JP2012160479A - Ignition device - Google Patents

Ignition device Download PDF

Info

Publication number
JP2012160479A
JP2012160479A JP2012110201A JP2012110201A JP2012160479A JP 2012160479 A JP2012160479 A JP 2012160479A JP 2012110201 A JP2012110201 A JP 2012110201A JP 2012110201 A JP2012110201 A JP 2012110201A JP 2012160479 A JP2012160479 A JP 2012160479A
Authority
JP
Japan
Prior art keywords
opening
ignition device
distance
discharge space
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012110201A
Other languages
Japanese (ja)
Other versions
JP5442064B2 (en
Inventor
Takayuki Takeuchi
隆之 竹内
Masamichi Shibata
正道 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2012110201A priority Critical patent/JP5442064B2/en
Publication of JP2012160479A publication Critical patent/JP2012160479A/en
Application granted granted Critical
Publication of JP5442064B2 publication Critical patent/JP5442064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ignition device with excellent ignitability and durability for causing ignition by injecting plasma-state gas in an engine.SOLUTION: In an ignition device 1, a discharge space 140 is blocked by a center electrode 110, an approximate tubular insulator 120 extending downward beyond its lower end, and a ground electrode 130 provided with an opening 131 communicated with its opening. A high voltage is applied and a large current is supplied to the discharge space 140, and gas in the discharge space 140 is made into a plasma state and injected in an engine combustion chamber 400 for causing ignition. A rotation providing mechanism provides a rotation force toward a center from an outer periphery of an airflow to a flow of the gas emitted from the discharge space 140. An opening of the ground electrode 130 is flush with and communicated with a lower bottom opening of the insulator 120 to become a first opening 131. A second opening 132 has a rotation providing space 141 projecting toward its tip, and blocked by a tubular peripheral wall 133 surrounding the first opening 131.

Description

本発明は、内燃機関の点火に用いられる点火装置の着火性の向上に関するものである。   The present invention relates to an improvement in ignitability of an ignition device used for ignition of an internal combustion engine.

近年、自動車等の内燃機関においては、燃焼排気中に含まれる、窒素酸化物、二酸化炭素等の環境負荷物質の更なる低減を図るため、更なる燃費の向上、希薄燃焼化が望まれている。
機関の燃焼効率の向上と環境負荷の低減とを同時に実現可能な機関として、機関燃焼室内に高温高圧のプラズマ状態にした気体を噴射して、従来の火花放電による点火プラグでは火炎伝播できないような希薄な混合気を効率的に燃焼させる方法が注目されている。
In recent years, in an internal combustion engine such as an automobile, in order to further reduce environmentally hazardous substances such as nitrogen oxides and carbon dioxide contained in combustion exhaust gas, further improvement in fuel consumption and lean combustion are desired. .
As an engine capable of simultaneously improving the combustion efficiency of the engine and reducing the environmental load, it is impossible to propagate the flame with a spark plug using a conventional spark discharge by injecting gas in a high-temperature and high-pressure plasma state into the engine combustion chamber. A method for efficiently burning a lean air-fuel mixture has attracted attention.

このような点火装置として、特許文献1には、開口部と該開口部とに対向した底面とをもち軸方向に伸びる断面が円形のチャンバを区画するハウジングと、該ハウジングの表面に設けられ該チャンバの開口部と外部とを連通する外部電極孔を持つ外部電極と、該チャンバの該底面に配設された中心電極と、を有し、該中心電極と該外部電極との間に電圧を印加して該チャンバ内にプラズマを発生させ、該チャンバの開口部からプラズマジェットを噴射する内燃期間用点火装置であって、該チャンバの容積が10mm以下であり、かつ該チャンバの軸方向の長さと内径との長さとのアスペクト比が2以上であることを特徴とする内燃機関用点火装置が開示されている。 As such an igniter, Patent Document 1 discloses a housing that has an opening and a bottom surface facing the opening and that defines a chamber having a circular cross section extending in the axial direction, and is provided on the surface of the housing. An external electrode having an external electrode hole communicating the opening of the chamber and the outside, and a center electrode disposed on the bottom surface of the chamber, and a voltage is applied between the center electrode and the external electrode. An ignition device for an internal combustion period in which a plasma is generated in the chamber by being applied, and a plasma jet is ejected from an opening of the chamber, the volume of the chamber being 10 mm 3 or less, and the axial direction of the chamber An internal combustion engine ignition device is disclosed in which an aspect ratio of a length to an inner diameter is 2 or more.

特許文献1の点火装置によれば、チャンバ内で高温高圧のプラズマ状態となった気体が噴射されたときの到達距離を長くし、希薄成層燃焼機関において、混合気中の燃料濃度が相対的に高い部位に到達させることができ、希薄燃料機関における着火性の向上を図ることができると期待された。   According to the ignition device of Patent Document 1, the reach distance when the gas in a high-temperature and high-pressure plasma state is injected in the chamber is increased, and in the lean stratified combustion engine, the fuel concentration in the air-fuel mixture is relatively It was expected that the high part could be reached and the ignitability of the lean fuel engine could be improved.

特開2006−294257号公報JP 2006-294257 A

ところが、このような点火装置において、高電圧の印加によって放電空間内の絶縁が破壊され、大電流が放電空間内に供給されるのは、10μsec以下と極めて短いので、機関燃焼室内に噴射されたプラズマ状態となった気体が、高エネルギ状態を維持できる時間は極めて短い。
このため、火炎核が成長して機関燃焼室内の混合気に火炎伝播して着火を起こすためには、例えば、200mJと比較的高いエネルギを供給する必要があった。加えて、このような高いエネルギを供給しながらも、燃焼可能な混合気の希薄化に限界を生じていた。
さらに、このような高いエネルギを供給すると、電極の消耗が激しく、点火装置としての耐久性、信頼性の向上に限界を生じていた。
また、近年、燃料と圧縮空気との混合を良好にすべく、スワール比を高くしたり、過給器混合などにより燃焼室内に強力なタンブル渦を発生させたりすることがなされ、燃焼室内における高ガス流動化が図られており、従来のプラズマ点火装置では、燃焼室内に噴射された火炎核が強力な筒内気流によって吹き飛ばされ、点火に十分な大きさの火炎核に成長する前にエネルギを消失し、難着火性機関の点火がさらに困難となる虞がある。
However, in such an igniter, the insulation in the discharge space is broken by the application of a high voltage, and a large current is supplied into the discharge space because it is very short of 10 μsec or less. The time during which the gas in the plasma state can maintain the high energy state is extremely short.
For this reason, in order for flame nuclei to grow and propagate to the air-fuel mixture in the engine combustion chamber to cause ignition, for example, it was necessary to supply a relatively high energy of 200 mJ. In addition, there is a limit to the dilution of the combustible mixture while supplying such high energy.
Further, when such high energy is supplied, the electrodes are consumed very much, which limits the improvement of durability and reliability as an ignition device.
In recent years, in order to improve the mixing of fuel and compressed air, the swirl ratio has been increased, or strong tumble vortices have been generated in the combustion chamber by mixing with a supercharger, etc. In the conventional plasma igniter, flame nuclei injected into the combustion chamber are blown away by a powerful in-cylinder airflow, and energy is generated before growing into flame nuclei large enough for ignition. It may disappear and ignition of the non-ignitable engine may be more difficult.

そこで、本願発明はかかる実情に鑑み、希薄均質燃料機関や希薄成層燃焼機関、過給混合燃焼機関やアンモニア燃焼機関などの難着火性燃焼機関の燃焼室内にプラズマ状態となった気体を噴射して機関の点火を行う点火装置において、火炎核の成長を促し、着火性に優れ、かつ、耐久性に優れた点火装置を提供することを目的とするものである。   Therefore, in view of such circumstances, the present invention injects a gas in a plasma state into a combustion chamber of a non-ignition combustion engine such as a lean homogeneous fuel engine, a lean stratified combustion engine, a supercharged mixed combustion engine or an ammonia combustion engine. It is an object of the present invention to provide an ignition device that ignites an engine and promotes the growth of flame nuclei, has excellent ignitability, and excellent durability.

請求項1の発明では、長軸状の中心電極と、該中心電極を覆いつつ、その下端面よりも下方に伸びる略筒状に形成した絶縁体と、該絶縁体を覆いつつ、該絶縁体の開口部に連通する接地電極開口部を設けた接地電極とによって放電空間を区画し、該放電空間に、放電用電源からの高電圧の印加とプラズマエネルギ供給用電源からの大電流の供給とを行って、該放電空間内の気体を高温・高圧のプラズマ状態となして、機関燃焼室内に噴射して該機関の点火を行う点火装置において、上記放電空間から噴出する高温・高圧状態の気体の流れに、該気流の外周から中心に向かう回転力を付与する回転付与機構として、上記接地電極開口部を上記絶縁体の下端開口部と面一に連通せしめて第1の開口部とし、その先端側に向かって突出して上記第1の開口部を囲む略筒状の周壁面によって区画された回転付与空間を有する第2の開口部を設ける。   According to the first aspect of the present invention, a long-axis center electrode, an insulator formed in a substantially cylindrical shape covering the center electrode and extending below the lower end surface thereof, and covering the insulator, the insulator A discharge space is defined by a ground electrode provided with a ground electrode opening that communicates with the opening, and a high voltage is applied to the discharge space from a discharge power source and a large current is supplied from a plasma energy supply power source. In the ignition device for igniting the engine by making the gas in the discharge space into a high-temperature / high-pressure plasma state and injecting it into the engine combustion chamber, the gas in the high-temperature / high-pressure state ejected from the discharge space As a rotation imparting mechanism for imparting a rotational force from the outer periphery of the air flow to the center of the air flow, the ground electrode opening is communicated with the lower end opening of the insulator to be flush with the first opening, Projecting toward the tip side, the first Providing a second opening having a rotation imparting space defined by a substantially cylindrical peripheral wall surrounding the opening.

