the surface thereof.
  • the solvent used here since the solubility of some silane coupling agents in water is limited, basically, in order to improve the solubility of the silane coupling agent, the solvent is 1 to Two or more solvents such as alcohols are used. The alcohol further improves the stability of the treatment solution as well as the wettability of the metal substrate. Since the silane coupling agent basically needs to be hydrolyzed, a solvent having high affinity with water is preferable.
  • methanol, ethanol, propanol, butanol and isomers thereof ketones such as acetone, methyl ethyl ketone and diethyl ketone, ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and tetrahydrofuran, ethylene glycol and propylene glycol
  • ketones such as acetone, methyl ethyl ketone and diethyl ketone
  • ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and tetrahydrofuran
  • ethylene glycol and propylene glycol glycols such as diethylene glycol are used.
  • the silane coupling agent described above is at least partially, preferably completely hydrolyzed.
  • concentration of these silane coupling agents is about 0.05 to 10% by weight, preferably 0.2 to 5% by weight. Since it is necessary to hydrolyze the silane coupling agent, it is necessary to add water.
  • the amount of water to be used is suitably in the range of several% to 20% with respect to the entire processing solution.
  • This treatment liquid is basically immersed, but can also be applied by spraying or roll coating.
  • the soaking time depends on the concentration, but when the concentration of the silane coupling agent is 1%, 5 hours or more, preferably 10 hours or more is suitable. Moreover, it can achieve also by hold
  • the pH adjuster hydroxides such as potassium hydroxide, ammonia, acetic acid, formic acid, sulfuric acid, hydrochloric acid, nitric acid and the like are suitable. If the normal pH of the treatment solution of the present invention (typically 1% bistriethoxysilpropyl tetrasulfide in ethanol solution of about pH 5.2) can be completely hydrolyzed, there is no need for pH adjustment. . After the silane coupling treatment, it is dried by blowing air. Alternatively, it may be dried by maintaining it in a temperature range of room temperature to 50 ° C.
  • a method of reacting a metal with a silane coupling agent having an alkoxy group at one end and a group capable of adsorbing a metal at the opposite end Since isocyanate groups, amino groups, and mercapto groups can be bonded to metals, one end is an alkoxy group, and a silane coupling agent having these groups capable of adsorbing to the metal at the opposite end is reacted with the metal to the surface.
  • An intermediate layer having an OH group and a long molecular main chain can be formed (formulas 5 and 6 indicate the case of an isocyanate group).
  • these types are X— (CH 2) n —Si—R 3, where X is SH, NH 2 , or NCO, and each of the three R is independently an alkoxy group, an alkyl group, and a hydrogen N is an integer from 0 to 10.
  • this type of silane to be used for example, when it has an SH group, it is represented by 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and mercaptoethyltriethoxysilane. Since the main chain of the silane coupling agent represented here is short with propyl, it is necessary to repeat the treatment a plurality of times to make the main length longer.
  • the solubility of some silane coupling agents in water is limited with respect to the solvent used here, basically, in order to improve the solubility of the silane coupling agent, A solvent such as one or two or more alcohols is used as the solvent.
  • the alcohol further improves the stability of the treatment solution as well as the wettability of the metal substrate. Since the silane coupling agent basically needs to be hydrolyzed, a solvent having high affinity with water is preferable.
  • methanol, ethanol, propanol, butanol and isomers thereof ketones such as acetone, methyl ethyl ketone and diethyl ketone, ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and tetrahydrofuran, ethylene glycol and propylene glycol
  • ketones such as acetone, methyl ethyl ketone and diethyl ketone
  • ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and tetrahydrofuran
  • ethylene glycol and propylene glycol glycols such as diethylene glycol are used.
  • the above silane coupling agent is at least partially, preferably completely hydrolyzed.
  • concentration of these silane coupling agents is about 0.05 to 10% by weight, more preferably 0.2 to 5% by weight. Since it is necessary to hydrolyze the silane coupling agent, it is necessary to add water.
  • the amount of water to be used is suitably in the range of several% to 20% with respect to the entire processing solution.
  • This treatment liquid is basically immersed, but can also be applied by spraying or roll coating.
  • the soaking time depends on the concentration, but when the concentration of the silane coupling agent is 1%, 5 hours or more, preferably 10 hours or more is suitable. Moreover, it can achieve also by hold
  • the first step layer By performing heat treatment after the first step, the first step layer can be strengthened and the corrosion resistance can be improved.
  • As the heat treatment a temperature of 100 to 200 ° C. and a time of 30 minutes to 2 hours are preferable, and a temperature of 100 to 150 ° C. and a time of 30 minutes to 1 hour are more preferable. Even in this case. The hydroxyl groups on the surface are not lost.
  • an intermediate layer having a long molecular main chain having an OH group on the surface can be formed by reacting hydroxyhexadecanoic acid with a metal substrate and further reacting BTSE thereon.
  • a fluorine-containing silane coupling layer is reacted with the surface formed in the first step.
  • the metal surface is an OH group, it is reacted with a fluorine-containing silane coupling agent.
  • Corrosion resistance can be improved by performing a heat treatment as a post-treatment after these two steps.
  • a heat treatment a temperature of 100 to 200 ° C. and a time of 30 minutes to 2 hours are preferable, and a temperature of 100 to 150 ° C. and a time of 30 minutes to 1 hour are more preferable.
  • fluorine-containing silane coupling agent examples include perfluorodecyltrimethoxysilane, perfluorodecyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluorooctyltrimethoxysilane, and perfluorooctyl. Examples include triethoxysilane, perfluorododecyltrimethoxysilane, perfluorododecyltriethoxysilane, perfluoropentyltriethoxysilane, and perfluoropentyltrimethoxysilane.
  • Aluminum and aluminum alloys After sputtering titanium oxide as an adhesion layer on a silicon wafer, the target aluminum or aluminum alloy was sputtered thereon to form a sample.
  • Iron Regarding iron, after polishing SS400 with emery paper, it was finished to a mirror surface by buffing. After polishing, the mixture was degreased using acetone in combination with ultrasonic waves.
  • Copper After sputtering TaN as an adhesion layer on a silicon wafer, the target copper or copper alloy was sputtered thereon to form a sample.
  • the corrosion resistance of Al and Al alloy was evaluated by the following two methods.
  • the processing temperature and test temperature are all 25 ° C.
  • the corrosion resistance of iron and nickel was evaluated by the following method.
  • the corrosion resistance of copper was evaluated by the following method.
  • Table 1 relates to (1) the method of reacting a silane coupling agent having alkoxy groups at both ends with a metal. Isopropyl alcohol was used as the solvent. The concentration of the reagent used in each step is 1.0 vol%. 10% water is also added for hydrolysis.
  • the polarization curve for untreated Al measured in 3.5% NaCl solution is shown in FIG.
  • the pitting corrosion potential when not treated is -665 mV (Ag / AgCl KCl saturated electrode standard).
  • the corrosion current density is 0.0072 ⁇ A / cm 2 . If the corrosion current density is lower than this, it means that the overall corrosion is suppressed, and if the pitting potential is +, the pitting corrosion is suppressed.
  • Comparative Example 5 is a case where BTSE treatment is performed once as the first step and then treatment with trifluoropropyltrimethoxysilane as the second step. Both the corrosion current density and the pitting potential are obtained from BTSE alone. The corrosion resistance is improved, but it is not sufficient. This is because the silane coupling layer formed in the first step, which is the intermediate layer formation, is thin. Even if the treatment time is extended to 24 h for the purpose of increasing the thickness (Comparative Example 6), there is almost no change in the corrosion resistance.
  • the BTSE process was repeated a plurality of times, that is, after the first layer was formed, it was attempted to stack by reacting the OH group outside the first layer with BTSE in the second process.
  • the corrosion current density was remarkably reduced, and the pitting potential was greatly shifted to the + side, and the corrosion resistance was greatly improved.
  • BTSPS and BTSPA are used for the first step and trifluoropropyltrimethoxysilane is used for the second step, the corrosion resistance is improved even if the number of treatments is one in the first step (Examples 1 and 2). I was able to.
  • FIG. 2 shows the SIM analysis result of the layer formed in the first step using BTSPS. Since the thickness of the layer is about 5.5 nm, it can be seen that the thickness of at least the intermediate layer needs to be 5 nm or more.
  • Table 2 shows the corrosion behavior of samples subjected to various treatments when immersed in salt water. Even when the two-stage treatment was not performed and when the two-stage treatment was performed, the corrosion resistance was poor when BTSE was used only once in the first-stage treatment, and the occurrence of corrosion was confirmed within a few days. On the other hand, when treated under the conditions shown in the examples, no corrosion was observed even after 20 days. Even under the conditions of Comparative Example 7, the improvement in corrosion resistance is not so remarkable. From this, it can be seen that a structure having an intermediate layer having a long main chain and having a silane coupling layer containing fluorine in the outer layer exhibits excellent corrosion resistance.
  • Example 10-12 Table 3 relates to (2) a method of reacting a metal with an organic substance having an OH group at one end and a group capable of adsorbing a metal at the opposite end. Isopropyl alcohol was used as the solvent. Comparative Example 8 is a case of treatment with mercaptoundecanol, but sufficient corrosion resistance cannot be obtained by the treatment of only this step. The same applies even if the treatment time is extended to 24 h (Comparative Example 9). However, as shown in Example 10-12, the corrosion resistance could be remarkably improved by forming the fluorine-containing silane coupling layer in the second step.
  • Mercaptoundecanol contains 11 C in the main chain portion, and this condition satisfies the above-mentioned condition that “at least 6 C is required”. Even when perfluorodecyltrimethoxysilane and perfluorododecyltriethoxysilane were used for the fluorine-containing silane coupling agent used in the second step, the same results as when treated with trifluoropropyltrimethoxysilane were obtained. (Example 11-12)
  • Table 4 relates to a method of reacting a metal with a compound having an OH group at one end and a COO group capable of adsorbing a metal at the opposite end.
  • Isopropyl alcohol was used as the solvent.
  • Comparative Example 10 is a case of treatment with hydroxyhexadecanoic acid, but sufficient corrosion resistance cannot be obtained by the treatment of only this step. The same applies even if the treatment time is extended to 24 h (Comparative Example 11). However, as shown in Example 10-12, the corrosion resistance could be remarkably improved by forming the fluorine-containing silane coupling layer in the second step.
  • Hydroxyhexadecanoic acid contains 16 C in the main chain portion, and this condition satisfies the above-mentioned condition that “at least 6 C are required”. Even when perfluorodecyltrimethoxysilane and perfluorododecyltriethoxysilane were used for the fluorine-containing silane coupling agent used in the second step, the same results as when treated with trifluoropropyltrimethoxysilane were obtained. (Example 14-15)
  • Table 5 relates to a method of reacting a metal with a silane coupling agent having an alkoxy group at one end and a group capable of adsorbing a metal at the opposite end.
  • Isopropyl alcohol was used as the solvent.
  • Comparative Example 12 shows a case where the first step was treated with mercaptopropyltrimethoxysilane once and the second step was treated with perfluorodecyltrimethoxysilane. In this case, sufficient corrosion resistance is not obtained, but this is because the thickness of the intermediate layer formed in the first step is not sufficient (three C) as described above.
  • the present embodiment relates to a processing method using multi-steps in which (Table 6), (2) and (1) are used in combination.
  • Isopropyl alcohol was used as the solvent. That is, this is a case where a fluorine-containing silane coupling layer is formed as the outermost layer after the intermediate layers are formed by laminating different substances in a plurality of steps of the first and second steps. Excellent corrosion resistance can be obtained.
  • the number of C in the intermediate layer is 18, which satisfies the above-described condition that “at least 6 C is required”. Further, by sandwiching the BTSE layer, a strong film is formed to form a bond with the side at the Si portion of BTSE.
  • Table 8 shows the corrosion behavior when samples subjected to various treatments were immersed in salt water. In the case of only the passivation treatment and the one treated with hydroxyhexadecanoic acid, corrosion resistance was poor and occurrence of corrosion was confirmed in several days. On the other hand, when treated under the conditions shown in Example 20-22, no corrosion was confirmed even after 20 days.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

