JP2012162452A - Method for producing porous body - Google Patents

Method for producing porous body Download PDF

Info

Publication number
JP2012162452A
JP2012162452A JP2012069906A JP2012069906A JP2012162452A JP 2012162452 A JP2012162452 A JP 2012162452A JP 2012069906 A JP2012069906 A JP 2012069906A JP 2012069906 A JP2012069906 A JP 2012069906A JP 2012162452 A JP2012162452 A JP 2012162452A
Authority
JP
Japan
Prior art keywords
porous body
particles
carbon
powder
metal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012069906A
Other languages
Japanese (ja)
Other versions
JP5568792B2 (en
Inventor
Tamotsu Harada
保 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012069906A priority Critical patent/JP5568792B2/en
Publication of JP2012162452A publication Critical patent/JP2012162452A/en
Application granted granted Critical
Publication of JP5568792B2 publication Critical patent/JP5568792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous body capable of reducing the generation number of particles.SOLUTION: Mixed powder of 100 pts.wt. SiC powder, ≤5 pts.wt. carbon powder or an organic binder containing ≤5 pts.wt. carbon, and ≥20 pts.wt. metal silicon powder is press-compacted to form a compact. The compact is thermally treated at 1,200-1,350[°C] in a non-oxidative atmosphere, to thereby generate necking of each metal silicon particle.

Description

本発明は、半導体製造装置や液晶パネルをはじめとするフラットパネルディスプレイ製造装置などに使用される露光装置のようにパーティクルの発生が問題となる工程を必要とする各産業分野に関わる。   The present invention relates to various industrial fields that require a process in which generation of particles becomes a problem, such as an exposure apparatus used in a flat panel display manufacturing apparatus such as a semiconductor manufacturing apparatus and a liquid crystal panel.

セラミックス多孔体は耐熱性や耐蝕性に優れていることから半導体製造装置や液晶製造装置内のフィルター、雰囲気ガス等や洗浄液等をウエハやガラス基板等に供給するための給気部材や給液部材、およびウエハやガラス基板の吸着装置の吸着板等に使用されている。吸着装置としてはアルミニウムやステンレスなどの金属素材に溝や穴を開け、そこから吸引するものも多くある。   The ceramic porous body is excellent in heat resistance and corrosion resistance, so air supply members and liquid supply members for supplying filters, atmospheric gases, cleaning liquids, etc. in semiconductor manufacturing equipment and liquid crystal manufacturing equipment to wafers, glass substrates, etc. And a suction plate of a suction device for a wafer or a glass substrate. There are many suction devices that make grooves or holes in a metal material such as aluminum or stainless steel, and suck from the holes.

しかし、近年、ウエハや基板ガラスの大型化、薄型化に伴い、溝や穴などの特定部位から吸引する場合、被吸着物であるウエハや基板ガラスが変形し、高精度の吸着が出来ないことや、吸着力が不足するなどの問題が発生する。そのため、吸着装置として全面吸着することができる多孔体が多く用いられている。なかでも、SiCはSiウエハとの熱膨張率差が少ないことからSiウエハの搬送装置などに多く使用されており、吸着装置以外でのSiCを用いた多孔体の活用も広がっている。   However, in recent years, when wafers and substrate glass are becoming larger and thinner, when sucked from specific parts such as grooves and holes, the wafer or substrate glass that is the object to be adsorbed is deformed and high-precision suction cannot be performed. In addition, problems such as insufficient suction force occur. Therefore, many porous bodies that can be adsorbed on the entire surface are used as adsorption devices. Especially, since SiC has a small difference in thermal expansion coefficient from the Si wafer, it is widely used in Si wafer transfer devices and the like, and the use of porous materials using SiC other than the adsorption device is also spreading.

