JP2012159954A - Unmanned moving body and control method for unmanned moving body - Google Patents

Unmanned moving body and control method for unmanned moving body Download PDF

Info

Publication number
JP2012159954A
JP2012159954A JP2011018190A JP2011018190A JP2012159954A JP 2012159954 A JP2012159954 A JP 2012159954A JP 2011018190 A JP2011018190 A JP 2011018190A JP 2011018190 A JP2011018190 A JP 2011018190A JP 2012159954 A JP2012159954 A JP 2012159954A
Authority
JP
Japan
Prior art keywords
road
travel
traveling
area
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011018190A
Other languages
Japanese (ja)
Other versions
JP5666327B2 (en
Inventor
Hiroaki Saito
浩明 齋藤
Hirotaka Kumakura
弘隆 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Aerospace Co Ltd
Original Assignee
IHI Corp
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Aerospace Co Ltd filed Critical IHI Corp
Priority to JP2011018190A priority Critical patent/JP5666327B2/en
Publication of JP2012159954A publication Critical patent/JP2012159954A/en
Application granted granted Critical
Publication of JP5666327B2 publication Critical patent/JP5666327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an unmanned moving body and a control method for the unmanned moving body such that the unmanned moving body is made to travel along a road at a curved part and an intersection in a certain environment with the road and without no previous available information associated with the road and intersection, and to take smooth right and left turnings even at the intersection only with a turning instruction.SOLUTION: When there is no special instruction, a travel path R along a road which is easy to continue to travel following a travel path that a semi-autonomous travel vehicle A traveled so far is extracted on a local map based upon distance measurement data, and the semi-autonomous travel vehicle A is made to autonomously travels along the travel path R along the road. When the route is changed to another travel path Rl at an intersection C, a change path Rc to the other travel path Rl based upon a new steering command received when the vehicle enters the intersection is set, and the semi-autonomous travel vehicle A is made to travel to the other travel path Rl through the change path Rc.

Description

本発明は、自律移動可能な無人移動体に関わり、特に、舗装道路に限らず、未舗装道路や整備されていない道路がある環境下で且つこれらの道路に関する情報が一切得られない状況下において自律移動する無人移動体及び無人移動体の制御方法に関するものである。   The present invention relates to an unmanned mobile body that can move autonomously, and is not limited to paved roads, particularly in an environment where there are unpaved roads and roads that are not maintained, and no information on these roads can be obtained. The present invention relates to an unmanned moving body that moves autonomously and a method for controlling the unmanned moving body.

従来、上記したような自律移動可能な無人移動体に類するものとして、例えば、特許文献1に記載された自律走行体の走行制御方法がある。   Conventionally, there is a traveling control method for an autonomous traveling body described in Patent Document 1 as an example of an unmanned moving body capable of autonomous movement as described above.

この自律走行体の走行制御方法は、自律走行体に搭載される撮像装置によって撮像された画像を複数の領域に分割して、各分割領域ごとに、求めた分割領域内の特徴量と所定の閾値とを比較して追従対象領域を抽出し、この追従対象領域上に注視点を設定し、それに向かうための自律走行体の操舵角を算出し、その操舵角によって自律走行体を操舵制御するようになっている。   In this autonomously traveling body traveling control method, an image captured by an imaging device mounted on an autonomous traveling body is divided into a plurality of regions, and for each divided region, the obtained feature amount in the divided region and a predetermined amount are divided. The tracking target area is extracted by comparing with the threshold value, a gazing point is set on the tracking target area, the steering angle of the autonomous traveling body to go to the tracking target area is calculated, and the autonomous traveling body is steering-controlled by the steering angle. It is like that.

特開2002-132343号JP 2002-132343

ところが、上記した自律走行体の走行制御方法によれば、複数の領域に分割された画像の特徴量と所定の閾値とを比較することで追従対象領域を抽出するため、分岐路を認識することができず、交差点を右左折させることができないという問題があり、これらの問題を解決することが従来の課題となっていた。   However, according to the traveling control method of the autonomous traveling body described above, the tracking target region is extracted by comparing the feature amount of the image divided into a plurality of regions with a predetermined threshold value, so that the branch path is recognized. And there is a problem that the intersection cannot be turned right and left, and it has been a conventional problem to solve these problems.

本発明は、上記した従来の課題に着目してなされたもので、舗装道路のみならず、未舗装道路や整備されていない道路がある環境下であって、これらの道路や交差点に関する事前情報が一切得られない状況下において、曲がり道や交差点を道なりに滑らかに走行させることができ、交差点における右左折も曲折の指示を出すだけでスムーズに行わせることが可能であり、その結果、上記道路環境下における無人移動体の高速走行を実現することができる無人移動体及び無人移動体の制御方法を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems, and is not limited to paved roads, but in an environment where there are unpaved roads and roads that are not maintained, and prior information regarding these roads and intersections is provided. Under circumstances where it is not possible to obtain at all, it is possible to smoothly drive a curved road or intersection along the road, and it is possible to smoothly perform a right / left turn at the intersection simply by issuing a turn instruction. It is an object of the present invention to provide an unmanned moving object and a method for controlling the unmanned moving object that can realize high-speed traveling of the unmanned moving object in a road environment.

