JP2012164442A - Manufacturing method of tape-shaped oxide superconducting wire material, and thermal processing device - Google Patents

Manufacturing method of tape-shaped oxide superconducting wire material, and thermal processing device Download PDF

Info

Publication number
JP2012164442A
JP2012164442A JP2011022115A JP2011022115A JP2012164442A JP 2012164442 A JP2012164442 A JP 2012164442A JP 2011022115 A JP2011022115 A JP 2011022115A JP 2011022115 A JP2011022115 A JP 2011022115A JP 2012164442 A JP2012164442 A JP 2012164442A
Authority
JP
Japan
Prior art keywords
tape
gas
heat treatment
wire
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011022115A
Other languages
Japanese (ja)
Other versions
JP5881953B2 (en
Inventor
Tsutomu Koizumi
勉 小泉
Shigeki Sano
茂樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
SWCC Corp
Original Assignee
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, SWCC Showa Cable Systems Co Ltd filed Critical International Superconductivity Technology Center
Priority to JP2011022115A priority Critical patent/JP5881953B2/en
Priority to PCT/JP2012/000651 priority patent/WO2012105243A1/en
Priority to CN201280007562.8A priority patent/CN103460306B/en
Priority to TW101103612A priority patent/TWI517184B/en
Publication of JP2012164442A publication Critical patent/JP2012164442A/en
Application granted granted Critical
Publication of JP5881953B2 publication Critical patent/JP5881953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G47/00Compounds of rhenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0324Processes for depositing or forming copper oxide superconductor layers from a solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve superconducting characteristics of a manufactured tape-shaped oxide superconducting wire material, in a TFA-MOD method.SOLUTION: In a thermal processing device 10, a cylindrical rotor 12 is disposed so as to rotate to a furnace core axis C, in a cylindrical thermal processing space 11a of a furnace core pipe 11. In the rotor 12, around a surface 12a on which a large number of through-holes 17 are formed, a tape-shaped wire material 50 formed with a film body of a superconductive precursor is wound. A gas supplying pipe 13 supplies atmosphere gas from a position opposing/separating to/from a film surface of the tape-shaped wire material 50 wound around the rotor 12. A separation distance S between the surface 12a of the rotor 12 and a gas jetting hole 20 of the gas supplying pipe 13 is made to be 10 mm to 150 mm, and the atmosphere gas supplied to the tape-shaped wire material 50 is discharged from the inside of the rotor 12 to the outside of the furnace core pipe 11, through a gas discharging pipe 14.

Description

本発明は、テープ状酸化物超電導線材の製造方法及び熱処理装置に関し、特に中間層が形成された金属基材上に、MOD(Metal-organic Deposition)法を用いて超電導層を形成する技術に関する。   The present invention relates to a method for manufacturing a tape-shaped oxide superconducting wire and a heat treatment apparatus, and more particularly to a technique for forming a superconducting layer on a metal substrate on which an intermediate layer is formed using a MOD (Metal-organic Deposition) method.

従来、YBaCu7−X(YBCO)系のテープ状酸化物超電導線材の製造方法として、中間層が形成された金属基材上に、有機金属塩塗布熱分解(MOD:Metal-organic Deposition)法を用いて超電導層を形成することが知られている(特許文献1,2,3参照)。 Conventionally, as a method for producing a YBa 2 Cu 3 O 7-X (YBCO) -based tape-shaped oxide superconducting wire, an organic metal salt is thermally decomposed (MOD: Metal-organic) on a metal substrate on which an intermediate layer is formed. It is known to form a superconducting layer using the Deposition method (see Patent Documents 1, 2, and 3).

このMOD法は、先ず、酸化物中間層が形成されたテープ状の基材を、超電導体を構成する各金属元素を所定のモル比で含むトリフルオロ酢酸塩(TFA塩)を始めとするオクチル酸塩、ナフテン酸塩等の金属有機酸塩の混合溶液である超電導原料溶液に浸す。次いで、この基材を超電導原料溶液から引き上げること(いわゆるディップコート法)により、基材の表面に混合溶液を塗布する。次に、仮焼成及び本焼成を行うことにより、酸化物超電導層を形成する。   In this MOD method, first, a tape-like base material on which an oxide intermediate layer is formed is octyl such as trifluoroacetate (TFA salt) containing each metal element constituting a superconductor in a predetermined molar ratio. It is immersed in a superconducting raw material solution which is a mixed solution of metal organic acid salts such as acid salts and naphthenates. Next, the mixed solution is applied to the surface of the substrate by pulling up the substrate from the superconducting raw material solution (so-called dip coating method). Next, an oxide superconducting layer is formed by performing preliminary firing and main firing.

MOD法は、非真空中でも長尺の基材に連続的に酸化物超電導層を形成できるので、PLD(Pulse Laser Deposition)法やCVD(Chemical Vapor Deposition)法等の気相法よりも、プロセスが簡単で低コスト化が可能であることから、注目されている。   Since the MOD method can continuously form an oxide superconducting layer on a long substrate even in a non-vacuum state, the process is more effective than a gas phase method such as a PLD (Pulse Laser Deposition) method or a CVD (Chemical Vapor Deposition) method. It is attracting attention because it is simple and can be reduced in cost.

特許文献1,2には、表面に超電導原料溶液が付着された基材を熱処理する、バッチ方式の熱処理装置が開示されている。バッチ方式の熱処理装置は、特許文献3に示すようなreel-to-reel方式の熱処理装置と比較して、炉内の雰囲気をコントロールし易いため、安定した超電導層を形成できるといった利点がある。また、バッチ方式の熱処理装置は、reel-to-reel方式の熱処理装置と比較して、小型の装置で、短時間で焼成を完了できるといった利点がある。因みに、reel-to-reel方式の熱処理装置は、線材送り出し機構及び巻き取り機構をトンネル形状の炉芯管の両端に設置し、線材を一定速度で炉内を移動させることによって焼成を行うものである。   Patent Documents 1 and 2 disclose a batch-type heat treatment apparatus that heat-treats a substrate having a superconducting raw material solution attached to the surface thereof. Compared with the reel-to-reel heat treatment apparatus as shown in Patent Document 3, the batch-type heat treatment apparatus has an advantage that a stable superconducting layer can be formed because the atmosphere in the furnace is easily controlled. In addition, the batch-type heat treatment apparatus has an advantage that the firing can be completed in a short time with a small-sized apparatus, compared with the reel-to-reel type heat treatment apparatus. Incidentally, the heat treatment equipment of the reel-to-reel method performs firing by installing a wire feeding mechanism and a winding mechanism at both ends of a tunnel-shaped furnace core tube, and moving the wire at a constant speed in the furnace. is there.

特許文献1,2に開示された熱処理装置の構成を簡単に説明する。この熱処理装置は、表面に超電導原料が付着された基材を円筒状の回転体に巻回する。基材が巻回された円筒状の回転体は、回転駆動機構によって回転駆動される。回転体には、多数の貫通孔が形成されている。基材は、回転体に巻回された状態において、基材の表面方向に設けられたヒータによって加熱される。また、基材の表面方向からは不活性ガス、酸素ガス及び水蒸気などからなる雰囲気ガスが基材に向けて噴出され、この雰囲気ガスは円筒体に形成された貫通孔を介して排出される。   The configuration of the heat treatment apparatus disclosed in Patent Documents 1 and 2 will be briefly described. This heat treatment apparatus winds a base material having a superconducting raw material attached to a surface of a cylindrical rotating body. The cylindrical rotating body around which the substrate is wound is rotated by a rotation driving mechanism. A large number of through holes are formed in the rotating body. The base material is heated by a heater provided in the surface direction of the base material while being wound around the rotating body. In addition, an atmospheric gas composed of an inert gas, oxygen gas, water vapor, and the like is ejected from the surface direction of the base material toward the base material, and this atmospheric gas is discharged through a through-hole formed in the cylindrical body.