このような多孔体に関する技術が種々提案されている。例えば、SiC粉末に、金属シリコン粉末とフェノールなどの有機物を添加し、それらを反応させてSiC化することによるSiC粒子間を接合するものや発泡剤をいれるものなどがある。多孔体の強度は通常の緻密体より低く、そのため粒子の脱粒も起こりやすくなっている。また、残留しているカーボンなどによりパーティクルが多く発生するという問題点がある。   Various techniques relating to such a porous body have been proposed. For example, there are those that add metallic silicon powder and an organic substance such as phenol to SiC powder, react them to form SiC, and join SiC particles, and those that contain a foaming agent. The strength of the porous body is lower than that of a normal dense body, and therefore, the particles are easily shed. In addition, there is a problem that many particles are generated due to remaining carbon or the like.

骨材となる耐火性粒子と金属珪素とを含む多孔体が開示されている(特許文献1参照)。この多孔体は、耐火性粒子原料に、金属珪素と有機バインダーを添加し混合及び混練して得られた坏土を成形し、得られた成形体を仮焼して成形体中の有機バインダーを除去した後、本焼成する製造方法により得られる。この方法によれば、バインダーを除去しているので、残留カーボンによるパーティクルの発生を抑制できることが期待される。   A porous body containing refractory particles and metal silicon as an aggregate is disclosed (see Patent Document 1). This porous body is formed into a refractory particle raw material by adding metal silicon and an organic binder, mixing and kneading, and molding the kneaded clay. The resulting molded body is calcined to form an organic binder in the molded body. After removal, it is obtained by a production method in which firing is performed. According to this method, since the binder is removed, it is expected that generation of particles due to residual carbon can be suppressed.

特開2002−201082号公報JP 2002-201082 A

しかしながら、本発明者の検討によれば、バインダーを除去しても、パーティクルの発生を十分に抑制することはできなかった。したがって、このような多孔体を半導体製造装置等の部材として用いると、ウエハやガラス基板にパーティクルが付着し、処理精度の低下を招く。   However, according to the study by the present inventor, even if the binder is removed, the generation of particles cannot be sufficiently suppressed. Therefore, when such a porous body is used as a member of a semiconductor manufacturing apparatus or the like, particles adhere to the wafer or glass substrate, resulting in a decrease in processing accuracy.

具体的には、給気部材や給液部材では、供給する気体や液体にパーティクルが紛れ込む場合があり、また、吸着装置でも直接接触するのでパーティクルがウエハ及びガラス基板に転移する場合があった。特に近年、半導体製造装置やフラットパネルディスプレイ製造装置の分野では、処理精度の高度化が著しく、より低パーティクル性の多孔体が望まれていた。   Specifically, in the air supply member or the liquid supply member, particles may be mixed into the supplied gas or liquid, and in some cases, the particles may be transferred to the wafer and the glass substrate because they are in direct contact with the adsorption device. In particular, in recent years, in the field of semiconductor manufacturing apparatuses and flat panel display manufacturing apparatuses, the processing accuracy has been remarkably advanced, and a porous body having a lower particle property has been desired.

パーティクルの発生源として残留カーボンの脱粒及びSiCの脱粒があげられる。残留カーボンとしては、SiC多孔体の接合材として使用されているフェノールなどバインダーの有機物が起因と考えられる。上述のように、通常、SiCの多孔体を作製する場合、カーボン源及び金属シリコンを添加し、これらを反応させてSiC化させることによりSiCの粒子同士を接合させる。   Particle generation sources include residual carbon degranulation and SiC degranulation. It is considered that the residual carbon is caused by an organic substance such as phenol used as a bonding material for the SiC porous body. As described above, when producing a SiC porous body, normally, a carbon source and metal silicon are added, and these are reacted to form SiC, thereby joining SiC particles together.

このとき、すべてのカーボンがSiC化せず、一部が微細な残留カーボンとして残るため、これがパーティクルとなってしまう。残留カーボンについては、本焼成後に、有機溶剤等により洗浄することにより、ある程度除去することができる。しかし、完全に除去することは困難なので、できるだけ減らすことが好ましい。   At this time, all of the carbon is not converted to SiC, and a part of the carbon remains as fine residual carbon, which becomes particles. The residual carbon can be removed to some extent by washing with an organic solvent after the main firing. However, since it is difficult to remove completely, it is preferable to reduce as much as possible.