An organic layer, in which 6 or more C atoms are linearly bonded, is formed on a corrosion-resistant metal. Methods for that include: (1) a method wherein a silane coupling agent having alkoxy groups at both ends is reacted with a metal; (2) a method wherein an organic material having an OH group at one end and a group that is adsorptive to a metal on the other end is reacted with a metal; (3) a method wherein a compound having an OH group at one end and a COO group, which is adsorptive to a metal, on the other end is reacted with a metal; and (4) a method wherein a silane coupling agent having an alkoxy group at one end and a group that is adsorptive to a metal on the other end is reacted with a metal. A fluorine-containing silane coupling layer is formed on the organic layer. Corrosion of a metal is prevented by forming a fluorine-containing silane coupling layer on an intermediate layer that is formed of an organic material having 6 or more carbon atoms (continuously or discontinuously) in a straight chain.

Description

フッ素含有シランカップリング剤を使用した表面改質金属部材Surface-modified metal member using fluorine-containing silane coupling agent
 本発明は、金属表面にフッ素を含有させる層を形成させることにより耐食性を向上させるのみならず、耐熱性、耐水性、摺動性、平滑性に優れた表面を有する、表面改質金属部材に関する。  The present invention relates to a surface-modified metal member that not only improves corrosion resistance by forming a layer containing fluorine on the metal surface, but also has a surface excellent in heat resistance, water resistance, slidability, and smoothness. .
 従来、耐腐食性の表面処理としては、シランカップリング剤を使用した防食法が知られており、特許文献1には、特定の樹脂化合物(A)と、第1~3アミノ基および第4アンモニウム塩基から選ばれる少なくとも1種のカチオン性官能基を有するカチオン性ウレタン樹脂(B)と、特定の反応性官能基を有する1種以上のシランカップリング剤(C)と、特定の酸化合物(E)とを含有し、カチオン性ウレタン樹脂(B)およびシランカップリング剤(C)の含有量が所定の範囲内である表面処理剤を用いて、耐食性に優れ、さらに耐指紋性、耐黒変性および塗装密着性に優れたノンクロム系表面処理鋼板を製造する方法が開示されている。
また、特許文献2には、フッ素を含有させたシランカップリングの加水分解反応および加水縮合反応により、フッ素化炭化水素基を有する撥水撥油性皮膜を母材表面に化学結合させて被覆する方法が開示されている。特許文献2の方法では、加水分解反応を塩酸およびアミン系触媒で促進させている。
さらに特許文献3においては、フッ素シランカップリング層と母材との間の結合力を増加させるために、フッ素含有シランカップリング層と母材との間に金属酸化物層を形成させる方法が開示されている。
種々の製品に使用されている金属材料には耐食性を向上させるのみならず、必要に応じて耐熱性、耐溶剤性、摺動性に優れた表面を提供することが求められている。しかしながら、これら従来の技術は、三価クロムキレート錯体やバナジウム化合物等を使用する方法では、自己修復性は低いもののクロメート皮膜に匹敵する程度の耐食性は得られるものの、数ミクロン程度の厚い皮膜が生成すること、処理環境が強い酸性領域であることから薄膜に適応した場合、処理工程の途中で対象とする金属が消失してしまうこと、また消失しなくとも表面に厚い生成物が堆積するために従来有する金属表面の機能が消失してしまう問題がある。
また、シランカップリング剤を使用した防食法では、耐食性、耐熱性、耐溶剤性、摺動性、とりわけ耐食性に関しては満足するものが得られていない。さらに有機官能性シランが金属表面にあまり良好に結合しないために、すすぎ等により容易に除去されるという問題がある。
Conventionally, as a corrosion-resistant surface treatment, an anticorrosion method using a silane coupling agent is known, and Patent Document 1 discloses a specific resin compound (A), a first to third amino group, and a fourth group. A cationic urethane resin (B) having at least one cationic functional group selected from ammonium bases, one or more silane coupling agents (C) having a specific reactive functional group, and a specific acid compound ( E) and a surface treatment agent containing a cationic urethane resin (B) and a silane coupling agent (C) within a predetermined range, and having excellent corrosion resistance, fingerprint resistance, and black resistance. A method for producing a non-chromium surface-treated steel sheet excellent in modification and paint adhesion is disclosed.
Further, Patent Document 2 discloses a method in which a water- and oil-repellent film having a fluorinated hydrocarbon group is chemically bonded to a surface of a base material by a hydrolysis reaction and a hydrolysis condensation reaction of a silane coupling containing fluorine. Is disclosed. In the method of Patent Document 2, the hydrolysis reaction is promoted with hydrochloric acid and an amine catalyst.
Further, Patent Document 3 discloses a method of forming a metal oxide layer between a fluorine-containing silane coupling layer and a base material in order to increase the bonding force between the fluorine silane coupling layer and the base material. Has been.
Metal materials used in various products are required not only to improve corrosion resistance, but also to provide surfaces with excellent heat resistance, solvent resistance, and slidability as needed. However, although these conventional techniques use a trivalent chromium chelate complex or vanadium compound, a self-healing property is low, but a corrosion resistance comparable to a chromate film is obtained, but a thick film of several microns is formed. When the thin film is applied to the thin film because the processing environment is a strong acidic region, the target metal disappears in the middle of the processing process, and even if it does not disappear, a thick product is deposited on the surface. There is a problem that the function of the conventional metal surface is lost.
In addition, the anticorrosion method using a silane coupling agent has not been satisfactory in terms of corrosion resistance, heat resistance, solvent resistance, slidability, and particularly corrosion resistance. Furthermore, since the organofunctional silane does not bind well to the metal surface, there is a problem that it is easily removed by rinsing or the like.
 表面に撥水性を持たせるために、フッ素層を形成させる方法ある。フッ素層を形成させるためにフッ素を含有させたシランカップリング剤が使用されている。一方でシランカップリング剤による防食作用は、主鎖が長いほうが耐食性に優れている。このことから主鎖の長いフッ素含有のシランカップリング剤で処理することにより、撥水性の作用が重畳するために耐食性を向上させることができると考えられる。しかし、このような化合物はアルコール等の溶媒には溶解せず、フッ素系の溶媒にしか溶解しない。フッ素系の溶媒を使用した場合、金属層との密着力が低下するという問題が生じる。
従って実用化に関しては多くの問題点を有している。このために、総合的に満足のいく表面処理剤および表面処理法が求められている。
There is a method of forming a fluorine layer in order to give the surface water repellency. In order to form the fluorine layer, a silane coupling agent containing fluorine is used. On the other hand, the anticorrosion action by the silane coupling agent is superior in corrosion resistance when the main chain is longer. From this, it is considered that the corrosion resistance can be improved by treating with a fluorine-containing silane coupling agent having a long main chain because the water-repellent action is superimposed. However, such a compound does not dissolve in a solvent such as alcohol, but dissolves only in a fluorine-based solvent. When a fluorine-based solvent is used, there arises a problem that the adhesion with the metal layer is reduced.
Therefore, it has many problems regarding practical use. Therefore, a surface treatment agent and a surface treatment method that are comprehensively satisfactory are demanded.
特開2007-291531号公報JP 2007-291531 A 特開平11-158648号公報Japanese Patent Laid-Open No. 11-158648 特開2012-35411号公報JP 2012-35411 A
 本発明の目的は、耐食性を向上させるのみならず、耐熱性、耐溶剤性、摺動性に優れた表面を有する表面改質金属部材を提供することにある。 An object of the present invention is to provide a surface-modified metal member having a surface excellent in heat resistance, solvent resistance, and slidability as well as improving corrosion resistance.
 表面改質金属部材は、金属基材上に、有機物からなる中間層と、フッ素を含有するシランカップリング層が順に積層され、前記中間層は、直鎖上に連続または非連続に少なくとも炭素原子が6個以上接続していることを特徴とする。 In the surface-modified metal member, an intermediate layer made of an organic material and a silane coupling layer containing fluorine are sequentially laminated on a metal substrate, and the intermediate layer includes at least carbon atoms continuously or discontinuously on a straight chain. 6 or more are connected.
 上記の表面改質金属部材の改質方法において、前記中間層が、下記(1)~(4)のいずれか、またはこれらの組合せで形成されることを特徴とする表面改質金属部材の改質方法。 In the method for modifying a surface modified metal member, the intermediate layer is formed of any one of the following (1) to (4) or a combination thereof: Quality method.
 (1)両末端がアルコキシ基 のシランカップリング剤を基体金属に反応させる方法、
 (2)片末端にOH基、その逆末端に金属と吸着できる基を有する有機物と基体金属とを反応させる方法、
 (3)片末端にOH基、その逆末端に基体金属と吸着できるCOO基を有する化合物と基体金属とを反応させる方法、
 (4)片末端がアルコキシ基、その逆末端に基体金属と吸着できる基を有するシランカップリング剤と基体金属とを反応させる方法
(1) A method of reacting a base metal with a silane coupling agent having alkoxy groups at both ends,
(2) A method of reacting an organic substance having an OH group at one end and a group capable of adsorbing with a metal at the opposite end with a base metal,
(3) a method of reacting a base metal with a compound having an OH group at one end and a COO group capable of adsorbing to the base metal at the opposite end;
(4) A method of reacting a base metal with a silane coupling agent having an alkoxy group at one end and a group capable of adsorbing to the base metal at the opposite end
 本発明によれば、金属材料に対して第1ステップとして分子主鎖の長い中間層を形成させるとともにその表面にOH基を導入、次いで第2ステップとしてフッ素含有のシランカップリング層を形成させることにより、撥水性を有する耐食性に優れた、しかも金属表面の機能をそのまま有する表面を与える。 According to the present invention, an intermediate layer having a long molecular main chain is formed as a first step on a metal material, an OH group is introduced on the surface thereof, and then a fluorine-containing silane coupling layer is formed as a second step. Thus, a surface having water repellency, excellent corrosion resistance, and a metal surface function as it is is provided.
未処理のAlに関して、3.5%NaCl溶液中で測定した分極曲線を示す図。The figure which shows the polarization curve measured in 3.5% NaCl solution regarding untreated Al. BTSPSを使用して第1ステップで形成させた層のSIMによる分析結果を示す図。The figure which shows the analysis result by SIM of the layer formed at the 1st step using BTSPS.
 金属表面をコーティングする物質として必要な特性は、下記に挙げられる。
(1)対象とする金属またはそれら合金の腐食抑制作用(全面腐食)を示すこと。さらに塩化物環境中等における耐孔食性が高いことが要求される。さらに表面が撥水機能を有することが耐食性を向上させるために要因となる。
(2)欠陥ができるだけ少なく、平滑で緻密な膜が構成されること、
(3)金属表面の機能をそのまま有すること。例えば、ハードディスクを例にすれば磁気ヘッドと磁気記録媒体の磁気的距離の増加による磁気記録特性の劣化を引き起こさない構造を有すること。センサーを例にするのであればセンシング機能をそのまま有することが挙げられる。
Properties required as a material for coating a metal surface are listed below.
(1) Show the corrosion inhibiting action (overall corrosion) of the target metal or their alloys. Furthermore, high pitting corrosion resistance in a chloride environment is required. Furthermore, the surface having a water repellent function is a factor for improving the corrosion resistance.
(2) A smooth and dense film is formed with as few defects as possible,
(3) It has the function of the metal surface as it is. For example, taking a hard disk as an example, it has a structure that does not cause deterioration of magnetic recording characteristics due to an increase in the magnetic distance between the magnetic head and the magnetic recording medium. If a sensor is taken as an example, it can be mentioned that it has a sensing function as it is.
 腐食環境としては基本的には大気系または水系であるが、周辺物質や大気汚染物質等の分解・溶解による酸性化またはアルカリ化、塩化物の混入等の要素があることから、幅広いpH環境や塩水環境での耐食性が要求される。 The corrosive environment is basically the air system or water system, but there are factors such as acidification or alkalinization due to decomposition and dissolution of surrounding substances and air pollutants, contamination of chloride, etc. Corrosion resistance in a saltwater environment is required.
 (1)に関しては、主鎖の長いフッ素を含有するシランカップリング層を形成させることにより達成させることができる。前述したように主鎖の長いフッ素を含有するシランカップリングはフッ素系の溶媒にしか溶解せずこれを使用した場合は、金属との密着性が低下するという問題がある。一方で、主鎖の短いフッ素含有のシランカップリング剤を使用した場合は、アルコール等の有機溶媒には溶解し、金属との密着性も得られるが耐食性が十分でないという問題が生じる。そこで金属上に防食性の高くなる主鎖の長い中間層を形成させ、その上にフッ素を含有するシランカップリング剤を反応させることにより鎖の長いフッ素を含有するシランカップリング層を形成させることができた。 (1) can be achieved by forming a silane coupling layer containing fluorine having a long main chain. As described above, a silane coupling containing fluorine having a long main chain is soluble only in a fluorine-based solvent, and when this is used, there is a problem that adhesion to a metal is lowered. On the other hand, when a fluorine-containing silane coupling agent having a short main chain is used, it dissolves in an organic solvent such as alcohol, and adhesion with a metal is obtained, but there is a problem that corrosion resistance is not sufficient. Therefore, an intermediate layer having a long main chain with high anticorrosion properties is formed on the metal, and a silane coupling layer containing fluorine having a long chain is formed on the metal by reacting with a silane coupling agent containing fluorine. I was able to.
 (2)に関しては、中間層の膜の欠陥ができるだけ少なく、平滑で緻密な膜であることが必要となる。硫黄を含むシランカップリング剤として、たとえばビストリエトキシシルプロピルテトラスルフィドを使用した場合、ビストリエトキシシルプロピルテトラスルフィドはアルミニウムまたはアルミニウム合金と強い配位結合を形成すると共に、熱処理を施すことによりビストリエトキシシルプロピルテトラスルフィド分子同士も共有結合を形成して、金属表面に強固なビストリエトキシシルプロピルテトラスルフィド分子膜を形成するために、極めて緻密な欠陥のない、密着性に優れた皮膜が形成される。 Regarding (2), it is necessary that the film of the intermediate layer has as few defects as possible and should be a smooth and dense film. For example, when bistriethoxysilpropyl tetrasulfide is used as a silane coupling agent containing sulfur, bistriethoxysilpropyl tetrasulfide forms a strong coordination bond with aluminum or an aluminum alloy, and is heat treated to give bistriethoxysil Since propyltetrasulfide molecules also form a covalent bond to form a strong bistriethoxysilpropyltetrasulfide molecular film on the metal surface, a film having excellent adhesion without a very dense defect is formed.
 (3)に関しても(2)と同様で、ビストリエトキシシルプロピルテトラスルフィドは分子オーダで配列することから非常に平滑でかつ機能性を有する特性をそのまま維持する表面を与える状態で、腐食を高度に抑制させることが可能となる。
 