特許第4468901号公報Japanese Patent No. 4468901 特開2009−48817号公報JP 2009-48817 A 特許第4401992号公報Japanese Patent No. 44011992

特許文献1,2に開示された熱処理装置を用いて、トリフルオロ酢酸塩などを含む混合溶液が塗布された基材を仮焼成した超電導前駆体であって、フッ素(F)を含有した前駆体を中間層上に成膜した後、これに本焼成を施してYBCO膜を形成する方法(TFA−MOD法)においては、本焼時に、前駆体膜に供給する雰囲気ガス(反応性ガス)として水蒸気を使用する。   A superconducting precursor obtained by pre-calcining a base material coated with a mixed solution containing trifluoroacetate using a heat treatment apparatus disclosed in Patent Documents 1 and 2, and a precursor containing fluorine (F) In the method (TFA-MOD method) for forming a YBCO film by subjecting this to a film on the intermediate layer and then subjecting it to firing, as the atmospheric gas (reactive gas) supplied to the precursor film during the firing Use water vapor.

このときのYBCO生成反応式は、
1/2YCu+2BaF+2CuO+2HO→YBCO+4HF
となる。
The YBCO production reaction formula at this time is
1 / 2Y 2 Cu 2 O 5 + 2BaF 2 + 2CuO + 2H 2 O → YBCO + 4HF
It becomes.

このように本焼時では、水蒸気を雰囲気ガスとして使用して前駆体膜に対して熱処理を行うため、HFが発生し、この反応後にHFガスが発生する。   Thus, during the main firing, since the precursor film is heat-treated using water vapor as an atmospheric gas, HF is generated, and HF gas is generated after this reaction.

TFA−MOD法では、フッ素化合物(BaF)を分解する際のフッ素の除去速度がYBCO生成の反応律速となる。よって、反応後に発生するHFガスの影響によって、焼成されるYBCO膜の超電導特性が低下するという問題がある。 In the TFA-MOD method, the fluorine removal rate when decomposing the fluorine compound (BaF 2 ) is the reaction rate-limiting factor for YBCO formation. Therefore, there is a problem that the superconducting property of the YBCO film to be fired is deteriorated due to the influence of HF gas generated after the reaction.

特に、臨界電流密度(Jc)が2.0以上、臨界電流値(Ic)が300A以上の特性を有する長尺のテープ状線材を得るためには、超電導層を1.5μm以上の膜厚に成膜する必要がある。上記膜厚にすると、フッ素ガスの完全除去がますます困難となり、上記特性を得ることができない。   In particular, in order to obtain a long tape-shaped wire having a critical current density (Jc) of 2.0 or more and a critical current value (Ic) of 300 A or more, the superconducting layer is formed to a thickness of 1.5 μm or more. It is necessary to form a film. With the above film thickness, it becomes more difficult to completely remove fluorine gas, and the above characteristics cannot be obtained.

このため、YBCO膜の超電導特性を向上させるためには、本焼成において前駆体に含まれるフッ素をいかに除去するかが重要となる。   For this reason, in order to improve the superconducting characteristics of the YBCO film, it is important how to remove fluorine contained in the precursor in the main firing.

本発明はかかる点に鑑みてなされたものであり、TFA−MOD法において、超電導特性の向上が図られたテープ状酸化物超電導線材の製造方法及び熱処理装置を提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the manufacturing method and heat processing apparatus of a tape-form oxide superconducting wire with which the superconducting characteristic was improved in TFA-MOD method.

本発明のテープ状酸化物超電導線材の製造方法は、円筒状の熱処理空間を備えた炉芯管と、前記熱処理空間内部の炉芯軸に対して回転可能に配置され、且つ、多数の貫通孔が形成された表面に、超電導前駆体の膜体が形成されたテープ状線材が巻回される円筒状の回転体と、前記テープ状線材へ雰囲気ガスを供給するためのガス供給管と、前記雰囲気ガスを前記回転体内部から前記炉芯管外部に排出するためのガス排出管と、を備えた熱処理装置を用いて、前記回転体に巻回された前記テープ状線材の前記膜体の膜面に対して上方に離間した位置から前記雰囲気ガスを供給する酸化物超電導線材の製造方法において、前記回転体の表面と前記ガス供給管のガス噴出孔との離間距離が10mmから150mmであるようにした。好ましくは、離間距離は、50mmから100mmである。   The method for producing a tape-shaped oxide superconducting wire according to the present invention includes a furnace core tube having a cylindrical heat treatment space, a rotatable arrangement with respect to the furnace core shaft inside the heat treatment space, and a large number of through holes. A cylindrical rotating body around which a tape-shaped wire having a superconducting precursor film formed thereon is wound on the surface on which the gas is formed, a gas supply pipe for supplying an atmospheric gas to the tape-shaped wire, and A film of the film body of the tape-shaped wire wound around the rotary body using a heat treatment apparatus including a gas discharge pipe for discharging atmospheric gas from the inside of the rotary body to the outside of the furnace core pipe In the method of manufacturing an oxide superconducting wire that supplies the atmospheric gas from a position spaced upward with respect to the surface, the separation distance between the surface of the rotating body and the gas ejection hole of the gas supply pipe is 10 mm to 150 mm. I made it. Preferably, the separation distance is 50 mm to 100 mm.

本発明の熱処理装置の一つの態様は、円筒状の熱処理空間を備えた炉芯管と、前記熱処理空間内部に炉芯軸に対して回転可能に配置され、且つ、多数の貫通孔が形成された表面に、超電導前駆体の膜体を形成したテープ状線材が巻回される円筒状の回転体と、前記回転体に巻回された前記テープ状線材の前記膜体の膜面に対して上方に離間した位置に配置され、前記膜面に雰囲気ガスを供給するためのガス供給管と、前記雰囲気ガスを前記回転体内部から排出するためのガス排出管と、を備え、前記ガス供給管のガス噴出孔は、前記回転体の表面との離間距離が10mm〜150mmの位置に設けられている構成を採る。好ましくは、離間距離は、50mmから100mmである。   One aspect of the heat treatment apparatus of the present invention is a furnace core tube having a cylindrical heat treatment space, and is disposed so as to be rotatable with respect to the furnace core shaft inside the heat treatment space, and a plurality of through holes are formed. A cylindrical rotating body on which a tape-shaped wire material in which a film body of a superconducting precursor is formed is wound, and a film surface of the film body of the tape-shaped wire material wound on the rotating body. A gas supply pipe for supplying an atmospheric gas to the film surface; and a gas discharge pipe for discharging the atmospheric gas from the inside of the rotating body. The gas ejection hole is configured such that a separation distance from the surface of the rotating body is provided at a position of 10 mm to 150 mm. Preferably, the separation distance is 50 mm to 100 mm.

本発明によれば、TFA−MOD法において、超電導特性の向上が図られたテープ状酸化物超電導線材を製造することができる。   According to the present invention, a tape-shaped oxide superconducting wire with improved superconducting properties can be produced by the TFA-MOD method.

