JP2012162587A - Resin composite material - Google Patents

Resin composite material Download PDF

Info

Publication number
JP2012162587A
JP2012162587A JP2011021562A JP2011021562A JP2012162587A JP 2012162587 A JP2012162587 A JP 2012162587A JP 2011021562 A JP2011021562 A JP 2011021562A JP 2011021562 A JP2011021562 A JP 2011021562A JP 2012162587 A JP2012162587 A JP 2012162587A
Authority
JP
Japan
Prior art keywords
graphite particles
composite material
resin composite
polystyrene
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011021562A
Other languages
Japanese (ja)
Other versions
JP5637600B2 (en
Inventor
Hiromitsu Tanaka
洋充 田中
Osamu Watanabe
修 渡辺
Makoto Kato
誠 加藤
Kenichi Hayashida
研一 林田
Toshio Watanabe
敏雄 渡邉
Takayuki Nagai
隆之 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2011021562A priority Critical patent/JP5637600B2/en
Priority to EP11792444.9A priority patent/EP2578534B1/en
Priority to KR1020127033428A priority patent/KR101460876B1/en
Priority to PCT/JP2011/063038 priority patent/WO2011155487A1/en
Priority to CN201180038223.1A priority patent/CN103038163B/en
Priority to US13/701,768 priority patent/US9728294B2/en
Publication of JP2012162587A publication Critical patent/JP2012162587A/en
Application granted granted Critical
Publication of JP5637600B2 publication Critical patent/JP5637600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composite material that contains fine graphite particles and has high stiffness and high electric conductivity.SOLUTION: The resin composite material contains: the fine graphite particles, each of which comprises a plate-like graphite particle, an aromatic vinyl copolymer that is adsorbed on the plate-like graphite particle and contains a vinyl aromatic monomer unit that is represented by formula (1):-(CH-CHX)- (In the formula (1), X represents a phenyl group, a naphthyl group, an anthracenyl group or a pyrenyl group, which may have a substituent.); and at least one aromatic polymer selected from a group comprising a polystylene and polyphenylene ether.

Description

本発明は、黒鉛粒子を含有する樹脂複合材料に関する。   The present invention relates to a resin composite material containing graphite particles.

従来から、樹脂に様々な充填剤を添加して充填剤の特性を樹脂に付与することが検討されている。例えば、ガラス繊維や炭素繊維などを添加することによって剛性を付与したり、銅やアルミニウムなどの金属フィラー、黒鉛やカーボンブラック、カーボンナノチューブなどのカーボンフィラーを添加して電気伝導性を付与したりすることが検討されてきた(例えば、特開昭59−96142号公報(特許文献1)、特開2007−5547号公報(特許文献2)、特開2010−155993号公報(特許文献3))。   Conventionally, various fillers have been added to resins to impart the properties of the filler to the resins. For example, adding rigidity such as adding glass fiber or carbon fiber, or adding metal filler such as copper or aluminum, carbon filler such as graphite, carbon black, carbon nanotube, etc. to give electrical conductivity. (For example, JP 59-96142 A (Patent Document 1), JP 2007-5547 A (Patent Document 2), JP 2010-155993 A (Patent Document 3)).

しかしながら、前記特許文献1〜3に記載のように、ガラス繊維や炭素繊維、金属フィラーやカーボンフィラーをそのまま樹脂と混合しただけでは、これらの充填剤の特性を樹脂に十分に付与しているとは言えなかった。特に、黒鉛粒子は、凝集しやすい上に、樹脂との親和性が低く、樹脂中には凝集した状態で分散されるため、凝集した粒子では、耐熱性、耐薬品性、機械的強度、熱伝導性、導電性といった黒鉛粒子の特性を十分に発現させることは困難であった。   However, as described in Patent Documents 1 to 3, when the glass fiber, carbon fiber, metal filler, and carbon filler are mixed with the resin as they are, the properties of these fillers are sufficiently imparted to the resin. I could not say. In particular, graphite particles are easy to aggregate and have low affinity with the resin, and are dispersed in the resin in an aggregated state. Therefore, the aggregated particles have heat resistance, chemical resistance, mechanical strength, heat It has been difficult to fully develop the characteristics of graphite particles such as conductivity and conductivity.

そこで、樹脂中に黒鉛粒子を高度に分散させる様々な方法が提案されている。例えば、グラファイトなどのカーボンフィラーの表面をカルボン酸エステルで修飾して改質し、これをポリマーに添加する方法(例えば、特表2002−508422号公報(特許文献4))、有機オニウムイオンをインターカレートさせた酸化グラファイトを熱可塑性樹脂と溶融混練する方法(特開2006−233017号公報(特許文献5))などが開示されている。また、黒鉛粒子ではないが、ナノカーボンを高度に分散させる方法として、表面をポリイミド系樹脂などで被覆したナノカーボン複合体を添加する方法(特開2006−144201号公報(特許文献6))、水素化またはアルキル化処理された層状炭素を樹脂中に分散させる方法(特開2003−268245号公報(特許文献7))なども開示されている。   Thus, various methods for highly dispersing graphite particles in the resin have been proposed. For example, the surface of a carbon filler such as graphite is modified by modification with a carboxylic acid ester, and this is added to a polymer (for example, JP 2002-508422 A (Patent Document 4)). A method of melting and kneading the calated graphite oxide with a thermoplastic resin (Japanese Patent Laid-Open No. 2006-233017 (Patent Document 5)) is disclosed. Further, although not graphite particles, as a method of highly dispersing nanocarbon, a method of adding a nanocarbon composite whose surface is coated with a polyimide resin or the like (Japanese Patent Laid-Open No. 2006-144201 (Patent Document 6)), A method of dispersing hydrogenated or alkylated layered carbon in a resin (Japanese Patent Laid-Open No. 2003-268245 (Patent Document 7)) is also disclosed.

しかしながら、上記のようにカーボン材料に表面改質処理を施すとカーボン材料の特性(特に、電気伝導性)が損なわれる傾向にあり、カーボン材料は樹脂中に高度に分散するものの、特性が十分に付与されず、前記特許文献4〜7に記載の方法には、未だ改良の余地があった。   However, when the surface modification treatment is performed on the carbon material as described above, the characteristics (particularly, electrical conductivity) of the carbon material tend to be impaired, and the carbon material is highly dispersed in the resin, but the characteristics are sufficiently high. There was still room for improvement in the methods described in Patent Documents 4 to 7 without being given.

特開昭59−96142号公報JP 59-96142 A 特開2007−5547号公報JP 2007-5547 A 特開2010−155993号公報JP 2010-155993 A 特表2002−508422号公報Special table 2002-508422 gazette 特開2006−233017号公報JP 2006-233017 A 特開2006−144201号公報JP 2006-144201 A 特開2003−268245号公報JP 2003-268245 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、黒鉛粒子を含有し、高い剛性と高い電気伝導性を有する樹脂複合材料を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and it aims at providing the resin composite material which contains graphite particle | grains and has high rigidity and high electrical conductivity.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、黒鉛粒子、特定の芳香族ビニル共重合体、過酸化水素化物を混合して粉砕処理を施すことによって得られる微細化黒鉛粒子を、ポリスチレン、ポリフェニレンエーテル、またはこれらの混合物に添加することによって、ポリスチレン、ポリフェニレンエーテル、またはこれらの混合物に高い剛性と高い電気伝導性とが付与されることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a refined graphite obtained by mixing and pulverizing graphite particles, a specific aromatic vinyl copolymer, and a hydrogen peroxide. To add the particles to polystyrene, polyphenylene ether, or a mixture thereof, it is found that high rigidity and high electrical conductivity are imparted to polystyrene, polyphenylene ether, or a mixture thereof, and the present invention is completed. It came.

すなわち、本発明の樹脂複合材料は、板状黒鉛粒子と、該板状黒鉛粒子に吸着した、下記式(1):
−(CH−CHX)− (1)
(式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体とを備える微細化黒鉛粒子、ならびに、ポリスチレンおよびポリフェニレンエーテルからなる群から選択される少なくとも1種の芳香族系ポリマーを含有することを特徴とするものである。
That is, the resin composite material of the present invention has plate-like graphite particles and the following formula (1) adsorbed on the plate-like graphite particles:
- (CH 2 -CHX) - ( 1)
(In formula (1), X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, and these groups may have a substituent.)
A fine graphite particle comprising an aromatic vinyl copolymer containing a vinyl aromatic monomer unit represented by the formula: and at least one aromatic polymer selected from the group consisting of polystyrene and polyphenylene ether It is characterized by this.

このような樹脂複合材料において、前記微細化黒鉛粒子の含有量としては0.1〜80質量%が好ましい。また、前記芳香族系ポリマーとしては、ポリスチレンとポリフェニレンエーテルとの混合物が好ましく、この場合、前記混合物中のポリスチレン含有量は20〜80質量%であることが好ましい。   In such a resin composite material, the content of the fine graphite particles is preferably 0.1 to 80% by mass. The aromatic polymer is preferably a mixture of polystyrene and polyphenylene ether. In this case, the polystyrene content in the mixture is preferably 20 to 80% by mass.

また、本発明の樹脂複合材料において、前記芳香族ビニル共重合体としては、前記ビニル芳香族モノマー単位と極性モノマー単位とを備えるものが好ましく、前記極性モノマー単位としては、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルピリジン類、無水マレイン酸、マレイミド類およびビニルイミダゾール類からなる群から選択される少なくとも1種のモノマーから誘導されるモノマー単位が好ましい。   In the resin composite material of the present invention, the aromatic vinyl copolymer preferably includes the vinyl aromatic monomer unit and the polar monomer unit, and the polar monomer unit includes (meth) acrylic acid, Monomer units derived from at least one monomer selected from the group consisting of (meth) acrylates, (meth) acrylamides, vinylpyridines, maleic anhydride, maleimides and vinylimidazoles are preferred.

本発明の樹脂複合材料としては、40℃における貯蔵弾性率が2GPa以上であるものが好ましく、また、表面の単位長さ当たりの電気抵抗が10Ω/cm以下であるものが好ましい。 The resin composite material of the present invention preferably has a storage elastic modulus at 40 ° C. of 2 GPa or more, and preferably has an electric resistance per unit length of 10 4 Ω / cm or less.

なお、本発明にかかる微細化黒鉛粒子によって、ポリスチレンおよびポリフェニレンエーテルからなる群から選択される少なくとも1種の芳香族系ポリマーに、高い剛性と高い電気伝導性が付与される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明にかかる微細化黒鉛粒子においては、微細化された板状の黒鉛粒子の表面に前記芳香族ビニル共重合体が吸着しているため、板状黒鉛粒子間の凝集力が低下するとともに、前記芳香族ビニル共重合体を構成するビニル芳香族モノマー単位が前記芳香族系ポリマー(特に、ポリスチレン)との親和性に優れているため、前記微細化黒鉛粒子は前記芳香族系ポリマー(特に、ポリスチレン)に良好に分散すると推察される。さらに、前記ビニル芳香族モノマー単位は、板状黒鉛粒子に対する吸着性が安定しているため、微細化黒鉛粒子の分散安定性も向上すると推察される。このように、本発明の樹脂複合材料においては、前記微細化黒鉛粒子が前記芳香族系ポリマー中に高度に分散しているため、高い剛性や高い電気伝導性を示すと推察される。   In addition, the reason why high rigidity and high electrical conductivity are imparted to at least one aromatic polymer selected from the group consisting of polystyrene and polyphenylene ether by the refined graphite particles according to the present invention is not necessarily clear. However, the present inventors infer as follows. That is, in the refined graphite particles according to the present invention, since the aromatic vinyl copolymer is adsorbed on the surface of the refined plate-like graphite particles, the cohesive force between the plate-like graphite particles is reduced. In addition, since the vinyl aromatic monomer unit constituting the aromatic vinyl copolymer is excellent in affinity with the aromatic polymer (especially polystyrene), the fine graphite particles have the aromatic polymer ( In particular, it is presumed to be well dispersed in polystyrene. Furthermore, since the said vinyl aromatic monomer unit has the stable adsorptivity with respect to plate-like graphite particle | grains, it is estimated that the dispersion stability of refined | miniaturized graphite particle | grains also improves. Thus, in the resin composite material of this invention, since the said refined graphite particle is highly disperse | distributing in the said aromatic polymer, it is guessed that high rigidity and high electrical conductivity are shown.

また、本発明にかかる芳香族系ポリマーとして、ポリスチレンとポリフェニレンエーテルとの混合物を用いることによって、剛性や電気伝導性がさらに向上する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明にかかる微細化黒鉛粒子はポリスチレンに対して高い分散性を示すが、ポリフェニレンエーテルに対する分散性はポリスチレンに比べて低下する傾向にある。このため、ポリスチレンとポリフェニレンエーテルとを混合し、ポリフェニレンエーテルの割合が多くなると、混合物中での微細化黒鉛粒子の分散性が低下し、一部の微細化黒鉛粒子同士が接触した状態で存在すると推察される。このように、樹脂複合材料中の一部の微細化黒鉛粒子が接触した状態になると、粒子が連結してネットワーク構造が形成された状態となり、樹脂複合材料中に電気伝導パスが形成されるため、微細化黒鉛粒子が完全に分散した状態や凝集した状態に比べて、高い電気伝導性を示すと推察される。また、樹脂複合材料が機械的に変形した場合においても、前記ネットワーク構造が効果的に補強するため、微細化黒鉛粒子が完全に分散した状態や凝集した状態に比べて、高い剛性を示すと推察される。   The reason why the rigidity and electrical conductivity are further improved by using a mixture of polystyrene and polyphenylene ether as the aromatic polymer according to the present invention is not necessarily clear, but the present inventors have as follows. I guess. That is, the fine graphite particles according to the present invention exhibit high dispersibility with respect to polystyrene, but dispersibility with respect to polyphenylene ether tends to be lower than that of polystyrene. For this reason, when polystyrene and polyphenylene ether are mixed and the proportion of polyphenylene ether increases, the dispersibility of the fine graphite particles in the mixture decreases, and some fine graphite particles exist in contact with each other. Inferred. As described above, when a part of the fine graphite particles in the resin composite material comes into contact with each other, the particles are connected to form a network structure, and an electric conduction path is formed in the resin composite material. It is presumed that high electrical conductivity is exhibited as compared with a state in which fine graphite particles are completely dispersed or agglomerated. In addition, even when the resin composite material is mechanically deformed, the network structure effectively reinforces, so that it is assumed that the refined graphite particles exhibit high rigidity compared to the completely dispersed state or the aggregated state. Is done.