As for (3), as in (2), bistriethoxysilpropyl tetrasulfide is arranged in the molecular order, so that it has a very smooth and functional surface while maintaining a high level of corrosion. It can be suppressed.
 第1ステップとして分子主鎖の長い中間層を形成させ(表面にOH基が導入されることが必要)、次いで第2ステップとしてフッ素含有のシランカップリング層を形成させる。それぞれのステップに関して、詳細を以下に記述する。
[第1ステップ]
 表面にOH基を有する分子主鎖の長い中間層を形成させる方法としては、以下の4つの方法がある。
(1)両末端がアルコキシ基 のシランカップリング剤を金属に反応させる方法。
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
 これは、通常のシランカップリング層を形成させる反応である。Si とOHまたはSiとOHの間には(Z)基が存在し、これにより分子主鎖の長さを決定させている。ZはCH2が複数つながったものであり、そのなかにS基やN基が含有していても良い。ビストリエトキシエタン(BTSE),トリメトキシシルプロピルアミン(BTSPA)やビストリエトキシシルプロピルテトラスルフィド(BTSPS)などがあげられる。
As a first step, an intermediate layer having a long molecular main chain is formed (an OH group needs to be introduced on the surface), and then, as a second step, a fluorine-containing silane coupling layer is formed. Details are given below for each step.
[First step]
There are the following four methods for forming an intermediate layer having a long molecular main chain having an OH group on the surface.
(1) A method in which a silane coupling agent having alkoxy groups at both ends is reacted with a metal.
Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002
This is a reaction for forming a normal silane coupling layer. There is a (Z) group between Si and OH or Si and OH, which determines the length of the molecular main chain. Z is a combination of a plurality of CH 2 , and may contain an S group or an N group. Examples thereof include bistriethoxyethane (BTSE), trimethoxysilpropylamine (BTSPA), and bistriethoxysilpropyl tetrasulfide (BTSPS).
 具体的には、これらのタイプは、例えばSを直鎖に含む場合は2官能性ポリサルファシランであり、(OR)3-Si-Z-Si-(OR)3の構造で示され、それぞれのRはアルキルまたはアセチル基で、Zは-SXまたは-Q-SX-Q-(それぞれのQは脂肪族基または芳香族基で、xは2~9の整数)であることを特徴とする。Rは、エチル、メチル、プロピル、イソプロピル、ブチル、イソブチル、S-ブチル、t-ブチルおよびアセチルで代表される。QはC1~C6のアルキル(直鎖または枝分かれ)、C1~C6のアルケニル(直鎖または枝分かれ)、1または複数のアミノ基で置換されたC1~C6のアルキル、1または複数のアミノ基で置換されたC1~C6のアルケニル、ベンジル、およびC1~C6のアルキルで置換されたベンジルで代表される。使用するシランの中で好ましいものの一つには、2~9の硫黄原子を有するビストリエトキシシルプロピルスルフィド(複数)であり、特に硫黄が4つのビストリエトキシシルプロピルテトラスルフィドが好ましい。また、それ以外にもビス(3-トリエトキシシルプロピル)ジスルフィド、ビス(2-トリエトキシシルエチル)テトラスルフィド、イス(4-トリエトキシシルブチル)ジスルフィド、ビス(3-トリメトキシシルプロピル)テトラスルフィド、ビス(2-トリメトキシシルエチル)ジスルフィドなどが好ましいものとして挙げられる。 Specifically, these types are bifunctional polysulfursilanes, for example when S is included in a straight chain, and are represented by the structure of (OR) 3 —Si—Z—Si— (OR) 3 , respectively. R is an alkyl or acetyl group, Z is -S X or -QS X -Q- (wherein each Q is an aliphatic group or an aromatic group, x is an integer of 2 to 9) . R is represented by ethyl, methyl, propyl, isopropyl, butyl, isobutyl, S-butyl, t-butyl and acetyl. Q is C1-C6 alkyl (straight or branched), C1-C6 alkenyl (straight or branched), C1-C6 alkyl substituted with one or more amino groups, substituted with one or more amino groups Represented by C1-C6 alkenyl, benzyl, and benzyl substituted with C1-C6 alkyl. One of the preferred silanes used is bistriethoxysilpropyl sulfide (s) having 2 to 9 sulfur atoms, particularly bistriethoxysilpropyl tetrasulfide having 4 sulfur. In addition, bis (3-triethoxysylpropyl) disulfide, bis (2-triethoxysylethyl) tetrasulfide, chair (4-triethoxysylbutyl) disulfide, bis (3-trimethoxysylpropyl) tetrasulfide Preferred examples include sulfide and bis (2-trimethoxysilethyl) disulfide.
 この工程では、複数回実行することにより、中間層の分子主鎖を長くすることもでき、しかもその表面にOH基を導入することができる。ここで使用する溶媒としては、いくつかのシランカップリング剤の水への溶解性は制限されるために、基本的にはシランカップリング剤の溶解性を向上させるためには、溶媒として1ないし2つ以上のアルコール等の溶媒が使用される。アルコールはさらに処理溶液の安定性並びに金属基材の湿潤性をも向上させる。シランカップリング剤は、基本的には加水分解させる必要があるために水との親和性が高い溶剤が好ましい。具体的には、メタノール、エタノール、プロパノール、ブタノールおよびそれらの異性体、アセトン、メチルエチルケトン、ジエチルケトン等のケトン類、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類、エチレングリコール、プリピレングリコール、ジエチレングリコール等のグリコール類等が使用される。 In this step, the molecular main chain of the intermediate layer can be lengthened by performing it a plurality of times, and OH groups can be introduced on the surface thereof. As the solvent used here, since the solubility of some silane coupling agents in water is limited, basically, in order to improve the solubility of the silane coupling agent, the solvent is 1 to Two or more solvents such as alcohols are used. The alcohol further improves the stability of the treatment solution as well as the wettability of the metal substrate. Since the silane coupling agent basically needs to be hydrolyzed, a solvent having high affinity with water is preferable. Specifically, methanol, ethanol, propanol, butanol and isomers thereof, ketones such as acetone, methyl ethyl ketone and diethyl ketone, ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and tetrahydrofuran, ethylene glycol and propylene glycol In addition, glycols such as diethylene glycol are used.
 上述のシランカップリング剤は、少なくとも部分的に、好ましくは完全に加水分解される。これらシランカップリング剤の濃度は、約0.05~10重量%、好ましくは0.2~5重量%である。シランカップリング剤を加水分解させる必要があるために水を添加する必要がある。使用する水の量は、処理液全体に対して数%~20%程度の範囲が適している。 The silane coupling agent described above is at least partially, preferably completely hydrolyzed. The concentration of these silane coupling agents is about 0.05 to 10% by weight, preferably 0.2 to 5% by weight. Since it is necessary to hydrolyze the silane coupling agent, it is necessary to add water. The amount of water to be used is suitably in the range of several% to 20% with respect to the entire processing solution.
 この処理液は、浸漬することを基本とするがスプレー、ロール被覆でも適用することができる。 浸漬時間は、濃度にも依存するがシランカップリング剤の濃度が1%の場合、5時間以上、好ましくは10時間以上が適している。また、浸漬時間を短縮させる観点から、定電位に一定時間保持することによっても達成することができる。 This treatment liquid is basically immersed, but can also be applied by spraying or roll coating. The soaking time depends on the concentration, but when the concentration of the silane coupling agent is 1%, 5 hours or more, preferably 10 hours or more is suitable. Moreover, it can achieve also by hold | maintaining to constant potential for a fixed time from a viewpoint of shortening immersion time.
 加水分解反応を向上させるためには、好ましくはpHを7以下に維持するのが良く、できれば2~6の間に維持するのが好ましい。pH調整剤としては、水酸化カリウム等の水酸化物、アンモニア、酢酸、ギ酸、硫酸、塩酸、硝酸等が適している。本発明の処理液の通常のpH(代表例である1%ビストリエトキシシルプロピルテトラスルフィドのエタノール溶液の場合 約pH5.2)が完全な加水分解可能であれば、特にpHの調整の必要は無い。シランカップリング処理後は、エアーを吹付けることにより乾燥させる。または、室温~50℃の温度範囲に維持することにより乾燥させてもよい。

(2)片末端にOH基、その逆末端に金属と吸着できる基を有する有機物と金属とを反応させる方法
 M + HS(CH2)11OH → AlS(CH211OH                              (3)式

 メルカプトウンデカンノールのように、エチレン鎖の片末端に金属と結合することができる基を、またもう一方の末端にはOH基を有する化合物と金属とを反応させることにより、(3)式に示すように表面にOH基を有する分子主鎖の長い中間層を形成させることができる

(3)片末端にOH基、その逆末端に金属と吸着できるCOO基を有する化合物と金属とを反応させる方法
  M + HO(CH2)15COO- → MOOOC(CH215OH + OH-            (4)式
 
 ヒドロキシヘキサデカン酸のように、エチレン鎖の片末端に金属と結合することができるCOO基をまたもう一方の末端にはOH基を有する化合物と金属とを反応させることにより、(4)式に示すように表面にOH基を有する分子主鎖の長い中間層を形成させることができる。

(4)片末端がアルコキシ基、その逆末端に金属と吸着できる基を有するシランカップリング剤と金属とを反応させる方法
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 イソシアネート基、アミノ基やメルカプト基は、金属と結合することができることから、片末端がアルコキシ基、その逆末端に金属と吸着できるこれら基を有するシランカップリング剤を金属と反応させることにより表面にOH基を有する分子主鎖の長い中間層を形成させることができる(5式、6式はイソシアネート基の場合を示す)。具体的には、これらのタイプはX-(CH2)n-Si-R3であり、XはSH、NH2,またはNCOであり、また、それぞれ3つのRは独立にアルコキシ基、アルキル基および水素からなる群から選択され、nは0~10の整数である。使用するこのタイプのシランとしては、例えばSH基を有する場合は3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、メルカプトエチルトリエトキシシランで代表される。ここで代表されるシランカップリング剤の主鎖は、プロピルと短いために、複数回処理を重ねて主査を長くする必要がある。
In order to improve the hydrolysis reaction, it is preferable to maintain the pH at 7 or less, and preferably between 2 and 6 if possible. As the pH adjuster, hydroxides such as potassium hydroxide, ammonia, acetic acid, formic acid, sulfuric acid, hydrochloric acid, nitric acid and the like are suitable. If the normal pH of the treatment solution of the present invention (typically 1% bistriethoxysilpropyl tetrasulfide in ethanol solution of about pH 5.2) can be completely hydrolyzed, there is no need for pH adjustment. . After the silane coupling treatment, it is dried by blowing air. Alternatively, it may be dried by maintaining it in a temperature range of room temperature to 50 ° C.

(2) Method of reacting a metal with an organic substance having an OH group at one end and a group capable of adsorbing to the metal at the opposite end M + HS (CH 2 ) 11 OH → AlS (CH 2 ) 11 OH

As shown in Mercaptoundecanol, a group capable of binding to a metal at one end of an ethylene chain and a compound having an OH group at the other end are reacted with a metal, as shown in formula (3) So that an intermediate layer having a long molecular main chain having an OH group on the surface can be formed.

(3) one terminal OH group, the process M + HO (CH 2) reacting a metal compound having a COO group capable of adsorbing to the metal on the opposite end 15 COO - → MOOOC (CH 2 ) 15 OH + OH - (4) Formula
Like hydroxyhexadecanoic acid, a compound having a COO group capable of binding to a metal at one end of an ethylene chain and an OH group at the other end is reacted with a metal to obtain the formula (4) Thus, an intermediate layer having a long molecular main chain having an OH group on the surface can be formed.