本発明の一実施の形態に係るテープ状酸化物超電導線材の熱処理装置の要部構成を示す概略断面図BRIEF DESCRIPTION OF THE DRAWINGS Schematic sectional drawing which shows the principal part structure of the heat processing apparatus of the tape-shaped oxide superconducting wire which concerns on one embodiment of this invention 同熱処理装置の要部構成を示す概略正面図Schematic front view showing the main components of the heat treatment equipment 同熱処理装置の回転体を示す概略図Schematic showing the rotating body of the heat treatment equipment 同熱処理装置のガス供給管を示す概略断面図Schematic sectional view showing the gas supply pipe of the heat treatment apparatus MOD法によるYBCO超電導線材の製造方法を示す概略図Schematic showing the manufacturing method of YBCO superconducting wire by MOD method

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図5は、MOD法によるYBCO超電導層を備えるテープ状酸化物超電導線材(YBCO超電導線材)の製造方法の概略を示したものである。   FIG. 5 shows an outline of a method for producing a tape-shaped oxide superconducting wire (YBCO superconducting wire) having a YBCO superconducting layer by the MOD method.

まず、テープ状のNi合金基板(基材)上に、テンプレートとしてIBAD法によりGdZr中間層を成膜し、さらに、この上にスパッタリング法によりCeO中間層を成膜した複合基板上に、塗布工程(a)でY―TFA塩(トリフルオロ酢酸塩)、Ba―TFA塩およびCu―ナフテン酸塩を有機溶媒中にY:Ba:Cu=1:1.5:3の比率で溶解した混合溶液(超電導原料溶液)8をディップコート法により塗布する。混合溶液8を塗布した後、仮焼成工程(b)で仮焼成する。この塗布工程(a)および仮焼成工程(b)を所定回数繰り返してテープ状線材50における中間層上に超電導前駆体としての膜体を形成する。この後、本焼成工程(c)で、テープ状線材50における超電導前駆体の膜体の結晶化熱処理、即ち、YBCO超電導体生成のための熱処理を施す。次いで、工程(d)で、生成されたYBCO超電導体上にスパッタ法によりAg安定化層を施した後、工程(e)で、後熱処理を施してYBCO超電導線材を製造する。 First, a composite in which a Gd 2 Zr 2 O 7 intermediate layer was formed as a template by a IBAD method on a tape-shaped Ni alloy substrate (base material), and further a CeO 2 intermediate layer was formed thereon by a sputtering method On the substrate, Y: TFA salt (trifluoroacetate salt), Ba-TFA salt and Cu-naphthenate salt in an organic solvent were applied in the coating step (a) with Y: Ba: Cu = 1: 1.5: 3. A mixed solution (superconducting raw material solution) 8 dissolved at a ratio is applied by a dip coating method. After the mixed solution 8 is applied, it is temporarily fired in the temporary firing step (b). This coating step (a) and pre-baking step (b) are repeated a predetermined number of times to form a film body as a superconducting precursor on the intermediate layer in the tape-shaped wire 50. Thereafter, in the main firing step (c), a heat treatment for crystallizing the superconducting precursor film in the tape-shaped wire 50, that is, a heat treatment for generating a YBCO superconductor is performed. Next, in step (d), an Ag stabilizing layer is applied on the generated YBCO superconductor by sputtering, and then in step (e), post-heat treatment is performed to manufacture a YBCO superconducting wire.

本発明に係る実施の形態の熱処理装置は、工程(c)の結晶化熱処理に用いられるものであり、テープ状線材において形成された超電導体の前駆体に熱処理を施してYBCO超電導体を生成する。なお、熱処理装置は、中間層の形成にも適用してもよい。   The heat treatment apparatus according to the embodiment of the present invention is used for the crystallization heat treatment in the step (c), and heat-treats the precursor of the superconductor formed in the tape-shaped wire to generate a YBCO superconductor. . Note that the heat treatment apparatus may also be applied to the formation of the intermediate layer.

Ni合金基板は2軸配向性を有するものでも配向性の無い金属基板の上に2軸配向性を有する中間層を成膜したものでもよい。また、中間層は、1層あるいは複数層形成される。塗布方法としては、上記のディップコート法以外にインクジェット法、スプレー法などを用いることも可能であるが、基本的には、連続して混合溶液を複合基板上に塗布できるプロセスであればこの例によって制約されない。1回に塗布する膜厚は、0.01μm〜2.0μm、好ましくは0.1μm〜1.0μmである。   The Ni alloy substrate may have a biaxial orientation or may have a biaxial orientation intermediate layer formed on a non-oriented metal substrate. Further, the intermediate layer is formed of one layer or a plurality of layers. As an application method, it is possible to use an inkjet method, a spray method, etc. in addition to the dip coating method described above, but basically, this example is applicable as long as it is a process capable of continuously applying a mixed solution onto a composite substrate. Not constrained by. The film thickness to be applied at one time is 0.01 μm to 2.0 μm, preferably 0.1 μm to 1.0 μm.

なお、ここで用いる超電導原料溶液は、Y、Ba、Cuを所定のモル比で含んだ金属有機酸塩または有機金属化合物を有機溶媒中に溶解した混合溶液である。モル数はY:Ba:Cu=1:a:3としたときに<2の範囲内のBaモル比の原料溶液を用いるようにしたものである。この場合、高いJc及びIc値を得るために、原料溶液中のBaモル比は1.0≦a≦1.8の範囲内であることが好ましく、より好ましくは、原料溶液中のBaモル比は1.3≦a≦1.7の範囲である。これにより、Baの偏析を抑制することができ、その結果、結晶粒界でのBaベースの不純物の析出が抑制される。よって、クラックの発生が抑制されるとともに結晶粒間の電気的結合性が向上し、超電導膜をMOD法により形成することにより、高速で均一な厚膜を有する超電導特性に優れたテープ状酸化物超電導体を容易に製造できる。また、金属有機酸塩としては、各元素のオクチル酸塩、ナフテン酸塩、ネオデカン酸塩、三弗化酢酸塩などが挙げられるが、1種類以上の前記塩を有機溶媒に均一に溶解し、複合基板上に塗布できるものであれば用いることができる。   The superconducting raw material solution used here is a mixed solution in which a metal organic acid salt or an organic metal compound containing Y, Ba, and Cu in a predetermined molar ratio is dissolved in an organic solvent. When the number of moles is Y: Ba: Cu = 1: a: 3, a raw material solution having a Ba molar ratio in the range of <2 is used. In this case, in order to obtain high Jc and Ic values, the Ba molar ratio in the raw material solution is preferably in the range of 1.0 ≦ a ≦ 1.8, and more preferably the Ba molar ratio in the raw material solution. Is in the range of 1.3 ≦ a ≦ 1.7. Thereby, the segregation of Ba can be suppressed, and as a result, the precipitation of Ba-based impurities at the grain boundaries is suppressed. Therefore, generation of cracks is suppressed and electrical connectivity between crystal grains is improved. By forming a superconducting film by the MOD method, a tape-like oxide having a high-speed uniform thick film and excellent superconducting characteristics. Superconductors can be easily manufactured. In addition, examples of the metal organic acid salt include octyl acid salt, naphthenic acid salt, neodecanoic acid salt, and trifluoroacetic acid salt of each element, but one or more kinds of the salts are uniformly dissolved in an organic solvent, Any material that can be applied on the composite substrate can be used.

<熱処理装置の構成>
図1に示す熱処理装置10は、バッチ式でテープ状線材50における超電導前駆体の膜体として塗布された原料溶液(超電導原料溶液)の焼成を行うものである。熱処理装置10は、円筒状の熱処理空間11aを有する炉芯管11と、円筒状の回転体12と、ガス供給管13と、ガス排出管14と、を有する。
<Configuration of heat treatment equipment>
A heat treatment apparatus 10 shown in FIG. 1 performs a baking of a raw material solution (superconducting raw material solution) applied as a film body of a superconducting precursor in a tape-shaped wire 50 in a batch type. The heat treatment apparatus 10 includes a furnace core tube 11 having a cylindrical heat treatment space 11 a, a cylindrical rotating body 12, a gas supply pipe 13, and a gas discharge pipe 14.