請求項1の発明によれば、高温高圧のプラズマ状態となった気体が、第1の開口部から噴射されたときに、上記回転付与空間において開口断面積が広がるので、高エネルギ状態の気体の中心部と外周部とに大きな速度差を生じ、外周から内側に向かう回転力が付与され、高エネルギ状態の気体内に強い回転力が発生し、外径方向に膨張しながら回転するドーナツ状の渦輪となって噴射される。
渦輪は回転しながら燃焼室内を移動するので移動時における空気抵抗が小さくなり到達距離が長くできる。
According to the first aspect of the present invention, when the gas in a high-temperature and high-pressure plasma state is injected from the first opening, the opening cross-sectional area increases in the rotation imparting space. A large speed difference is generated between the center and the outer periphery, a rotational force inward from the outer periphery is applied, a strong rotational force is generated in the gas in a high energy state, and the donut shape rotates while expanding in the outer diameter direction. It is injected as a vortex ring.
Since the vortex ring rotates and moves in the combustion chamber, the air resistance during movement decreases and the reach distance can be increased.

加えて、高エネルギ状態の気体が渦輪の回転によって、周囲に散逸することなく渦輪内に閉じこめられ、さらに周囲の混合気が回転力によって渦輪内に取り込まれて高エネルギ状態の気体と渦輪内で効率よく反応し、火炎核が渦輪形状を維持したまま急速に成長する。
その結果、火炎核の成長が安定し、希薄均質燃料機関や希薄成層燃焼機関、過給混合燃焼機関などの難着火性機関においても着火性が向上する。
In addition, the high energy state gas is confined in the vortex ring without being dissipated by the rotation of the vortex ring, and the surrounding air-fuel mixture is taken into the vortex ring by the rotational force, and in the high energy state gas and vortex ring It reacts efficiently and the flame kernel grows rapidly while maintaining the vortex ring shape.
As a result, the growth of flame nuclei is stabilized, and the ignitability is improved even in inflammable engines such as a lean homogeneous fuel engine, a lean stratified combustion engine, and a supercharged mixed combustion engine.

特に、本発明のように、上記第1の開口部の先端側に向かって突出して上記第1の開口部を囲むように上記第2の開口部を設けると、プラズマ状態となった気体の噴射方向に対して垂直方向に流れる気流が、上記第2の開口部に衝突して、プラズマの噴射方向に対して斜め方向に流れを変え、引き込み流れが形成される。
このとき、上記第2の開口部の周りに発生した渦流によって、渦輪の回転がさらに強められるため、渦輪の直進性が高まるとともに、渦輪内部へのエネルギの閉じ込め効果が増し、火炎核が安定して成長するため、着火性が向上する。
したがって、着火性において信頼性の高い点火装置が実現できる。
In particular, as in the present invention, when the second opening is provided so as to protrude toward the distal end side of the first opening and surround the first opening, the gas is injected into a plasma state. The airflow flowing in the direction perpendicular to the direction collides with the second opening, changes the flow in an oblique direction with respect to the plasma injection direction, and forms a drawing flow.
At this time, the rotation of the vortex ring is further strengthened by the vortex generated around the second opening, so that the straightness of the vortex ring is enhanced, the energy confinement effect inside the vortex ring is increased, and the flame kernel is stabilized. Therefore, the ignitability is improved.
Therefore, an ignition device with high ignitability can be realized.

加えて、請求項1の発明によれば、上記プラズマエネルギ供給用電源から供給されたエネルギをより長い時間火炎核の内部に保持できるので、火炎核の成長に効率的に利用することができ、より低いエネルギによって着火に導くことができる。したがって、電極の消耗を抑制することができ、耐久性においても信頼性の高い点火装置の実現が可能となる。   In addition, according to the invention of claim 1, since the energy supplied from the plasma energy supply power source can be held in the flame kernel for a longer time, it can be efficiently used for the growth of the flame kernel, Lower energy can lead to ignition. Therefore, consumption of the electrodes can be suppressed, and a highly reliable ignition device can be realized in terms of durability.

一方、本発明によらず、上記接地電極開口部を上記絶縁体の下端開口部とが面一に連通しておらず、上記絶縁体の最下端面の一部が露出するように接地電極開口部が設けられている場合には、中心電極と接地電極との間に高電圧が印加されたときに、放電空間内で絶縁体の表面を這うように沿面放電が起こるが、接地電極の第1の開口部が大きく開口しているために、沿面放電の異方性が強く、沿面放電の発生した側に対向する方向へ強く折れ曲がってプラズマ状態となった気体が噴射されることになる。
このため、本発明を用いない場合には、渦輪の形状に異方性が現れるので渦輪の形状維持が困難となり、渦輪の直進性が弱まると共に、エネルギの封じ込み効果が弱まり、火炎核の成長が不安定となるものと推察される。
On the other hand, regardless of the present invention, the ground electrode opening is not flush with the lower end opening of the insulator, and the ground electrode opening is exposed so that a part of the lowermost end surface of the insulator is exposed. When a high voltage is applied between the center electrode and the ground electrode, creeping discharge occurs over the surface of the insulator in the discharge space. Since the opening 1 has a large opening, the anisotropy of the creeping discharge is strong, and the gas that is strongly bent in the direction opposite to the side where the creeping discharge occurs and is in a plasma state is injected.
For this reason, when the present invention is not used, since anisotropy appears in the shape of the vortex ring, it becomes difficult to maintain the shape of the vortex ring, the straightness of the vortex ring is weakened, the energy containment effect is weakened, and the flame kernel grows. Is assumed to be unstable.

また、請求項2の発明のように、上記第2の開口部の周壁面の高さをH(mm)としたときに、Hが下記式1の関係を満たす範囲に設定するのが望ましい。
0<H≦2.7・・・式1
Further, as in the invention of claim 2, when the height of the peripheral wall surface of the second opening is H 2 (mm), H 2 is set in a range satisfying the relationship of the following formula 1. desirable.
0 <H 2 ≦ 2.7 ... Equation 1

上記第2の開口部の周壁面の高さHを請求項2の発明の範囲に設定することにより、上記渦輪を最も長く維持できることが判明した。 By setting the range of the second opening circumferential wall of the height H 2 of the second aspect invention, it was found to be longest maintaining the vortex ring.

請求項3の発明では、上記放電空間を形成する上記中心電極の下端面から上記接地電極開口部の内周壁上端縁に至る上記絶縁体内周壁の長さをHとし、上記絶縁体内周壁の内径をφDとしたときに、HとDとが下記式2の関係を満たす範囲に設定する。
/D≧1.5・・・式2
In the invention of claim 3, the length of the insulating body peripheral wall extending to the inner wall upper edge of the ground electrode opening from the lower end face of the center electrode forming the discharge space and H 1, the inner diameter of the insulating body wall the when the [phi] D 1, and H 1 and D 1 is set to a range satisfying the relation of the following formula 2.
H 1 / D 1 ≧ 1.5... Formula 2

請求項3の発明によれば、上記放電空間内の高エネルギ状態となった気体が渦輪状となって噴射されたときの到達距離を長くすることができる。したがって、極めて着火性に優れた点火装置を実現できる。加えて、従来に比べてアスペクト比を短く設定しても高エネルギ状態となった気体の到達距離を長く維持できるので、要求電圧を低くでき、耐久性の向上も期待できる。   According to the invention of claim 3, it is possible to lengthen the reach distance when the gas in the high energy state in the discharge space is ejected in a vortex shape. Therefore, it is possible to realize an ignition device having extremely excellent ignitability. In addition, even if the aspect ratio is set shorter than in the prior art, the reach distance of the gas in a high energy state can be maintained longer, so that the required voltage can be lowered and durability can be expected to be improved.

さらに、請求項4の発明のように、上記第1の開口部の開口径をφDとし、
上記第2の開口部の対向する壁面間の距離をDとしたときに、DとDとが下記式3の関係を満たすように設定すると共に、上記第2の開口部の周壁面は、(a)上記壁面間距離Dと等しい内径φDを有する円筒状、又は、(b)上記第2の開口部の周壁面が、短軸方向の壁面間距離が上記壁面間距離Dに等しく、長軸方向の壁面間距離がこれよりも長いDaを有する楕円筒状、若しくは、オーバル筒状、又は、(c)上記第2の開口部の周壁面が、短軸方向の壁面間距離が上記壁面間距離Dに等しく長軸方向の壁面間距離がこれよりも長いDbを有する矩形筒状のいずれの形状とするのが望ましい。
1.0×D<D<4.5×D・・・式3
Further, as in the invention of claim 4, the opening diameter of the first opening is φD1,
The distance between the opposing wall surfaces of the second opening when the D 2, together with the D 1 and D 2 are set to satisfy the relation of the following formula 3, the peripheral wall surface of the second opening (A) a cylindrical shape having an inner diameter φD 2 equal to the inter-wall distance D 2 , or (b) the peripheral wall surface of the second opening has a short-axis distance between the wall surfaces D. 2 is equal to 2 and the distance between the wall surfaces in the major axis direction is D 3 a longer than this, or an oval cylinder shape, or (c) the peripheral wall surface of the second opening is in the minor axis direction. wall distance of to a rectangular tubular any shape having a long D 3 b than the wall distance of equal longitudinal direction to the wall surface distance D 2 is this desirable.
1.0 × D 1 <D 2 <4.5 × D 1 Formula 3

請求項5の発明では、上記放電用電源からの1回の高電圧の印加に対して、上記プラズマエネルギ発生用電源からの大電流の供給は、パルス電流によって複数回に分割して供給する。   In a fifth aspect of the present invention, supply of a large current from the plasma energy generating power supply is divided into a plurality of times by a pulse current in response to one high voltage application from the discharge power supply.