したがって、特許文献1に記載された発明によれば、カーボンを除去しているのでパーティクルを低減できることが期待されたが、十分に低減することはできなかった。そこで、パーティクル成分を調べたところ、カーボンは低減されているものの、SiCの脱粒が著しい。   Therefore, according to the invention described in Patent Document 1, it is expected that particles can be reduced because carbon is removed, but it cannot be sufficiently reduced. Therefore, when the particle component was examined, SiC was degranulated although carbon was reduced.

ここで、通常、SiCには遊離炭素が含まれており、遊離炭素は、バインダーの除去温度である150℃から700℃では、除去することはできない。したがって、特許文献1に記載された発明のように、1400℃以上に加熱して金属シリコンを軟化させて結合させる場合、カーボンとの反応性が高まるため、SiCに含まれる遊離炭素と反応して、微細なSiCが生成する。これが、パーティクル源となったと考えられる。   Here, normally, free carbon is contained in SiC, and free carbon cannot be removed at a binder removal temperature of 150 ° C. to 700 ° C. Therefore, when the metal silicon is softened and bonded by heating to 1400 ° C. or more as in the invention described in Patent Document 1, the reactivity with carbon increases, so it reacts with free carbon contained in SiC. Fine SiC is generated. This is considered to be the particle source.

そこで、本発明は、パーティクルの発生個数の低減化が図られている多孔体の製造方法を提供することを解決課題とする。   Therefore, an object of the present invention is to provide a method for manufacturing a porous body in which the number of generated particles is reduced.

本発明者は、熱処理温度を下げることによりパーティクル発生量の少ない多孔体が得られることを知見した。   The present inventor has found that a porous body with a small amount of generated particles can be obtained by lowering the heat treatment temperature.

当該知見に基づく本発明の多孔体の製造方法は、100重量部のSiC粉末と、5重量部以下のカーボン粉末または5重量部以下のカーボンを含む有機系バインダーと、20重量部以上の金属シリコン粉末との混合粉末をプレス成形して成形体とする工程と、前記成形体を非酸化雰囲気中、1200〜1350[℃]で熱処理することにより金属シリコンの粒子同士をネッキングさせる工程を含むことを特徴とする。   The method for producing a porous body of the present invention based on the above knowledge includes: 100 parts by weight of SiC powder, 5 parts by weight or less of carbon powder or 5 parts by weight or less of carbon-based organic binder, and 20 parts by weight or more of metallic silicon. Including a step of press-molding a mixed powder with the powder to form a molded body, and a step of necking the metal silicon particles by heat-treating the molded body at 1200 to 1350 [° C.] in a non-oxidizing atmosphere. Features.

熱処理温が1200〜1350[℃]の温度範囲で実行されるので、金属シリコンのカーボンとの反応によるSiC化が防止され、かつ、金属シリコンの粒子同士のネッキングが促進される。また、熱処理雰囲気が非酸化雰囲気であるため、金属シリコンの表面にネッキングを阻害する酸化膜は生じない。   Since the heat treatment temperature is executed in a temperature range of 1200 to 1350 [° C.], the formation of SiC due to the reaction of metal silicon with carbon is prevented, and the necking of metal silicon particles is promoted. Moreover, since the heat treatment atmosphere is a non-oxidizing atmosphere, an oxide film that inhibits necking does not occur on the surface of the metal silicon.

したがって、金属シリコンの粒子同士が強固に結合した多孔体が得られる。金属シリコンのネッキングを進行させることにより金属シリコン粒子間の距離が小さくなり、SiC粉末についても強固に締め付けられるため、脱粒を防ぐことができる。金属シリコンとSiC粉末とは反応しないと考えられるので、SiC粉末の固定が問題となるが、金属シリコンの粒子同士のネッキングにより、SiC粉末についても強固に締め付けられるため脱粒を防ぐことができる。ここで、有機系バインダーに含まれるカーボン量は、残留炭素量(コンラドソン法;JISK2270)である。   Therefore, a porous body in which metallic silicon particles are firmly bonded to each other is obtained. By proceeding with the necking of the metal silicon, the distance between the metal silicon particles is reduced, and the SiC powder is also firmly clamped, so that the degranulation can be prevented. Since it is considered that the metal silicon and the SiC powder do not react with each other, the fixing of the SiC powder becomes a problem. However, since the SiC powder is firmly clamped by the necking of the particles of the metal silicon, the degranulation can be prevented. Here, the amount of carbon contained in the organic binder is the amount of residual carbon (Conradson method; JISK2270).