(4) A method of reacting a metal with a silane coupling agent having an alkoxy group at one end and a group capable of adsorbing a metal at the opposite end.
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
Since isocyanate groups, amino groups, and mercapto groups can be bonded to metals, one end is an alkoxy group, and a silane coupling agent having these groups capable of adsorbing to the metal at the opposite end is reacted with the metal to the surface. An intermediate layer having an OH group and a long molecular main chain can be formed (formulas 5 and 6 indicate the case of an isocyanate group). Specifically, these types are X— (CH 2) n —Si—R 3, where X is SH, NH 2 , or NCO, and each of the three R is independently an alkoxy group, an alkyl group, and a hydrogen N is an integer from 0 to 10. As this type of silane to be used, for example, when it has an SH group, it is represented by 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and mercaptoethyltriethoxysilane. Since the main chain of the silane coupling agent represented here is short with propyl, it is necessary to repeat the treatment a plurality of times to make the main length longer.
 溶媒に関しては、ここで使用する溶媒に関しては、いくつかのシランカップリング剤の水への溶解性は制限されるために、基本的にはシランカップリング剤の溶解性を向上させるためには、溶媒として1ないし2つ以上のアルコール等の溶媒が使用される。アルコールはさらに処理溶液の安定性並びに金属基材の湿潤性をも向上させる。シランカップリング剤は、基本的には加水分解させる必要があるために水との親和性が高い溶剤が好ましい。具体的には、メタノール、エタノール、プロパノール、ブタノールおよびそれらの異性体、アセトン、メチルエチルケトン、ジエチルケトン等のケトン類、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類、エチレングリコール、プリピレングリコール、ジエチレングリコール等のグリコール類等が使用される。 Regarding the solvent, since the solubility of some silane coupling agents in water is limited with respect to the solvent used here, basically, in order to improve the solubility of the silane coupling agent, A solvent such as one or two or more alcohols is used as the solvent. The alcohol further improves the stability of the treatment solution as well as the wettability of the metal substrate. Since the silane coupling agent basically needs to be hydrolyzed, a solvent having high affinity with water is preferable. Specifically, methanol, ethanol, propanol, butanol and isomers thereof, ketones such as acetone, methyl ethyl ketone and diethyl ketone, ethers such as dimethyl ether, ethyl methyl ether, diethyl ether and tetrahydrofuran, ethylene glycol and propylene glycol In addition, glycols such as diethylene glycol are used.
 上述のシランカップリング剤は、すくなくとも部分的に、好ましくは完全に加水分解される。これらシランカップリング剤の濃度は、約0.05~10重量%、より好ましくは0.2~5重量%である。シランカップリング剤を加水分解させる必要があるために水を添加する必要がある。使用する水の量は、処理液全体に対して数%~20%程度の範囲が適している。 The above silane coupling agent is at least partially, preferably completely hydrolyzed. The concentration of these silane coupling agents is about 0.05 to 10% by weight, more preferably 0.2 to 5% by weight. Since it is necessary to hydrolyze the silane coupling agent, it is necessary to add water. The amount of water to be used is suitably in the range of several% to 20% with respect to the entire processing solution.
 この処理液は、浸漬することを基本とするがスプレー、ロール被覆でも適用することができる。 浸漬時間は、濃度にも依存するがシランカップリング剤の濃度が1%の場合、5時間以上、好ましくは10時間以上が適している。また浸漬時間を短縮させる観点から、定電位に一定時間保持することによっても達成することができる。 This treatment liquid is basically immersed, but can also be applied by spraying or roll coating. The soaking time depends on the concentration, but when the concentration of the silane coupling agent is 1%, 5 hours or more, preferably 10 hours or more is suitable. Moreover, it can achieve also by hold | maintaining to constant potential for a fixed time from a viewpoint of shortening immersion time.
 第一ステップの後に熱処理を施すことにより、第一ステップの層を強固にし、耐食性を向上させることができる。熱処理としては、温度100~200℃、時間30分~2時間が好ましく、温度100~150℃、時間30分~1時間がより好ましい。この場合でも。表面の水酸基は失われない。 By performing heat treatment after the first step, the first step layer can be strengthened and the corrosion resistance can be improved. As the heat treatment, a temperature of 100 to 200 ° C. and a time of 30 minutes to 2 hours are preferable, and a temperature of 100 to 150 ° C. and a time of 30 minutes to 1 hour are more preferable. Even in this case. The hydroxyl groups on the surface are not lost.
 第1ステップにおいては、上記に上げた(1)-(4)の処理を組み合わせても同様の結果を得ることができる。たとえば、金属基板にヒドロキシヘキサデカン酸を反応させ、さらにその上にBTSEを反応させることにより表面にOH基を有する分子主鎖の長い中間層を形成させることができる。

[第2ステップ]
 このステップでは、第1ステップで形成させた表面にフッ素含有のシランカプリング層を反応させる工程である。第1ステップにおいて、金属表面はOH基になっているので、それとフッ素含有のシランカップリング剤を反応させる。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
 このような最低2段のステップにより分子主鎖の長表面にフッ素基が導入された有機物層を形成させることができる。Si基の部分で、横に位置する分子間結合するためにさらに皮膜を強固にすることが可能となる。これらの2段ステップの処理後に、後処理として熱処理を施すことにより耐食性を向上させることができる。熱処理としては、温度100~200℃、時間30分~2時間が好ましく、温度100~150℃、時間30分~1時間がより好ましい。
In the first step, similar results can be obtained by combining the processes (1) to (4) described above. For example, an intermediate layer having a long molecular main chain having an OH group on the surface can be formed by reacting hydroxyhexadecanoic acid with a metal substrate and further reacting BTSE thereon.