本発明によれば、黒鉛粒子と、ポリスチレン、ポリフェニレンエーテル、またはこれらの混合物とを含有し、高い剛性と高い電気伝導性を有する樹脂複合材料を得ることが可能となる。   According to the present invention, it is possible to obtain a resin composite material containing graphite particles and polystyrene, polyphenylene ether, or a mixture thereof and having high rigidity and high electrical conductivity.

実施例3〜7で得られたポリスチレン樹脂複合材料および比較例2で得られたポリスチレン樹脂材料の温度と貯蔵弾性率との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the polystyrene resin composite material obtained in Examples 3-7 and the polystyrene resin material obtained in Comparative Example 2, and a storage elastic modulus. 実施例3〜7で得られたポリスチレン樹脂複合材料および比較例2で得られたポリスチレン樹脂材料の温度と損失弾性率との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the polystyrene resin composite material obtained in Examples 3-7 and the polystyrene resin material obtained in Comparative Example 2, and a loss elastic modulus. ポリスチレン樹脂複合材料中の微細化黒鉛粒子の含有量と貯蔵弾性率および電気抵抗との関係を示すグラフである。It is a graph which shows the relationship between content of the fine graphite particle | grains in a polystyrene resin composite material, a storage elastic modulus, and an electrical resistance. 実施例2で得られたポリスチレン樹脂複合材料および比較例5〜8で得られたポリスチレン樹脂複合材料の貯蔵弾性率を示すグラフである。It is a graph which shows the storage elastic modulus of the polystyrene resin composite material obtained in Example 2, and the polystyrene resin composite material obtained in Comparative Examples 5-8. 実施例2で得られたポリスチレン樹脂複合材料の断面を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing a cross section of the polystyrene resin composite material obtained in Example 2. FIG. 比較例3で得られたポリスチレン樹脂複合材料の断面を示す走査型電子顕微鏡写真である。6 is a scanning electron micrograph showing a cross section of the polystyrene resin composite material obtained in Comparative Example 3. FIG. 実施例8〜14で得られたポリフェニレンエーテル樹脂複合材料および比較例9で得られたポリフェニレンエーテル樹脂材料の温度と貯蔵弾性率との関係を示すグラフである。It is a graph which shows the relationship between the temperature and storage elastic modulus of the polyphenylene ether resin composite material obtained in Examples 8-14 and the polyphenylene ether resin material obtained in Comparative Example 9. 実施例8〜14で得られたポリフェニレンエーテル樹脂複合材料および比較例9で得られたポリフェニレンエーテル樹脂材料の温度と損失弾性率との関係を示すグラフである。It is a graph which shows the relationship between the temperature and loss elastic modulus of the polyphenylene ether resin composite material obtained in Examples 8-14 and the polyphenylene ether resin material obtained in Comparative Example 9. ポリフェニレンエーテル樹脂複合材料中の微細化黒鉛粒子の含有量と貯蔵弾性率および電気抵抗との関係を示すグラフである。It is a graph which shows the relationship between content of the refined graphite particle in a polyphenylene ether resin composite material, a storage elastic modulus, and an electrical resistance. ポリスチレン−ポリフェニレンエーテル樹脂複合材料中の微細化黒鉛粒子の含有量と貯蔵弾性率との関係を示すグラフである。It is a graph which shows the relationship between content of the refined graphite particle in a polystyrene-polyphenylene ether resin composite material, and a storage elastic modulus. ポリスチレン−ポリフェニレンエーテル樹脂複合材料中のポリスチレン含有量と貯蔵弾性率との関係を示すグラフである。It is a graph which shows the relationship between the polystyrene content in a polystyrene-polyphenylene ether resin composite material, and a storage elastic modulus. ポリスチレン−ポリフェニレンエーテル樹脂複合材料中のポリスチレン含有量と電気抵抗との関係を示すグラフである。It is a graph which shows the relationship between the polystyrene content in a polystyrene-polyphenylene ether resin composite material, and an electrical resistance.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の樹脂複合材料は、板状黒鉛粒子およびこの板状黒鉛粒子に吸着した特定の芳香族ビニル共重合体を備える微細化黒鉛粒子と、ポリスチレンおよびポリフェニレンエーテルからなる群から選択される少なくとも1種の芳香族系ポリマーとを含有するものである。   The resin composite material of the present invention is at least one selected from the group consisting of plate-like graphite particles and fine graphite particles comprising a specific aromatic vinyl copolymer adsorbed on the plate-like graphite particles, and polystyrene and polyphenylene ether. It contains a kind of aromatic polymer.

<微細化黒鉛粒子>
先ず、本発明にかかる微細化黒鉛粒子について説明する。本発明にかかる微細化黒鉛粒子は、板状黒鉛粒子と、この板状黒鉛粒子に吸着した芳香族ビニル共重合体とを備えるものである。
<Refined graphite particles>
First, the refined graphite particles according to the present invention will be described. The fine graphite particles according to the present invention comprise plate-like graphite particles and an aromatic vinyl copolymer adsorbed on the plate-like graphite particles.

前記板状黒鉛粒子としては特に制限はなく、例えば、グラファイト構造を有する公知の黒鉛(人造黒鉛、天然黒鉛(例えば、鱗片状黒鉛、塊状黒鉛、土状黒鉛))をグラファイト構造が破壊されないように粉砕することによって得られるものが挙げられる。   The plate-like graphite particles are not particularly limited. For example, known graphite having a graphite structure (artificial graphite, natural graphite (for example, flaky graphite, massive graphite, earthy graphite)) should not be destroyed. What is obtained by grind | pulverizing is mentioned.

このような板状黒鉛粒子の厚さとしては特に制限はないが、0.3〜1000nmが好ましく、0.3〜100nmがより好ましく、1〜100nmが特に好ましい。また、板状黒鉛粒子の平面方向の大きさとしては特に制限はないが、例えば、長軸方向の長さ(長径)としては0.1〜500μmが好ましく、1〜500μmがより好ましく、短軸方向の長さ(短径)としては0.1〜500μmが好ましく、0.3〜100μmがより好ましい。   The thickness of such plate-like graphite particles is not particularly limited, but is preferably 0.3 to 1000 nm, more preferably 0.3 to 100 nm, and particularly preferably 1 to 100 nm. Further, the size in the planar direction of the plate-like graphite particles is not particularly limited. For example, the length in the major axis direction (major axis) is preferably 0.1 to 500 μm, more preferably 1 to 500 μm, and the minor axis. The length (minor axis) in the direction is preferably 0.1 to 500 μm, and more preferably 0.3 to 100 μm.

また、本発明にかかる板状黒鉛粒子の表面には、水酸基、カルボキシル基、エポキシ基などの官能基が結合(好ましくは共有結合)していることが好ましい。前記官能基は本発明にかかる芳香族ビニル共重合体との親和性を有するものであり、芳香族ビニル共重合体の板状黒鉛粒子への吸着量および吸着力が増大し、微細化黒鉛粒子は、本発明にかかる芳香族系ポリマー(特に、ポリスチレン)中への分散性が高くなる傾向にある。   Moreover, it is preferable that functional groups such as a hydroxyl group, a carboxyl group, and an epoxy group are bonded (preferably covalently bonded) to the surface of the plate-like graphite particles according to the present invention. The functional group has an affinity with the aromatic vinyl copolymer according to the present invention, and the adsorption amount and adsorption force of the aromatic vinyl copolymer to the plate-like graphite particles are increased, so that the fine graphite particles Tends to be highly dispersible in the aromatic polymer (especially polystyrene) according to the present invention.

このような官能基は、板状黒鉛粒子の表面近傍(好ましくは、表面から深さ10nmまでの領域)の全炭素原子の50%以下(より好ましくは20%以下、特に好ましくは10%以下)の炭素原子に結合していることが好ましい。官能基が結合している炭素原子の割合が前記上限を超えると、板状黒鉛粒子は、親水性が増大するため、芳香族ビニル共重合体との親和性が低下する傾向にある。また、官能基が結合している炭素原子の割合の下限としては特に制限はないが、0.01%以上が好ましい。なお、水酸基などの前記官能基はX線光電子分光法(XPS)により定量することができ、粒子表面から深さ10nmまでの領域に存在する官能基の量を測定することができる。なお、板状黒鉛粒子の厚さが10nm以下の場合には、板状黒鉛粒子の全領域に存在する官能基の量が測定される。   Such a functional group is 50% or less (more preferably 20% or less, particularly preferably 10% or less) of the total carbon atoms in the vicinity of the surface of the plate-like graphite particles (preferably, a region from the surface to a depth of 10 nm). It is preferable that it is bonded to the carbon atom. When the ratio of the carbon atom to which the functional group is bonded exceeds the upper limit, the plate-like graphite particles tend to have a low affinity with the aromatic vinyl copolymer because the hydrophilicity increases. Moreover, there is no restriction | limiting in particular as a minimum of the ratio of the carbon atom which the functional group has couple | bonded, However 0.01% or more is preferable. The functional group such as a hydroxyl group can be quantified by X-ray photoelectron spectroscopy (XPS), and the amount of the functional group present in a region from the particle surface to a depth of 10 nm can be measured. In addition, when the thickness of the plate-like graphite particles is 10 nm or less, the amount of functional groups present in the entire region of the plate-like graphite particles is measured.

本発明にかかる芳香族ビニル共重合体は、下記式(1):
−(CH−CHX)− (1)
(式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
で表されるビニル芳香族モノマー単位と他のモノマー単位とを含有するものである。
The aromatic vinyl copolymer according to the present invention has the following formula (1):
- (CH 2 -CHX) - ( 1)
(In formula (1), X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, and these groups may have a substituent.)
The vinyl aromatic monomer unit represented by these and other monomer units are contained.

このような芳香族ビニル共重合体において、前記ビニル芳香族モノマー単位は、黒鉛粒子に対する吸着性を示すとともに、本発明にかかる芳香族系ポリマー(特に、ポリスチレン)との間で高い親和性を示す。また、他のモノマー単位が極性モノマー単位である場合には、極性モノマー単位は本発明にかかる芳香族系ポリマー(特に、ポリスチレン)および黒鉛粒子表面近傍の官能基との親和性を示す。したがって、このような芳香族ビニル共重合体は、板状黒鉛粒子に吸着して板状黒鉛粒子同士の凝集力を低下させるとともに板状黒鉛粒子に本発明にかかる芳香族系ポリマー(特に、ポリスチレン)との親和性を付与し、板状黒鉛粒子を本発明にかかる芳香族系ポリマー(特に、ポリスチレン)中に高度に分散させることが可能となる。   In such an aromatic vinyl copolymer, the vinyl aromatic monomer unit exhibits an adsorptivity to graphite particles and a high affinity with the aromatic polymer (particularly polystyrene) according to the present invention. . When the other monomer unit is a polar monomer unit, the polar monomer unit exhibits affinity with the aromatic polymer according to the present invention (particularly polystyrene) and the functional group in the vicinity of the graphite particle surface. Therefore, such an aromatic vinyl copolymer is adsorbed on the plate-like graphite particles to reduce the cohesive force between the plate-like graphite particles, and at the same time, the aromatic polymer according to the present invention (particularly polystyrene). ), And the plate-like graphite particles can be highly dispersed in the aromatic polymer (particularly polystyrene) according to the present invention.

また、上述したように、ビニル芳香族モノマー単位は黒鉛粒子に吸着しやすいため、ビニル芳香族モノマー単位の含有率が高い共重合体ほど、板状黒鉛粒子への吸着量が増大し、微細化黒鉛粒子は本発明にかかる芳香族系ポリマー(特に、ポリスチレン)中への分散性が高くなる傾向にある。ビニル芳香族モノマー単位の含有量としては、芳香族ビニル共重合体全体に対して10〜98質量%が好ましく、30〜98質量%がより好ましく、50〜95質量%が特に好ましい。ビニル芳香族モノマー単位の含有量が前記下限未満になると、芳香族ビニル共重合体の板状黒鉛粒子への吸着量が低下し、微細化黒鉛粒子の分散性が低下する傾向にある。ビニル芳香族モノマー単位の含有量が前記上限を超えると、板状黒鉛粒子に本発明にかかる芳香族系ポリマー(特に、ポリスチレン)との親和性が付与されず、微細化黒鉛粒子の分散性が低下する傾向にある。   In addition, as described above, since vinyl aromatic monomer units are easily adsorbed on graphite particles, a copolymer having a higher vinyl aromatic monomer unit content increases the amount of adsorption on plate-like graphite particles, resulting in finer structures. Graphite particles tend to be highly dispersible in the aromatic polymer (particularly polystyrene) according to the present invention. As content of a vinyl aromatic monomer unit, 10-98 mass% is preferable with respect to the whole aromatic vinyl copolymer, 30-98 mass% is more preferable, 50-95 mass% is especially preferable. When the content of the vinyl aromatic monomer unit is less than the lower limit, the amount of adsorption of the aromatic vinyl copolymer to the plate-like graphite particles tends to decrease, and the dispersibility of the fine graphite particles tends to decrease. When the content of the vinyl aromatic monomer unit exceeds the above upper limit, the affinity for the aromatic polymer (particularly polystyrene) according to the present invention is not imparted to the plate-like graphite particles, and the dispersibility of the fine graphite particles is reduced. It tends to decrease.