多孔体の原料である混合粉末におけるカーボンの含有量は、SiC粉末100重量部に対して5重量部以下であることが望ましい。カーボンが多いと、それ自体がパーティクル源となりやすいためであり、また、金属シリコンのネッキングを阻害するおそれがあるためである。また、混合粉末におけるカーボンの含有量は、SiC粉末100重量部に対して1重量部以上であることが望ましい。それ以下の添加量では本焼成前の成形体の作製が困難である。さらに金属シリコンによるネッキングが発生するまで、成形体を保持できなくなる。   The carbon content in the mixed powder, which is a raw material for the porous body, is desirably 5 parts by weight or less with respect to 100 parts by weight of the SiC powder. This is because if the amount of carbon is large, the carbon itself tends to be a particle source, and the necking of metal silicon may be hindered. Further, the carbon content in the mixed powder is desirably 1 part by weight or more with respect to 100 parts by weight of the SiC powder. If the addition amount is less than that, it is difficult to produce a molded body before the main firing. Further, the molded body cannot be held until necking with metallic silicon occurs.

多孔体の原料である混合粉末における金属シリコンの含有量は、SiC粉末100重量部に対して20重量部以上であることが望ましい。金属シリコンの含有量が20重量部に満たないと、多孔体全体の強度が低下するため好ましくない。また、金属シリコンの添加量の上限は60重量部以下が望ましい。60重量部よりも多く添加すると金属シリコンのネッキングにより、気孔率の制御が困難になる。   The content of metallic silicon in the mixed powder that is a raw material of the porous body is desirably 20 parts by weight or more with respect to 100 parts by weight of the SiC powder. If the content of metal silicon is less than 20 parts by weight, the strength of the entire porous body is lowered, which is not preferable. The upper limit of the amount of metal silicon added is preferably 60 parts by weight or less. If it is added in an amount of more than 60 parts by weight, it becomes difficult to control the porosity due to the necking of the metal silicon.

上述のように、金属シリコンの粒子同士がネッキングした構造とすることにより、パーティクルの発生が抑えられ、半導体製造装置及びフラットパネルディスプレイ製造装置に好適な多孔体を提供することができる。   As described above, by forming a structure in which metal silicon particles are necked, generation of particles can be suppressed, and a porous body suitable for a semiconductor manufacturing apparatus and a flat panel display manufacturing apparatus can be provided.

SiC粉末としては平均粒径(D50)が20〜200[μm]で、純度は99[%]以上のものを使用する。平均粒径が20[μm]より小さいと多孔体として十分な気孔径が確保できない。また、平均粒径が200[μm]より大きいと粒子の表面積が大きいため、多孔体としての十分な強度が確保できない。また、純度については98[%]以上であれば十分であり、市販の研磨材程度の純度で十分である。なお、ここで言う平均粒径(D50)は、レーザ回折/散乱式粒子径分布測定装置(LA−920、堀場製作所(登録商標)製)を用いた測定値である。   A SiC powder having an average particle diameter (D50) of 20 to 200 [μm] and a purity of 99 [%] or more is used. When the average particle diameter is smaller than 20 [μm], a sufficient pore diameter as a porous body cannot be secured. Moreover, since the surface area of particle | grains is large when an average particle diameter is larger than 200 [micrometers], sufficient intensity | strength as a porous body cannot be ensured. Further, the purity is sufficient if it is 98 [%] or more, and a purity of about a commercially available abrasive is sufficient. In addition, the average particle diameter (D50) said here is a measured value using the laser diffraction / scattering type | formula particle size distribution measuring apparatus (LA-920, Horiba, Ltd. product (trademark)).