請求項5の発明によれば、渦輪状態で噴射され成長途中の火炎核に後続するプラズマ状態の気体が周期的に衝突し、渦輪の周速度を加速させ、より高いエネルギを渦輪内に取り込むことができるので、より大きな火炎核へ成長する。したがって、極めて着火性に優れた点火装置を実現できる。   According to the invention of claim 5, the gas in the plasma state, which is injected in the vortex ring state and follows the flame nucleus in the middle of the growth, periodically collides, accelerates the peripheral speed of the vortex ring, and takes in higher energy into the vortex ring. Can grow into a larger flame kernel. Therefore, it is possible to realize an ignition device having extremely excellent ignitability.

本発明の第1の実施形態における点火装置の構成を示す全体図。1 is an overall view showing a configuration of an ignition device according to a first embodiment of the present invention. (a)は、本発明の第1の実施形態における点火装置の概要を示す等価回路図、(b)は、その電流特性図。(A) is the equivalent circuit schematic which shows the outline | summary of the ignition device in the 1st Embodiment of this invention, (b) is the electric current characteristic diagram. (a)は、本発明の第1の実施形態における点火装置に適用可能な他の等価回路図、(b)は、その電流特性図。(A) is the other equivalent circuit diagram applicable to the ignition device in the 1st Embodiment of this invention, (b) is the electric current characteristic diagram. (a)は、0.1ms後の状態をシミュレーションした結果を示し、図4(b)は、0.35ms後の状態をシミュレーションした結果を示す流れ解析図。(A) shows the result of simulating the state after 0.1 ms, and FIG. 4 (b) is a flow analysis diagram showing the result of simulating the state after 0.35 ms. (a)から(b)に順を追って示す本発明の点火装置から噴射される火炎核の成長の様子を示す模式図。The schematic diagram which shows the mode of the growth of the flame kernel injected from the ignition device of this invention shown in order from (a) to (b). 本発明の効果を示し、(a)は、本発明の第1の実施形態における点火装置のプラズマ噴射時の要部断面図、(b)は、本発明の第1の実施形態における火炎核の成長過程を示す模式図。The effect of this invention is shown, (a) is principal part sectional drawing at the time of the plasma injection of the ignition device in the 1st Embodiment of this invention, (b) is the flame kernel in the 1st Embodiment of this invention. The schematic diagram which shows a growth process. (a)は、比較例として示す従来の点火装置のプラズマ噴射時の要部断面図、(b)は、従来の点火装置における火炎核の成長過程を示す模式図。(A) is principal part sectional drawing at the time of the plasma injection of the conventional ignition device shown as a comparative example, (b) is a schematic diagram which shows the growth process of the flame kernel in the conventional ignition device. 本発明の燃焼変動に与える効果を比較例と共に示す特性図。The characteristic view which shows the effect which it has on the combustion fluctuation | variation of this invention with a comparative example. 本発明のリーン限界空燃比に与える効果を比較例と共に示す特性図。The characteristic view which shows the effect which it has on the lean limit air fuel ratio of this invention with a comparative example. 本発明の着火性に対する効果を比較例と共に示す特性図。The characteristic view which shows the effect with respect to the ignitability of this invention with a comparative example. 本発明の要求エネルギに対する効果を比較例と共に示す特性図。The characteristic view which shows the effect with respect to the required energy of this invention with a comparative example. 本発明の耐久性向上に対する効果を示し、投入エネルギに対する電極消耗量の変化を示す特性図。The characteristic view which shows the effect with respect to the durable improvement of this invention, and shows the change of the electrode consumption with respect to input energy. 本発明の点火装置における壁面高さに対する効果を比較例と共に示す特性図。The characteristic view which shows the effect with respect to the wall surface height in the ignition device of this invention with a comparative example. 本発明のアスペクト比に対する効果を比較例と共に示す特性図。The characteristic view which shows the effect with respect to the aspect-ratio of this invention with a comparative example. 本発明の点火装置における壁面間距離の最適条件を比較例と共に示す特性図。The characteristic view which shows the optimal condition of the distance between wall surfaces in the ignition device of this invention with a comparative example. (a)は、本発明の第1の実施形態における点火プラグの要部断面図並びにその下面図、(b)、(c)は、本発明の第1の実施形態における回転付与機構の変形例を示す要部断面図並びにその下面図。(A) is principal part sectional drawing and its bottom view of the spark plug in the 1st Embodiment of this invention, (b), (c) is a modification of the rotation provision mechanism in the 1st Embodiment of this invention. The principal part sectional drawing which shows this, and its bottom view. (a)は、比較例1として示す点火プラグ10cの要部断面図、(b)は、0.35ms経過したときの流れ解析図、(c)は、本図(b)中A部の拡大図。(A) is principal part sectional drawing of the ignition plug 10c shown as the comparative example 1, (b) is a flow-analysis figure when 0.35 ms passes, (c) is an enlarged view of A part in this figure (b). Figure. (a)は、本発明の第1の実施形態における点火プラグ10の要部断面図、(b)は、0.35ms経過したときの流れ解析図、(c)は、本図(b)中A部の拡大図。(A) is principal part sectional drawing of the spark plug 10 in the 1st Embodiment of this invention, (b) is a flow analysis figure when 0.35 ms passes, (c) is this figure (b). The enlarged view of A part. (a)は、本発明の効果を発揮し得ない比較例2における点火プラグ10dの要部断面図、(b)は、本比較例2における問題点を示す要部断面図。(A) is principal part sectional drawing of the spark plug 10d in the comparative example 2 which cannot exhibit the effect of this invention, (b) is principal part sectional drawing which shows the problem in this comparative example 2. FIG.

本発明の第1の実施形態における点火装置1について、図1を参照して説明する。 本実施形態において、点火装置1は、点火プラグ10と点火プラグ10に高電圧を印加する放電用電源20と大電流を供給するプラズマエネルギ供給用電源30とによって構成され、点火プラグ10は、図略の機関40に装着され燃焼室400内に先端が露出している。   An ignition device 1 according to a first embodiment of the present invention will be described with reference to FIG. In this embodiment, the ignition device 1 includes an ignition plug 10, a discharge power source 20 that applies a high voltage to the spark plug 10, and a plasma energy supply power source 30 that supplies a large current. The tip is exposed in the combustion chamber 400 that is mounted on the substantial engine 40.

点火プラグ10は、長軸状の中心電極110と、中心電極110の外周を覆い絶縁保持する略筒状の絶縁体120と、絶縁体120を覆う略筒状の接地電極130とによって構成されている。   The spark plug 10 includes a long-axis center electrode 110, a substantially cylindrical insulator 120 that covers and holds the outer periphery of the center electrode 110, and a substantially cylindrical ground electrode 130 that covers the insulator 120. Yes.

中心電極110は、高耐熱性、良電気伝導性の材料からなり、中心電極110の基端側には、良電気伝導性及び良熱伝導性の材料からなる中心電極中軸111が形成され、さらに基端部には、放電用電源20及びプラズマエネルギ供給用電源30に接続される中心電極端子部112が形成されている。   The center electrode 110 is made of a material having high heat resistance and good electrical conductivity, and a central electrode central shaft 111 made of a material having good electrical conductivity and good heat conductivity is formed on the proximal end side of the center electrode 110, and A central electrode terminal portion 112 connected to the discharge power source 20 and the plasma energy supply power source 30 is formed at the base end.

絶縁体120は、耐熱性、機械的強度、高温における絶縁耐力、熱伝導率などに優れた高純度のアルミナ等からなり、中心電極110の先端面よりも下方に伸びる筒状に形成されている。絶縁体120の中腹には、径大に拡径された絶縁体係止部121が形成され、後述するハウジング部13との気密性を保持する図略のシール部材を介してハウジング部13の内側に係止されている。絶縁体120の基端側は、中心電極端子部112とハウジング部13表面とを絶縁し、高電圧のリークを防止するコルゲート状の絶縁体頭部123が形成されている。   The insulator 120 is made of high-purity alumina or the like excellent in heat resistance, mechanical strength, high-temperature dielectric strength, thermal conductivity, and the like, and is formed in a cylindrical shape that extends downward from the tip surface of the center electrode 110. . An insulator locking portion 121 having a large diameter is formed in the middle of the insulator 120, and the inside of the housing portion 13 is interposed via a seal member (not shown) that maintains airtightness with the housing portion 13 described later. It is locked to. On the base end side of the insulator 120, a corrugated insulator head 123 is formed that insulates the center electrode terminal portion 112 and the surface of the housing portion 13 and prevents high-voltage leakage.

接地電極130は、導電性金属材料からなり、絶縁体120を覆うように略筒状に形成され、先端側において中心に向かって屈曲し絶縁体120の底部を覆い、絶縁体120の下端開口部に面一に連通する第1の開口部131が形成されている。
絶縁体120の内周壁と中心電極110の底面と第1の開口部131とによって放電空間140が区画されている。
The ground electrode 130 is made of a conductive metal material, is formed in a substantially cylindrical shape so as to cover the insulator 120, bends toward the center on the tip side, covers the bottom of the insulator 120, and opens at the lower end of the insulator 120. A first opening 131 communicating with the same surface is formed.
A discharge space 140 is defined by the inner peripheral wall of the insulator 120, the bottom surface of the center electrode 110, and the first opening 131.

接地電極130には、本発明の要部である回転付与機構として、第1の開口部131を囲むように第1の接開口部131の先端側に向かって突出する筒状の周壁面133によって区画された回転付与空間141を有する第2の開口部132が形成されている。   The ground electrode 130 has a cylindrical peripheral wall surface 133 projecting toward the distal end side of the first contact opening 131 so as to surround the first opening 131 as a rotation imparting mechanism that is a main part of the present invention. A second opening 132 having a partitioned rotation imparting space 141 is formed.