前記式(1)中のXで表される基が有していてもよい置換基としては、アルコキシ基(例えば、メトキシ基)、カルボニル基、アミド基、イミド基、カルボキシル基、カルボン酸エステル基、リン酸エステル基などが挙げられ、中でも、微細化黒鉛粒子の分散性が向上するという観点から、メトキシ基などのアルコキシ基が好ましく、メトキシ基がより好ましい。   Examples of the substituent that the group represented by X in the formula (1) may have include an alkoxy group (for example, a methoxy group), a carbonyl group, an amide group, an imide group, a carboxyl group, and a carboxylate group. In particular, from the viewpoint of improving the dispersibility of the fine graphite particles, an alkoxy group such as a methoxy group is preferable, and a methoxy group is more preferable.

このようなビニル芳香族モノマー単位としては、例えば、スチレンモノマー単位、ビニルナフタレンモノマー単位、ビニルアントラセンモノマー単位、ビニルピレンモノマー単位、ビニルアニソールモノマー単位、ビニル安息香酸エステルモノマー単位、アセチルスチレンモノマー単位などが挙げられ、中でも、微細化黒鉛粒子の分散性が向上するという観点から、スチレンモノマー単位、ビニルナフタレンモノマー単位、ビニルアニソールモノマー単位が好ましい。   Examples of such vinyl aromatic monomer units include styrene monomer units, vinyl naphthalene monomer units, vinyl anthracene monomer units, vinyl pyrene monomer units, vinyl anisole monomer units, vinyl benzoate ester monomer units, and acetyl styrene monomer units. Among them, from the viewpoint of improving the dispersibility of the fine graphite particles, a styrene monomer unit, a vinyl naphthalene monomer unit, and a vinyl anisole monomer unit are preferable.

本発明にかかる芳香族ビニル共重合体を構成する他のモノマー単位としては特に制限はないが、本発明にかかる芳香族系ポリマー(特に、ポリスチレン)および黒鉛粒子表面近傍の官能基との親和性を示すという観点から、極性モノマー単位が好ましく、中でも、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルイミダゾール類、ビニルピリジン類、無水マレイン酸およびマレイミド類からなる群から選択される少なくとも1種のモノマーから誘導されるモノマー単位がより好ましい。このような極性モノマー単位を含む芳香族ビニル共重合体を用いることによって、微細化黒鉛粒子は本発明にかかる芳香族系ポリマー(特に、ポリスチレン)との親和性が向上し、本発明にかかる芳香族系ポリマー(特に、ポリスチレン)中に高度に分散させることが可能となる。   Although there is no restriction | limiting in particular as another monomer unit which comprises the aromatic vinyl copolymer concerning this invention, Affinity with the functional group of the aromatic polymer (especially polystyrene) concerning this invention and the graphite particle surface vicinity From the viewpoint of showing, a polar monomer unit is preferable, and among them, (meth) acrylic acid, (meth) acrylates, (meth) acrylamides, vinylimidazoles, vinylpyridines, maleic anhydride and maleimides More preferred are monomer units derived from at least one monomer selected. By using such an aromatic vinyl copolymer containing a polar monomer unit, the fine graphite particles have improved affinity with the aromatic polymer (especially polystyrene) according to the present invention, and the aromatic according to the present invention. It becomes possible to highly disperse in a group polymer (particularly polystyrene).

前記(メタ)アクリレート類としては、アルキル(メタ)アクリレート、置換アルキル(メタ)アクリレート(例えば、ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートなどのアミノアルキル(メタ)アクリレート)などが挙げられる。前記(メタ)アクリルアミド類としては、(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド(例えば、N,N−ジメチル(メタ)アクリルアミド)などが挙げられる。   Examples of the (meth) acrylates include alkyl (meth) acrylate, substituted alkyl (meth) acrylate (for example, hydroxyalkyl (meth) acrylate such as hydroxyethyl (meth) acrylate, and aminoalkyl such as dimethylaminoethyl (meth) acrylate). (Meth) acrylate) and the like. Examples of the (meth) acrylamides include (meth) acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide (for example, N, N-dimethyl (meth) acrylamide) and the like.

前記ビニルイミダゾール類としては、1−ビニルイミダゾールなどが挙げられる。前記ビニルピリジン類としては、2−ビニルピリジン、4−ビニルピリジンなどが挙げられる。前記マレイミド類としては、マレイミド、アルキルマレイミド(例えば、メチルマレイミド、エチルマレイミド)、アリールマレイミド(例えば、フェニルマレイミド)などが挙げられる。   Examples of the vinylimidazoles include 1-vinylimidazole. Examples of the vinyl pyridines include 2-vinyl pyridine and 4-vinyl pyridine. Examples of the maleimides include maleimide, alkylmaleimide (eg, methylmaleimide, ethylmaleimide), arylmaleimide (eg, phenylmaleimide), and the like.

このような極性モノマーのうち、微細化黒鉛粒子の分散性が向上するという観点から、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、N,N−ジアルキル(メタ)アクリルアミド、2−ビニルピリジン、4−ビニルピリジン、アリールマレイミドが好ましく、ヒドロキシアルキル(メタ)アクリレート、N,N−ジアルキル(メタ)アクリルアミド、2−ビニルピリジン、アリールマレイミドがより好ましく、フェニルマレイミドが特に好ましい。   Among such polar monomers, alkyl (meth) acrylate, hydroxyalkyl (meth) acrylate, aminoalkyl (meth) acrylate, and N, N-dialkyl (meth) from the viewpoint of improving the dispersibility of the fine graphite particles. Acrylamide, 2-vinylpyridine, 4-vinylpyridine and arylmaleimide are preferred, hydroxyalkyl (meth) acrylate, N, N-dialkyl (meth) acrylamide, 2-vinylpyridine and arylmaleimide are more preferred, and phenylmaleimide is particularly preferred. .

本発明にかかる微細化黒鉛粒子において、前記芳香族ビニル共重合体の数平均分子量としては特に制限はないが、1千〜100万が好ましく、5千〜10万がより好ましい。芳香族ビニル共重合体の数平均分子量が前記下限未満になると、黒鉛粒子に対する吸着能が低下する傾向にあり、他方、前記上限を超えると、溶媒への溶解性が低下したり、粘度が著しく上昇して取り扱いが困難になる傾向にある。なお、芳香族ビニル共重合体の数平均分子量は、ゲルパーミエーションクロマトグラフィ(カラム:Shodex GPC K−805LおよびShodex GPC K−800RL(ともに、昭和電工(株)製)、溶離液:クロロホルム)により測定し、標準ポリスチレンで換算した値である。   In the fine graphite particles according to the present invention, the number average molecular weight of the aromatic vinyl copolymer is not particularly limited, but is preferably 1,000 to 1,000,000, and more preferably 5,000 to 100,000. If the number average molecular weight of the aromatic vinyl copolymer is less than the lower limit, the adsorptive capacity to graphite particles tends to be reduced. On the other hand, if the upper limit is exceeded, the solubility in a solvent is reduced or the viscosity is remarkably increased. It tends to rise and become difficult to handle. The number average molecular weight of the aromatic vinyl copolymer was measured by gel permeation chromatography (column: Shodex GPC K-805L and Shodex GPC K-800RL (both manufactured by Showa Denko KK), eluent: chloroform). It is a value converted with standard polystyrene.

また、本発明にかかる微細化黒鉛粒子においては、前記芳香族ビニル共重合体としてランダム共重合体を用いても、ブロック共重合体を用いてもよいが、微細化黒鉛粒子の分散性が向上するという観点から、ブロック共重合体を用いることが好ましい。   In the refined graphite particles according to the present invention, a random copolymer or a block copolymer may be used as the aromatic vinyl copolymer, but the dispersibility of the refined graphite particles is improved. From the viewpoint of achieving this, it is preferable to use a block copolymer.

本発明にかかる微細化黒鉛粒子において、前記芳香族ビニル共重合体の含有量としては、前記板状黒鉛粒子100質量部に対して10−7〜10−1質量部が好ましく、10−5〜10−2質量部がより好ましい。芳香族ビニル共重合体の含有量が前記下限未満になると、板状黒鉛粒子への芳香族ビニル共重合体の吸着が不十分なため、微細化黒鉛粒子の分散性が低下する傾向にあり、他方、前記上限を超えると、板状黒鉛粒子に直接吸着していない芳香族ビニル共重合体が存在する傾向にある。 In fine graphite particles according to the present invention, the content of the aromatic vinyl copolymer, preferably 10 -7 to 10 -1 parts by weight with respect to the plate-like graphite particles 100 parts by weight, 10 -5 10-2 mass parts is more preferable. When the content of the aromatic vinyl copolymer is less than the lower limit, because the adsorption of the aromatic vinyl copolymer to the plate-like graphite particles is insufficient, the dispersibility of the fine graphite particles tends to decrease, On the other hand, when the upper limit is exceeded, there is a tendency that an aromatic vinyl copolymer that is not directly adsorbed on the plate-like graphite particles exists.

本発明にかかる微細化黒鉛粒子は、上述したように、本発明にかかる芳香族系ポリマー(特に、ポリスチレン)との親和性が高く、本発明の樹脂複合材料においては、前記芳香族系ポリマー(特に、ポリスチレン)中に高度に分散するものであるが、さらに、溶媒への分散性に優れており、例えば、後述するように、本発明にかかる芳香族系ポリマーと微細化黒鉛粒子とを溶媒中で混合して本発明の樹脂複合材料を製造する場合においては、溶媒中に微細化黒鉛粒子を容易に高度に分散させることが可能であり、前記芳香族系ポリマー中に微細化黒鉛粒子が均一に分散した本発明の樹脂複合材料を容易に得ることができる。   As described above, the fine graphite particles according to the present invention have a high affinity with the aromatic polymer (especially polystyrene) according to the present invention. In the resin composite material according to the present invention, the aromatic polymer ( In particular, it is highly dispersible in polystyrene), and is further excellent in dispersibility in a solvent. For example, as described later, the aromatic polymer and fine graphite particles according to the present invention are used as a solvent. In the case of producing the resin composite material of the present invention by mixing in, it is possible to easily and highly disperse the fine graphite particles in the solvent, and the fine graphite particles are contained in the aromatic polymer. The resin composite material of the present invention uniformly dispersed can be easily obtained.

次に、本発明にかかる微細化黒鉛粒子の製造方法について説明する。本発明にかかる微細化黒鉛粒子は、原料の黒鉛粒子、前記式(1)で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体、過酸化水素化物、および溶媒を混合し、得られた混合物に粉砕処理を施した後、溶媒を除去することによって製造することができる。   Next, the manufacturing method of the refined graphite particle concerning this invention is demonstrated. Fine graphite particles according to the present invention are obtained by mixing raw material graphite particles, an aromatic vinyl copolymer containing a vinyl aromatic monomer unit represented by the above formula (1), a hydrogen peroxide, and a solvent, It can manufacture by removing a solvent, after giving the grinding | pulverization process to the obtained mixture.

本発明にかかる微細化黒鉛粒子を製造する際に原料として用いられる黒鉛粒子(以下、「原料黒鉛粒子」という)としては、グラファイト構造を有する公知の黒鉛(人造黒鉛、天然黒鉛(例えば、鱗片状黒鉛、塊状黒鉛、土状黒鉛))が挙げられ、中でも、粉砕することによって前記範囲の厚さを有する板状黒鉛粒子となるものが好ましい。このような原料黒鉛粒子の粒子径としては特に制限はないが、0.01〜5mmが好ましく、0.1〜1mmがより好ましい。   As the graphite particles used as raw materials when producing the fine graphite particles according to the present invention (hereinafter referred to as “raw graphite particles”), known graphites having a graphite structure (artificial graphite, natural graphite (for example, scaly) Graphite, lump graphite, earthy graphite)), and among them, those that become plate-like graphite particles having a thickness in the above range by pulverization are preferable. Although there is no restriction | limiting in particular as a particle diameter of such a raw material graphite particle, 0.01-5 mm is preferable and 0.1-1 mm is more preferable.

また、原料黒鉛粒子を構成する板状黒鉛粒子の表面には、水酸基、カルボキシル基、エポキシ基などの官能基が結合(好ましくは共有結合)していることが好ましい。前記官能基は前記芳香族ビニル共重合体との親和性を有するものであり、芳香族ビニル共重合体の板状黒鉛粒子への吸着量および吸着力が増大し、得られる微細化黒鉛粒子は本発明にかかる芳香族系ポリマー(特に、ポリスチレン)中への分散性が高くなる傾向にある。   Moreover, it is preferable that functional groups such as a hydroxyl group, a carboxyl group, and an epoxy group are bonded (preferably covalently bonded) to the surface of the plate-like graphite particles constituting the raw graphite particles. The functional group has an affinity for the aromatic vinyl copolymer, the amount of adsorption of the aromatic vinyl copolymer on the plate-like graphite particles and the adsorptive power increase, and the resulting fine graphite particles are The dispersibility in the aromatic polymer (particularly polystyrene) according to the present invention tends to be high.

このような官能基は、板状黒鉛粒子の表面近傍(好ましくは、表面から深さ10nmまでの領域)の全炭素原子の50%以下(より好ましくは20%以下、特に好ましくは10%以下)の炭素原子に結合していることが好ましい。官能基が結合している炭素原子の割合が前記上限を超えると、板状黒鉛粒子は、親水性が増大するため、芳香族ビニル共重合体との親和性が低下する傾向にある。また、官能基が結合している炭素原子の割合の下限としては特に制限はないが、0.01%以上が好ましい。   Such a functional group is 50% or less (more preferably 20% or less, particularly preferably 10% or less) of the total carbon atoms in the vicinity of the surface of the plate-like graphite particles (preferably, a region from the surface to a depth of 10 nm). It is preferable that it is bonded to the carbon atom. When the ratio of the carbon atom to which the functional group is bonded exceeds the upper limit, the plate-like graphite particles tend to have a low affinity with the aromatic vinyl copolymer because the hydrophilicity increases. Moreover, there is no restriction | limiting in particular as a minimum of the ratio of the carbon atom which the functional group has couple | bonded, However 0.01% or more is preferable.