金属シリコンとしては平均粒径(D50)が10〜50[μm]で純度は99.9[%]以上のものを使用する。平均粒径が10[μm]より小さい金属シリコンを使用すると表面に酸化膜が多く形成されている可能性が高く、熱処理の段階で酸化膜の影響により多孔体の強度を発現するために必要なネッキングが発生しない。また、平均粒径が50[μm]よりも大きいと金属シリコンの分散に偏りが生じ、多孔体の強度が低下する。純度については、純度の低い金属シリコンを使用すると融点が低下するため、1200〜1350[℃]程度の温度で熔解し、カーボンと反応する恐れがある。   Metallic silicon having an average particle diameter (D50) of 10 to 50 [μm] and a purity of 99.9 [%] or more is used. When metal silicon having an average particle size of less than 10 [μm] is used, there is a high possibility that a large amount of oxide film is formed on the surface, and it is necessary to develop the strength of the porous body due to the influence of the oxide film at the stage of heat treatment. Necking does not occur. On the other hand, when the average particle size is larger than 50 [μm], the dispersion of the metal silicon is biased and the strength of the porous body is lowered. Regarding the purity, since the melting point is lowered when metal silicon having a low purity is used, there is a possibility that it melts at a temperature of about 1200 to 1350 [° C.] and reacts with carbon.

カーボンとしては有機系のバインダーであれば液体でも粉末状のものでも構わない。ただし、高温での強度を考慮するとフェノール系のバインダーが望ましい。バインダーの残留炭素率(カーボン量)としては、40〜60重量部のものが混合粉末の成形に適している。   Carbon may be liquid or powder as long as it is an organic binder. However, considering the strength at high temperature, a phenolic binder is desirable. As the residual carbon ratio (carbon amount) of the binder, 40 to 60 parts by weight is suitable for forming the mixed powder.

混合粉末の成形方法は、公知の方法が採用できる。例えば、CIP、プレス成形、押し出し成形等が適用できる。添加するバインダーによっては、成形体の強度を高めるために熱を加えても良い。   A known method can be adopted as a method for forming the mixed powder. For example, CIP, press molding, extrusion molding, etc. can be applied. Depending on the binder to be added, heat may be applied to increase the strength of the molded body.

金属シリコンをネッキングさせるための熱処理の雰囲気は、非酸化雰囲気が望ましい。具体的には、真空中やAr等の不活性ガス中で熱処理することができる。   The atmosphere of the heat treatment for necking the metal silicon is preferably a non-oxidizing atmosphere. Specifically, heat treatment can be performed in a vacuum or an inert gas such as Ar.

本発明の多孔体は、気孔径が10[μm]以上とすることが好ましい。10[μm]未満では通風抵抗が大きく、フィルターとして使用する場合、好ましくない。また、上限については使用上の規定はないが、使用するSiC粉末の粒径などから100[μm]以上の平均気孔径は多孔体の強度上、作製が困難である。   The porous body of the present invention preferably has a pore diameter of 10 [μm] or more. If it is less than 10 [μm], the ventilation resistance is large, which is not preferable when used as a filter. Moreover, although there is no restriction | limiting in use about an upper limit, preparation of the average pore diameter of 100 [micrometers] or more is difficult on the intensity | strength of a porous body from the particle size of the SiC powder to be used.

また、気孔率は、30〜60[%]であることが好ましい。この範囲の気孔率ならばフィルターなどとして使用する際の通風抵抗が最適である。気孔率が60%より大きいと多孔体の強度が低下するという問題が発生する。   Moreover, it is preferable that a porosity is 30-60 [%]. If the porosity is within this range, the ventilation resistance when used as a filter or the like is optimal. If the porosity is larger than 60%, there arises a problem that the strength of the porous body is lowered.