本実施形態において、放電空間140に露出する中心電極110の下端表面から第1の開口部131の内周壁と絶縁体120との境界部までの距離、換言すれば、放電空間140を形成する中心電極110の下端面から接地電極開口部131の内周壁上端縁に至る絶縁体内周壁の長さ、即ち、放電空間140の長さHと、第2の開口部132の周壁面133の高さHと、絶縁体120の内周壁の内径、即ち、放電空間140の内径と面一に連通する第1の接地電極131の内径φDと、第2の開口部132の内径φDとの関係が、下記式1、式2、式3の関係を満たすべく、H=3.0mm、H=1.0mm、φD=1.3mm、φD=3.0mmに設定されている。
0<H≦2.7・・・式1
/D≧1.5・・・式2
1.0×D<D<4.5×D・・・式3
In the present embodiment, the distance from the lower end surface of the center electrode 110 exposed to the discharge space 140 to the boundary between the inner peripheral wall of the first opening 131 and the insulator 120, in other words, the center forming the discharge space 140. the length of the insulating body wall extending from the lower end surface of the electrode 110 on the inner wall upper edge of the ground electrode opening 131, i.e., the length H 1 of the discharge space 140, the height of the peripheral wall surface 133 of the second opening 132 and H 2, the inner diameter of the inner peripheral wall of the insulator 120, i.e., the inner diameter [phi] D 1 of the first ground electrode 131 that communicates with the inner diameter flush of the discharge space 140, the inner diameter [phi] D 2 of the second opening 132 The relationship is set to H 1 = 3.0 mm, H 2 = 1.0 mm, φD 1 = 1.3 mm, and φD 2 = 3.0 mm so as to satisfy the relationships of the following formula 1, formula 2, and formula 3. .
0 <H 2 ≦ 2.7 ... Equation 1
H 1 / D 1 ≧ 1.5... Formula 2
1.0 × D 1 <D 2 <4.5 × D 1 Formula 3

接地電極130の外周部は、絶縁体120の外周を覆うように基端側に向かって筒状に伸び、中心電極110と絶縁体120を介して対向する背後電極部134が延設されている。
さらに、背後電極134の基端側は、絶縁体120を保持しつつ、図略の機関燃焼室400内に第2の開口部132が露出するように図略の機関燃焼室壁面40に固定するとともに接地電極130と該燃焼室壁面40とを電気的に接地状態とするためのハウジング部13が形成されている。背後電極部134の外周には、上記燃焼室壁面に螺結するためのネジ部135が形成され、ハウジング部13の基端側外周部にはネジ部135を締め付けるための六角部136が形成され、さらに絶縁体120をハウジング部13内に加締め固定すべく加締め部137が形成されている。
The outer peripheral portion of the ground electrode 130 extends in a cylindrical shape toward the proximal end so as to cover the outer periphery of the insulator 120, and a back electrode portion 134 that is opposed to the center electrode 110 through the insulator 120 is extended. .
Further, the base end side of the back electrode 134 is fixed to the engine combustion chamber wall surface 40 (not shown) so that the second opening 132 is exposed in the engine combustion chamber 400 (not shown) while holding the insulator 120. In addition, a housing portion 13 is formed for electrically grounding the ground electrode 130 and the combustion chamber wall surface 40. A screw part 135 for screwing to the combustion chamber wall surface is formed on the outer periphery of the back electrode part 134, and a hexagonal part 136 for tightening the screw part 135 is formed on the outer peripheral part on the proximal end side of the housing part 13. Further, a caulking portion 137 is formed for caulking and fixing the insulator 120 in the housing portion 13.

図2(a)に本発明の点火装置1の等価回路を示す。放電用電源20は、第1の電源21、イグニッションキー22、点火コイル23、点火コイル駆動回路24、電子制御装置25、第1の整流素子26、電波雑音吸収用抵抗体27によって構成されている。なお、放電用電源20は、電極消耗の抑制を図るため、第1の整流素子26によって、中心電極110が陽極となるように整流するのが望ましい。   FIG. 2A shows an equivalent circuit of the ignition device 1 of the present invention. The discharge power source 20 includes a first power source 21, an ignition key 22, an ignition coil 23, an ignition coil drive circuit 24, an electronic control device 25, a first rectifier element 26, and a radio noise absorbing resistor 27. . The discharge power source 20 is desirably rectified by the first rectifying element 26 so that the center electrode 110 becomes an anode in order to suppress electrode consumption.

プラズマエネルギ発生用電源30は、第2の電源31、電波雑音吸収用抵抗体32、第2の整流素子34、プラズマエネルギ充電用コンデンサ33によって構成されている。なお、電極消耗の抑制を図るため、プラズマエネルギ発生用電源30は、第2の整流素子34によって、中心電極110が陽極となるように整流するのが望ましい。   The power source 30 for generating plasma energy includes a second power source 31, a radio noise absorbing resistor 32, a second rectifier element 34, and a plasma energy charging capacitor 33. In order to suppress electrode consumption, the plasma energy generating power supply 30 is desirably rectified by the second rectifying element 34 so that the center electrode 110 becomes an anode.

放電用電源20から高電圧が印加され、放電空間140内の絶縁を破壊するブレークダウン放電が起こると、プラズマエネルギ充電用コンデンサ33に蓄えられたエネルギが大電流IPとなって極めて短い放電時間TPに一気に放出される。図2(b)に、この時の、放電電流IPと投入されるエネルギと放電時間Tとの関係を示す。 When a high voltage is applied from the discharge power supply 20 and a breakdown discharge that breaks the insulation in the discharge space 140 occurs, the energy stored in the plasma energy charging capacitor 33 becomes a large current IP and an extremely short discharge time TP. It is released at a stretch. In FIG. 2 (b), at this time, illustrating the relationship between the energy to be introduced and the discharge current IP and the discharge time T P.

また、図3(a)に示すように、プラズマエネルギ充電用コンデンサ33と並列に複数のチョークコイル35とコンデンサ33とを設けることにより、(b)に示すように1回の点火において、1回で放出するエネルギと同量のエネルギを2山以上の複数パルスに分割して供給することができる。なお、チョークコイル35は、下流側を低インダクタンスとし、上流側を高インダクタンスとしてある。放電用電源20からのブレークダウン放電によって放電空間140内の絶縁が破壊され、先ず、チョークコイル35の介装されていないコンデンサ33から1段目の大電流の放出がなされ、次いで、低インダクタンスのチョークコイル35によって遅延されたコンデンサ33から2段目の電流放出がなされ、さらに、高インダクタンスのチョークコイル35によって遅延されたコンデンサ33から3段目に電流放出がなされる。   Further, as shown in FIG. 3A, by providing a plurality of choke coils 35 and capacitors 33 in parallel with the plasma energy charging capacitor 33, as shown in FIG. In this case, the same amount of energy as that emitted in the above can be divided into two or more peaks and supplied. The choke coil 35 has a low inductance on the downstream side and a high inductance on the upstream side. The breakdown in the discharge space 140 is broken by the breakdown discharge from the discharge power source 20, and first, a first stage of large current is discharged from the capacitor 33 in which the choke coil 35 is not interposed. The second-stage current is released from the capacitor 33 delayed by the choke coil 35, and further, the third-stage current is released from the capacitor 33 delayed by the high-inductance choke coil 35.

図4から図6を参照して、本実施形態における本発明の効果について説明する。
図4は、本実施形態における点火プラグ10から高温・高圧のプラズマが噴射されたときの噴流の解析図であり、図4(a)は、0.1ms後の状態をシミュレーションした結果を示し、図4(b)は、0.35ms後の状態をシミュレーションした結果である。
図5は、(a)から(b)に順を追って示す本発明の点火装置から噴射される火炎核の成長の様子を示す模式図である。
図6(a)は、本実施形態における点火プラグ10の放電時の状態を模式的に示す要部断面図であり、図6(b)は、本発明の点火装置1を用いた内燃機関の燃焼室内における火炎核の成長過程を示す模式図である。
また、比較例として、図7に、従来の点火プラグ10zを用いた場合を示す。 図7(a)は、従来の点火プラグ10zの放電時の状態を模式的に示す要部断面図であり、図7(b)は、火炎核の成長過程を示す模式図である。
The effect of the present invention in this embodiment will be described with reference to FIGS.
FIG. 4 is an analysis diagram of a jet flow when high-temperature and high-pressure plasma is injected from the spark plug 10 according to the present embodiment. FIG. 4A shows a result of simulating a state after 0.1 ms, FIG. 4B shows the result of simulating a state after 0.35 ms.
FIG. 5 is a schematic diagram showing the growth of flame nuclei injected from the ignition device of the present invention shown in order from (a) to (b).
FIG. 6 (a) is a cross-sectional view of the main part schematically showing the state of the spark plug 10 during discharge in the present embodiment, and FIG. 6 (b) is an internal combustion engine using the ignition device 1 of the present invention. It is a schematic diagram which shows the growth process of the flame kernel in a combustion chamber.
As a comparative example, FIG. 7 shows a case where a conventional spark plug 10z is used. FIG. 7A is a main part sectional view schematically showing a state of the conventional spark plug 10z during discharge, and FIG. 7B is a schematic diagram showing a growth process of flame nuclei.

放電用電源20から高電圧が印加されると、中心電極110の下端表面と接地電極開口部131との間の絶縁が破壊され、絶縁体120の内周壁表面を這うようにブレークダウン放電BDWが起こる。この時、プラズマエネルギ供給用電源30から大電流が流れ、放電空間140内に高エネルギの電子が放電経路の周りに放出され、放電空間140内の気体が電離され、高温・高圧のプラズマ状態となって、放電空間から噴出される。   When a high voltage is applied from the discharge power supply 20, the insulation between the lower end surface of the center electrode 110 and the ground electrode opening 131 is broken, and the breakdown discharge BDW is caused to crawl the inner peripheral wall surface of the insulator 120. Occur. At this time, a large current flows from the plasma energy supply power source 30, high energy electrons are discharged around the discharge path in the discharge space 140, the gas in the discharge space 140 is ionized, and a high temperature / high pressure plasma state is obtained. Then, it is ejected from the discharge space.