本発明にかかる微細化黒鉛粒子を製造する際に用いられる過酸化水素化物としては、カルボニル基を有する化合物(例えば、ウレア、カルボン酸(安息香酸、サリチル酸など)、ケトン(アセトン、メチルエチルケトンなど)、カルボン酸エステル(安息香酸メチル、サリチル酸エチルなど))と過酸化水素との錯体;四級アンモニウム塩、フッ化カリウム、炭酸ルビジウム、リン酸、尿酸などの化合物に過酸化水素が配位したものなどが挙げられる。このような過酸化水素化物は、本発明にかかる微細化黒鉛粒子を製造する際に酸化剤として作用し、原料黒鉛粒子のグラファイト構造を破壊せずに、炭素層間の剥離を容易にするものである。すなわち、過酸化水素化物が炭素層間に侵入して層表面を酸化しながら劈開を進行させ、同時に芳香族ビニル共重合体が劈開した炭素層間に侵入して劈開面を安定化させ、層間剥離が促進される。その結果、板状黒鉛粒子の表面に前記芳香族ビニル共重合体が吸着して、微細化黒鉛粒子を本発明にかかる芳香族系ポリマー(特に、ポリスチレン)中に高度に分散させることが可能となる。   As the hydrogen peroxide used in producing the fine graphite particles according to the present invention, a compound having a carbonyl group (for example, urea, carboxylic acid (benzoic acid, salicylic acid, etc.), ketone (acetone, methyl ethyl ketone, etc.), Complexes of carboxylic acid esters (methyl benzoate, ethyl salicylate, etc.) and hydrogen peroxide; compounds in which hydrogen peroxide is coordinated to compounds such as quaternary ammonium salts, potassium fluoride, rubidium carbonate, phosphoric acid, uric acid, etc. Is mentioned. Such hydrogen peroxide acts as an oxidant when producing fine graphite particles according to the present invention, and facilitates exfoliation between carbon layers without destroying the graphite structure of the raw graphite particles. is there. That is, hydrogen peroxide enters between the carbon layers to oxidize the surface of the layer, and proceeds with cleavage. At the same time, the aromatic vinyl copolymer penetrates into the cleaved carbon layer and stabilizes the cleavage surface. Promoted. As a result, the aromatic vinyl copolymer is adsorbed on the surface of the plate-like graphite particles, and the fine graphite particles can be highly dispersed in the aromatic polymer (especially polystyrene) according to the present invention. Become.

本発明にかかる微細化黒鉛粒子を製造する際に用いられる溶媒としては特に制限はないが、ジメチルホルムアミド(DMF)、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン、N−メチルピロリドン(NMP)、トルエン、ジオキサン、プロパノール、γ−ピコリン、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAC)が好ましく、ジメチルホルムアミド(DMF)、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン、N−メチルピロリドン(NMP)、トルエンがより好ましい。   Although there is no restriction | limiting in particular as a solvent used when manufacturing the refined graphite particle concerning this invention, Dimethylformamide (DMF), chloroform, a dichloromethane, chlorobenzene, dichlorobenzene, N-methylpyrrolidone (NMP), toluene, dioxane , Propanol, γ-picoline, acetonitrile, dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC) are preferable, and dimethylformamide (DMF), chloroform, dichloromethane, chlorobenzene, dichlorobenzene, N-methylpyrrolidone (NMP), and toluene are more preferable. .

本発明にかかる微細化黒鉛粒子を製造する場合には、先ず、前記原料黒鉛粒子と前記芳香族ビニル共重合体と前記過酸化水素化物と前記溶媒とを混合する。前記原料黒鉛粒子の混合量としては、溶媒1L当たり0.1〜500g/Lが好ましく、10〜200g/Lがより好ましい。原料黒鉛粒子の混合量が前記下限未満になると、溶媒の消費量が増大し、経済的に不利となる傾向にあり、他方、前記上限を超えると液の粘度が上昇して取り扱いが困難となる傾向にある。   When producing the refined graphite particles according to the present invention, first, the raw graphite particles, the aromatic vinyl copolymer, the hydrogenated product, and the solvent are mixed. The mixing amount of the raw graphite particles is preferably 0.1 to 500 g / L, more preferably 10 to 200 g / L, per liter of the solvent. When the mixing amount of the raw material graphite particles is less than the lower limit, the consumption of the solvent tends to increase, which tends to be economically disadvantageous. On the other hand, when the upper limit is exceeded, the viscosity of the liquid increases and handling becomes difficult. There is a tendency.

また、前記芳香族ビニル共重合体の混合量としては、前記原料黒鉛粒子100質量部に対して0.1〜1000質量部が好ましく、0.1〜200質量部がより好ましい。芳香族ビニル共重合体の混合量が前記下限未満になると、得られる微細化黒鉛粒子の分散性が低下する傾向にあり、他方、前記上限を超えると、芳香族ビニル共重合体が溶媒に溶解しなくなるとともに、液の粘度が上昇して取り扱いが困難となる傾向にある。   Moreover, as a mixing amount of the said aromatic vinyl copolymer, 0.1-1000 mass parts is preferable with respect to 100 mass parts of said raw material graphite particles, and 0.1-200 mass parts is more preferable. When the mixing amount of the aromatic vinyl copolymer is less than the lower limit, the dispersibility of the resulting fine graphite particles tends to be reduced. On the other hand, when the upper limit is exceeded, the aromatic vinyl copolymer is dissolved in the solvent. In addition, the viscosity of the liquid increases and handling tends to be difficult.

また、前記過酸化水素化物の混合量としては、前記原料黒鉛粒子100質量部に対して0.1〜500質量部が好ましく、1〜100質量部がより好ましい。前記過酸化水素化物の混合量が前記下限未満になると、得られる微細化黒鉛粒子の分散性が低下する傾向にあり、他方、前記上限を超えると、原料黒鉛粒子が過剰に酸化され、得られる微細化黒鉛粒子の導電性が低下する傾向にある。   Further, the mixing amount of the hydrogen peroxide is preferably 0.1 to 500 parts by mass, more preferably 1 to 100 parts by mass with respect to 100 parts by mass of the raw graphite particles. When the mixing amount of the hydrogen peroxide is less than the lower limit, the dispersibility of the obtained fine graphite particles tends to be lowered. On the other hand, when the upper limit is exceeded, the raw graphite particles are excessively oxidized and obtained. There is a tendency for the conductivity of the fine graphite particles to decrease.

次に、得られた混合物に粉砕処理を施して原料黒鉛粒子を板状黒鉛粒子に粉砕する。これにより生成した板状黒鉛粒子の表面には前記芳香族ビニル共重合体が吸着するため、得られる微細化黒鉛粒子は、本発明にかかる芳香族系ポリマー(特に、ポリスチレン)中での分散安定性が向上する。   Next, the obtained mixture is pulverized to pulverize the raw graphite particles into plate-like graphite particles. Since the aromatic vinyl copolymer is adsorbed on the surface of the plate-like graphite particles produced thereby, the resulting fine graphite particles are dispersed stably in the aromatic polymer (especially polystyrene) according to the present invention. Improves.

本発明にかかる粉砕処理としては、超音波処理(発振周波数としては15〜400kHzが好ましく、出力としては500W以下が好ましい。)、ボールミルによる処理、湿式粉砕、爆砕、機械式粉砕などが挙げられる。これにより、原料黒鉛粒子のグラファイト構造を破壊させずに原料黒鉛粒子を粉砕して板状黒鉛粒子を得ることが可能となる。また、粉砕処理時の温度としては特に制限はなく、例えば、−20〜100℃が挙げられる。また、粉砕処理時間についても特に制限はなく、例えば、0.01〜50時間が挙げられる。   Examples of the pulverization treatment according to the present invention include ultrasonic treatment (oscillation frequency is preferably 15 to 400 kHz, output is preferably 500 W or less), treatment with a ball mill, wet pulverization, explosion, mechanical pulverization, and the like. This makes it possible to obtain plate-like graphite particles by pulverizing the raw graphite particles without destroying the graphite structure of the raw graphite particles. Moreover, there is no restriction | limiting in particular as temperature at the time of a grinding | pulverization process, For example, -20-100 degreeC is mentioned. Moreover, there is no restriction | limiting in particular also about pulverization processing time, For example, 0.01 to 50 hours are mentioned.

このようにして得られる微細化黒鉛粒子は溶媒に分散した状態であるので、前記溶媒をろ過や遠心分離などにより除去することによって微細化黒鉛粒子を回収することができる。   Since the fine graphite particles thus obtained are dispersed in a solvent, the fine graphite particles can be recovered by removing the solvent by filtration or centrifugation.

<芳香族系ポリマー>
次に、本発明にかかる芳香族系ポリマーについて説明する。本発明にかかる芳香族系ポリマーは、ポリスチレンおよびポリフェニレンエーテルからなる群から選択される少なくとも1種のポリマーである。
<Aromatic polymer>
Next, the aromatic polymer according to the present invention will be described. The aromatic polymer according to the present invention is at least one polymer selected from the group consisting of polystyrene and polyphenylene ether.

前記ポリスチレンとしては、スチレンの単独重合体;4−メチルスチレンや4−ヒドロキシスチレン、4−アミノスチレンといった芳香族環に置換基を有するスチレンの単独重合体;スチレンと前記芳香族環に置換基を有するスチレンとの共重合体などが挙げられる。また、前記ポリフェニレンエーテルとしては、ポリ(1,4−フェニレンオキシド)、ポリ(2,6−ジメチル−1,4−フェニレンオキシド)に代表される芳香族環にアルキル基などの置換基を有するポリフェニレンオキシドなどが挙げられる。   Examples of the polystyrene include a styrene homopolymer; a styrene homopolymer having a substituent on an aromatic ring such as 4-methylstyrene, 4-hydroxystyrene, and 4-aminostyrene; and a substituent on styrene and the aromatic ring. Examples thereof include a copolymer with styrene. Examples of the polyphenylene ether include polyphenylene having a substituent such as an alkyl group on an aromatic ring typified by poly (1,4-phenylene oxide) and poly (2,6-dimethyl-1,4-phenylene oxide). And oxides.

このようなポリスチレンやポリフェニレンエーテルドといった芳香族系ポリマーの数平均分子量としては特に制限はないが、1千〜100万が好ましく、1万〜100万がより好ましい。芳香族系ポリマーの数平均分子量が前記下限未満になると、樹脂複合材料の機械的強度が低下する傾向にあり、他方、前記上限を超えると、粘度が高くなりすぎて、樹脂複合材料を成形することが困難となる傾向にある。なお、本発明にかかる芳香族系ポリマーの数平均分子量は、ゲルパーミエーションクロマトグラフィ(カラム:Shodex GPC K−805LおよびShodex GPC K−800RL(ともに、昭和電工(株)製)、溶離液:クロロホルム)により測定し、標準ポリスチレンで換算した値である。   The number average molecular weight of such an aromatic polymer such as polystyrene or polyphenylene ether is not particularly limited, but is preferably 1,000 to 1,000,000, more preferably 10,000 to 1,000,000. When the number average molecular weight of the aromatic polymer is less than the lower limit, the mechanical strength of the resin composite material tends to decrease. On the other hand, when the upper limit is exceeded, the viscosity becomes too high and the resin composite material is molded. Tend to be difficult. The number average molecular weight of the aromatic polymer according to the present invention is determined by gel permeation chromatography (column: Shodex GPC K-805L and Shodex GPC K-800RL (both manufactured by Showa Denko KK), eluent: chloroform). It is a value measured by the above and converted with standard polystyrene.

<樹脂複合材料>
本発明の樹脂複合材料は、前記微細化黒鉛粒子と、ポリスチレンおよびポリフェニレンエーテルからなる群から選択される少なくとも1種の芳香族系ポリマーとを含有するものである。このように、本発明にかかる微細化黒鉛粒子を含有させることによって、前記芳香族系ポリマーに、高い耐熱性を維持しながら、高い剛性と高い電気伝導性を付与することが可能となる。
<Resin composite material>
The resin composite material of the present invention contains the fine graphite particles and at least one aromatic polymer selected from the group consisting of polystyrene and polyphenylene ether. Thus, by including the refined graphite particles according to the present invention, it is possible to impart high rigidity and high electrical conductivity to the aromatic polymer while maintaining high heat resistance.

このような樹脂複合材料において、前記微細化黒鉛粒子の含有量としては特に制限はないが、樹脂複合材料全体に対して、0.1〜80質量%が好ましく、1〜50質量%がより好ましく、1〜30質量%が特に好ましい。微細化黒鉛粒子の含有量が前記下限未満になると、樹脂複合材料の剛性および電気伝導性が低下する傾向にあり、他方、前記上限を超えると、樹脂複合材料を成形することが困難となる傾向にある。なお、前記範囲内で微細化黒鉛粒子の含有量を増加させることによって貯蔵弾性率を高く、電気抵抗を小さくすることができるが、貯蔵弾性率については、微細化黒鉛粒子の含有量が60質量%を超えるとほぼ一定の値を示す傾向にある。   In such a resin composite material, the content of the fine graphite particles is not particularly limited, but is preferably 0.1 to 80% by mass and more preferably 1 to 50% by mass with respect to the entire resin composite material. 1 to 30% by mass is particularly preferable. If the content of the fine graphite particles is less than the lower limit, the rigidity and electrical conductivity of the resin composite material tend to decrease. On the other hand, if the content exceeds the upper limit, it is difficult to mold the resin composite material. It is in. In addition, by increasing the content of the fine graphite particles within the above range, the storage elastic modulus can be increased and the electric resistance can be reduced. When it exceeds%, it tends to show a substantially constant value.