炉芯管11の熱処理空間11aは、炉内の減圧雰囲気又は真空が保持できるように構成されている。炉芯管11は、周囲にヒータ15が配置されており、熱処理空間11aである内部をヒータ15によって加熱する。   The heat treatment space 11a of the furnace core tube 11 is configured so that a reduced-pressure atmosphere or vacuum in the furnace can be maintained. The furnace core tube 11 is provided with a heater 15 around it, and the inside of the heat treatment space 11 a is heated by the heater 15.

炉芯管11内部には、炉芯管11の軸線である炉芯軸Cを中心に、回転体12が回転可能に配置されている。回転体12は、表面12aに、前駆体が形成されたテープ状線材50が巻回される円筒体12bを有する。なお、テープ状線材50は、上述したように混合溶液を塗布して仮焼を施すことによって、基材上に、YBCO超電導生成体の前駆体が形成されたものである。このテープ状線材50は、前駆体の膜面を露出させて、円筒体12bの表面12a(回転体12の表面)に螺旋状に巻回される。   Inside the furnace core tube 11, a rotating body 12 is rotatably arranged around a furnace core axis C that is an axis of the furnace core tube 11. The rotating body 12 has a cylindrical body 12b around which a tape-shaped wire 50 on which a precursor is formed is wound on the surface 12a. The tape-shaped wire 50 is obtained by applying a mixed solution and calcining as described above to form a YBCO superconducting product precursor on a base material. The tape-shaped wire 50 is spirally wound around the surface 12a of the cylindrical body 12b (the surface of the rotating body 12) with the film surface of the precursor exposed.

図3に示すように、回転体12の円筒体12bには、多数の貫通孔17が形成されている。この貫通孔17の径は、テープ状線材50のテープ幅と同等とすることが好ましい。また、その開孔率は50〜95%とし、特に89〜91%の範囲の開孔率が好適する。回転体12は、図示しない回転機構により熱処理中に一定速度で回転する。回転体12は、石英ガラス、アルミナなどのセラミックス又はハステロイ、インコネル等の金属等のような高温に耐え、酸化しにくい材質により構成される。   As shown in FIG. 3, a large number of through holes 17 are formed in the cylindrical body 12 b of the rotating body 12. The diameter of the through hole 17 is preferably equal to the tape width of the tape-shaped wire 50. Moreover, the hole area ratio is 50 to 95%, and the hole area ratio in the range of 89 to 91% is particularly preferable. The rotating body 12 is rotated at a constant speed during the heat treatment by a rotating mechanism (not shown). The rotating body 12 is made of a material that is resistant to high temperatures and hardly oxidizes, such as ceramics such as quartz glass and alumina, or metals such as Hastelloy and Inconel.

円筒体12bの一端側は蓋体12cにより閉塞されている。円筒体12bの他端側は、蓋体12dにより閉塞されている。蓋体12dには、円筒体12b内部の雰囲気ガスを炉芯管11の外部へ排出するガス排出管14が挿通されている。   One end side of the cylindrical body 12b is closed by a lid body 12c. The other end side of the cylindrical body 12b is closed by a lid body 12d. A gas discharge pipe 14 for discharging the atmospheric gas inside the cylindrical body 12b to the outside of the furnace core pipe 11 is inserted into the lid body 12d.

また、図1及び図2に示すように、炉芯管11内には、円筒体12bの表面12aから離間して、複数のガス供給管13が配置されている。複数のガス供給管13は、炉芯軸Cに平行に配置され、かつ、炉芯軸Cに垂直な断面において対称に配置されている。ここでは、炉芯管11内に4本のガス供給管13が、炉芯軸Cに対して対称で、且つ、互いに平行に配設されている。すなわち、炉芯管11内において複数のガス吸気管13は、炉芯軸Cを中心に周方向に90°のピッチで配置されている。   As shown in FIGS. 1 and 2, a plurality of gas supply pipes 13 are disposed in the furnace core tube 11 so as to be separated from the surface 12 a of the cylindrical body 12 b. The plurality of gas supply pipes 13 are arranged in parallel to the furnace core axis C and are arranged symmetrically in a cross section perpendicular to the furnace core axis C. Here, four gas supply pipes 13 are arranged in the furnace core tube 11 symmetrically with respect to the furnace core axis C and parallel to each other. That is, in the furnace core tube 11, the plurality of gas intake pipes 13 are arranged at a pitch of 90 ° in the circumferential direction around the furnace core axis C.

各ガス供給管13は、回転体12に対して雰囲気ガスを噴出する多数のガス噴出孔20を備える。   Each gas supply pipe 13 includes a large number of gas ejection holes 20 that eject atmospheric gas to the rotator 12.

図4に示すようにガス供給管13におけるガス噴出孔20は、ガス供給管13の本体部分に長手方向に沿って一定間隔で一様に形成されている。各ガス噴出孔20は、円形の孔であり、雰囲気ガスを均一に噴出する。雰囲気ガスを均一に噴出し、かつフッ素ガスをより除去させるためには、雰囲気ガスを供給する際の流速、具体的には上記回転体に巻回された前記膜体の膜面に接触する流速が、200m/s以上500m/s以下であることが好ましい。200m/s未満であると、超電導前駆体に均一に雰囲気ガスを供給する事ができないだけでなく、前記膜体の膜面の表面に滞留する排気ガス(HFガス)を除去することができない。そのために所望の超電導特性を得ることができない。また、500m/s超であると、たしかに雰囲気ガスを均一に噴出することはできるものの結晶化の反応が急速に進むことからエピタキシャル成長速度の制御が困難となる。そのために所望の超電導特性を得ることができない。   As shown in FIG. 4, the gas ejection holes 20 in the gas supply pipe 13 are uniformly formed in the main body portion of the gas supply pipe 13 at regular intervals along the longitudinal direction. Each gas ejection hole 20 is a circular hole and ejects atmospheric gas uniformly. In order to uniformly eject the atmospheric gas and to further remove the fluorine gas, the flow rate when supplying the atmospheric gas, specifically, the flow rate at which the film surface of the film body wound around the rotating body contacts However, it is preferable that they are 200 m / s or more and 500 m / s or less. If it is less than 200 m / s, not only the atmosphere gas cannot be uniformly supplied to the superconducting precursor, but also the exhaust gas (HF gas) staying on the surface of the film body cannot be removed. Therefore, desired superconducting characteristics cannot be obtained. On the other hand, if it exceeds 500 m / s, the atmospheric gas can be uniformly ejected, but the crystallization reaction proceeds rapidly, so that it is difficult to control the epitaxial growth rate. Therefore, desired superconducting characteristics cannot be obtained.

図1、2及び図4に示すように、各ガス供給管13は、円筒体12bの表面12aに対して、垂直方向から雰囲気ガスを供給するように、ガス噴出孔20が円筒体12bの表面12aに対して上方に離間した位置に位置するように配置されている。   As shown in FIGS. 1, 2, and 4, each gas supply pipe 13 has gas ejection holes 20 on the surface of the cylindrical body 12b so as to supply atmospheric gas from the vertical direction to the surface 12a of the cylindrical body 12b. It arrange | positions so that it may be located in the position spaced apart upwards with respect to 12a.