[Second step]
In this step, a fluorine-containing silane coupling layer is reacted with the surface formed in the first step. In the first step, since the metal surface is an OH group, it is reacted with a fluorine-containing silane coupling agent.
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
By such a minimum of two steps, an organic layer in which fluorine groups are introduced on the long surface of the molecular main chain can be formed. It becomes possible to further strengthen the film in order to bond the intermolecular molecules located on the side of the Si group. Corrosion resistance can be improved by performing a heat treatment as a post-treatment after these two steps. As the heat treatment, a temperature of 100 to 200 ° C. and a time of 30 minutes to 2 hours are preferable, and a temperature of 100 to 150 ° C. and a time of 30 minutes to 1 hour are more preferable.
 使用するフッ素含有シランカンプリング剤としては、たとえばパーフルオロデシルトリメトキシシラン、パーフルオロデシルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロオクチルトリメトキシシラン、パーフルオロオクチルトリエトキシシラン、パーフルオロドデシルトリメトキシシラン、パーフルオロドデシルトリエトキシシラン、パーフルオロペンチルトリエトキシシラン、パーフルオロペンチルトリメトキシシランなどが挙げられる。
Examples of the fluorine-containing silane coupling agent used include perfluorodecyltrimethoxysilane, perfluorodecyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluorooctyltrimethoxysilane, and perfluorooctyl. Examples include triethoxysilane, perfluorododecyltrimethoxysilane, perfluorododecyltriethoxysilane, perfluoropentyltriethoxysilane, and perfluoropentyltrimethoxysilane.
 上記の処理を施した試料の腐食評価として以下のことを実施した。試料としては、特に記述が無いものに関しては以下のものを試料とした。
(1) アルミニウムおよびアルミニウム合金 : 
 シリコンウエハ上に密着層として酸化チタンをスパッタした後に、その上に対象とするアルミニウムまたはアルミニウム合金をスパッタし、成膜したものを試料とした。
(2)鉄:
 鉄に関しては、SS400をエメリー紙で研磨した後、バフ研磨により鏡面に仕上げた。研磨後にアセトンを用いて超音波を併用させて脱脂した。
(3)銅
 シリコンウエハ上に密着層としてTaNをスパッタした後に、その上に対象とする銅または銅合金をスパッタし、成膜したものを試料とした。
The following was performed as the corrosion evaluation of the sample subjected to the above treatment. As samples, the following samples were used unless otherwise specified.
(1) Aluminum and aluminum alloys:
After sputtering titanium oxide as an adhesion layer on a silicon wafer, the target aluminum or aluminum alloy was sputtered thereon to form a sample.
(2) Iron:
Regarding iron, after polishing SS400 with emery paper, it was finished to a mirror surface by buffing. After polishing, the mixture was degreased using acetone in combination with ultrasonic waves.
(3) Copper After sputtering TaN as an adhesion layer on a silicon wafer, the target copper or copper alloy was sputtered thereon to form a sample.
 AlおよびAl合金の耐食性の評価は、以下の2つの方法を評価した。
(1)電気化学試験:2段処理および熱処理を施したサンプルを1cm2残し、他の部分をシールした。それを3.5%のNaCl水溶液に浸漬した。10分間浸漬し、電位が安定した時点で、浸漬電位から-100mVの低い電位を基準とし、アノード方向に30mV/minのスキャン速度で電位を走査させ、電流を測定した。測定後、ターフェルの関係式を使用して腐食電流密度を求めた。また電流が急激に立ち上がる電位を孔食電位とし、その電位が-500mV以上の場合を耐孔食性良好とした。この電位が貴になればなるほど、耐孔食性は向上する。
(2)浸漬試験
 シランカップリング処理および熱処理を施したサンプルを、3.5%NaCl溶液中に浸漬した。光学顕微鏡により孔食の発生の有無を観察した。変化ないものを○、孔食の発生は無いものの変色域があるものを△、孔食発生が確認されたものを×で表現した。
The corrosion resistance of Al and Al alloy was evaluated by the following two methods.
(1) Electrochemical test: 1 cm 2 of the sample subjected to the two-stage treatment and heat treatment was left, and the other portions were sealed. It was immersed in a 3.5% NaCl aqueous solution. After dipping for 10 minutes, when the potential was stabilized, the potential was scanned at a scanning rate of 30 mV / min in the anode direction with reference to a potential of -100 mV lower than the immersion potential, and the current was measured. After the measurement, the corrosion current density was determined using Tafel's relational expression. The potential at which the current abruptly rises was defined as the pitting corrosion potential. When the potential was -500 mV or more, the pitting corrosion resistance was good. The more noble this potential, the better the pitting corrosion resistance.
(2) Immersion test A sample subjected to silane coupling treatment and heat treatment was immersed in a 3.5% NaCl solution. The presence or absence of pitting corrosion was observed with an optical microscope. Those that did not change were represented by ◯, those that did not generate pitting corrosion but those that had a discoloration range were represented by Δ, and those in which pitting corrosion was confirmed were represented by ×.
 以下、本発明を適用した具体的な実施例について、表を参照して説明する。特に記述しないが、処理温度、試験温度は全て25℃である。 鉄およびニッケルの耐食性の評価は以下の方法で評価した。
(1)電気化学試験:2段処理および熱処理を施したサンプルを1cm2残し、他の部分をシールした。それを0.1Mの塩素イオンを含むホウ酸塩緩衝水溶液に浸漬した。10分間浸漬し、電位が安定した時点で、浸漬電位から-100mVの低い電位を基準とし、アノード方向に30mV/minのスキャン速度で電位を走査させ、電流を測定した。測定後、ターフェルの関係式を使用して腐食電流密度を求めた。
(2)浸漬試験:2段処理および熱処理を施したサンプルを、3.5%NaCl溶液中に浸漬した。光学顕微鏡により孔食の発生の有無を観察した。変化ないものを○、孔食の発生は無いものの変色域があるものを△、孔食発生が確認されたものを×で表現した。
Hereinafter, specific examples to which the present invention is applied will be described with reference to tables. Although not specifically described, the processing temperature and test temperature are all 25 ° C. The corrosion resistance of iron and nickel was evaluated by the following method.
(1) Electrochemical test: 1 cm 2 of the sample subjected to the two-stage treatment and heat treatment was left, and the other portions were sealed. It was immersed in an aqueous borate buffer solution containing 0.1M chloride ions. When immersed for 10 minutes and the potential was stabilized, the potential was scanned at a scanning rate of 30 mV / min in the anode direction with reference to a potential of -100 mV lower than the immersion potential, and the current was measured. After the measurement, the corrosion current density was determined using Tafel's relational expression.
(2) Immersion test: A sample subjected to two-stage treatment and heat treatment was immersed in a 3.5% NaCl solution. The presence or absence of pitting corrosion was observed with an optical microscope. Those that did not change were represented by ◯, those that did not generate pitting corrosion but those that had a discoloration range were represented by Δ, and those in which pitting corrosion was confirmed were represented by ×.
 銅の耐食性の評価は以下の方法で評価した。
(1)電気化学試験:2段処理および熱処理を施したサンプルを1cm2残し、他の部分をシールした。それを0.5M Na2SO4水溶液に浸漬した。10分間浸漬し、電位が安定した時点で、浸漬電位から-100mVの低い電位を基準とし、アノード方向に30mV/minのスキャン速度で電位を走査させ、電流を測定した。測定後、ターフェルの関係式を使用して腐食電流密度を求めた。
The corrosion resistance of copper was evaluated by the following method.
(1) Electrochemical test: 1 cm 2 of the sample subjected to the two-stage treatment and heat treatment was left, and the other portions were sealed. It was immersed in 0.5M Na 2 SO 4 aqueous solution. When immersed for 10 minutes and the potential was stabilized, the potential was scanned at a scanning rate of 30 mV / min in the anode direction with reference to a potential of -100 mV lower than the immersion potential, and the current was measured. After the measurement, the corrosion current density was determined using Tafel's relational expression.
 以下、本発明を適用した具体的な実施例について、表を参照して説明する。特に記述しないが、処理温度、試験温度は全て25℃である。
(Al材に関して)
 [比較例1-6 実施例1-9]
 表1は、前述の(1)両末端がアルコキシ基 のシランカップリング剤を金属に反応させる方法に関するものである。溶剤にはイソプロピルアルコールを使用した。 各ステップで使用した試薬の濃度は1.0vol%である。加水分解用に10%の水も同時に添加している。