また、本発明の樹脂複合材料において、前記芳香族系ポリマーとしては、ポリスチレンおよびポリフェニレンエーテルのいずれか一方のみを使用することも可能であるが、剛性および電気伝導性がより高くなるという観点から、ポリスチレンとポリフェニレンエーテルとの混合物を使用することが好ましい。また、ポリスチレンとポリフェニレンエーテルは完全に相溶するため、このような混合物を使用することによって、樹脂複合材料の耐熱性が向上する傾向にある。このような混合物において、ポリスチレンの含有量としては特に制限はないが、剛性および電気伝導性がさらに高くなるという観点から、混合物全体に対して、20〜80質量%が好ましく、30〜70質量%がより好ましい。   Moreover, in the resin composite material of the present invention, as the aromatic polymer, it is possible to use only one of polystyrene and polyphenylene ether, but from the viewpoint of higher rigidity and electrical conductivity, Preference is given to using a mixture of polystyrene and polyphenylene ether. Further, since polystyrene and polyphenylene ether are completely compatible, the use of such a mixture tends to improve the heat resistance of the resin composite material. In such a mixture, the polystyrene content is not particularly limited, but is preferably 20 to 80% by mass, and preferably 30 to 70% by mass with respect to the entire mixture, from the viewpoint of further increasing rigidity and electrical conductivity. Is more preferable.

このように、本発明の樹脂複合材料においては、微細化黒鉛粒子の含有量や、ポリスチレンとポリフェニレンエーテルとの混合比を調整することによって、高い剛性と高い電気伝導性を達成することができる。その結果、本発明の樹脂複合材料においては、40℃での貯蔵弾性率を、好ましくは2GPa以上、より好ましくは5GPa以上、特に好ましくは10GPa以上にすることができる。また、表面の単位長さ当たりの電気抵抗については、好ましくは10Ω/cm以下、より好ましくは10Ω/cm以下、特に好ましくは10Ω/cm以下にすることが可能となる。 Thus, in the resin composite material of the present invention, high rigidity and high electrical conductivity can be achieved by adjusting the content of fine graphite particles and the mixing ratio of polystyrene and polyphenylene ether. As a result, in the resin composite material of the present invention, the storage elastic modulus at 40 ° C. can be preferably 2 GPa or more, more preferably 5 GPa or more, and particularly preferably 10 GPa or more. Further, the electrical resistance per unit length of the surface can be preferably 10 4 Ω / cm or less, more preferably 10 3 Ω / cm or less, and particularly preferably 10 2 Ω / cm or less.

このような本発明の樹脂複合材料は、例えば、本発明にかかる芳香族系ポリマーと微細化黒鉛粒子とを所定の割合で混合することによって製造することができる。このとき、溶媒を使用することが好ましい。前記溶媒としては特に制限はなく、本発明にかかる微細化黒鉛粒子を製造する際に用いられる溶媒として例示したものを使用することができる。   Such a resin composite material of the present invention can be produced, for example, by mixing the aromatic polymer according to the present invention and fine graphite particles at a predetermined ratio. At this time, it is preferable to use a solvent. There is no restriction | limiting in particular as said solvent, What was illustrated as a solvent used when manufacturing the refined graphite particle concerning this invention can be used.

溶媒中で前記芳香族系ポリマーと前記微細化黒鉛粒子とを混合すると、芳香族系ポリマーが溶媒に溶解して均一な状態になるとともに、微細化黒鉛粒子も溶媒中で高度に分散するため、互いに混ざり合いやすくなり、高度で均一な分散液を容易に得ることができる。また、得られた分散液に超音波処理を施すことによって、その均一性がさらに向上する傾向にある。そして、このようにして得られた分散液から溶媒を除去することによって、前記芳香族系ポリマー中に微細化黒鉛粒子が高度に分散した本発明の樹脂複合材料を得ることができる。   When the aromatic polymer and the fine graphite particles are mixed in a solvent, the aromatic polymer dissolves in the solvent and becomes uniform, and the fine graphite particles are also highly dispersed in the solvent. It becomes easy to mix with each other, and an advanced and uniform dispersion can be easily obtained. Moreover, the uniformity tends to be further improved by subjecting the obtained dispersion to ultrasonic treatment. And the resin composite material of this invention in which the fine graphite particle | grains were disperse | distributed highly in the said aromatic polymer can be obtained by removing a solvent from the dispersion liquid obtained in this way.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(調製例1)
スチレン(ST)36g、N−フェニルマレイミド(PM)4g、アゾビスイソブチロニトリル100mg、およびトルエン50mlを混合し、窒素雰囲気下、85℃で10時間重合反応を行なった。放冷後、クロロホルム−ヘキサンを用いて再沈殿により精製し、27gのST−PM(90:10)ランダム共重合体を得た。このST−PM(90:10)ランダム共重合体の数平均分子量(Mn)を、ゲルパーミエーションクロマトグラフィ(カラム:Shodex GPC K−805LおよびShodex GPC K−800RL(ともに、昭和電工(株)製)、溶離液:クロロホルム)により測定し、標準ポリスチレンで換算したところ、5.3×10であった。
(Preparation Example 1)
36 g of styrene (ST), 4 g of N-phenylmaleimide (PM), 100 mg of azobisisobutyronitrile, and 50 ml of toluene were mixed, and a polymerization reaction was performed at 85 ° C. for 10 hours in a nitrogen atmosphere. After allowing to cool, the mixture was purified by reprecipitation using chloroform-hexane to obtain 27 g of ST-PM (90:10) random copolymer. The number average molecular weight (Mn) of this ST-PM (90:10) random copolymer was determined by gel permeation chromatography (column: Shodex GPC K-805L and Shodex GPC K-800RL (both manufactured by Showa Denko KK). , Eluent: chloroform) and converted to standard polystyrene, it was 5.3 × 10 4 .

黒鉛粒子(日本黒鉛工業(株)製「EXP−P」、粒子径1mm以下)12.5g、ウレア−過酸化水素包接錯体12.5g、前記ST−PM(90:10)ランダム共重合体1.25g、およびN,N−ジメチルホルムアミド(DMF)500mlを混合し、室温で5時間の超音波処理(出力:250W)を施して黒鉛粒子分散液を得た。この黒鉛粒子分散液をろ過してDMFを除去し、ろ滓に真空乾燥を施して微細化黒鉛粒子(G1)を得た。   12.5 g of graphite particles (“EXP-P” manufactured by Nippon Graphite Industry Co., Ltd., particle diameter of 1 mm or less), 12.5 g of urea-hydrogen peroxide inclusion complex, ST-PM (90:10) random copolymer 1.25 g and 500 ml of N, N-dimethylformamide (DMF) were mixed and subjected to ultrasonic treatment (output: 250 W) for 5 hours at room temperature to obtain a graphite particle dispersion. The graphite particle dispersion was filtered to remove DMF, and the filter cake was vacuum dried to obtain fine graphite particles (G1).

(実施例1)
ポリスチレン(PS、アルドリッチ社製、数平均分子量1×10)900mgと調製例1で得られた微細化黒鉛粒子(G1)100mgとをクロロホルム10mlに添加し、撹拌によりポリスチレンを溶解させるとともに微細化黒鉛粒子を分散させ、得られた分散液に室温で30分間の超音波処理(出力:250W)を施した。次いで、分散液10mlを直径10cmのシャーレにキャストし、クロロホルムを除去してPS−G1樹脂複合材料を得た。このPS−G1樹脂複合材料にホットプレスを用いて150℃で5MPaのプレス処理を1分間施した。これら一連の操作(キャスト−プレス)を5回繰り返して、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS−G1(90:10)樹脂複合材料を得た。
Example 1
900 mg of polystyrene (PS, manufactured by Aldrich, number average molecular weight 1 × 10 5 ) and 100 mg of fine graphite particles (G1) obtained in Preparation Example 1 are added to 10 ml of chloroform, and the polystyrene is dissolved and refined by stirring. Graphite particles were dispersed, and the obtained dispersion was subjected to ultrasonic treatment (output: 250 W) for 30 minutes at room temperature. Next, 10 ml of the dispersion was cast into a petri dish having a diameter of 10 cm, and chloroform was removed to obtain a PS-G1 resin composite material. This PS-G1 resin composite material was subjected to press treatment at 150 ° C. and 5 MPa for 1 minute using a hot press. A series of these operations (cast-press) was repeated 5 times to obtain a PS-G1 (90:10) resin composite material in which fine graphite particles were uniformly dispersed in an aromatic polymer.

(実施例2)
ポリスチレン(PS)の量を800mgに、微細化黒鉛粒子(G1)の量を200mgに変更した以外は実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS−G1(80:20)樹脂複合材料を得た。
(Example 2)
PS in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 1 except that the amount of polystyrene (PS) is changed to 800 mg and the amount of fine graphite particles (G1) is changed to 200 mg. -G1 (80:20) resin composite material was obtained.

(実施例3)
ポリスチレン(PS)の量を600mgに、微細化黒鉛粒子(G1)の量を400mgに変更した以外は実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS−G1(60:40)樹脂複合材料を得た。
(Example 3)
PS in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 1 except that the amount of polystyrene (PS) is changed to 600 mg and the amount of fine graphite particles (G1) is changed to 400 mg. -G1 (60:40) resin composite material was obtained.

(実施例4)
ポリスチレン(PS)の量を500mgに、微細化黒鉛粒子(G1)の量を500mgに変更した以外は実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS−G1(50:50)樹脂複合材料を得た。
Example 4
PS in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 1 except that the amount of polystyrene (PS) is changed to 500 mg and the amount of fine graphite particles (G1) is changed to 500 mg. -G1 (50:50) resin composite material was obtained.

(実施例5)
ポリスチレン(PS)の量を400mgに、微細化黒鉛粒子(G1)の量を600mgに変更した以外は実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS−G1(40:60)樹脂複合材料を得た。
(Example 5)
PS in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 1 except that the amount of polystyrene (PS) is changed to 400 mg and the amount of fine graphite particles (G1) is changed to 600 mg. -G1 (40:60) resin composite material was obtained.

(実施例6)
ポリスチレン(PS)の量を300mgに、微細化黒鉛粒子(G1)の量を700mgに変更した以外は実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS−G1(30:70)樹脂複合材料を得た。
(Example 6)
PS in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 1 except that the amount of polystyrene (PS) is changed to 300 mg and the amount of fine graphite particles (G1) is changed to 700 mg. -G1 (30:70) resin composite material was obtained.

(実施例7)
ポリスチレン(PS)の量を200mgに、微細化黒鉛粒子(G1)の量を800mgに変更した以外は実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS−G1(20:80)樹脂複合材料を得た。
(Example 7)
PS in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 1 except that the amount of polystyrene (PS) is changed to 200 mg and the amount of fine graphite particles (G1) is changed to 800 mg. -G1 (20:80) resin composite material was obtained.

(比較例1)
調製例1で得られた微細化黒鉛粒子(G1)1000mgをクロロホルム10mlに添加し、撹拌により微細化黒鉛粒子を分散させ、得られた分散液に室温で30分間の超音波処理(出力:250W)を施した。次いで、分散液10mlを直径10cmのシャーレにキャストし、クロロホルムを除去して微細化黒鉛粒子を得た。この微細化黒鉛粒子にホットプレスを用いて150℃で5MPaのプレス処理を1分間施した。これら一連の操作(キャスト−プレス)を5回繰り返して、G1黒鉛粒子材料を得た。
(Comparative Example 1)
1000 mg of the refined graphite particles (G1) obtained in Preparation Example 1 is added to 10 ml of chloroform, and the refined graphite particles are dispersed by stirring. The obtained dispersion is subjected to ultrasonic treatment (output: 250 W) at room temperature for 30 minutes. ). Next, 10 ml of the dispersion was cast into a petri dish having a diameter of 10 cm, and chloroform was removed to obtain fine graphite particles. The fine graphite particles were subjected to press treatment at 150 ° C. and 5 MPa for 1 minute using a hot press. A series of these operations (cast-press) was repeated 5 times to obtain a G1 graphite particle material.

(比較例2)
ポリスチレン(PS、アルドリッチ社製、数平均分子量1×10)1000mgをクロロホルム10mlに添加し、撹拌によりポリスチレンを溶解させ、得られた溶液に室温で30分間の超音波処理(出力:250W)を施した。次いで、溶液10mlを直径10cmのシャーレにキャストし、クロロホルムを除去してポリスチレンを得た。このポリスチレンにホットプレスを用いて150℃で5MPaのプレス処理を1分間施した。これら一連の操作(キャスト−プレス)を5回繰り返して、PS樹脂材料を得た。
(Comparative Example 2)
1000 mg of polystyrene (PS, manufactured by Aldrich, number average molecular weight 1 × 10 5 ) is added to 10 ml of chloroform, polystyrene is dissolved by stirring, and the resulting solution is subjected to ultrasonic treatment (output: 250 W) for 30 minutes at room temperature. gave. Next, 10 ml of the solution was cast into a petri dish having a diameter of 10 cm, and chloroform was removed to obtain polystyrene. This polystyrene was subjected to a press treatment of 5 MPa at 150 ° C. for 1 minute using a hot press. A series of operations (cast-press) was repeated 5 times to obtain a PS resin material.

(比較例3)
前記微細化黒鉛粒子(G1)の代わりに、黒鉛粒子(日本黒鉛工業(株)製「EXP−P」、粒子径1mm以下)200mgを用いた以外は実施例2と同様にして、PS−EXP−P(80:20)樹脂複合材料を得た。
(Comparative Example 3)
PS-EXP was performed in the same manner as in Example 2 except that 200 mg of graphite particles (“EXP-P” manufactured by Nippon Graphite Industry Co., Ltd., particle diameter of 1 mm or less) was used instead of the fine graphite particles (G1). -P (80:20) resin composite material was obtained.

(比較例4)
前記微細化黒鉛粒子(G1)の代わりに、黒鉛粒子(日本黒鉛工業(株)製「UP−15N」、粒子径15μm)200mgを用いた以外は実施例2と同様にして、PS−UP−15N(80:20)樹脂複合材料を得た。
(Comparative Example 4)
PS-UP- in the same manner as in Example 2 except that 200 mg of graphite particles ("UP-15N" manufactured by Nippon Graphite Industry Co., Ltd., particle size 15 μm) was used instead of the fine graphite particles (G1). A 15N (80:20) resin composite material was obtained.