ガス供給管13は、炉芯管11内において、ガス噴出孔20と回転体12の表面12aとの離間距離Sが10mmから150mmとなるように設けられている。上記離間距離の好ましい範囲は、50mmから100mmである。上記範囲であると、雰囲気ガスを均一に超電導前駆体に対して噴出することができるため、フッ素ガスをより除去することができる。上記範囲未満であると、回転体12に巻回されたテープ状線材50の前記膜体の膜面の一部のみにしか噴出された雰囲気ガスが接触しないため、超電導線材の長手方向に均一な超電導特性を得ることができない。また、上記範囲を超えると、ガス流量が増加し生産コストが向上するだけでなく、結晶化の反応が急速に進むことからエピタキシャル成長速度の制御が困難となる。そのために所望の超電導特性を得ることができない。   The gas supply pipe 13 is provided in the furnace core pipe 11 so that the separation distance S between the gas ejection hole 20 and the surface 12a of the rotating body 12 is 10 mm to 150 mm. A preferable range of the separation distance is 50 mm to 100 mm. Within the above range, the atmospheric gas can be uniformly ejected to the superconducting precursor, so that the fluorine gas can be further removed. If it is less than the above range, the atmosphere gas ejected only to a part of the film surface of the film body of the tape-shaped wire 50 wound around the rotating body 12 does not come into contact with the superconducting wire in the longitudinal direction. Superconducting properties cannot be obtained. When the above range is exceeded, not only the gas flow rate increases and the production cost improves, but also the crystallization reaction proceeds rapidly, making it difficult to control the epitaxial growth rate. Therefore, desired superconducting characteristics cannot be obtained.

したがって、1.5μm以上の厚膜を有する長尺のテープ状線材超電導層を得るためには、上記範囲の離間距離で雰囲気ガスを適切なガス流量にて超電導前駆体に対して噴出する必要があり、これにより膜厚臨界電流密度(Jc)が2.0以上、臨界電流値(Ic)が300A以上の特性を有する超電導線材を得ることができる。   Therefore, in order to obtain a long tape-shaped wire superconducting layer having a thick film of 1.5 μm or more, it is necessary to eject atmospheric gas to the superconducting precursor at an appropriate gas flow rate at a separation distance in the above range. In this way, it is possible to obtain a superconducting wire having the characteristics that the film thickness critical current density (Jc) is 2.0 or more and the critical current value (Ic) is 300 A or more.

ガス供給管13は、ガス噴出孔20から、各図中の矢印Dで示す方向に雰囲気ガスを噴出する。   The gas supply pipe 13 ejects atmospheric gas from the gas ejection hole 20 in the direction indicated by the arrow D in each figure.

これにより、ガス供給管13は、円筒体12bの表面12aに巻回されたテープ状線材50における前駆体の膜面に対して、上方に離間した位置から雰囲気ガスを垂直に供給する。ガス噴出孔20の径は、ガス圧およびガス流量が均一になるように設計されている必要がある。   Thereby, the gas supply pipe 13 supplies the atmospheric gas vertically from a position spaced upward to the film surface of the precursor in the tape-shaped wire 50 wound around the surface 12a of the cylindrical body 12b. The diameter of the gas ejection hole 20 needs to be designed so that the gas pressure and the gas flow rate are uniform.

雰囲気ガスは、ガス供給管13に接続される図示しない接続管を介して、炉芯管11の外に配置される図示しない雰囲気ガス供給装置から供給される。因みに、ガス供給装置では、不活性ガス、酸素ガス又は水蒸気等からなる雰囲気ガスを生成し、ガス供給管13からはこの雰囲気ガスが噴出される。   The atmospheric gas is supplied from an atmospheric gas supply device (not shown) disposed outside the furnace core tube 11 via a connection tube (not shown) connected to the gas supply pipe 13. Incidentally, the gas supply device generates an atmospheric gas composed of an inert gas, oxygen gas, water vapor, or the like, and the atmospheric gas is ejected from the gas supply pipe 13.

また、ガス供給管13の長さは、回転体12の長さよりも長くすることが好ましい。すなわち、ガス供給管13の両端に位置するガス噴出孔20間の長さが、回転体12の長さよりも長い構成となる。これにより円筒状の回転体12に巻きつけられたテープ状線材50の全長に亘って均一な反応を行わせることが可能になる。   Further, the length of the gas supply pipe 13 is preferably longer than the length of the rotating body 12. That is, the length between the gas ejection holes 20 located at both ends of the gas supply pipe 13 is longer than the length of the rotating body 12. This makes it possible to cause a uniform reaction over the entire length of the tape-shaped wire 50 wound around the cylindrical rotating body 12.

ガス排出管14は、円筒体12bの内部空間に連続するとともに、円筒体12bの他端側で接続されている。具体的には、円筒体12bの内部から蓋体12dを挿通して炉芯管11の外部に導出している。ガス排出管14は、円筒体内部の雰囲気ガスを炉芯管外部に排気する。ここでは、ガス排出管14は、円筒体12bの回転軸(炉芯軸Cに相当)上に形成されている。   The gas discharge pipe 14 is continuous with the internal space of the cylindrical body 12b and is connected to the other end side of the cylindrical body 12b. Specifically, the lid body 12 d is inserted from the inside of the cylindrical body 12 b and led out to the outside of the furnace core tube 11. The gas exhaust pipe 14 exhausts the atmospheric gas inside the cylindrical body to the outside of the furnace core pipe. Here, the gas discharge pipe 14 is formed on the rotating shaft (corresponding to the furnace core axis C) of the cylindrical body 12b.

ガス供給管13及びガス排出管14は、石英ガラス、アルミナなどのセラミックス又はハステロイ、インコネル等の金属等のような高温に耐え、酸化しにくい材質により構成される。   The gas supply pipe 13 and the gas discharge pipe 14 are made of a material that is resistant to high temperatures and hardly oxidizes, such as quartz glass, ceramics such as alumina, or metals such as Hastelloy and Inconel.

以上の熱処理装置10において、テープ状線材50を巻き付けた円筒状の回転体12を一定速度で回転させる。加えて、ヒータ15によって加熱雰囲気に保持された熱処理空間11a内に、ガス供給装置(図示せず)から供給された雰囲気ガスが、ガス供給管13の多数のガス噴出孔20を介して、テープ状線材50の膜面に対して均等に吹き付けられる。吹き付けられた雰囲気ガスは、膜面と反応した後、回転体12における円筒体12bの多数の貫通孔17を介して、円筒体12bの内部に入る。円筒体12bの内部における反応後のガスは、円筒体12bの他端側で接続されたガス排出管14を経由して炉外へ排出される。   In the heat treatment apparatus 10 described above, the cylindrical rotating body 12 around which the tape-like wire 50 is wound is rotated at a constant speed. In addition, the atmosphere gas supplied from a gas supply device (not shown) enters the heat treatment space 11 a held in the heating atmosphere by the heater 15 through the numerous gas ejection holes 20 of the gas supply pipe 13 to the tape. It is sprayed evenly against the film surface of the wire rod 50. The blown atmospheric gas reacts with the film surface and then enters the inside of the cylindrical body 12b through the numerous through holes 17 of the cylindrical body 12b in the rotating body 12. The gas after reaction inside the cylindrical body 12b is discharged out of the furnace via the gas discharge pipe 14 connected on the other end side of the cylindrical body 12b.