以下、本発明の実施例を比較例とともに具体的に挙げ、本発明をより詳細に説明する。
[実施例1〜8、比較例1〜3]
市販のSiC粉末(粒径(D50)135[μm]、純度99[%])、Si粉末(粒径(D50)45[μm]、純度99.9[%])及びフェノール粉末(ノボラック型、残留炭素率50重量部)を表1に示されている割合で混合し、1時間にわたり乾式混合する。その後、20[kg/cm2]の圧力をかけながら150[℃]で1時間にわたり熱プレスを行った。熱プレス後、12時間−150℃で硬化処理を行い、その後、表1の温度で熱処理(Ar雰囲気)を行った。こうして得られた多孔体をパーティクルを測定するために□30[mm]×t3[mm]形状に加工した。加工後の洗浄はメタノールによる超音波洗浄(40[kHz])を15分間行った後、炭化水素系洗剤に30分間浸漬、超純水に10分間浸漬した。さらに超純水による超音波洗浄(40[kHz])を10分間にわたって行い、最後に超純水でシャワーを行った。その後、乾燥した後、測定を行った。
EXAMPLES Hereinafter, the Example of this invention is specifically given with a comparative example, and this invention is demonstrated in detail.
[Examples 1-8, Comparative Examples 1-3]
Commercially available SiC powder (particle size (D50) 135 [μm], purity 99 [%]), Si powder (particle size (D50) 45 [μm], purity 99.9 [%]) and phenol powder (novolak type, Residual carbon ratio 50 parts by weight) is mixed in the proportions shown in Table 1 and dry mixed for 1 hour. Thereafter, hot pressing was performed at 150 [° C.] for 1 hour while applying a pressure of 20 [kg / cm 2 ]. After hot pressing, a curing treatment was performed at −150 ° C. for 12 hours, and then a heat treatment (Ar atmosphere) was performed at the temperature shown in Table 1. The porous body thus obtained was processed into a shape of □ 30 [mm] × t3 [mm] in order to measure particles. After the processing, ultrasonic cleaning with methanol (40 [kHz]) was performed for 15 minutes, followed by immersion in a hydrocarbon-based detergent for 30 minutes and immersion in ultrapure water for 10 minutes. Furthermore, ultrasonic cleaning with ultrapure water (40 [kHz]) was performed for 10 minutes, and finally a shower was performed with ultrapure water. Then, after drying, measurement was performed.

パーティクルの発生個数の測定はリオン(登録商標)社製のKC−24を用いた。窒素ガスを、多孔体を介して吸引し、吸引したガスに含まれるパーティクルの発生個数を測定した。測定用の気体は液体窒素から取り出した窒素を使用し、窒素を満たした容器の出口に多孔体を取り付け、この多孔体と測定器から伸びているφ10[mm]の吸引部を接続して、更に測定器の計測部分に接続した。パーティクル測定器の吸引流量は28[l/min]とした。測定したパーティクルの粒子径は0.5[μm]以上で、10分間測定しパーティクルの量をカウントした。なお、ブランクのパーティクル数は平均で10個以下であった。パーティクルの測定結果を表1に示す。なお、気孔率はアルキメデス法で測定した。
[比較例4]
上記実施例と同様に成形したものを、熱処理において、700[℃]まで大気中にて加熱し、バインダー起因のカーボンを除去した後に、Ar雰囲気で加熱した。その他の工程は、上記実施例と同様に行った。
For the measurement of the number of generated particles, KC-24 manufactured by Rion (registered trademark) was used. Nitrogen gas was sucked through the porous body, and the number of generated particles contained in the sucked gas was measured. The measurement gas uses nitrogen extracted from liquid nitrogen, attaches a porous body to the outlet of the container filled with nitrogen, connects this porous body and a suction part of φ10 [mm] extending from the measuring instrument, Furthermore, it connected to the measurement part of the measuring instrument. The suction flow rate of the particle measuring device was 28 [l / min]. The measured particle diameter was 0.5 [μm] or more and measured for 10 minutes to count the amount of particles. The number of blank particles was 10 or less on average. Table 1 shows the particle measurement results. The porosity was measured by the Archimedes method.
[Comparative Example 4]
In the heat treatment, the material molded in the same manner as in the above example was heated to 700 [° C.] in the air to remove carbon derived from the binder, and then heated in an Ar atmosphere. Other steps were performed in the same manner as in the above example.