(比較例5)
前記微細化黒鉛粒子(G1)の代わりに、カーボンブラック(三菱化学(株)製「MCF−1000」、粒子径18nm)200mgを用いた以外は実施例2と同様にして、PS−MCF(80:20)樹脂複合材料を得た。
(Comparative Example 5)
PS-MCF (80) in the same manner as in Example 2 except that 200 mg of carbon black (“MCF-1000” manufactured by Mitsubishi Chemical Corporation, particle diameter: 18 nm) was used instead of the fine graphite particles (G1). : 20) A resin composite material was obtained.

(比較例6)
前記微細化黒鉛粒子(G1)の代わりに、カーボンファイバー(日本グラファイトファイバー(株)製、商品名「グラノックCF15M」(直径9.5μm、長さ200μm)、商品名「グラノックCF03S」(直径9.1μm、長さ400μm)、または商品名「グラノックCF03Z」(直径10μm、長さ240μm))200mgを用いた以外は実施例2と同様にして、各商品名のカーボンファイバーについて、それぞれPS−CF(80:20)樹脂複合材料を得た。
(Comparative Example 6)
Instead of the fine graphite particles (G1), carbon fiber (manufactured by Nippon Graphite Fiber Co., Ltd., trade name “Granock CF15M” (diameter 9.5 μm, length 200 μm), trade name “Granock CF03S” (diameter 9. 1 μm, length 400 μm), or trade name “Granock CF03Z” (diameter 10 μm, length 240 μm)) 200 mg was used in the same manner as in Example 2 except that PS-CF ( 80:20) A resin composite material was obtained.

(比較例7)
前記微細化黒鉛粒子(G1)の代わりに、カーボンナノチューブ(昭和電工(株)製、商品名「VGCF」(外径150nm、長さ10〜20μm)、商品名「VGCF−X」(外径10〜15nm、長さ3μm)、または商品名「VGCF−S」(外径100nm、長さ10μm))200mgを用いた以外は実施例2と同様にして、各商品名のカーボンナノチューブについて、それぞれPS−VGCF(80:20)樹脂複合材料を得た。
(Comparative Example 7)
Instead of the fine graphite particles (G1), carbon nanotubes (manufactured by Showa Denko KK, trade name “VGCF” (outer diameter 150 nm, length 10-20 μm), trade name “VGCF-X” (outer diameter 10 ˜15 nm, length 3 μm), or trade name “VGCF-S” (outer diameter 100 nm, length 10 μm)) 200 mg was used in the same manner as in Example 2 except that each of the carbon nanotubes of each trade name was PS. A VGCF (80:20) resin composite material was obtained.

(比較例8)
前記微細化黒鉛粒子(G1)の代わりに、ガラス繊維(セントラル硝子(株)製、商品名「ECS03−615」(直径9μm、長さ3mm)または商品名「ECS03−631K」(直径13μm、長さ3mm))200mgを用いた以外は実施例2と同様にして、各商品名のガラス繊維について、それぞれPS−ECS(80:20)樹脂複合材料を得た。
(Comparative Example 8)
Instead of the fine graphite particles (G1), glass fiber (manufactured by Central Glass Co., Ltd., trade name “ECS03-615” (diameter 9 μm, length 3 mm) or trade name “ECS03-631K” (diameter 13 μm, long) 3 mm)) PS-ECS (80:20) resin composite material was obtained in the same manner as in Example 2 except that 200 mg was used for the glass fibers of each trade name.

<弾性率および電気抵抗>
実施例1〜7で調製したPS−G1樹脂複合材料、比較例2で調製したPS樹脂材料、または比較例3〜8で調製した各種樹脂複合材料をプレス型に入れ、190℃、5MPaでプレス成形を行い、長さ30mm、幅5mm、厚さ0.5mmの試験片を得た。一方、比較例1で調製したG1黒鉛粒子材料については、流動性がなく、試験片の作製が困難であった。
<Elastic modulus and electrical resistance>
The PS-G1 resin composite material prepared in Examples 1 to 7, the PS resin material prepared in Comparative Example 2, or the various resin composite materials prepared in Comparative Examples 3 to 8 are placed in a press die and pressed at 190 ° C. and 5 MPa. Molding was performed to obtain a test piece having a length of 30 mm, a width of 5 mm, and a thickness of 0.5 mm. On the other hand, the G1 graphite particle material prepared in Comparative Example 1 had no fluidity and it was difficult to produce a test piece.

得られた試験片の弾性率を、粘弾性スペクトロメーター(アイティー計測制御(株)製「DVA−220」)を用いて、室温から150℃まで5℃/分で昇温しながら10Hzで加震して測定した。図1〜2には、実施例3〜7のPS−G1樹脂複合材料および比較例2のPS樹脂材料から作製した試験片の貯蔵弾性率および損失弾性率の測定結果を示す。また、各試験片についての40℃での貯蔵弾性率を表1〜2および図3〜4に、40℃での損失弾性率を表1に示す。なお、図4に示したカーボンナノファイバー(比較例6)を添加した場合の貯蔵弾性率としては、各商品名のカーボンナノファイバーについての試験片の40℃での貯蔵弾性率をそれぞれ求め、これらの平均値を示した。カーボンナノチューブ(比較例7)およびガラス繊維(比較例8)についても同様である。   Using a viscoelastic spectrometer (“DVA-220” manufactured by IT Measurement Control Co., Ltd.), the elastic modulus of the obtained test piece was increased at 10 Hz while increasing the temperature from room temperature to 150 ° C. at 5 ° C./min. Measured with shaking. 1 and 2 show the measurement results of the storage elastic modulus and loss elastic modulus of the test pieces prepared from the PS-G1 resin composite materials of Examples 3 to 7 and the PS resin material of Comparative Example 2. Moreover, the storage elastic modulus in 40 degreeC about each test piece is shown to Tables 1-2 and FIGS. 3-4, and the loss elastic modulus in 40 degreeC is shown in Table 1. FIG. In addition, as a storage elastic modulus at the time of adding the carbon nanofiber (Comparative Example 6) shown in FIG. 4, the storage elastic modulus at 40 ° C. of the test piece for the carbon nanofiber of each trade name is obtained, respectively. The average value was shown. The same applies to carbon nanotubes (Comparative Example 7) and glass fibers (Comparative Example 8).

また、前記試験片の電気抵抗を、試験片の表面にテスター((株)カスタム製「CDM−09」)の探針を探針間隔1cmで接触させて測定した。その結果を表1および図3に示す。なお、図3には、試験片を作製せずに比較例1で得られたG1黒鉛粒子材料そのものについて測定した電気抵抗を、微細化黒鉛粒子の含有量が100質量%の場合として示した。   The electrical resistance of the test piece was measured by bringing a probe of a tester (“CDM-09” manufactured by Custom Co., Ltd.) into contact with the surface of the test piece at a probe interval of 1 cm. The results are shown in Table 1 and FIG. FIG. 3 shows the electrical resistance measured for the G1 graphite particle material itself obtained in Comparative Example 1 without preparing a test piece, when the content of fine graphite particles is 100% by mass.

<電子顕微鏡観察>
前記試験片の断面を走査型電子顕微鏡(SEM)により観察した。図5〜6には、実施例2で調製したPS−G1樹脂複合材料および比較例3で調製したPS−EXP−P樹脂複合材料からそれぞれ作製した試験片の断面のSEM写真を示す。
<Electron microscope observation>
The cross section of the test piece was observed with a scanning electron microscope (SEM). 5 to 6 show SEM photographs of cross sections of test pieces prepared from the PS-G1 resin composite material prepared in Example 2 and the PS-EXP-P resin composite material prepared in Comparative Example 3, respectively.

表1および図3に示した結果から明らかなように、本発明にかかる微細化黒鉛粒子をポリスチレンに添加して複合化することによって、樹脂複合材料の貯蔵弾性率が補強効果によって増大することが確認された。また、微細化黒鉛粒子の含有量が60%以下の場合には、微細化黒鉛粒子の含有量が増加するにつれて貯蔵弾性率が増加する傾向にあり、他方、60%を超えると一定となることが分かった。   As is apparent from the results shown in Table 1 and FIG. 3, the storage elastic modulus of the resin composite material is increased by the reinforcing effect by adding the fine graphite particles according to the present invention to polystyrene to make a composite. confirmed. Further, when the content of the fine graphite particles is 60% or less, the storage elastic modulus tends to increase as the content of the fine graphite particles increases, and on the other hand, when the content exceeds 60%, it becomes constant. I understood.

また、本発明にかかる微細化黒鉛粒子をポリスチレンに添加して複合化することによって、樹脂複合材料の電気抵抗が低下し、微細化黒鉛粒子の含有量が80%になると(実施例7)、微細化黒鉛粒子のみの場合(比較例1)の電気抵抗(2Ω)の近くまで低下することがわかった。   Moreover, when the refined graphite particles according to the present invention are compounded by adding to polystyrene, the electrical resistance of the resin composite material is reduced, and the content of the refined graphite particles becomes 80% (Example 7). It turned out that it falls to the electric resistance (2 (ohm)) vicinity in the case of only the refined graphite particle (comparative example 1).

表2に示した結果から明らかなように、本発明にかかる微細化黒鉛粒子G1を添加した場合(実施例2)には、前記微細化黒鉛粒子の原料である黒鉛粒子をそのまま添加した場合(比較例3〜4)に比べて、貯蔵弾性率が高くなることが確認された。これは、図5〜6に示した結果から明らかなように、本発明にかかる微細化黒鉛粒子を添加した場合(実施例2)には、樹脂複合材料中において前記微細化黒鉛粒子が均一に分散し、しかも板状の黒鉛粒子が試験片の表面に対して平行に配向しているのに対して、前記微細化黒鉛粒子の原料である黒鉛粒子EXP−Pをそのまま添加した場合(比較例3)には、黒鉛粒子は樹脂複合材料中で凝集して不均一な分散状態となっており、また、ポリスチレンと黒鉛粒子との界面結合力が弱く、さらに配向が不規則であるためと考えられる。なお、黒鉛粒子UP−15Nをそのまま添加した場合(比較例4)にも、黒鉛粒子EXP−Pの場合と同様の分散状態であった。   As is apparent from the results shown in Table 2, when the refined graphite particles G1 according to the present invention are added (Example 2), the graphite particles that are the raw materials of the refined graphite particles are added as they are ( It was confirmed that the storage elastic modulus was higher than that of Comparative Examples 3 to 4). As is clear from the results shown in FIGS. 5 to 6, when the fine graphite particles according to the present invention are added (Example 2), the fine graphite particles are uniformly distributed in the resin composite material. When the graphite particles EXP-P, which is the raw material of the fine graphite particles, are added as they are while the plate-like graphite particles are dispersed and oriented parallel to the surface of the test piece (comparative example) In 3), the graphite particles are aggregated in the resin composite material and are in a non-uniform dispersion state, and the interfacial bonding force between polystyrene and graphite particles is weak and the orientation is irregular. It is done. In addition, when the graphite particles UP-15N were added as they were (Comparative Example 4), they were in the same dispersion state as in the case of the graphite particles EXP-P.

また、本発明にかかる微細化黒鉛粒子G1を添加した場合(実施例2)には、試験片の電気抵抗は複数の測定箇所でほぼ一定であったのに対して、前記微細化黒鉛粒子の原料である黒鉛粒子をそのまま添加した場合(比較例3〜4)には、測定箇所ごとに電気抵抗が異なり、例えば、同じ試験片表面においても絶縁性を示す部分と導電性を示す部分が見られた。これは、上述したように、黒鉛粒子の分散性の違いによるものと考えられる。   In addition, when the refined graphite particles G1 according to the present invention were added (Example 2), the electrical resistance of the test piece was substantially constant at a plurality of measurement locations, whereas the refined graphite particles When the graphite particles as the raw material are added as they are (Comparative Examples 3 to 4), the electric resistance differs at each measurement location. For example, a portion showing insulation and a portion showing conductivity are seen on the same specimen surface. It was. As described above, this is considered to be due to the difference in the dispersibility of the graphite particles.

図4に示した結果から明らかなように、本発明にかかる微細化黒鉛粒子G1を添加した場合(実施例2)には、カーボンブラック(比較例5)、カーボンナノチューブ(比較例7)およびガラス繊維(比較例8)を添加した場合に比べて貯蔵弾性率が高くなった。一方、カーボンファイバー(比較例6)を添加した場合には、本発明にかかる微細化黒鉛粒子G1を添加した場合(実施例2)と同等の貯蔵弾性率を示したが、カーボンファイバーは単価が高く、本発明にかかる微細化黒鉛粒子の方がコスト的に優れていることが確認された。   As is apparent from the results shown in FIG. 4, when the fine graphite particles G1 according to the present invention were added (Example 2), carbon black (Comparative Example 5), carbon nanotube (Comparative Example 7), and glass The storage elastic modulus was higher than that when the fiber (Comparative Example 8) was added. On the other hand, when carbon fiber (Comparative Example 6) was added, the storage elastic modulus was the same as when the refined graphite particles G1 according to the present invention were added (Example 2). It was high and it was confirmed that the refined graphite particles according to the present invention are superior in cost.

(実施例8)
ポリスチレンの代わりにポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE、アルドリッチ社製、数平均分子量5×10)900mgを用い、プレス温度を290℃に変更した以外は、実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPPE−G1(90:10)樹脂複合材料を得た。
(Example 8)
Implemented except that 900 mg of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE, Aldrich, number average molecular weight 5 × 10 4 ) was used instead of polystyrene, and the press temperature was changed to 290 ° C. In the same manner as in Example 1, a PPE-G1 (90:10) resin composite material in which fine graphite particles were uniformly dispersed in an aromatic polymer was obtained.

(実施例9)
ポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE)の量を800mgに、微細化黒鉛粒子(G1)の量を200mgに変更した以外は実施例8と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPPE−G1(80:20)樹脂複合材料を得た。
Example 9
In the same manner as in Example 8, except that the amount of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE) was changed to 800 mg and the amount of fine graphite particles (G1) was changed to 200 mg, an aromatic was obtained. PPE-G1 (80:20) resin composite material in which fine graphite particles were uniformly dispersed in a polymer was obtained.