熱処理装置10において、ガス供給管13を、長さ2m、内径20mmφで形成し、このガス供給管13に、ガス噴出孔20を、ガス供給管13の長手方向に30mmのピッチで、それぞれの径(ノズル径)を1.0mmφで形成した。このときの炉芯管11の炉内圧力、つまり熱処理空間11a内の圧力を50から200torr、ガス流量を250から1000L/min(常温・常圧での換算値)とした。そして、熱処理装置10におけるガス噴出孔20から噴出して回転体12の表面12aに供給される雰囲気ガスの流速(上記回転体に巻回された前記膜体の膜面に接触する流速)は、300m/sとし、ガス噴出孔20と、熱処理装置10内に配置された回転体12の表面12aとの離間距離Sを80mmとした。尚、回転体12に巻回されるテープ状線材50の膜体は、テープ状のNi合金基板(基材)上に、テンプレートとしてIBAD法によりGdZr中間層を成膜し、さらに、この上にスパッタリング法によりCeO中間層を成膜した複合基板上に、塗布工程でY―TFA塩(トリフルオロ酢酸塩)、Ba―TFA塩およびCu―ナフテン酸塩を有機溶媒中にY:Ba:Cu=1:1.5:3の比率で溶解した混合溶液(超電導原料溶液)をディップコート法により塗布した後、仮焼成工程で仮焼成した膜体である。前記膜体を炉内温度750℃にて本焼成工程による熱処理を行い、1.5μmの超電導層を得た。 In the heat treatment apparatus 10, the gas supply pipes 13 are formed with a length of 2 m and an inner diameter of 20 mmφ, and the gas injection holes 20 are formed in the gas supply pipes 13 at a pitch of 30 mm in the longitudinal direction of the gas supply pipes 13. (Nozzle diameter) was formed at 1.0 mmφ. At this time, the pressure in the furnace core tube 11, that is, the pressure in the heat treatment space 11a, was set to 50 to 200 torr, and the gas flow rate was set to 250 to 1000 L / min (converted value at normal temperature and normal pressure). Then, the flow rate of the atmospheric gas ejected from the gas ejection holes 20 in the heat treatment apparatus 10 and supplied to the surface 12a of the rotator 12 (the flow rate in contact with the film surface of the film body wound around the rotator) is: The separation distance S between the gas ejection hole 20 and the surface 12a of the rotating body 12 disposed in the heat treatment apparatus 10 was set to 80 m / s. The film body of the tape-shaped wire 50 wound around the rotating body 12 is formed by forming a Gd 2 Zr 2 O 7 intermediate layer as a template on the tape-shaped Ni alloy substrate (base material) by the IBAD method, Further, a Y-TFA salt (trifluoroacetate salt), a Ba-TFA salt, and a Cu-naphthenate salt are added in an organic solvent on a composite substrate on which a CeO 2 intermediate layer is formed by sputtering. A film body obtained by applying a mixed solution (superconducting raw material solution) dissolved at a ratio of Y: Ba: Cu = 1: 1.5: 3 by a dip coating method and then pre-baking in a pre-baking step. The film body was heat-treated by a main baking step at a furnace temperature of 750 ° C. to obtain a 1.5 μm superconducting layer.

このように離間距離Sを80mmとしたものを実施例1とし、実施例1の熱処理装置10の構成において離間距離Sのみ適宜変更した例を実施例2から実施例7とし、下記の表に示す。   Thus, the thing which set the separation distance S to 80 mm is made into Example 1, and the example which changed only the separation distance S in the structure of the heat processing apparatus 10 of Example 1 from Example 2 to Example 7 is shown in the following table | surface. .

実施例2は離間距離S=50mmとし、実施例3は離間距離S=100mmとし、実施例4は離間距離S=30mmとしたものである。また、実施例5は離間距離S=120mmとし、実施例6は離間距離S=10mmとし、実施例7は離間距離S=150mmとしたものである。   In Example 2, the separation distance S = 50 mm, in Example 3, the separation distance S = 100 mm, and in Example 4, the separation distance S = 30 mm. In the fifth embodiment, the separation distance S = 120 mm, in the sixth embodiment, the separation distance S = 10 mm, and in the seventh embodiment, the separation distance S = 150 mm.

これら実施例1から実施例7の熱処理装置により出来上がった超電導線材の特性は次のようになった。実施例1の熱処理装置10により出来上がった超電導線材の特性はJc2.5、Ic370Aであり、実施例2の熱処理装置により出来上がった超電導線材の特性はJc2.2、Ic330Aであった。実施例3の熱処理装置により出来上がった超電導線材の特性はJc2.1、Ic315Aであり、実施例4の熱処理装置により出来上がった超電導線材の特性はJc2.0、Ic300Aであった。実施例5の熱処理装置により出来上がった超電導線材の特性はJc2.0、Ic300Aであり、実施例6の熱処理装置により出来上がった超電導線材の特性はJc2.0、Ic300Aであった。実施例7の熱処理装置により出来上がった超電導線材の特性はJc2.0、Ic300Aであった。   The characteristics of the superconducting wires made by the heat treatment apparatuses of Examples 1 to 7 were as follows. The characteristics of the superconducting wire made by the heat treatment apparatus 10 of Example 1 were Jc2.5 and Ic370A, and the characteristics of the superconducting wire made by the heat treatment apparatus of Example 2 were Jc2.2 and Ic330A. The characteristics of the superconducting wire made by the heat treatment apparatus of Example 3 were Jc2.1 and Ic315A, and the characteristics of the superconducting wire made by the heat treatment apparatus of Example 4 were Jc2.0 and Ic300A. The characteristics of the superconducting wire completed by the heat treatment apparatus of Example 5 were Jc2.0 and Ic300A, and the characteristics of the superconducting wire completed by the heat treatment apparatus of Example 6 were Jc2.0 and Ic300A. The characteristics of the superconducting wire completed by the heat treatment apparatus of Example 7 were Jc2.0 and Ic300A.

また、実施例1の熱処理装置において、ガス噴出孔20と、熱処理装置10内に配置された回転体12の表面12aとの離間距離Sを200mmとした比較例1の熱処理装置により出来上がった超電導線材の特性は、Jc1.1、Ic165Aであった。また、実施例1の熱処理装置において、ガス噴出孔20と、熱処理装置10内に配置された回転体12の表面12aとの離間距離Sを5mmとした比較例2の熱処理装置により出来上がった超電導線材の特性は、Jc1.2、Ic180Aであった。   Further, in the heat treatment apparatus of Example 1, the superconducting wire completed by the heat treatment apparatus of Comparative Example 1 in which the separation distance S between the gas ejection hole 20 and the surface 12a of the rotating body 12 disposed in the heat treatment apparatus 10 is 200 mm. The characteristics were Jc1.1 and Ic165A. Further, in the heat treatment apparatus of Example 1, the superconducting wire produced by the heat treatment apparatus of Comparative Example 2 in which the separation distance S between the gas ejection hole 20 and the surface 12a of the rotating body 12 disposed in the heat treatment apparatus 10 is 5 mm. The characteristics were Jc1.2 and Ic180A.