Figure 2012162452
Figure 2012162452

表1から明らかなように、すべての実施例でパーティクル数が50個以下であった。比較例1〜3では、実施例と比べて、パーティクル数は著しく多くなった。バインダーを除去した比較例4でもパーティクル数が多かった。したがって、100重量部のSiC粉末に対して、5重量部以下のカーボン及び20重量部以上の金属シリコンとからなり、1200〜1350℃の低温で熱処理して得られる多孔体により、パーティクルを低減できることが分かった。光学顕微鏡で、本発明の多孔体(実施例1〜8)を観察したところ、金属シリコン粒子は溶融せずに隣接する粒子とネッキングしており、SiC粉末粒子との濡れは見られなかった。   As is apparent from Table 1, the number of particles was 50 or less in all examples. In Comparative Examples 1 to 3, the number of particles was remarkably increased compared to the Examples. In Comparative Example 4 where the binder was removed, the number of particles was large. Therefore, particles can be reduced by a porous body obtained by heat treatment at a low temperature of 1200 to 1350 ° C., comprising 5 parts by weight or less of carbon and 20 parts by weight or more of metal silicon with respect to 100 parts by weight of SiC powder. I understood. When the porous body of the present invention (Examples 1 to 8) was observed with an optical microscope, the metal silicon particles were not melted but were adjacent to the adjacent particles, and wetting with the SiC powder particles was not observed.

以上より、本発明の多孔体は、金属シリコンのネッキング構造を有しており、パーティクルの発生が少なく、半導体製造装置及びフラットパネルディスプレイ製造装置に好適に使用できることが示された。   From the above, it has been shown that the porous body of the present invention has a metal silicon necking structure, generates less particles, and can be suitably used for semiconductor manufacturing apparatuses and flat panel display manufacturing apparatuses.

Claims (1)

100重量部のSiC粉末と、5重量部以下のカーボン粉末または5重量部以下のカーボンを含む有機系バインダーと、20重量部以上の金属シリコン粉末との混合粉末をプレス成形して成形体とする工程と、
前記成形体を非酸化雰囲気中、1200〜1350[℃]で熱処理することにより金属シリコンの粒子同士をネッキングさせる工程を含むことを特徴とする多孔体の製造方法。
A mixed powder of 100 parts by weight of SiC powder, 5 parts by weight or less of carbon powder or organic binder containing 5 parts by weight or less of carbon, and 20 parts by weight or more of metal silicon powder is press-molded to form a compact. Process,
The manufacturing method of the porous body characterized by including the process of necking the metal silicon particles by heat-processing the said molded object at 1200-1350 [degreeC] in non-oxidizing atmosphere.
JP2012069906A 2012-03-26 2012-03-26 Method for producing porous body Active JP5568792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069906A JP5568792B2 (en) 2012-03-26 2012-03-26 Method for producing porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069906A JP5568792B2 (en) 2012-03-26 2012-03-26 Method for producing porous body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007201515A Division JP2009035452A (en) 2007-08-02 2007-08-02 Porous article and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012162452A true JP2012162452A (en) 2012-08-30
JP5568792B2 JP5568792B2 (en) 2014-08-13

Family

ID=46842250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069906A Active JP5568792B2 (en) 2012-03-26 2012-03-26 Method for producing porous body

Country Status (1)