この時、図4(a)及び図6(a)に示すように、放電空間140から噴出したプラズマ状態の気体PZが、回転付与機構として設けられている回転力付与空間141において外径方向に膨張するため、放電空間140から噴出するプラズマ状態の気体PZの中心部における速度と、第2の開口部132の内周壁面133の近傍における速度との差が大きくなり、プラズマ状態の気体内に内側から外側へ向かう渦流が発生する。
この渦流によってプラズマ状態の気体PZに回転力が与えられ、図4(b)に示すように、この回転力は、回転力付与空間141から噴出した後も維持され、内部に渦場が形成され、図6(b)に示すように、外径方向に膨張しつつ回転しながら噴射方向へ進むドーナツ状の渦輪(Vortex Ring)となる。
渦輪は回転しながら燃焼室400内を移動するので移動時における空気抵抗が小さくなり到達距離を長くできるので、混合気の所望の位置に火炎核を到達させることができる。
加えて、図5(a)に示すように、渦輪内部に高エネルギ状態の気体PZが閉じこめられ、回転によって周囲の混合気を内部に取り込みながら、混合気に渦輪内に閉じこめた高エネルギを与えられる。
At this time, as shown in FIGS. 4A and 6A, the plasma-state gas PZ ejected from the discharge space 140 moves in the outer diameter direction in the rotational force applying space 141 provided as the rotation applying mechanism. Because of the expansion, the difference between the velocity at the central portion of the plasma state gas PZ ejected from the discharge space 140 and the velocity near the inner peripheral wall surface 133 of the second opening portion 132 becomes large, and the gas in the plasma state A vortex is generated from the inside toward the outside.
As shown in FIG. 4B, a rotational force is applied to the plasma state gas PZ by this vortex, and this rotational force is maintained even after being ejected from the rotational force applying space 141, and a vortex field is formed inside. As shown in FIG. 6B, a donut-shaped vortex ring that advances in the injection direction while rotating while expanding in the outer diameter direction is formed.
Since the vortex ring moves in the combustion chamber 400 while rotating, the air resistance at the time of movement decreases and the reach distance can be increased, so that the flame kernel can reach a desired position of the air-fuel mixture.
In addition, as shown in FIG. 5 (a), the high-energy gas PZ is confined inside the vortex ring, and the surrounding air-fuel mixture is taken into the interior by rotation, and the mixture is given high energy confined in the vortex ring. It is done.

また、筒内に気流が発生していても、渦輪の強い回転力によって、直進性が増している。このため、十分火炎核が成長していない点火プラグ10から噴射された直後においても、筒内気流によって流されることなく、燃焼室内の所望の位置に火炎核を到達させることが可能となる。
さらに、図5(b)及び図6(b)に示すように、輪の回転力によって、周囲の混合気を取り込みながらドーナツ状の形を維持したまま火炎核が大きく成長する。
その結果、火炎核の成長が安定し、難着火性の希薄燃焼機関においても着火性が向上する。したがって、着火性において信頼性の高い点火装置が実現できる。
加えて、渦輪の封じ込み効果によって、プラズマエネルギ供給用電源30から供給されたエネルギをより長い時間火炎核の内部に保持できる。したがって、火炎核の成長に効率的に利用され、より低いエネルギによって着火に導くことができる。
Further, even if an air flow is generated in the cylinder, the straightness is increased by the strong rotational force of the vortex ring. For this reason, even immediately after being injected from the spark plug 10 in which sufficient flame nuclei are not grown, the flame nuclei can reach a desired position in the combustion chamber without being caused to flow by the in-cylinder airflow.
Further, as shown in FIGS. 5B and 6B, the flame kernel grows greatly while maintaining the donut shape while taking in the surrounding air-fuel mixture by the rotational force of the ring.
As a result, the growth of the flame kernel is stabilized, and the ignitability is improved even in a hardly ignitable lean combustion engine. Therefore, an ignition device with high ignitability can be realized.
In addition, the energy supplied from the plasma energy supply power source 30 can be held inside the flame kernel for a longer time due to the confinement effect of the vortex ring. Therefore, it can be efficiently used for the growth of flame nuclei and lead to ignition with lower energy.

図6(b)に示すように、機関燃焼室400内には、タンブル渦やスワール等の筒内気流が発生しており、点火プラグ10から噴射された渦輪状の火炎核は、噴射直後には、強い回転力と直進性によって、筒内気流に流されることなく、周囲の混合気を内部に取り込みながら成長しつつ、燃焼室400内を直進し、比較的大きく安定した火炎核に成長して移動速度がある程度低下した状態で、筒内気流に沿って燃焼室400内を移動しながら燃焼室400内の混合気を渦輪内に取り込みながらさらに大きな火炎核に成長し、難着火性の希薄燃焼機関や過給混合燃焼機関の点火を行うことができる。   As shown in FIG. 6B, in-cylinder airflow such as tumble vortex and swirl is generated in the engine combustion chamber 400, and the vortex ring-shaped flame kernel injected from the spark plug 10 is immediately after injection. Because of the strong rotational force and straightness, it grows while taking in the surrounding air-fuel mixture inside without being swept away by the in-cylinder airflow, and goes straight in the combustion chamber 400 to grow into a relatively large and stable flame kernel. In a state in which the moving speed is reduced to some extent, the mixture in the combustion chamber 400 moves along the in-cylinder airflow while taking the air-fuel mixture in the combustion chamber 400 into the vortex ring, and grows into a larger flame nucleus. It is possible to ignite a combustion engine or a supercharged mixed combustion engine.

一方、従来の点火プラグ10zでは、図7(a)に示すように、放電空間140zから噴射されたプラズマ状態の気体PZは、涙粒状の比較的容積の大きな火炎核を生成する。
図7(b)に示すように、従来の点火プラグ10zから燃焼室400内に噴射された火炎核は、筒内気流に沿って移動し周囲の混合気と反応しながら帯状に火炎核が成長する。
しかし、従来の点火プラグ10zにおいては、接地電極開口部131zの開口径が小さいため、火炎核に発生する渦流が小さく、直進性に欠け、点火に十分な大きさの火炎核に成長する以前に、筒内気流で容易に流され、火炎核内の高エネルギ状態の気体を火炎核内部に閉じこめる力も小さいので、容易に火炎核内部のエネルギが拡散し火炎核が難着火性機関の点火に十分な大きさまで成長しない虞がある。
On the other hand, in the conventional spark plug 10z, as shown in FIG. 7A, the plasma-state gas PZ ejected from the discharge space 140z generates a tear-granular flame nucleus having a relatively large volume.
As shown in FIG. 7 (b), flame nuclei injected into the combustion chamber 400 from the conventional spark plug 10z move along the in-cylinder airflow and react with the surrounding air-fuel mixture to grow into flame nuclei. To do.
However, in the conventional spark plug 10z, since the opening diameter of the ground electrode opening 131z is small, the eddy current generated in the flame kernel is small, lacks straightness, and grows into a flame kernel large enough for ignition. It is easy to flow by the in-cylinder airflow, and the power to confine the high energy gas in the flame kernel inside the flame kernel is also small, so the energy inside the flame kernel diffuses easily and the flame nucleus is sufficient to ignite the ignition system There is a risk that it will not grow to a large size.

図8から図15に比較例と共に本発明効果を表す試験結果を示す。
比較例として図7に示した従来の点火プラグ10zを用いた試験結果を示し、実施例として、本発明の第1の実施形態における点火プラグ10を用いた試験結果を示す。さらに、図2に示した回路を用いた試験結果を実施例1とし、図3に示した回路を用いた試験結果を実施例2として示す。
本試験は、エンジンを模した気筒に点火プラグを搭載し、燃料と空気とを所定の空燃比で導入して同一条件下で点火したときの、着火性を示す指標として、(1)連続100サイクルの燃焼圧波形を計測し、その変動を算出した図示平均有効圧力の変動(COV IMEP)、(2)COV IMPEP 5%を判定基準として読み取った燃焼安定リーン限界空燃比、(3)初期燃焼期間及び主燃焼期間、(4)所定の空燃比におけるエネルギ低減効果について比較試験を行った。
8 to 15 show test results representing the effects of the present invention together with comparative examples.
Test results using the conventional spark plug 10z shown in FIG. 7 are shown as comparative examples, and test results using the spark plug 10 according to the first embodiment of the present invention are shown as examples. Furthermore, a test result using the circuit shown in FIG. 2 is shown as Example 1, and a test result using the circuit shown in FIG.
In this test, an ignition plug is mounted on a cylinder simulating an engine, and fuel and air are introduced at a predetermined air-fuel ratio and ignited under the same conditions. Measured cycle combustion pressure waveform and calculated the variation of the indicated mean effective pressure (COV IMEP), (2) Combustion stable lean limit air-fuel ratio read with COV IMPEP 5% as criteria, (3) Initial combustion Period and main combustion period, (4) A comparative test was conducted on the energy reduction effect at a predetermined air-fuel ratio.

図8に示すように、いずれの空燃比においても、比較例に比べて本発明の実施例の燃焼変動(COV IMEP)が小さく、本発明の点火装置によれば、安定した点火が得られることが判明した。   As shown in FIG. 8, at any air-fuel ratio, the combustion fluctuation (COV IMEP) of the example of the present invention is smaller than that of the comparative example, and according to the ignition device of the present invention, stable ignition can be obtained. There was found.

また、図9に示すように、所定の筒内圧力(0.2MPa)において同一の投入エネルギ(200mJ)に対して安定して燃焼可能なリーン限界空燃比は、比較例(23.8)に比べて本発明の実施例(25.3)の方が高く、本発明の点火装置によれば、より希薄な空燃比においても点火可能であることが判明した。   Further, as shown in FIG. 9, the lean limit air-fuel ratio that can be stably combusted for the same input energy (200 mJ) at a predetermined in-cylinder pressure (0.2 MPa) is shown in Comparative Example (23.8). Compared to the embodiment (25.3) of the present invention, it was found that the ignition device of the present invention can be ignited even at a leaner air-fuel ratio.