Figure 2012164442
Figure 2012164442

実施例1から実施例7に示すように、回転体12の表面12aとガス供給管13のガス噴出孔20との離間距離Sが10mmから150mmである場合、「評価」欄の「○」、「◎」で示すように超電導特性に優れた超電導線材ができた。特に、離間距離Sが50mmから100mmである場合、「評価」欄の「◎」で示すように、特に優れた超電導特性の超電導線材ができた。また、回転体12の表面12aとガス供給管13のガス噴出孔20との離間距離Sが10mmから150mmの範囲にない場合、「評価」で「×」で示すように、出来上がる超電導線材の超電導特性は望む値ではなかった。   As shown in Example 1 to Example 7, when the separation distance S between the surface 12a of the rotating body 12 and the gas ejection hole 20 of the gas supply pipe 13 is 10 mm to 150 mm, “◯” in the “Evaluation” column, As indicated by “線”, a superconducting wire excellent in superconducting properties was produced. In particular, when the separation distance S was 50 mm to 100 mm, a superconducting wire having particularly excellent superconducting characteristics was obtained as indicated by “◎” in the “Evaluation” column. In addition, when the separation distance S between the surface 12a of the rotating body 12 and the gas ejection hole 20 of the gas supply pipe 13 is not in the range of 10 mm to 150 mm, the superconductivity of the resulting superconducting wire is indicated by “x” in “Evaluation” The property was not the desired value.

このように、実施例の熱処理装置を用いたテープ状酸化物超電導線材の製造方法は、比較例の熱処理装置を用いたテープ状酸化物超電導線材の製造方法よりも、フッ素の反応速度を速まり、製造されるテープ状酸化物超電導線材の超電導特性を高めることができる。   Thus, the method for producing a tape-shaped oxide superconducting wire using the heat treatment apparatus of the example increases the fluorine reaction rate more than the method for producing a tape-shaped oxide superconducting wire using the heat treatment apparatus of the comparative example. The superconducting properties of the tape-shaped oxide superconducting wire to be manufactured can be improved.

以上説明したように、本実施の形態によれば、本焼時において、テープ状基材を巻回した回転体を炉芯管の熱処理空間内に収容し、熱処理空間を加熱しつつ、テープ状線材において超電導前駆体の膜面に対して垂直に、10mmから150mm離間した位置から供給する。これにより、フッ素の反応速度を速めてフッ素化合物(フッ化バリウム)の分解を早めて、超電導特性に優れたテープ状酸化物超電導線材を製造できる。   As described above, according to the present embodiment, at the time of the main firing, the rotating body wound with the tape-shaped base material is accommodated in the heat treatment space of the furnace core tube, and the heat treatment space is heated while being in a tape shape. The wire is supplied from a position that is 10 mm to 150 mm apart from the film surface of the superconducting precursor. Thereby, the reaction rate of fluorine can be increased, the decomposition of the fluorine compound (barium fluoride) can be accelerated, and a tape-shaped oxide superconducting wire excellent in superconducting characteristics can be produced.

さらに、バッチ方式による焼成を行うので、reel-to-reel方式の焼成を行う場合と比較して、炉内の雰囲気をコントロールし易いので安定した超電導層を形成でき、かつ、短時間で酸化物超電導線材を製造できる。   Furthermore, since firing is performed in a batch mode, the atmosphere in the furnace can be controlled more easily than in the case of firing in a reel-to-reel mode, so a stable superconducting layer can be formed, and the oxide can be formed in a short time. Superconducting wire can be manufactured.

なお、上記本発明は、本発明の精神を逸脱しない限り、種々の改変をなすことができ、そして本発明が該改変させたものに及ぶことは当然である。   The present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明にかかるテープ状酸化物超電導線材の製造方法及び熱処理装置は、MOD法を用いてテープ状酸化物超電導線材を形成する場合に広く適用可能である。   The method for producing a tape-shaped oxide superconducting wire and the heat treatment apparatus according to the present invention are widely applicable when forming a tape-shaped oxide superconducting wire using the MOD method.

10 熱処理装置
11 炉芯管
12 回転体
12a 表面
12b 円筒体
13 ガス供給管
14 ガス排出管
20 ガス噴出孔
50 テープ状線材
C 炉芯軸
S 離間距離
DESCRIPTION OF SYMBOLS 10 Heat processing apparatus 11 Furnace core pipe 12 Rotor 12a Surface 12b Cylindrical body 13 Gas supply pipe 14 Gas discharge pipe 20 Gas ejection hole 50 Tape-shaped wire C Furnace core axis | shaft S Separation distance

Claims (7)

円筒状の熱処理空間を備えた炉芯管と、
前記熱処理空間内部の炉芯軸に対して回転可能に配置され、且つ、多数の貫通孔が形成された表面に、超電導前駆体の膜体が形成されたテープ状線材が巻回される円筒状の回転体と、
前記テープ状線材へ雰囲気ガスを供給するためのガス供給管と、
前記雰囲気ガスを前記回転体内部から前記炉芯管外部に排出するためのガス排出管と、
を備えた熱処理装置を用いて、前記回転体に巻回された前記テープ状線材の前記膜体の膜面に対して上方に離間した位置から前記雰囲気ガスを供給する酸化物超電導線材の製造方法において、
前記回転体の表面と前記ガス供給管のガス噴出孔との離間距離が10mmから150mmである、
テープ状酸化物超電導線材の製造方法。
A furnace core tube with a cylindrical heat treatment space;
A cylindrical shape in which a tape-like wire rod having a superconducting precursor film formed thereon is wound around a surface on which a large number of through-holes are formed and is rotatable with respect to the furnace core shaft inside the heat treatment space. A rotating body of
A gas supply pipe for supplying atmospheric gas to the tape-shaped wire;
A gas discharge pipe for discharging the atmospheric gas from the inside of the rotating body to the outside of the furnace core pipe;
A method of manufacturing an oxide superconducting wire that supplies the atmospheric gas from a position spaced upward with respect to the film surface of the film body of the tape-shaped wire wound around the rotating body using a heat treatment apparatus comprising: In
The separation distance between the surface of the rotating body and the gas ejection hole of the gas supply pipe is 10 mm to 150 mm.
Tape-like oxide superconducting wire manufacturing method.
前記離間距離が50mmから100mmである、
請求項1記載のテープ状酸化物超電導線材の製造方法。
The separation distance is from 50 mm to 100 mm;
A method for producing a tape-shaped oxide superconducting wire according to claim 1.
前記テープ状線材へ前記雰囲気ガスを供給する流速が200m/s以上500m/s以下である、
請求項1又は2記載のテープ状酸化物超電導線材の製造方法。
The flow rate of supplying the atmospheric gas to the tape-shaped wire is 200 m / s or more and 500 m / s or less.
The manufacturing method of the tape-shaped oxide superconducting wire of Claim 1 or 2.
超電導前駆体の膜体は、基板上に中間層を構成し、前記中間層上に金属元素を含む金属有機酸塩または有機金属化合物を有機溶媒中に溶解した混合溶液を塗布した後、仮焼成により形成された膜体である、
請求項1乃至3のいずれか1項に記載のテープ状酸化物超電導線材の製造方法。
The superconducting precursor film body forms an intermediate layer on the substrate, and after applying a mixed solution prepared by dissolving a metal organic acid salt or organic metal compound containing a metal element in an organic solvent on the intermediate layer, pre-baking A film body formed by
The manufacturing method of the tape-shaped oxide superconducting wire of any one of Claims 1 thru | or 3.
前記混合溶液中の金属元素を含む前記金属有機酸塩は、オクチル酸塩、ナフテン酸塩、ネオデカン酸塩または三弗化酢酸塩より選択された1種以上からなる、
請求項4記載のテープ状酸化物超電導線材の製造方法。
The metal organic acid salt containing a metal element in the mixed solution consists of one or more selected from octylate, naphthenate, neodecanoate or trifluoride acetate.
The manufacturing method of the tape-shaped oxide superconducting wire of Claim 4.
前記酸化物超電導線材が、前記基板上に形成された中間層と、前記中間層上に形成されたREBaCu系超電導層と、前記超電導層上に形成された安定化層と、を備え、前記REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素からなる、請求項1乃至5のいずれか1項に記載のテープ状酸化物超電導線材の製造方法。 The oxide superconducting wire comprises an intermediate layer formed on the substrate, a REBa y Cu 3 O z- based superconducting layer formed on the intermediate layer, a stabilization layer formed on the superconducting layer, The tape-shaped oxide superconducting wire according to any one of claims 1 to 5, wherein the RE is made of at least one element selected from Y, Nd, Sm, Eu, Gd, and Ho. Production method. 円筒状の熱処理空間を備えた炉芯管と、
前記熱処理空間内部に炉芯軸に対して回転可能に配置され、且つ、多数の貫通孔が形成された表面に、超電導前駆体の膜体を形成したテープ状線材が巻回される円筒状の回転体と、
前記回転体に巻回された前記テープ状線材の前記膜体の膜面に対して上方に離間した位置に配置され、前記膜面に雰囲気ガスを供給するためのガス供給管と、
前記雰囲気ガスを前記回転体内部から排出するためのガス排出管と、
を備え、
前記ガス供給管のガス噴出孔は、前記回転体の表面との離間距離が10mm〜150mmの位置に設けられている、
テープ状酸化物超電導線材の熱処理装置。
A furnace core tube with a cylindrical heat treatment space;
A cylindrical shape in which a tape-like wire material in which a film body of a superconducting precursor is formed is wound around the surface of the heat treatment space, which is rotatably arranged with respect to the furnace core shaft and in which a large number of through holes are formed. A rotating body,
A gas supply pipe disposed at a position spaced upward from the film surface of the film body of the tape-shaped wire wound around the rotating body, and for supplying an atmospheric gas to the film surface;
A gas discharge pipe for discharging the atmospheric gas from the inside of the rotating body;
With
The gas ejection hole of the gas supply pipe is provided at a position where the distance from the surface of the rotating body is 10 mm to 150 mm.
Heat treatment equipment for tape-shaped oxide superconducting wire.
JP2011022115A 2011-02-03 2011-02-03 Tape-like oxide superconducting wire manufacturing method Active JP5881953B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011022115A JP5881953B2 (en) 2011-02-03 2011-02-03 Tape-like oxide superconducting wire manufacturing method
PCT/JP2012/000651 WO2012105243A1 (en) 2011-02-03 2012-02-01 Method of producing a tape-form oxide superconducting wire, and heat treatment device
CN201280007562.8A CN103460306B (en) 2011-02-03 2012-02-01 The manufacture method of banding oxide superconducting wire rod
TW101103612A TWI517184B (en) 2011-02-03 2012-02-03 Method for manufacturing tape-shaped oxide superconductor wire and thermal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022115A JP5881953B2 (en) 2011-02-03 2011-02-03 Tape-like oxide superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2012164442A true JP2012164442A (en) 2012-08-30
JP5881953B2 JP5881953B2 (en) 2016-03-09