Hereinafter, specific examples to which the present invention is applied will be described with reference to tables. Although not specifically described, the processing temperature and test temperature are all 25 ° C.
(Regarding Al material)
[Comparative Example 1-6 Example 1-9]
Table 1 relates to (1) the method of reacting a silane coupling agent having alkoxy groups at both ends with a metal. Isopropyl alcohol was used as the solvent. The concentration of the reagent used in each step is 1.0 vol%. 10% water is also added for hydrolysis.
 未処理のAlに関しての、3.5%NaCl溶液中で測定した分極曲線を図1に示した。未処理の場合の孔食電位は、-665mV(Ag/AgCl  KCl飽和電極基準)である。また腐食電流密度は、0.0072μA/cm2である。腐食電流密度がこれより小さければ全面腐食が抑制されること、孔食電位がこれより+であれば孔食が抑制されることを意味する。 The polarization curve for untreated Al measured in 3.5% NaCl solution is shown in FIG. The pitting corrosion potential when not treated is -665 mV (Ag / AgCl KCl saturated electrode standard). The corrosion current density is 0.0072 μA / cm 2 . If the corrosion current density is lower than this, it means that the overall corrosion is suppressed, and if the pitting potential is +, the pitting corrosion is suppressed.
 第1ステップおよび第2ステップの2段処理を施した。第1ステップと第2ステップの間には100℃ 1時間の熱処理を施した。また各ステップ内において複数回処理した場合もその都度熱処理を施した。2段処理を施した試料の3.5%NaCl溶液中における分極曲線を測定し、それより腐食電流密度および孔食電位を算出した。その結果を表1に示す。 ¡Two steps of the first step and the second step were performed. Heat treatment was performed at 100 ° C. for 1 hour between the first step and the second step. Also, heat treatment was performed each time when the treatment was performed a plurality of times in each step. The polarization curve in a 3.5% NaCl solution of the sample subjected to the two-stage treatment was measured, and the corrosion current density and the pitting corrosion potential were calculated therefrom. The results are shown in Table 1.
 比較例2-4に示すように、BTSPS, BTSPAおよびBTSEをそれぞれ単独で処理した場合、腐食電流密度は若干低下するものの、孔食電位はほとんど変化しないことから、耐食性に大きな変化は見られない。比較例5は、第1ステップとしてBTSE処理を1回施したのちに、第2ステップとしてトリフルオロプロピルトリメトキシシランで処理を施した場合であるが、腐食電流密度および孔食電位ともにBTSE単独の場合よりは、対腐食性が向上しているものの十分でない。これは、中間層形成である第1ステップにおいて形成されるシランカップリング層の厚さが薄いためである。厚くすることを目的に、処理時間を24hに延長させても(比較例6)、耐食性にほとんど変化は見られない。そこで、BTSE処理を複数回重ねることにより、すなわち1層目を形成させた後に、2回目の処理で1層目の外側にあるOH基とBTSEとを反応させることにより積層させることを試みた。その結果、実施例3に示すように3回試みた結果、腐食電流密度は著しく低下するとともに、孔食電位は大きく+側にシフトし耐腐食性が大きく改善した。第1ステップにBTSPSおよびBTSPAを使用し、第2ステップにトリフルオロプロピルトリメトキシシランで処理を施した場合は、第1ステップに処理回数が1回でも(実施例1および2)、耐食性を向上させることができた。第2ステップで使用するフッ素含有シランカップリング剤にパーフルオロデシルトリメトキシシランおよびパーフルオロドデシルトリエトキシシランを使用した場合でも、トリフルオロプロピルトリメトキシシランで処理した場合と同様の結果が得られた(実施例4-9)。このことから中間層における(第1ステップで形成させる層)直鎖において、少なくともCの個数が6個以上は必要であることが分かる。 As shown in Comparative Example 2-4, when BTSPS, BTSPA, and BTSE were each treated alone, the corrosion current density decreased slightly, but the pitting potential remained almost unchanged, so there was no significant change in corrosion resistance. . Comparative Example 5 is a case where BTSE treatment is performed once as the first step and then treatment with trifluoropropyltrimethoxysilane as the second step. Both the corrosion current density and the pitting potential are obtained from BTSE alone. The corrosion resistance is improved, but it is not sufficient. This is because the silane coupling layer formed in the first step, which is the intermediate layer formation, is thin. Even if the treatment time is extended to 24 h for the purpose of increasing the thickness (Comparative Example 6), there is almost no change in the corrosion resistance. Therefore, the BTSE process was repeated a plurality of times, that is, after the first layer was formed, it was attempted to stack by reacting the OH group outside the first layer with BTSE in the second process. As a result, as shown in Example 3, as a result of three attempts, the corrosion current density was remarkably reduced, and the pitting potential was greatly shifted to the + side, and the corrosion resistance was greatly improved. When BTSPS and BTSPA are used for the first step and trifluoropropyltrimethoxysilane is used for the second step, the corrosion resistance is improved even if the number of treatments is one in the first step (Examples 1 and 2). I was able to. Even when perfluorodecyltrimethoxysilane and perfluorododecyltriethoxysilane were used for the fluorine-containing silane coupling agent used in the second step, the same results as when treated with trifluoropropyltrimethoxysilane were obtained. (Example 4-9). From this, it can be understood that at least 6 or more C atoms are necessary in the straight chain in the intermediate layer (layer formed in the first step).
 しかし、第2ステップでフッ素含有シランカプリング剤の代わりにアミノプロピルトリメトキシシランを使用した場合、実施例7と比較すると明らかに耐食性が悪く、最外層にフッ素含有シランカプリング剤を使用した場合の優位性が確認される。 However, when aminopropyltrimethoxysilane is used instead of the fluorine-containing silane coupling agent in the second step, the corrosion resistance is clearly worse compared to Example 7, and the advantage is obtained when a fluorine-containing silane coupling agent is used for the outermost layer. Sex is confirmed.
 図2は、BTSPSを使用して第1ステップで形成させた層のSIMによる分析結果を示している。層の厚さは約5.5nm程度であることから少なくとも中間層の厚さは5nm以上必要であることがわかる。 FIG. 2 shows the SIM analysis result of the layer formed in the first step using BTSPS. Since the thickness of the layer is about 5.5 nm, it can be seen that the thickness of at least the intermediate layer needs to be 5 nm or more.
Figure JPOXMLDOC01-appb-T000007
 表2は、 各種処理を実施した試料を、塩水中に浸漬した場合の腐食挙動を示したものである。2段処理をしていないもの、および2段処理をしたものでも、1段目の処理でBTSEを1回のみ使用場合は、耐食性が悪く、数日で腐食の発生が確認された。それに対し、実施例で示した条件で処理した場合は、20日後においても腐食は確認されなかった。比較例7の条件でも耐食性向上はあまり顕著ではない。このことから主鎖の長い中間層を有し、外側の層にフッ素を含有するシランカップリング層を有する構造は、優れた耐食性を示すことが分かる。
Figure JPOXMLDOC01-appb-T000007
Table 2 shows the corrosion behavior of samples subjected to various treatments when immersed in salt water. Even when the two-stage treatment was not performed and when the two-stage treatment was performed, the corrosion resistance was poor when BTSE was used only once in the first-stage treatment, and the occurrence of corrosion was confirmed within a few days. On the other hand, when treated under the conditions shown in the examples, no corrosion was observed even after 20 days. Even under the conditions of Comparative Example 7, the improvement in corrosion resistance is not so remarkable. From this, it can be seen that a structure having an intermediate layer having a long main chain and having a silane coupling layer containing fluorine in the outer layer exhibits excellent corrosion resistance.
Figure JPOXMLDOC01-appb-T000008
[比較例5、実施例10-12]
 表3は、前述の(2)片末端にOH基、その逆末端に金属と吸着できる基を有する有機物と金属とを反応させる方法に関するものである。溶剤にはイソプロピルアルコールを使用した。 比較例8は、メルカプトウンデカンノールで処理した場合であるが、このステップだけの処理では十分な耐食性は得られない。処理時間を24hまで延長しても同様である(比較例9)。しかし、実施例10-12に示すように第2ステップでフッ素含有シランカップリング層を形成させることにより格段に耐食性を向上させることができた。メルカプトウンデカンノールは、主鎖の部分にCが11個含まれるが、この条件は前述した「少なくともCの個数が6個以上は必要である」という条件を満足している。第2ステップで使用するフッ素含有シランカップリング剤にパーフルオロデシルトリメトキシシランおよびパーフルオロドデシルトリエトキシシランを使用した場合でも、トリフルオロプロピルトリメトキシシランで処理した場合と同様の結果が得られた(実施例11-12)
Figure JPOXMLDOC01-appb-T000008
[Comparative Example 5, Example 10-12]