Country Link
JP (1) JP5568792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712303A1 (en) * 2019-03-21 2020-09-23 SKC Co., Ltd. Method for producing ingot, raw material for ingot growth, and method for preparing the raw material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641875A (en) * 1979-09-06 1981-04-18 Toshiba Ceramics Co Mechanical sliding member and its manufacture
JPH10502613A (en) * 1995-04-28 1998-03-10 デイデイエル−ヴエルケ アクチエンゲゼルシヤフト SiC-molded member
JP2001158680A (en) * 1999-11-30 2001-06-12 Ibiden Co Ltd Silicon carbide-metal complex, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JP2002154876A (en) * 2000-11-17 2002-05-28 Ngk Insulators Ltd Honeycomb structure and method for producing the same
JP2002226271A (en) * 2001-01-29 2002-08-14 Ibiden Co Ltd Method for manufacturing porous silicon carbide compact
JP2004167482A (en) * 2002-11-08 2004-06-17 Ibiden Co Ltd Honeycomb filter for exhaust gas cleaning, and its production method
JP2007005762A (en) * 2005-05-24 2007-01-11 Kyocera Corp Silicon-silicon carbide composite member, method of fabricating the same, adsorption member of semiconductor wafer using the same, and vacuum adsorber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641875A (en) * 1979-09-06 1981-04-18 Toshiba Ceramics Co Mechanical sliding member and its manufacture
JPH10502613A (en) * 1995-04-28 1998-03-10 デイデイエル−ヴエルケ アクチエンゲゼルシヤフト SiC-molded member
JP2001158680A (en) * 1999-11-30 2001-06-12 Ibiden Co Ltd Silicon carbide-metal complex, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JP2002154876A (en) * 2000-11-17 2002-05-28 Ngk Insulators Ltd Honeycomb structure and method for producing the same
JP2002226271A (en) * 2001-01-29 2002-08-14 Ibiden Co Ltd Method for manufacturing porous silicon carbide compact
JP2004167482A (en) * 2002-11-08 2004-06-17 Ibiden Co Ltd Honeycomb filter for exhaust gas cleaning, and its production method
JP2007005762A (en) * 2005-05-24 2007-01-11 Kyocera Corp Silicon-silicon carbide composite member, method of fabricating the same, adsorption member of semiconductor wafer using the same, and vacuum adsorber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712303A1 (en) * 2019-03-21 2020-09-23 SKC Co., Ltd. Method for producing ingot, raw material for ingot growth, and method for preparing the raw material
CN111719181A (en) * 2019-03-21 2020-09-29 Skc株式会社 Method for producing ingot, raw material for ingot growth, and method for producing ingot
US11225730B2 (en) 2019-03-21 2022-01-18 Senic Inc. Method for producing ingot, raw material for ingot growth, and method for preparing the raw material
CN111719181B (en) * 2019-03-21 2022-03-11 赛尼克公司 Method for producing ingot, raw material for ingot growth, and method for producing ingot

Also Published As

Publication number Publication date
JP5568792B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP4727434B2 (en) Electrostatic chuck device
WO2017082147A1 (en) Coating formed on graphite substrate and method for producing same
CN103608312B (en) Ceramic sintered bodies and the method manufacturing ceramic sintered bodies
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
WO2018194052A1 (en) Sintered body, board, circuit board, and method for manufacturing sintered body
KR101101214B1 (en) Aluminum nitride sintered body and method for producing the same
CN104831351A (en) Crucible cover plate for polysilicon ingot furnace and cover plate surface coating method
JP5568792B2 (en) Method for producing porous body
JP2007183085A (en) In-line heater and manufacturing method of the same
US9676631B2 (en) Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms
JP6059523B2 (en) Silica bonded body and method for producing the same
JP2009035452A (en) Porous article and its manufacturing method
JP2007191537A (en) Resin composition
JP2010111559A (en) Ceramic joint and its manufacturing method
JP2012106929A (en) Method for producing porous body
KR20100115992A (en) Sic/c composite powders and a high purity and high strength reaction bonded sic using the same
JP5092135B2 (en) Porous material and method for producing the same
JP2011088771A (en) Method of molding quartz glass material using mold material
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
KR102172600B1 (en) Manufacturing method of silicon nitride having excellent heat dissipation properties
JP5053206B2 (en) Method of forming quartz glass material using mold material
JP2010024084A (en) Method of molding quartz glass material using mold material
TW200902474A (en) Ceramic member and corrosion-resistant member
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
JP5674602B2 (en) Method for manufacturing silicon carbide sintered body and silicon carbide sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5568792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250