さらに、図10に示すように、点火から燃焼割合10%に至るまでのクランク角で定義される初期燃焼と、燃焼割合10%から燃焼割合90%に至るまでのクランク角で定義される主燃焼とのいずれも、本発明によれば、従来よりも大幅に燃焼期間を短くすることができ、本発明の点火装置が優れた着火性を示すことが判明した。
また、本発明において、1回の点火に対して点火プラグ10へ一度にエネルギ供給を行う場合(実施例1)よりも、1回の点火に対して点火プラグ10へ投入するエネルギを複数回に分けて供給した方(実施例2)がさらに安定した燃焼が得られることが確認された。
Further, as shown in FIG. 10, initial combustion defined by a crank angle from ignition to a combustion rate of 10% and main combustion defined by a crank angle from a combustion rate of 10% to a combustion rate of 90%. According to the present invention, it has been found that the combustion period can be significantly shortened compared to the conventional case, and the ignition device of the present invention exhibits excellent ignitability.
Further, in the present invention, the energy supplied to the spark plug 10 for one ignition is more than once when energy is supplied to the spark plug 10 for one ignition at a time (Example 1). It was confirmed that a more stable combustion can be obtained with the separately supplied one (Example 2).

図11は、本発明の要求エネルギの低減効果を示し、比較例として従来の点火プラグ10zを用いて、200mJのエネルギによって安定した点火が可能となる空燃比と同一の空燃比において、第1の実施形態に示した点火プラグ10を用いた結果を示す。
図11に示すように、本発明によれば、比較例と同一の空燃比において安定した着火に必要なエネルギを比較例よりも約60%低減できることが判明した。
FIG. 11 shows the effect of reducing the required energy of the present invention. As a comparative example, the first spark plug 10z is used, and at the same air-fuel ratio as the air-fuel ratio at which stable ignition is possible with the energy of 200 mJ, the first The result using the spark plug 10 shown in the embodiment is shown.
As shown in FIG. 11, according to the present invention, it has been found that the energy required for stable ignition at the same air-fuel ratio as in the comparative example can be reduced by about 60% compared to the comparative example.

図12は、本発明の耐久性に対する効果を示し、各供給エネルギに対する電極消耗量の変化を示す特性図である。
上述したように、本発明によれば、着火に必要な要求エネルギを低くすることができるので、図12に示すように、投入エネルギを低減することにより電極の消耗を抑制することが可能となり、点火装置としての信頼性をさらに向上できる。
FIG. 12 is a characteristic diagram showing the effect on durability of the present invention and showing changes in the amount of electrode consumption with respect to each supply energy.
As described above, according to the present invention, since the required energy required for ignition can be reduced, as shown in FIG. 12, it is possible to suppress the consumption of the electrode by reducing the input energy, The reliability as an ignition device can be further improved.

図13を参照して、第2の開口部132の周壁面133の高さHの効果について説明する。
図13は、従来の点火プラグ10zを用いた場合の燃焼変動を比較例とし、本発明の第1の実施形態に示した点火プラグ10のHを変化させた場合の燃焼変動の測定結果を示す特性図である。
図13に示すように、Hが下記式1の範囲において、本発明の点火プラグ10を用いた方が比較例よりも燃焼変動が小さくなることが判明した。
0<H≦2.7・・・式1
また、より望ましくは、0.5≦H≦2.3の範囲でHを設定するのが良いことが判明した。この範囲にHを設定すれば、COV IMEPが5%以下のさらに安定した着火性が得られる。
を2.7mmより大きく設定した場合には、従来よりも燃焼変動が大きくなるが、これは、回転付与による渦輪の発生効果よりも、周壁面133への熱エネルギの拡散による消炎効果が大きくなるためと考えられる。
Referring to FIG. 13, described the height effects of H 2 peripheral wall surface 133 of the second opening 132.
FIG. 13 shows, as a comparative example, the combustion fluctuation when the conventional spark plug 10z is used, and shows the measurement result of the combustion fluctuation when H 2 of the spark plug 10 shown in the first embodiment of the present invention is changed. FIG.
As shown in FIG. 13, it has been found that when the H 2 is in the range of the following formula 1, the combustion fluctuation is smaller when the spark plug 10 of the present invention is used than when the comparative example is used.
0 <H 2 ≦ 2.7 ... Equation 1
Further, it has been found that it is more preferable to set H 2 in the range of 0.5 ≦ H 2 ≦ 2.3. If H 2 is set within this range, a more stable ignitability with a COV IMEP of 5% or less can be obtained.
When H 2 is set to be larger than 2.7 mm, the combustion fluctuation becomes larger than that in the past, but this is more effective than the effect of generating a vortex ring by applying rotation to the flame extinguishing effect by diffusion of thermal energy to the peripheral wall surface 133. This is thought to be because it grows.

図14を参照して、第1の開口部131の内径φDと放電空間140の長さHとのアスペクト比H/Dの低減効果について説明する。
従来、プラズマ状態となった気体の噴出距離を長くするためには、アスペクト比H/Dをできるだけ大きくするのが望ましく、例えばH/D>2とするのが良いとされてきた。
しかし、アスペクト比H/Dを大きくすると、放電空間140内の絶縁を破壊するのに必要な要求電圧が高くなり、電極の消耗も早くなる虞がある。
そこで、従来の点火プラグ10zのアスペクト比H/Dを2に設定した場合を比較例として、本発明の第1の実施形態における点火プラグ10のアスペクト比を種々と変化させて、従来と同等のリーン限界A/F(25.3)でも安定した燃焼変動を得られるアスペクト比H/Dを調査した。
その結果、図14に示すように、本発明によれば、H/Dを1.5としても比較例と同等の燃焼変動が得られることが判明し、第1の開口部131の内径φDと放電空間140の長さHとのアスペクト比H/Dを下記式2を満たす範囲に設定することにより、電極消耗を押さえつつ安定した着火性を得られるとの知見を得た。
/D≧1.5・・・式2
With reference to FIG. 14, the effect of reducing the aspect ratio H 1 / D 1 between the inner diameter φD 1 of the first opening 131 and the length H 1 of the discharge space 140 will be described.
Conventionally, it is desirable to increase the aspect ratio H 1 / D 1 as much as possible in order to lengthen the ejection distance of the gas in a plasma state, for example, H 1 / D 1 > 2 is good. .
However, when the aspect ratio H 1 / D 1 is increased, the required voltage required to break the insulation in the discharge space 140 increases, and the electrode may be consumed quickly.
Therefore, as a comparative example, the aspect ratio H 1 / D 1 of the conventional spark plug 10z is set to 2, and the aspect ratio of the spark plug 10 in the first embodiment of the present invention is changed variously. The aspect ratio H 1 / D 1 at which stable combustion fluctuations can be obtained even with the equivalent lean limit A / F (25.3) was investigated.
As a result, as shown in FIG. 14, according to the present invention, it has been found that even if H 1 / D 1 is 1.5, the same combustion fluctuation as in the comparative example can be obtained, and the inner diameter of the first opening 131 is obtained. obtained by setting the aspect ratio H 1 / D 1 between the length H 1 of the [phi] D 1 and the discharge space 140 in a range satisfying the following equation 2, the finding that the resulting stable ignitability while suppressing consumption of the electrodes It was.
H 1 / D 1 ≧ 1.5... Formula 2

図15を参照して、第2の開口部132の対向する壁面間距離Dの効果について説明する。
図15は、従来の点火プラグ10zを用いた場合の燃焼変動を比較例とし、本発明の第1の実施形態に示した点火プラグ10のDを変化させた場合の燃焼変動の測定結果を示す特性図である。
図15に示すように、Dが下記式3の範囲において、本発明の点火プラグ10を用いた方が比較例よりも燃焼変動が小さくなることが判明した。
1.0×D<D<4.5×D・・・式3
また、より望ましくは、1.15×D≦D≦4.25×Dの範囲で、Dを設定するのが良いことが判明した。この範囲にDを設定すれば、COV IMEPが5%以下のさらに安定した着火性が得られる。
Referring to FIG. 15, a description will be given of an effect of the wall distance D 2 opposite the second opening 132.
Figure 15 is a combustion variation when a conventional spark plug 10z as Comparative Example, the measurement result of combustion variation in the case of changing the D 2 of the spark plug 10 shown in the first embodiment of the present invention FIG.
As shown in FIG. 15, D 2 is in the range of the following formula 3, combustion variation than the comparative examples preferable to use a spark plug 10 of the present invention that the decrease was found.
1.0 × D 1 <D 2 <4.5 × D 1 Formula 3
Further, it has been found that it is better to set D 2 in a range of 1.15 × D 1 ≦ D 2 ≦ 4.25 × D 1 . If D 2 is set within this range, a more stable ignitability with a COV IMEP of 5% or less can be obtained.