Table 3 relates to (2) a method of reacting a metal with an organic substance having an OH group at one end and a group capable of adsorbing a metal at the opposite end. Isopropyl alcohol was used as the solvent. Comparative Example 8 is a case of treatment with mercaptoundecanol, but sufficient corrosion resistance cannot be obtained by the treatment of only this step. The same applies even if the treatment time is extended to 24 h (Comparative Example 9). However, as shown in Example 10-12, the corrosion resistance could be remarkably improved by forming the fluorine-containing silane coupling layer in the second step. Mercaptoundecanol contains 11 C in the main chain portion, and this condition satisfies the above-mentioned condition that “at least 6 C is required”. Even when perfluorodecyltrimethoxysilane and perfluorododecyltriethoxysilane were used for the fluorine-containing silane coupling agent used in the second step, the same results as when treated with trifluoropropyltrimethoxysilane were obtained. (Example 11-12)
Figure JPOXMLDOC01-appb-T000009
[比較例10、実施例13-15]
 表4は、片末端にOH基、その逆末端に金属と吸着できるCOO基を有する化合物と金属とを反応させる方法に関するものである。溶剤にはイソプロピルアルコールを使用した。 比較例10は、ヒドロキシヘキサデカン酸で処理した場合であるが、このステップだけの処理では十分な耐食性は得られない。処理時間を24hまで延長しても同様である(比較例11)。しかし、実施例10-12に示すように第2ステップでフッ素含有シランカップリング層を形成させることにより格段に耐食性を向上させることができた。ヒドロキシヘキサデカン酸は、主鎖の部分にCが16個含まれるが、この条件は前述した「少なくともCの個数が6個以上は必要である」という条件を満足している。第2ステップで使用するフッ素含有シランカップリング剤にパーフルオロデシルトリメトキシシランおよびパーフルオロドデシルトリエトキシシランを使用した場合でも、トリフルオロプロピルトリメトキシシランで処理した場合と同様の結果が得られた(実施例14-15)
Figure JPOXMLDOC01-appb-T000009
[Comparative Example 10, Example 13-15]
Table 4 relates to a method of reacting a metal with a compound having an OH group at one end and a COO group capable of adsorbing a metal at the opposite end. Isopropyl alcohol was used as the solvent. Comparative Example 10 is a case of treatment with hydroxyhexadecanoic acid, but sufficient corrosion resistance cannot be obtained by the treatment of only this step. The same applies even if the treatment time is extended to 24 h (Comparative Example 11). However, as shown in Example 10-12, the corrosion resistance could be remarkably improved by forming the fluorine-containing silane coupling layer in the second step. Hydroxyhexadecanoic acid contains 16 C in the main chain portion, and this condition satisfies the above-mentioned condition that “at least 6 C are required”. Even when perfluorodecyltrimethoxysilane and perfluorododecyltriethoxysilane were used for the fluorine-containing silane coupling agent used in the second step, the same results as when treated with trifluoropropyltrimethoxysilane were obtained. (Example 14-15)
Figure JPOXMLDOC01-appb-T000010
[比較例7、実施例16-18]
 表5は、片末端がアルコキシ基、その逆末端に金属と吸着できる基を有するシランカップリング剤と金属とを反応させる方法に関するものである。溶剤にはイソプロピルアルコールを使用した。比較例12は、第1ステップにおいてメルカプトプロピルトリメトキシシランで1回処理、第2ステップにおいてパーフルオロデシルトリメトキシシランで処理した場合を示している。この場合は、十分な耐食性が得られていないが、これは前述したように第1ステップで形成させた中間層の厚さが十分でない(Cが3つ)ためである。第1ステップにおける処理を2回繰り返し積層させ、中間層の厚さをC6個にした場合でも(比較例13)、十分な耐食性は得られない。しかし、その上にフッ素含有シランカップリング層を形成させると(実施例16)十分な耐食性が得られる。第1ステップでメルカプトプロピルトリメトキシシランの代わりにイソシアネートプロピルトリエトキシシランおよびアミノプロピルトリメトキシシランを使用した場合も同様である。
Figure JPOXMLDOC01-appb-T000010
[Comparative Example 7, Examples 16-18]
Table 5 relates to a method of reacting a metal with a silane coupling agent having an alkoxy group at one end and a group capable of adsorbing a metal at the opposite end. Isopropyl alcohol was used as the solvent. Comparative Example 12 shows a case where the first step was treated with mercaptopropyltrimethoxysilane once and the second step was treated with perfluorodecyltrimethoxysilane. In this case, sufficient corrosion resistance is not obtained, but this is because the thickness of the intermediate layer formed in the first step is not sufficient (three C) as described above. Even when the treatment in the first step is repeated twice and the thickness of the intermediate layer is C6 (Comparative Example 13), sufficient corrosion resistance cannot be obtained. However, when a fluorine-containing silane coupling layer is formed thereon (Example 16), sufficient corrosion resistance is obtained. The same applies when isocyanate propyltriethoxysilane and aminopropyltrimethoxysilane are used in the first step instead of mercaptopropyltrimethoxysilane.
Figure JPOXMLDOC01-appb-T000011
 [実施例19]
  本実施例は(表6)、(2)と(1)を併用させた多段ステップによる処理法に関するものである。溶剤にはイソプロピルアルコールを使用した。すなわち第1及び第2ステップの複数のステップで異なる物質を積層させて中間層を形成させた後に、最外層にフッ素含有シランカップリング層を形成させた場合である。優れた耐食性を得ることができている。この場合の中間層のC数は18であり、前述した「少なくともCの個数が6個以上は必要である」という条件を満足している。さらにBTSE層を挟むことによりBTSEのSiの部分で横との結合を形成するために強固な皮膜が形成される。
Figure JPOXMLDOC01-appb-T000011
[Example 19]
The present embodiment relates to a processing method using multi-steps in which (Table 6), (2) and (1) are used in combination. Isopropyl alcohol was used as the solvent. That is, this is a case where a fluorine-containing silane coupling layer is formed as the outermost layer after the intermediate layers are formed by laminating different substances in a plurality of steps of the first and second steps. Excellent corrosion resistance can be obtained. In this case, the number of C in the intermediate layer is 18, which satisfies the above-described condition that “at least 6 C is required”. Further, by sandwiching the BTSE layer, a strong film is formed to form a bond with the side at the Si portion of BTSE.
Figure JPOXMLDOC01-appb-T000012
 (Fe材に関して)
  本実施例は、SS400に関して実施したものであるが、ニッケルに関しても同様の結果が得られた。鉄上に効率よく有機物層を形成させるためには鉄上に不動体皮膜が形成されていることが必要である。そのために第1ステップの前に、ホウ酸塩水溶液中で定電位法により不動体皮膜を形成させた。不動体皮膜処理後に、第1ステップのヒドロキシヘキサデカン酸のみを反応させた場合では(比較例15)、不動態処理のみの場合(比較例14)と同様に十分な耐食性は得られないが、不動態化処理+ヒドロキシヘキサデカン酸処理後にフッ素含有シランカップリング層を形成させることにより(実施例20-22)、耐食性を向上させることができる。
Figure JPOXMLDOC01-appb-T000012
(Fe material)
Although this example was performed for SS400, similar results were obtained for nickel. In order to efficiently form an organic layer on iron, it is necessary that an immobile film is formed on the iron. Therefore, before the first step, a non-moving body film was formed by a constant potential method in an aqueous borate solution. In the case where only hydroxyhexadecanoic acid in the first step is reacted after the non-passive film treatment (Comparative Example 15), sufficient corrosion resistance cannot be obtained as in the case of only the passive treatment (Comparative Example 14). Corrosion resistance can be improved by forming a fluorine-containing silane coupling layer after activating treatment + hydroxyhexadecanoic acid treatment (Examples 20-22).
Figure JPOXMLDOC01-appb-T000013
 表8は、 各種処理を実施した試料を、塩水中に浸漬した場合の腐食挙動を示したものである。不動態化処理のみの場合、およびヒドロキシヘキサデカン酸処理をしたものでも、耐食性が悪く数日で腐食の発生が確認された。それに対し、実施例20-22で示した条件で処理した場合は、20日後においても腐食は確認されなかった。
Figure JPOXMLDOC01-appb-T000013
Table 8 shows the corrosion behavior when samples subjected to various treatments were immersed in salt water. In the case of only the passivation treatment and the one treated with hydroxyhexadecanoic acid, corrosion resistance was poor and occurrence of corrosion was confirmed in several days. On the other hand, when treated under the conditions shown in Example 20-22, no corrosion was confirmed even after 20 days.
Figure JPOXMLDOC01-appb-T000014
 (銅材に関して)
 本実施例は、銅に関して実施したものであるが、種々の銅合金に関しても同様の結果が得られた。メルカプトウンデカンノールのみ(比較例15)では十分な耐食性は得られないが、フッ素含有シランカプリング層を積層させる(実施例23-25)ことにより耐食性を向上させることができる。
 