Family

ID=46602466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022115A Active JP5881953B2 (en) 2011-02-03 2011-02-03 Tape-like oxide superconducting wire manufacturing method

Country Status (4)

Country Link
JP (1) JP5881953B2 (en)
CN (1) CN103460306B (en)
TW (1) TWI517184B (en)
WO (1) WO2012105243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533204B2 (en) 2014-05-30 2020-01-14 National University Corporatlon University of Toyama Method for amplifying a T cell receptor (TCR) cDNA

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208209A (en) * 1989-02-08 1990-08-17 Furukawa Electric Co Ltd:The Production of oxide superconductor precursor
JPH0380926U (en) * 1989-12-11 1991-08-19
JP2003121076A (en) * 2001-10-12 2003-04-23 Internatl Superconductivity Technology Center Atmosphere control type heat treating furnace
JP2006269347A (en) * 2005-03-25 2006-10-05 Internatl Superconductivity Technology Center Manufacturing method of tape-like oxide superconductive wire and its manufacturing device
JP2007188755A (en) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center Heat treatment device of oxide superconducting wire
JP2009048817A (en) * 2007-08-16 2009-03-05 Internatl Superconductivity Technology Center Heat treatment apparatus for oxide superconducting wire material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372140C (en) * 2005-03-29 2008-02-27 清华大学 Method for making large area uniform film or long superconducting wire and its apparatus
CN100575540C (en) * 2006-08-28 2009-12-30 北京有色金属研究总院 Batch preparation of double-faced high-temperature superconducting film device
CN101471161B (en) * 2007-12-28 2010-12-08 北京有色金属研究总院 Method for producing high-temperature superconducting thin film by tri-fluorate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208209A (en) * 1989-02-08 1990-08-17 Furukawa Electric Co Ltd:The Production of oxide superconductor precursor
JPH0380926U (en) * 1989-12-11 1991-08-19
JP2003121076A (en) * 2001-10-12 2003-04-23 Internatl Superconductivity Technology Center Atmosphere control type heat treating furnace
JP2006269347A (en) * 2005-03-25 2006-10-05 Internatl Superconductivity Technology Center Manufacturing method of tape-like oxide superconductive wire and its manufacturing device
JP2007188755A (en) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center Heat treatment device of oxide superconducting wire
JP2009048817A (en) * 2007-08-16 2009-03-05 Internatl Superconductivity Technology Center Heat treatment apparatus for oxide superconducting wire material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533204B2 (en) 2014-05-30 2020-01-14 National University Corporatlon University of Toyama Method for amplifying a T cell receptor (TCR) cDNA

Also Published As

Publication number Publication date
CN103460306B (en) 2016-07-06
WO2012105243A1 (en) 2012-08-09
TW201239904A (en) 2012-10-01
JP5881953B2 (en) 2016-03-09
CN103460306A (en) 2013-12-18
TWI517184B (en) 2016-01-11

Similar Documents

Publication Publication Date Title
JP4468901B2 (en) Heat treatment equipment for oxide superconducting wire.
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP4876044B2 (en) Heat treatment apparatus for oxide superconducting wire and method for manufacturing the same
JP5837751B2 (en) Tape-like oxide superconducting wire manufacturing method and heat treatment apparatus
JP5881953B2 (en) Tape-like oxide superconducting wire manufacturing method
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP5740795B2 (en) Manufacturing method of oxide superconducting wire
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP5731236B2 (en) Manufacturing method of oxide superconducting wire
JP2013025892A (en) Manufacturing method of tape-like oxide superconductive wire material and heat treatment apparatus
JP5096974B2 (en) RE-Ba-Cu-O-based superconducting tape wire manufacturing method and plasma processing apparatus used therefor
JP5615616B2 (en) Tape-shaped oxide superconductor and method for producing the same
JP5930303B2 (en) Tape-like RE oxide superconducting wire manufacturing method
JP5865426B2 (en) Manufacturing method of oxide superconducting wire
JP2003308745A (en) Method and device for manufacturing oxide superconductive wire
JP2016076343A (en) Production method of RE-based oxide superconducting wire
JP2015141830A (en) Method of producing tape-like oxide superconductive wire rod
JP6009309B2 (en) Tape-like oxide superconducting wire manufacturing method
JP5804936B2 (en) Superconducting wire manufacturing method
JP2013045727A (en) Manufacturing method of tape-like re-based oxide superconducting wiring member
JP5690509B2 (en) Tape-like oxide superconducting wire manufacturing method and heat treatment apparatus
JP2015141831A (en) Oxide superconductive wire
JP2014216126A (en) Method for producing tape-shaped oxide superconductive wire rod, and laminated temporarily fired film production device
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
JP2012003983A (en) Manufacturing method of oxide superconducting thin film wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5881953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350