図16(a)から(c)に、本発明の第1の実施形態における点火プラグの変形例として点火プラグ10、10a、10bを示す。
なお、図中、左側は要部断面図を示し、右側はその下面図を示す。
本図(a)に示すように、第2の開口部132の周壁面133を、壁面間距離Dと等しい内径φDを有する円筒状に形成しても良いし、(b)に示すように、第2の開口部の周壁面133aを、短軸方向の壁面間距離が壁面間距離Dに等しく、長軸方向の壁面間距離がこれよりも長いDaを有する楕円筒状、若しくは、オーバル筒状に形成しても良いし、(c)に示すように、第2の開口部132bの周壁面133bを、短軸方向の壁面間距離が壁面間距離Dに等しく、長軸方向の壁面間距離がこれよりも長いDbを有する矩形筒状に形成しても良い。
本実施形態においては、少なくとも、壁面間距離Dを、上記式3に示した関係を満たすように設定すれば、本発明の効果が得られ、長軸方向の壁面間距離Da、Dbは、適用する内燃機関燃焼特性に応じて、火炎核の広がり方向を変更すべく適宜変更可能である。
FIGS. 16A to 16C show spark plugs 10, 10 a, and 10 b as modifications of the spark plug in the first embodiment of the present invention.
In the drawing, the left side shows a cross-sectional view of the main part, and the right side shows a bottom view thereof.
As shown in FIG. 5A, the peripheral wall surface 133 of the second opening 132 may be formed in a cylindrical shape having an inner diameter φD 2 equal to the inter-wall distance D 2 , or as shown in FIG. the second opening of the peripheral wall 133a, equal to the wall surface distance between the wall surface distance D 2 along the short axis, the long axis direction of the wall surface distance between the elliptic cylindrical shape having a long D 3 a than this, or may be formed into oval tubular, as shown in (c), the peripheral wall 133b of the second opening 132b, the wall distance of the minor axis is equal to the wall distance D 2, the length wall distance in the axial direction may be formed in rectangular tubular shape having a long D 3 b than this.
In the present embodiment, the effect of the present invention can be obtained if at least the inter-wall distance D 2 is set so as to satisfy the relationship shown in the above expression 3, and the inter-wall distances D 3 a, D in the major axis direction can be obtained. 3 b can be changed as appropriate to change the spreading direction of the flame kernel in accordance with the combustion characteristics of the internal combustion engine to be applied.

図17、図18を参照して、本発明の要部である回転力付与機構の望ましい形態について詳述する。
図17(a)は、比較例1として、接地電極130cを肉厚に形成し、第1の開口部131cの先端側の一部を外径方向に拡径した周壁面133cを形成して第2の開口部132cとすることによって、回転力付与空間141cを区画した点火プラグ10cの要部断面図であり、図17(b)は、比較例1におけるプラズマ点火プラグ10cに高エネルギを印加した後0.35ms経過したときのプラズマ噴流のシミュレーション結果を示す流れ解析図であり、図17(c)は、本図(b)中A部の拡大図である。
With reference to FIG. 17, FIG. 18, the desirable form of the rotational force provision mechanism which is the principal part of this invention is explained in full detail.
FIG. 17A shows a comparative example 1 in which a ground electrode 130c is formed thick and a peripheral wall surface 133c is formed by expanding a part of the front end side of the first opening 131c in the outer diameter direction. FIG. 17B is a cross-sectional view of the main part of the spark plug 10c that divides the rotational force applying space 141c by forming the opening 132c of FIG. 2, and FIG. 17B is a diagram in which high energy is applied to the plasma spark plug 10c in Comparative Example 1. FIG. 17C is a flow analysis diagram showing a simulation result of the plasma jet when 0.35 ms has elapsed after that, and FIG. 17C is an enlarged view of a portion A in FIG.

一方、図18(a)は、上述の本発明の第1の実施形態として示した、第1の開口部131を囲むように第1の開口部131の先端側に向かって突出する筒状の周壁面133によって区画された回転付与空間141を有する第2の開口部132を形成した点火プラグ10の要部断面図であり、図18(b)は、本実施形態におけるプラズマ点火プラグ10に高エネルギを印加した後0.35ms経過したときのプラズマ噴流のシミュレーション結果を示す流れ解析図であり、図18(c)は、本図(b)中A部の拡大図である。   On the other hand, FIG. 18A shows a cylindrical shape that protrudes toward the distal end side of the first opening 131 so as to surround the first opening 131, which is shown as the first embodiment of the present invention. FIG. 18B is a cross-sectional view of the main part of the spark plug 10 in which the second opening 132 having the rotation imparting space 141 partitioned by the peripheral wall surface 133 is formed, and FIG. 18B is a plan view of the plasma spark plug 10 in the present embodiment. FIG. 18C is a flow analysis diagram showing a simulation result of a plasma jet when 0.35 ms elapses after energy is applied, and FIG. 18C is an enlarged view of a portion A in FIG.

比較例1においても、図17(b)に示すように、回転力付与空間141c内で渦流が発生し、回転力付与空間141cから噴出した後も、図17(c)に示すように渦場が形成されている。
本比較例においても、上記実施形態と同様に渦輪の発生により、従来のプラズマ式点火装置に比べて着火性の向上が見られたが、第1の開口部131を囲むように第1の開口部131の先端側に第2の開口部132、132a、132bを筒状に設けて燃焼室内に突出した上記実施形態に比べて、渦輪の回転力が弱く、着火性が劣ることが判明した。
これは、図17(c)に示すように、比較例1においては、第2の開口部132cの表面上において噴射方向に対して垂直方向の流れが強く、噴射速度が抑制されてしまうためと推察される。
Also in Comparative Example 1, as shown in FIG. 17 (b), vortex flow is generated in the rotational force applying space 141c, and even after jetting from the rotational force applying space 141c, the vortex field as shown in FIG. 17 (c). Is formed.
Also in this comparative example, the ignitability was improved as compared with the conventional plasma ignition device due to the generation of the vortex ring as in the above embodiment, but the first opening so as to surround the first opening 131. It has been found that the rotational force of the vortex ring is weak and the ignitability is inferior to the above embodiment in which the second openings 132, 132a, 132b are provided in a cylindrical shape on the tip side of the portion 131 and protrude into the combustion chamber.
This is because, as shown in FIG. 17C, in Comparative Example 1, the flow in the direction perpendicular to the injection direction is strong on the surface of the second opening 132c, and the injection speed is suppressed. Inferred.

一方、本発明の第1の実施形態においては、図18(b)、(c)に示すように、燃焼室内に突出する第2の開口部132に、噴射方向に対して垂直方向の気流が衝突して、噴射方向に対して斜め方向に流れを変え、引き込み流れが形成されるので、第2の開口部132の周りに発生した渦流によって、渦輪の回転がさらに強められるため、渦輪の直進性が高まるとともに、渦輪内部へのエネルギの閉じ込め効果が増し、火炎核が安定して成長し、着火性が向上するものと推察される。   On the other hand, in the first embodiment of the present invention, as shown in FIGS. 18B and 18C, an air flow perpendicular to the injection direction is generated in the second opening 132 protruding into the combustion chamber. Colliding and changing the flow in an oblique direction with respect to the injection direction to form a drawing flow, the vortex generated around the second opening 132 further strengthens the rotation of the vortex ring. It is presumed that the effect of confining energy inside the vortex ring increases, the flame kernel grows stably, and the ignitability improves.

以下に、図19を参照して、本発明の効果を発揮し得ない比較例2について説明する。
比較例2として、図19(a)に示すように、接地電極開口部131dの開口径を、放電空間140を形成する絶縁体120の開口径よりも径大とし、回転付与空間141dを形成することも考えられる。
しかし、本比較例においては、上記実施形態と同様に渦輪の発生により、従来のプラズマ式点火装置に比べて着火性の向上が見られたが、第2の開口部132、132a、132bを筒状に設けて燃焼室内に突出した上述の第1の実施形態に比べて、渦輪の回転力が弱く、着火性が劣ることが判明した。
Below, with reference to FIG. 19, the comparative example 2 which cannot exhibit the effect of this invention is demonstrated.
As Comparative Example 2, as shown in FIG. 19A, the opening diameter of the ground electrode opening 131d is larger than the opening diameter of the insulator 120 forming the discharge space 140, and the rotation imparting space 141d is formed. It is also possible.
However, in this comparative example, the ignitability was improved as compared with the conventional plasma ignition device due to the generation of the vortex ring as in the above embodiment, but the second openings 132, 132a, 132b were formed in the cylinder. It has been found that the rotational force of the vortex ring is weak and the ignitability is inferior compared to the first embodiment described above, which is provided in a shape and protrudes into the combustion chamber.

これは、比較例2においては、絶縁体120の最下端面の一部が露出しており、中心電極110と接地電極130との間に高電圧が印加されると、放電空間140内で絶縁体120の表面を這うように沿面放電が起こるが、接地電極130dの第1の開口部131dが大きく開口しているために、沿面放電の異方性が強く、図19(b)に示すように、沿面放電の発生した側に対向する方向へ強く折れ曲がってプラズマ状態となった気体が噴射される。このため渦輪の形状に異方性が現れるので渦輪の形状維持が困難となり、渦輪の直進性が弱まるとともに、エネルギの封じ込み効果が弱まり、火炎核の成長が不安定と
なるものと推察される。
In Comparative Example 2, a part of the lowermost end surface of the insulator 120 is exposed, and when a high voltage is applied between the center electrode 110 and the ground electrode 130, the insulator 120 is insulated in the discharge space 140. Creeping discharge occurs over the surface of the body 120, but since the first opening 131d of the ground electrode 130d is large, the anisotropy of creeping discharge is strong, as shown in FIG. Then, a gas that is strongly bent in a direction facing the side where the creeping discharge is generated and is in a plasma state is injected. For this reason, since anisotropy appears in the shape of the vortex ring, it is difficult to maintain the shape of the vortex ring, the rectilinearity of the vortex ring is weakened, the energy containment effect is weakened, and it is assumed that the growth of the flame kernel becomes unstable. .

なお、本発明の趣旨を逸脱しない限りにおいて、適用する機関の大きさ、燃料の種類、機関の運転状況に応じて、具体的な回転付与機構の形状は適宜変更可能である。例えば、上記実施形態においては、一つの点火プラグで構成されるプラズマ式点火装置について説明したが、本発明が多数の点火プラグを含む多気筒エンジンにも適用し得るものである。
また、上記実施形態においては、高電圧電源を放電用電源20とプラズマエネルギ発生用電源30との2電源により構成した場合について説明したが、1の電源からDc−Dcコンバータ等を介して異なる電圧に調整して放電用電源とプラズマエネルギ発生用電源として引加しても良い。さらに、上記実施形態においては、放電用電源の昇圧回路として、通常の点火コイルを用いた場合を例に説明したが、コンデンサ放電型点火コイル(C.D.I.)、圧電トランス等を用いても良い。
In addition, unless it deviates from the meaning of this invention, according to the magnitude | size of the engine to apply, the kind of fuel, and the driving | running condition of an engine, the specific shape of a rotation provision mechanism can be changed suitably. For example, in the above-described embodiment, the plasma ignition device constituted by a single spark plug has been described. However, the present invention can also be applied to a multi-cylinder engine including a large number of spark plugs.
Further, in the above embodiment, the case where the high voltage power source is constituted by the two power sources of the discharge power source 20 and the plasma energy generating power source 30 has been described. And may be applied as a discharge power source and a plasma energy generation power source. Further, in the above-described embodiment, the case where a normal ignition coil is used as the boosting circuit of the discharge power supply has been described as an example. However, a capacitor discharge ignition coil (C.D.I.), a piezoelectric transformer or the like is used. May be.