Figure JPOXMLDOC01-appb-T000014
(For copper materials)
Although the present Example was implemented regarding copper, the same result was obtained also about various copper alloys. Only mercaptoundecanol (Comparative Example 15) does not provide sufficient corrosion resistance, but the corrosion resistance can be improved by laminating a fluorine-containing silane coupling layer (Examples 23-25).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Claims (3)

  1.  金属基材上に、有機物からなる中間層と、フッ素を含有するシランカップリング層が順に積層され、前記中間層は、直鎖上に連続または非連続に少なくとも炭素原子が6個以上接続していることを特徴とする表面改質金属部材。 On the metal substrate, an organic intermediate layer and a fluorine-containing silane coupling layer are sequentially laminated, and the intermediate layer is connected continuously or discontinuously on a straight chain with at least 6 carbon atoms connected. A surface-modified metal member.
  2.   金属基材上に、有機物からなる中間層と、フッ素を含有するシランカップリング層が順に積層された表面改質金属部材の改質方法において、
     前記中間層が、下記(1)~(4)のいずれか、またはこれらの組合せで形成されることを特徴とする表面改質金属部材の改質方法。
     (1)両末端がアルコキシ基 のシランカップリング剤を基体金属に反応させる方法、
     (2)片末端にOH基、その逆末端に金属と吸着できる基を有する有機物と基体金属とを反応させる方法、
     (3)片末端にOH基、その逆末端に基体金属と吸着できるCOO基を有する化合物と基体金属とを反応させる方法、
     (4)片末端がアルコキシ基、その逆末端に基体金属と吸着できる基を有するシランカップリング剤と基体金属とを反応させる方法
    In the method for modifying a surface-modified metal member in which an intermediate layer made of an organic material and a silane coupling layer containing fluorine are sequentially laminated on a metal substrate,
    The method for modifying a surface-modified metal member, wherein the intermediate layer is formed of any one of the following (1) to (4) or a combination thereof.
    (1) A method of reacting a base metal with a silane coupling agent having alkoxy groups at both ends,
    (2) A method of reacting an organic substance having an OH group at one end and a group capable of adsorbing with a metal at the opposite end with a base metal,
    (3) a method of reacting a base metal with a compound having an OH group at one end and a COO group capable of adsorbing to the base metal at the opposite end;
    (4) A method of reacting a base metal with a silane coupling agent having an alkoxy group at one end and a group capable of adsorbing to the base metal at the opposite end
  3.  請求項2において、前記シランカップリング層は、中間層上の水酸基とフッ素化炭化水素基を備えるフッ素系シランカップリング剤の加水分解反応および脱水縮合反応により生成したものであることを特徴とする表面改質金属部材の表面改質方法。 3. The silane coupling layer according to claim 2, wherein the silane coupling layer is formed by a hydrolysis reaction and a dehydration condensation reaction of a fluorine-based silane coupling agent having a hydroxyl group and a fluorinated hydrocarbon group on the intermediate layer. A surface modification method for a surface modified metal member.
PCT/JP2012/078091 2012-10-31 2012-10-31 Surface modified metal member obtained using fluorine-containing silane coupling agent WO2014068688A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014544108A JPWO2014068688A1 (en) 2012-10-31 2012-10-31 Surface-modified metal member using fluorine-containing silane coupling agent
PCT/JP2012/078091 WO2014068688A1 (en) 2012-10-31 2012-10-31 Surface modified metal member obtained using fluorine-containing silane coupling agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078091 WO2014068688A1 (en) 2012-10-31 2012-10-31 Surface modified metal member obtained using fluorine-containing silane coupling agent

Publications (1)

Publication Number Publication Date
WO2014068688A1 true WO2014068688A1 (en) 2014-05-08

Family

ID=50626658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078091 WO2014068688A1 (en) 2012-10-31 2012-10-31 Surface modified metal member obtained using fluorine-containing silane coupling agent

Country Status (2)

Country Link
JP (1) JPWO2014068688A1 (en)
WO (1) WO2014068688A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123606A1 (en) * 2017-12-21 2019-06-27 オリンパス株式会社 Energy treatment tool and method for manufacturing energy treatment tool
WO2020027545A1 (en) * 2018-07-30 2020-02-06 주식회사 포스코 Insulating coating composition for electrical steel sheet, and electrical steel sheet comprising insulating coating
KR20200013469A (en) * 2018-07-30 2020-02-07 주식회사 포스코 Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
WO2021117688A1 (en) * 2019-12-13 2021-06-17 Agc株式会社 Article with water-and-oil-repellent layer and method for producing article with water-and-oil-repellent layer
JP2021533263A (en) * 2018-07-30 2021-12-02 ポスコPosco Manufacturing method of electrical steel sheet, insulating coating composition for electrical steel sheet, and electrical steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274537A (en) * 1989-04-17 1990-11-08 Kawasaki Steel Corp Manufacture of composite steel panel using silane coupling agent
WO2002081588A1 (en) * 2001-04-02 2002-10-17 Matsushita Electric Industrial Co., Ltd. Water-repellent film and method for preparing the same, and ink-jet head and ink-jet type recording device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274537A (en) * 1989-04-17 1990-11-08 Kawasaki Steel Corp Manufacture of composite steel panel using silane coupling agent
WO2002081588A1 (en) * 2001-04-02 2002-10-17 Matsushita Electric Industrial Co., Ltd. Water-repellent film and method for preparing the same, and ink-jet head and ink-jet type recording device using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123606A1 (en) * 2017-12-21 2019-06-27 オリンパス株式会社 Energy treatment tool and method for manufacturing energy treatment tool
CN111511301A (en) * 2017-12-21 2020-08-07 奥林巴斯株式会社 Energy treatment instrument and method for manufacturing energy treatment instrument
CN111511301B (en) * 2017-12-21 2023-06-13 奥林巴斯株式会社 Energy treatment tool and method for manufacturing energy treatment tool
WO2020027545A1 (en) * 2018-07-30 2020-02-06 주식회사 포스코 Insulating coating composition for electrical steel sheet, and electrical steel sheet comprising insulating coating
KR20200013469A (en) * 2018-07-30 2020-02-07 주식회사 포스코 Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
KR102177040B1 (en) * 2018-07-30 2020-11-10 주식회사 포스코 Insulating coating composition for electrical steel sheet and electrical steel sheet comprising insulating coating
CN112739782A (en) * 2018-07-30 2021-04-30 Posco公司 Insulating coating composition for electrical steel sheet and electrical steel sheet having insulating coating
JP2021533263A (en) * 2018-07-30 2021-12-02 ポスコPosco Manufacturing method of electrical steel sheet, insulating coating composition for electrical steel sheet, and electrical steel sheet
CN112739782B (en) * 2018-07-30 2022-04-26 Posco公司 Insulating coating composition for electrical steel sheet and electrical steel sheet having insulating coating
JP7291203B2 (en) 2018-07-30 2023-06-14 ポスコ カンパニー リミテッド Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
WO2021117688A1 (en) * 2019-12-13 2021-06-17 Agc株式会社 Article with water-and-oil-repellent layer and method for producing article with water-and-oil-repellent layer
CN114845862A (en) * 2019-12-13 2022-08-02 Agc株式会社 Article with water-and oil-repellent layer and method for producing article with water-and oil-repellent layer

Also Published As

Publication number Publication date
JPWO2014068688A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
Van Ooij et al. Corrosion protection properties of organofunctional silanes—an overview
WO2014068688A1 (en) Surface modified metal member obtained using fluorine-containing silane coupling agent
KR101055596B1 (en) Metal coating composition for corrosion protection
TWI447264B (en) Surface-treating agent for metallic material
EP2653507A1 (en) Corrosion-proof aluminum material and method for producing the same
US5192374A (en) Chromium-free method and composition to protect aluminum
JP2008202147A (en) Method of protecting metal from corrosion using thiol compound, and coating method therefor
EP2915903B1 (en) Chromium-free conversion coating
ES2522584T3 (en) Composition for metal surface treatment, metal surface treatment method, and metal material
Vignesh et al. Surface modification, characterization and corrosion protection of 1, 3-diphenylthiourea doped sol-gel coating on aluminium
ES2581202T3 (en) Composition for the treatment of metal surfaces, method for the treatment of metal surfaces, and metallic material
EP1907494A2 (en) Organic-inorganic hybrid coatings
Sugama Cerium acetate-modified aminopropylsilane triol: A precursor of corrosion-preventing coating for aluminum-finned condensers
Aramaki An attempt to prepare nonchromate, self-healing protective films containing molybdate on iron
JP5372983B2 (en) How to prevent metal corrosion
Makarychev et al. Vapor-phase deposition of polymer siloxane coatings on the surface of copper and low-carbon steel
KR20130132492A (en) Surface coating with perfluorinated compounds as antifouling
JP6275975B2 (en) Chrome-free chemical coating
JP6936742B2 (en) Chrome-free chemical coating
WO2015011778A1 (en) Anti-corrosion coating film structure, metallic member equipped with same, anti-corrosion treatment method, and surface-treating agent
JP2006316342A (en) Metal member, rustproofing agent, and rustproofing method
Wang et al. Corrosion protection of stainless steel by a self-assembled organosilane bilayer
Seré et al. Surface preparation and double layer effect for silane application on electrogalvanized steel
Boudellioua et al. Corrosion protection mechanism of Ce3+/polyethylene glycol systems inhibitors for mild steel in sulfate solution
JP2005163137A (en) Black rust prevention treated metal, composition for forming black rust preventive film, and method of forming black rust preventive film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887784

Country of ref document: EP

Kind code of ref document: A1