(実施例10)
ポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE)の量を600mgに、微細化黒鉛粒子(G1)の量を400mgに変更した以外は実施例8と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPPE−G1(60:40)樹脂複合材料を得た。
(Example 10)
In the same manner as in Example 8, except that the amount of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE) was changed to 600 mg and the amount of the fine graphite particles (G1) was changed to 400 mg, an aromatic was used. PPE-G1 (60:40) resin composite material in which fine graphite particles were uniformly dispersed in a polymer was obtained.

(実施例11)
ポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE)の量を500mgに、微細化黒鉛粒子(G1)の量を500mgに変更した以外は実施例8と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPPE−G1(50:50)樹脂複合材料を得た。
(Example 11)
In the same manner as in Example 8, except that the amount of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE) was changed to 500 mg and the amount of fine graphite particles (G1) was changed to 500 mg, the aromatic was changed. PPE-G1 (50:50) resin composite material in which fine graphite particles were uniformly dispersed in a polymer was obtained.

(実施例12)
ポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE)の量を400mgに、微細化黒鉛粒子(G1)の量を600mgに変更した以外は実施例8と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPPE−G1(40:60)樹脂複合材料を得た。
(Example 12)
In the same manner as in Example 8, except that the amount of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE) was changed to 400 mg and the amount of fine graphite particles (G1) was changed to 600 mg, aromatics were used. PPE-G1 (40:60) resin composite material in which fine graphite particles were uniformly dispersed in a polymer was obtained.

(実施例13)
ポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE)の量を300mgに、微細化黒鉛粒子(G1)の量を700mgに変更した以外は実施例8と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPPE−G1(30:70)樹脂複合材料を得た。
(Example 13)
In the same manner as in Example 8, except that the amount of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE) was changed to 300 mg and the amount of fine graphite particles (G1) was changed to 700 mg, the aromatic was changed. PPE-G1 (30:70) resin composite material in which fine graphite particles were uniformly dispersed in a polymer was obtained.

(実施例14)
ポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE)の量を200mgに、微細化黒鉛粒子(G1)の量を800mgに変更した以外は実施例8と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPPE−G1(20:80)樹脂複合材料を得た。
(Example 14)
In the same manner as in Example 8, except that the amount of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE) was changed to 200 mg and the amount of the fine graphite particles (G1) was changed to 800 mg, an aromatic was used. PPE-G1 (20:80) resin composite material in which fine graphite particles were uniformly dispersed in a polymer was obtained.

(比較例9)
ポリスチレンの代わりに、ポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE、アルドリッチ社製、数平均分子量5×10)1000mgを用い、プレス温度を290℃に変更した以外は比較例2と同様にして、PPE樹脂材料を得た。
(Comparative Example 9)
Compared with 1000 mg of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE, Aldrich, number average molecular weight 5 × 10 4 ) instead of polystyrene, except that the press temperature was changed to 290 ° C. In the same manner as in Example 2, a PPE resin material was obtained.

<弾性率および電気抵抗>
実施例8〜14で調製したPPE−G1樹脂複合材料、または比較例9で調製したPPE樹脂材料をプレス型に入れ、300℃、5MPaでプレス成形を行い、長さ30mm、幅5mm、厚さ0.5mmの試験片を得た。
<Elastic modulus and electrical resistance>
The PPE-G1 resin composite material prepared in Examples 8 to 14 or the PPE resin material prepared in Comparative Example 9 is put into a press mold, press-molded at 300 ° C. and 5 MPa, length 30 mm, width 5 mm, thickness A test piece of 0.5 mm was obtained.

測定温度範囲を室温から300℃までに変更した以外は、前記<弾性率および電気抵抗>に記載の方法に従って、得られた試験片の弾性率を測定した。図7〜8には、実施例8〜14のPPE−G1樹脂複合材料および比較例9のPPE樹脂材料から作製した試験片の貯蔵弾性率および損失弾性率の測定結果を示す。また、各試験片についての40℃での貯蔵弾性率を表3および図9に、40℃での損失弾性率を表3に示す。   Except that the measurement temperature range was changed from room temperature to 300 ° C., the elastic modulus of the obtained test piece was measured according to the method described in <Elastic modulus and electrical resistance>. In FIGS. 7-8, the measurement result of the storage elastic modulus and loss elastic modulus of the test piece produced from the PPE-G1 resin composite material of Examples 8-14 and the PPE resin material of the comparative example 9 is shown. Further, the storage elastic modulus at 40 ° C. for each test piece is shown in Table 3 and FIG. 9, and the loss elastic modulus at 40 ° C. is shown in Table 3.

また、前記<弾性率および電気抵抗>に記載の方法に従って、前記試験片の電気抵抗を測定した。その結果を表3および図9に示す。なお、図9には、試験片を作製せずに比較例1で得られたG1黒鉛粒子材料そのものについて測定した電気抵抗を、微細化黒鉛粒子の含有量が100質量%の場合として示した。   Further, the electrical resistance of the test piece was measured according to the method described in the above <elastic modulus and electrical resistance>. The results are shown in Table 3 and FIG. In addition, in FIG. 9, the electrical resistance measured about G1 graphite particle material itself obtained by the comparative example 1 without producing a test piece was shown as a case where content of refined graphite particle | grains is 100 mass%.

表3および図9に示した結果から明らかなように、本発明にかかる微細化黒鉛粒子をポリフェニレンエーテルに添加して複合化することによって、樹脂複合材料の貯蔵弾性率が補強効果によって増大することが確認された。また、微細化黒鉛粒子の含有量が60%以下の場合には、微細化黒鉛粒子の含有量が増加するにつれて貯蔵弾性率が増加する傾向にあり、他方、60%を超えると一定となることが分かった。   As is clear from the results shown in Table 3 and FIG. 9, the storage elastic modulus of the resin composite material is increased by the reinforcing effect by adding the fine graphite particles according to the present invention to the polyphenylene ether to form a composite. Was confirmed. Further, when the content of the fine graphite particles is 60% or less, the storage elastic modulus tends to increase as the content of the fine graphite particles increases, and on the other hand, when the content exceeds 60%, it becomes constant. I understood.

また、本発明にかかる微細化黒鉛粒子をポリフェニレンエーテルに添加して複合化することによって、樹脂複合材料の電気抵抗が低下し、微細化黒鉛粒子の含有量が80%になると(実施例14)、微細化黒鉛粒子のみの場合(比較例1)の電気抵抗(2Ω)と同等の電気伝導性を示すことが分かった。   Moreover, when the refined graphite particles according to the present invention are added to polyphenylene ether to form a composite, the electrical resistance of the resin composite material is reduced, and the content of the refined graphite particles reaches 80% (Example 14). It was found that the electrical conductivity equivalent to the electrical resistance (2Ω) in the case of only the fine graphite particles (Comparative Example 1) was exhibited.

(実施例15)
ポリスチレン(PS、アルドリッチ社製、数平均分子量1×10)300mgとポリ(2,6−ジメチル−1,4−フェニレンオキシド)(PPE、アルドリッチ社製、数平均分子量5×10)700mgとを混合してクロロホルム10mgに溶解させ、得られた溶液をシャーレにキャストして25℃で乾燥した後、真空乾燥を施してPS30PPE70樹脂組成物を得た。
(Example 15)
300 mg of polystyrene (PS, manufactured by Aldrich, number average molecular weight 1 × 10 5 ) and 700 mg of poly (2,6-dimethyl-1,4-phenylene oxide) (PPE, manufactured by Aldrich, number average molecular weight 5 × 10 4 ) Were mixed and dissolved in 10 mg of chloroform, and the resulting solution was cast into a petri dish and dried at 25 ° C., followed by vacuum drying to obtain a PS30PPE70 resin composition.

ポリスチレンの代わりに前記PS30PPE70樹脂組成物800mgを用い、微細化黒鉛粒子(G1)の量を200mgに、プレス温度を290℃に変更した以外は、実施例1と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS30PPE70−G1(80:20)樹脂複合材料を得た。   In the aromatic polymer in the same manner as in Example 1, except that 800 mg of the PS30PPE70 resin composition was used instead of polystyrene, the amount of fine graphite particles (G1) was changed to 200 mg, and the press temperature was changed to 290 ° C. A PS30PPE70-G1 (80:20) resin composite material in which fine graphite particles were uniformly dispersed was obtained.

(実施例16)
PS30PPE70樹脂組成物の量を600mgに、微細化黒鉛粒子(G1)の量を400mgに変更した以外は実施例15と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS30PPE70−G1(60:40)樹脂複合材料を得た。
(Example 16)
PS30PPE70 in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 15 except that the amount of the PS30PPE70 resin composition is changed to 600 mg and the amount of the fine graphite particles (G1) is changed to 400 mg. -G1 (60:40) resin composite material was obtained.

(実施例17)
PS30PPE70樹脂組成物の量を400mgに、微細化黒鉛粒子(G1)の量を600mgに変更した以外は実施例15と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS30PPE70−G1(40:60)樹脂複合材料を得た。
(Example 17)
PS30PPE70 in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 15 except that the amount of the PS30PPE70 resin composition is changed to 400 mg and the amount of the fine graphite particles (G1) is changed to 600 mg. -G1 (40:60) resin composite material was obtained.

(実施例18)
ポリスチレンの量を500mgに、ポリ(2,6−ジメチル−1,4−フェニレンオキシド)の量を500mgに変更した以外は実施例15と同様にして、PS50PPE50樹脂組成物を得た。
(Example 18)
A PS50PPE50 resin composition was obtained in the same manner as in Example 15 except that the amount of polystyrene was changed to 500 mg and the amount of poly (2,6-dimethyl-1,4-phenylene oxide) was changed to 500 mg.

PS30PPE70樹脂組成物の代わりにPS50PPE50樹脂組成物800mgを用いた以外は実施例15と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS50PPE50−G1(80:20)樹脂複合材料を得た。   PS50PPE50-G1 (80:20) resin composite in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 15 except that 800 mg of PS50PPE50 resin composition is used instead of the PS30PPE70 resin composition. Obtained material.

(実施例19)
PS50PPE50樹脂組成物の量を600mgに、微細化黒鉛粒子(G1)の量を400mgに変更した以外は実施例18と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS50PPE50−G1(60:40)樹脂複合材料を得た。
(Example 19)
PS50PPE50 in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 18 except that the amount of the PS50PPE50 resin composition is changed to 600 mg and the amount of the fine graphite particles (G1) is changed to 400 mg. -G1 (60:40) resin composite material was obtained.

(実施例20)
PS50PPE50樹脂組成物の量を400mgに、微細化黒鉛粒子(G1)の量を600mgに変更した以外は実施例18と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS50PPE50−G1(40:60)樹脂複合材料を得た。
(Example 20)
PS50PPE50 in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 18 except that the amount of the PS50PPE50 resin composition is changed to 400 mg and the amount of the fine graphite particles (G1) is changed to 600 mg. -G1 (40:60) resin composite material was obtained.

(実施例21)
ポリスチレンの量を700mgに、ポリ(2,6−ジメチル−1,4−フェニレンオキシド)の量を300mgに変更した以外は実施例15と同様にして、PS70PPE30樹脂組成物を得た。
(Example 21)
A PS70PPE30 resin composition was obtained in the same manner as in Example 15 except that the amount of polystyrene was changed to 700 mg and the amount of poly (2,6-dimethyl-1,4-phenylene oxide) was changed to 300 mg.

PS30PPE70樹脂組成物の代わりにPS70PPE30樹脂組成物800mgを用いた以外は実施例15と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS70PPE30−G1(80:20)樹脂複合材料を得た。   PS70PPE30-G1 (80:20) resin composite in which fine graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 15 except that 800 mg of PS70PPE30 resin composition was used instead of PS30PPE70 resin composition. Obtained material.

(実施例22)
PS70PPE30樹脂組成物の量を600mgに、微細化黒鉛粒子(G1)の量を400mgに変更した以外は実施例21と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS70PPE30−G1(60:40)樹脂複合材料を得た。
(Example 22)
PS70PPE30 in which finely divided graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 21 except that the amount of PS70PPE30 resin composition is changed to 600 mg and the amount of finely divided graphite particles (G1) is changed to 400 mg. -G1 (60:40) resin composite material was obtained.

(実施例22)
PS70PPE30樹脂組成物の量を400mgに、微細化黒鉛粒子(G1)の量を600mgに変更した以外は実施例21と同様にして、芳香族系ポリマー中に微細化黒鉛粒子が均一に分散したPS70PPE30−G1(40:60)樹脂複合材料を得た。
(Example 22)
PS70PPE30 in which finely divided graphite particles are uniformly dispersed in an aromatic polymer in the same manner as in Example 21, except that the amount of PS70PPE30 resin composition is changed to 400 mg and the amount of finely divided graphite particles (G1) is changed to 600 mg. -G1 (40:60) resin composite material was obtained.

(比較例10)
ポリスチレンの代わりに、実施例15と同様にして調製したPS30PPE70樹脂組成物1000mgを用い、プレス温度を290℃に変更した以外は比較例2と同様にして、PS30PPE70樹脂材料を得た。
(Comparative Example 10)
A PS30PPE70 resin material was obtained in the same manner as in Comparative Example 2 except that 1000 mg of the PS30PPE70 resin composition prepared in the same manner as in Example 15 was used instead of polystyrene, and the press temperature was changed to 290 ° C.

(比較例11)
ポリスチレンの代わりに、実施例18と同様にして調製したPS50PPE50樹脂組成物1000mgを用い、プレス温度を290℃に変更した以外は比較例2と同様にして、PS50PPE50樹脂材料を得た。
(Comparative Example 11)
A PS50PPE50 resin material was obtained in the same manner as in Comparative Example 2 except that 1000 mg of PS50PPE50 resin composition prepared in the same manner as in Example 18 was used instead of polystyrene, and the press temperature was changed to 290 ° C.

(比較例12)
ポリスチレンの代わりに、実施例21と同様にして調製したPS70PPE30樹脂組成物1000mgを用い、プレス温度を290℃に変更した以外は比較例2と同様にして、PS70PPE30樹脂材料を得た。
(Comparative Example 12)
A PS70PPE30 resin material was obtained in the same manner as in Comparative Example 2 except that 1000 mg of PS70PPE30 resin composition prepared in the same manner as in Example 21 was used instead of polystyrene, and the press temperature was changed to 290 ° C.