1 点火装置
10 点火プラグ
110 中心電極
120 絶縁体
130 接地電極
131 第1の開口部
132 第2の開口部
133 周壁面
140 放電空間
141 回転付与空間
φD 放電空間内径(絶縁体内周壁内径)
第2の開口部壁面間距離
放電空間長さ
第2の開口部長さ(回転付与空間長さ)
20 放電用電源
30 プラズマエネルギ供給用電源
40 内燃機関
400 機関燃焼室
DESCRIPTION OF SYMBOLS 1 Ignition device 10 Spark plug 110 Center electrode 120 Insulator 130 Ground electrode 131 1st opening part 132 2nd opening part 133 Circumferential wall surface 140 Discharge space 141 Rotation imparting space φD 1 Discharge space inner diameter (insulator inner peripheral wall inner diameter)
D 2 Distance between wall surfaces of second opening H 1 Discharge space length H 2 Second opening length (rotation imparting space length)
20 Power supply for discharge 30 Power supply for plasma energy supply 40 Internal combustion engine 400 Engine combustion chamber

Claims (5)

長軸状の中心電極と、該中心電極を覆いつつ、その下端面よりも下方に伸びる略筒状に形成した絶縁体と、該絶縁体を覆いつつ、該絶縁体の開口部に連通する接地電極開口部を設けた接地電極とによって放電空間を区画し、該放電空間に、放電用電源からの高電圧の印加とプラズマエネルギ供給用電源からの大電流の供給とを行って、該放電空間内の気体を高温・高圧のプラズマ状態となして、機関燃焼室内に噴射して該機関の点火を行う点火装置において、
上記放電空間から噴出する高温・高圧状態の気体の流れに、該気流の外周から中心に向かう回転力を付与する回転付与機構として、
上記接地電極開口部を上記絶縁体の下端開口部と面一に連通せしめて第1の開口部とし、その先端側に向かって突出して上記第1の開口部を囲む略筒状の周壁面によって区画された回転付与空間を有する第2の開口部を設けたことを特徴とする点火装置。
A long-axis center electrode, an insulator formed in a substantially cylindrical shape that covers the center electrode and extends below the lower end surface thereof, and a ground that covers the insulator and communicates with the opening of the insulator A discharge space is defined by a ground electrode provided with an electrode opening, and a high voltage is applied from the discharge power source and a large current is supplied from the plasma energy supply power source to the discharge space. In an ignition device that ignites the engine by injecting the gas inside into a high-temperature, high-pressure plasma state and injecting the gas into the engine combustion chamber,
As a rotation imparting mechanism that imparts a rotational force from the outer periphery of the air flow toward the center of the gas flow in a high temperature / high pressure state ejected from the discharge space,
The ground electrode opening is communicated flush with the lower end opening of the insulator to form a first opening, which protrudes toward the distal end side of the first opening and is formed by a substantially cylindrical peripheral wall surface surrounding the first opening. An ignition device comprising a second opening having a partitioned rotation imparting space.
上記第2の開口部の周壁面の高さをH(mm)としたときに、Hが下記式1の関係を満たす範囲に設定に設定した請求項1に記載の点火装置。
0<H≦2.7・・・式1
2. The ignition device according to claim 1, wherein when the height of the peripheral wall surface of the second opening is H 2 (mm), H 2 is set to a range that satisfies the relationship of the following expression 1.
0 <H 2 ≦ 2.7 ... Equation 1
上記放電空間を形成する上記中心電極の下端面から上記接地電極開口部の内周壁上端縁に至る上記絶縁体内周壁の長さをHとし、上記絶縁体内周壁の内径をφDとしたときに、HとDとが下記式2の関係を満たす範囲に設定した請求項1又は2に記載の点火装置。
/D≧1.5・・・式2
The length of the insulating body wall extending to the inner wall upper edge of the ground electrode opening from the lower end face of the center electrode forming the discharge space and H 1, the inner diameter of the insulating body wall when a [phi] D 1 The ignition device according to claim 1 , wherein H 1 and D 1 are set in a range satisfying a relationship of the following formula 2.
H 1 / D 1 ≧ 1.5... Formula 2
上記第1の開口部の開口径をφDとし、上記第2の開口部の対向する壁面間の距離をDとしたときに、DとDとが下記式3の関係を満たす範囲に設定すると共に、
上記第2の開口部の周壁面は、
(a)上記壁面間距離Dと等しい内径φDを有する円筒状、又は、
(b)上記第2の開口部の周壁面が、短軸方向の壁面間距離が上記壁面間距離Dに等しく、長軸方向の壁面間距離がこれよりも長いDaを有する楕円筒状、若しくは、オーバル筒状、又は、
(c)上記第2の開口部の周壁面が、短軸方向の壁面間距離が上記壁面間距離Dに等しく長軸方向の壁面間距離がこれよりも長いDbを有する矩形筒状のいずれの形状とした請求項1ないし3のいずれかに記載の点火装置。
1.0×D<D<4.5×D・・・式3
When the opening diameter of the first opening is φD 1 and the distance between the opposing wall surfaces of the second opening is D 2 , the range in which D 1 and D 2 satisfy the relationship of the following expression 3 And set
The peripheral wall surface of the second opening is
(A) a cylindrical shape having an inner diameter φD 2 equal to the inter-wall distance D 2 , or
(B) The elliptical cylinder in which the peripheral wall surface of the second opening has D 3 a in which the distance between the wall surfaces in the short axis direction is equal to the distance D 2 between the wall surfaces and the wall surface distance in the long axis direction is longer than this. Or oval cylinder or
(C) The peripheral wall surface of the second opening has a rectangular cylindrical shape in which the distance between the wall surfaces in the short axis direction is equal to the distance D 2 between the wall surfaces and the distance between the wall surfaces in the long axis direction is longer than D 3 b. The ignition device according to any one of claims 1 to 3, wherein the ignition device has any one of the shapes.
1.0 × D 1 <D 2 <4.5 × D 1 Formula 3
上記放電用電源からの1回の高電圧の印加に対して、上記プラズマエネルギ発生用電源からの大電流の供給は、パルス電流によって複数回に分割して供給する請求項1ないし4のいずれかに記載の点火装置。   5. The supply of a large current from the plasma energy generation power source is divided into a plurality of times by a pulse current and supplied with a high voltage from the discharge power source once. Ignition device according to.
JP2012110201A 2008-03-28 2012-05-14 Ignition device Active JP5442064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110201A JP5442064B2 (en) 2008-03-28 2012-05-14 Ignition device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008085805 2008-03-28
JP2008085805 2008-03-28
JP2012110201A JP5442064B2 (en) 2008-03-28 2012-05-14 Ignition device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008332047A Division JP5015910B2 (en) 2008-03-28 2008-12-26 Ignition device

Publications (2)

Publication Number Publication Date
JP2012160479A true JP2012160479A (en) 2012-08-23
JP5442064B2 JP5442064B2 (en) 2014-03-12

Family

ID=46840798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110201A Active JP5442064B2 (en) 2008-03-28 2012-05-14 Ignition device

Country Status (1)

Country Link
JP (1) JP5442064B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140567A (en) * 1981-02-23 1982-08-31 Nissan Motor Co Ltd Plasma ignition device for internal combustion engine
JP2007287666A (en) * 2006-03-22 2007-11-01 Ngk Spark Plug Co Ltd Plasma-jet spark plug and its ignition system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140567A (en) * 1981-02-23 1982-08-31 Nissan Motor Co Ltd Plasma ignition device for internal combustion engine
JP2007287666A (en) * 2006-03-22 2007-11-01 Ngk Spark Plug Co Ltd Plasma-jet spark plug and its ignition system

Also Published As

Publication number Publication date
JP5442064B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5015910B2 (en) Ignition device
JP5691662B2 (en) Non-thermal equilibrium plasma ignition device
JP5858903B2 (en) Ignition device
US7477008B2 (en) Plasma jet spark plug
US9951743B2 (en) Plasma ignition device
JP5901459B2 (en) Ignition device
JP5934635B2 (en) Ignition device
JP2007141785A (en) Plasma jet spark plug and its ignition device
JP2011106377A (en) Direct-injection internal combustion engine and method of controlling the same
JP5477253B2 (en) Internal combustion engine ignition device
JP5355217B2 (en) Plasma ignition device
JP2014022341A (en) Ignition device
JP5442064B2 (en) Ignition device
US6796299B2 (en) Ignition system for internal combustion engine and ignition method of fuel charged in a fuel chamber
JP4582097B2 (en) Plasma ignition device
WO2013099672A1 (en) Ignition device, ignition method, and engine
US8767371B2 (en) Ignition apparatus
JP2011018593A (en) Plasma ignition device
JP2010003605A (en) Plasma ignition device
JP2009283380A (en) Ignition device
JP2017166381A (en) Ignition device of internal combustion engine
JP6035176B2 (en) Ignition device
JP2010019203A (en) Plasma type ignition device
JP2010185317A (en) Plasma igniter
TWM575056U (en) Internal combustion engine flame core type (pre-combustion chamber) spark plug

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5442064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250