<弾性率および電気抵抗>
実施例15〜22で調製した各種樹脂複合材料、または比較例10〜12で調製した各種樹脂材料をプレス型に入れ、300℃、5MPaでプレス成形を行い、長さ30mm、幅5mm、厚さ0.5mmの試験片を得た。
<Elastic modulus and electrical resistance>
Various resin composite materials prepared in Examples 15 to 22 or various resin materials prepared in Comparative Examples 10 to 12 are placed in a press mold, press-molded at 300 ° C. and 5 MPa, length 30 mm, width 5 mm, thickness A test piece of 0.5 mm was obtained.

測定温度範囲を室温から300℃までに変更した以外は、前記<弾性率および電気抵抗>に記載の方法に従って、得られた試験片の弾性率を測定した。各試験片についての40℃での貯蔵弾性率を表4および図10〜11に、40℃での損失弾性率を表4に示す。なお、図11には、PS含有量が100質量%の結果として実施例2、3、5のPS−G1樹脂複合材料および比較例2のPS樹脂材料についての貯蔵弾性率、ならびにPS含有量が0質量%の結果として実施例9、10、12のPPE−G1樹脂複合材料および比較例9のPPE樹脂材料についての貯蔵弾性率を示した。   Except that the measurement temperature range was changed from room temperature to 300 ° C., the elastic modulus of the obtained test piece was measured according to the method described in <Elastic modulus and electrical resistance>. The storage elastic modulus at 40 ° C. for each test piece is shown in Table 4 and FIGS. 10 to 11, and the loss elastic modulus at 40 ° C. is shown in Table 4. In addition, in FIG. 11, the storage elastic modulus about PS-G1 resin composite material of Example 2, 3, 5 and PS resin material of the comparative example 2, and PS content as a result of PS content being 100 mass%. The storage elastic modulus of the PPE-G1 resin composite materials of Examples 9, 10, and 12 and the PPE resin material of Comparative Example 9 was shown as a result of 0% by mass.

また、前記<弾性率および電気抵抗>に記載の方法に従って、前記試験片の電気抵抗を測定した。その結果を表4および図12に示す。なお、図12には、PS含有量が100質量%の結果として実施例2、3、5のPS−G1樹脂複合材料および比較例2のPS樹脂材料についての電気抵抗、ならびにPS含有量が0質量%の結果として実施例9、10、12のPPE−G1樹脂複合材料および比較例9のPPE樹脂材料についての電気抵抗を示した。   Further, the electrical resistance of the test piece was measured according to the method described in the above <elastic modulus and electrical resistance>. The results are shown in Table 4 and FIG. In FIG. 12, as a result of the PS content of 100% by mass, the electrical resistance and PS content of the PS-G1 resin composite materials of Examples 2, 3, and 5 and the PS resin material of Comparative Example 2 are 0. The electric resistance about the PPE-G1 resin composite material of Example 9, 10, 12 and the PPE resin material of the comparative example 9 was shown as a result of the mass%.

表4および図10に示した結果から明らかなように、本発明にかかる微細化黒鉛粒子を、ポリスチレンとポリフェニレンエーテルとを含有する樹脂組成物に添加して複合化することによって、いずれの樹脂組成においても、微細化黒鉛粒子の含有量が増加するにつれて樹脂複合材料の貯蔵弾性率が増加することが確認された。   As apparent from the results shown in Table 4 and FIG. 10, any resin composition can be obtained by adding the fine graphite particles according to the present invention to a resin composition containing polystyrene and polyphenylene ether to form a composite. The storage elastic modulus of the resin composite material was confirmed to increase as the content of the fine graphite particles increased.

さらに、表4および図11に示した結果から明らかなように、ポリスチレンとポリフェニレンエーテルとを含有する本発明の樹脂複合材料において、微細化黒鉛粒子の含有量が同じ場合には、ポリスチレンとポリフェニレンエーテルとの質量比が50:50で貯蔵弾性率が極大値となることがわかった。また、表4および図12に示した結果から明らかなように、電気抵抗についても、ポリスチレンとポリフェニレンエーテルとの質量比が50:50で極小値となることがわかった。このような極値が存在する理由としては、芳香族系ポリマー2種類をブレンドすることによって、1種類の場合に比べて本発明にかかる微細化黒鉛粒子の分散構造が変化し、適度な粒子間連結構造が形成されたためと考えられる。   Furthermore, as apparent from the results shown in Table 4 and FIG. 11, in the resin composite material of the present invention containing polystyrene and polyphenylene ether, when the content of the fine graphite particles is the same, polystyrene and polyphenylene ether. It was found that the storage elastic modulus reached a maximum value at a mass ratio of 50:50. Further, as is clear from the results shown in Table 4 and FIG. 12, it was found that the electrical resistance also had a minimum value when the mass ratio of polystyrene to polyphenylene ether was 50:50. The reason why such an extreme value exists is that, by blending two kinds of aromatic polymers, the dispersion structure of the fine graphite particles according to the present invention is changed as compared with the case of one kind, so that an appropriate interparticle distance is obtained. This is probably because the connection structure was formed.

以上説明したように、本発明によれば、高い剛性と高い電気伝導性を有する樹脂複合材料を得ることが可能となる。   As described above, according to the present invention, a resin composite material having high rigidity and high electrical conductivity can be obtained.

したがって、本発明の樹脂複合材料は、高い剛性と高い電気伝導性が要求される用途、例えば、自動車用各種部品(例えば、外板材料)、電気・電子機器用各種部品(例えば、電極材料)、ヒーター材料などの用途として有用である。   Therefore, the resin composite material of the present invention is used in applications requiring high rigidity and high electrical conductivity, for example, various parts for automobiles (for example, outer plate materials), various parts for electric / electronic devices (for example, electrode materials). It is useful as a heater material.

Claims (7)

板状黒鉛粒子と、該板状黒鉛粒子に吸着した、下記式(1):
−(CH−CHX)− (1)
(式(1)中、Xはフェニル基、ナフチル基、アントラセニル基またはピレニル基を表し、これらの基は置換基を有していてもよい。)
で表されるビニル芳香族モノマー単位を含有する芳香族ビニル共重合体とを備える微細化黒鉛粒子、ならびに
ポリスチレンおよびポリフェニレンエーテルからなる群から選択される少なくとも1種の芳香族系ポリマー
を含有することを特徴とする樹脂複合材料。
Plate-like graphite particles and the following formula (1) adsorbed on the plate-like graphite particles:
- (CH 2 -CHX) - ( 1)
(In formula (1), X represents a phenyl group, a naphthyl group, an anthracenyl group, or a pyrenyl group, and these groups may have a substituent.)
A fine graphite particle comprising an aromatic vinyl copolymer containing a vinyl aromatic monomer unit represented by the formula: and at least one aromatic polymer selected from the group consisting of polystyrene and polyphenylene ether Resin composite material characterized by
前記微細化黒鉛粒子の含有量が0.1〜80質量%であることを特徴とする請求項1に記載の樹脂複合材料。   The resin composite material according to claim 1, wherein a content of the fine graphite particles is 0.1 to 80% by mass. 前記芳香族系ポリマーが、ポリスチレンとポリフェニレンエーテルとの混合物であり、
前記混合物中のポリスチレン含有量が20〜80質量%であることを特徴とする請求項1または2に記載の樹脂複合材料。
The aromatic polymer is a mixture of polystyrene and polyphenylene ether;
The resin composite material according to claim 1 or 2, wherein a polystyrene content in the mixture is 20 to 80% by mass.
前記芳香族ビニル共重合体が、前記ビニル芳香族モノマー単位と極性モノマー単位とを備えるものであることを特徴とする請求項1〜3のうちのいずれか一項に記載の樹脂複合材料。   The resin composite material according to any one of claims 1 to 3, wherein the aromatic vinyl copolymer includes the vinyl aromatic monomer unit and a polar monomer unit. 前記極性モノマー単位が、(メタ)アクリル酸、(メタ)アクリレート類、(メタ)アクリルアミド類、ビニルピリジン類、無水マレイン酸、マレイミド類およびビニルイミダゾール類からなる群から選択される少なくとも1種のモノマーから誘導されるモノマー単位であることを特徴とする請求項4に記載の樹脂複合材料。   The polar monomer unit is at least one monomer selected from the group consisting of (meth) acrylic acid, (meth) acrylates, (meth) acrylamides, vinylpyridines, maleic anhydride, maleimides, and vinylimidazoles. The resin composite material according to claim 4, wherein the resin composite material is a monomer unit derived from 40℃における貯蔵弾性率が2GPa以上であることを特徴とする請求項1〜5のうちのいずれか一項に記載の樹脂複合材料。   The resin composite material according to any one of claims 1 to 5, wherein a storage elastic modulus at 40 ° C is 2 GPa or more. 表面の単位長さ当たりの電気抵抗が10Ω/cm以下であることを特徴とする請求項1〜5のうちのいずれか一項に記載の樹脂複合材料。 6. The resin composite material according to claim 1, wherein an electrical resistance per unit length of the surface is 10 4 Ω / cm or less.
JP2011021562A 2010-06-07 2011-02-03 Resin composite material Active JP5637600B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011021562A JP5637600B2 (en) 2011-02-03 2011-02-03 Resin composite material
EP11792444.9A EP2578534B1 (en) 2010-06-07 2011-06-07 Resin composite material
KR1020127033428A KR101460876B1 (en) 2010-06-07 2011-06-07 Resin composite material
PCT/JP2011/063038 WO2011155487A1 (en) 2010-06-07 2011-06-07 Resin composite material
CN201180038223.1A CN103038163B (en) 2010-06-07 2011-06-07 Resin composite materials
US13/701,768 US9728294B2 (en) 2010-06-07 2011-06-07 Resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011021562A JP5637600B2 (en) 2011-02-03 2011-02-03 Resin composite material

Publications (2)

Publication Number Publication Date
JP2012162587A true JP2012162587A (en) 2012-08-30
JP5637600B2 JP5637600B2 (en) 2014-12-10

Family

ID=46842314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021562A Active JP5637600B2 (en) 2010-06-07 2011-02-03 Resin composite material

Country Status (1)

Country Link
JP (1) JP5637600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190114112A (en) * 2018-03-29 2019-10-10 현대자동차주식회사 Conductive resin composition, conductive film and manufacturing method for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012311A (en) * 2001-06-29 2003-01-15 Kawasaki Steel Corp Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
JP2005320220A (en) * 2004-05-11 2005-11-17 Takashi Sawaguchi Nanocarbon material dispersant, nanocarbon material dispersing method, and nanocarbon material dispersion
US7914844B2 (en) * 2005-11-18 2011-03-29 Northwestern University Stable dispersions of polymer-coated graphitic nanoplatelets
JP4945419B2 (en) * 2007-12-05 2012-06-06 憲幸 倉本 Conductive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012311A (en) * 2001-06-29 2003-01-15 Kawasaki Steel Corp Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
JP2005320220A (en) * 2004-05-11 2005-11-17 Takashi Sawaguchi Nanocarbon material dispersant, nanocarbon material dispersing method, and nanocarbon material dispersion
US7914844B2 (en) * 2005-11-18 2011-03-29 Northwestern University Stable dispersions of polymer-coated graphitic nanoplatelets
JP4945419B2 (en) * 2007-12-05 2012-06-06 憲幸 倉本 Conductive composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190114112A (en) * 2018-03-29 2019-10-10 현대자동차주식회사 Conductive resin composition, conductive film and manufacturing method for the same
KR102451914B1 (en) * 2018-03-29 2022-10-06 현대자동차 주식회사 Conductive resin composition, conductive film and manufacturing method for the same

Also Published As

Publication number Publication date
JP5637600B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5641359B2 (en) Resin composite material
Carey et al. MXene polymer nanocomposites: a review
JP5700294B2 (en) Fine graphite particles, graphite particle dispersion containing the same, and method for producing fine graphite particles
Pan et al. Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending
Chen et al. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization
Yu et al. Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix
WO2011155487A1 (en) Resin composite material
Yuen et al. Preparation and morphological, electrical, and mechanical properties of polyimide‐grafted MWCNT/polyimide composite
Pu et al. Effect of surface functionalization of SiO2 particles on the interfacial and mechanical properties of PEN composite films
JP6156363B2 (en) Fine carbon dispersion composition and polyimide-fine carbon composite using the same
Ray et al. Dispersion of multi-walled carbon nanotubes in biodegradable poly (butylene succinate) matrix
JP5019152B2 (en) Carbon nanotube-dispersed polyimide composition
Wu et al. Dispersion of nano-carbon filled polyimide composites using self-degradated low molecular poly (amic acid) as impurity-free dispersant
You et al. Synthesis of polypropylene‐grafted graphene and its compatibilization effect on polypropylene/polystyrene blends
Liao et al. One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells
Dumas et al. Polybenzoxazine nanocomposites: case study of carbon nanotubes
WO2011158907A1 (en) Polyolefin resin composition and process for producing same
Mo et al. Synthesis and characterization of polyimide/multi‐walled carbon nanotube nanocomposites
Cheng et al. Modification of multiwall carbon nanotubes via soap‐free emulsion polymerization of acrylonitrile
JP5637600B2 (en) Resin composite material
Otieno et al. Conductive graphite/polyurethane composite films using amphiphilic reactive dispersant: Synthesis and characterization
Bose et al. Tuning the dispersion of multiwall carbon nanotubes in co-continuous polymer blends: a generic approach
JP5800232B2 (en) Graphite thin film and manufacturing method thereof
JP5812415B2 (en) Hydrophilized graphite material and method for producing the same
Zhuang et al. Synthesis of multiwalled carbon nanotube/fluorine‐containing poly (p‐phenylene benzoxazole) composites exhibiting greatly enhanced dielectric constants

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R150 Certificate of patent or registration of utility model

Ref document number: 5637600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250