本発明の請求項1に係る発明は、自律走行可能とした無人移動体であって、自律して走行させるための走行機構と、進行方向の地形の凹凸の情報を取得する外界計測部と、自己位置及び方位を取得する自己位置データ取得部と、前記外界計測部で得た進行方向の地形の凹凸の情報に基づいて、走行可能域,走行不能域及び未計測域の判定処理を行うデータ解析部と、前記データ解析部での判定結果に基づいて走行可能域,走行不能域及び未計測域を含む局所地図を作成する局所地図作成手段と、前記局所地図作成手段で作成した局所地図に基づいて、前記自己位置データ取得手段で取得した自己位置から連続する走行可能域を抽出して、走行可能域地図を生成する走行可能域地図生成手段と、前記走行可能域地図生成手段で生成した走行可能域地図に基づいて、道なり方向,分岐路の位置,分岐路の数,道幅及び曲率の情報を認識する道情報認識手段と、前記道情報認識手段で認識した道情報に基づいて、走行経路を生成する走行経路生成手段と、前記道情報認識手段で認識した道情報に基づいて、交差点を曲がる段階における交差点旋回経路を生成する交差点旋回経路生成手段を備え、前記走行経路生成手段で生成された走行経路と、前記交差点旋回経路生成手段で生成された交差点旋回経路と、前記自己位置データ取得手段で取得した自己位置データとに基づいて前記走行機構を動作させて自律して走行する構成としたことを特徴としており、この無人移動体の構成を前述した従来の課題を解決するための手段としている。   The invention according to claim 1 of the present invention is an unmanned moving body capable of autonomous traveling, a traveling mechanism for autonomously traveling, an external measurement unit that acquires information on unevenness of landform in the traveling direction, Data for determining a travelable area, a non-travelable area, and an unmeasured area based on the self-position data acquisition unit that acquires the self-position and direction, and the information on the unevenness of the terrain in the traveling direction obtained by the external measurement unit An analysis unit, local map creation means for creating a local map including a travelable area, a travel impossible area and an unmeasured area based on a determination result in the data analysis unit; and a local map created by the local map creation means Based on the self-location data acquisition means, the continuous travelable area is extracted from the self-position, and the travelable area map generation means for generating a travelable area map, and the travelable area map generation means Can run Based on the map, the road information recognition means for recognizing the information on the road direction, the position of the branch road, the number of the branch roads, the road width and the curvature, and the travel route based on the road information recognized by the road information recognition means A travel route generating means for generating, and an intersection turning route generating means for generating an intersection turning route at the stage of turning an intersection based on the road information recognized by the road information recognition means. Based on the traveling route, the intersection turning route generated by the intersection turning route generating means, and the self-position data acquired by the self-position data acquiring means, the traveling mechanism is operated to autonomously travel. The configuration of this unmanned moving body is used as a means for solving the above-described conventional problems.

また、本発明の請求項2に係る無人移動体において、前記走行可能域地図生成手段は、前記局所地図作成手段で作成された局所地図上において、前記自己位置データ取得手段で取得した自己位置データから進行方向で且つ機軸を中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線を展開させて、走行可能域から未計測域に伸びる円弧状探索線が存在する範囲を扇状走行可能域として抽出すると共に、前記自己位置データ取得手段で取得した自己位置データから進行方向に複数の直線状探索線を放射状に展開させて、直線状走行可能域を抽出する構成としている。   Further, in the unmanned moving body according to claim 2 of the present invention, the travelable area map generation means is self-location data acquired by the self-position data acquisition means on the local map created by the local map creation means. A plurality of arc-shaped search lines whose radius of curvature gradually decreases on both sides of the vehicle from the traveling direction to the center of the axis, and fan-shaped traveling in a range where arc-shaped search lines extending from the travelable area to the unmeasured area exist While extracting as a possible area, it is set as the structure which expands a some linear search line to the advancing direction radially from the self-position data acquired by the said self-position data acquisition means, and extracts a linear travelable area.

さらに、本発明の請求項3に係る無人移動体において、前記道情報認識手段は、前記扇状走行可能域が複数認められる交差点において、前記複数の扇状走行可能域毎に、各々の両端に位置する円弧状探索線間の中央を通過する円弧状探索線を該扇状走行可能域の代表円弧として定めた後、この代表円弧を前記走行不能域に触れるまで両側に平行移動させて、前記走行不能域にそれぞれ触れる一方の路端円弧及び他方の路端円弧の間隔を道幅とする走行路を設定し、これらの複数の走行路毎に、前記道幅の中央を走行路中央線として定めて、この走行路中央線の曲率及び指向方向を該走行路の曲率及び道なり方向として設定する構成としている。   Furthermore, the unmanned mobile body which concerns on Claim 3 of this invention WHEREIN: The said road information recognition means is located in each both ends of each of these several fan-shaped driving | running | working areas in the intersection where the said several fan-shaped driving | running | working area is recognized. After the arc-shaped search line passing through the center between the arc-shaped search lines is defined as the representative arc of the fan-shaped travelable area, the representative arc is translated in both directions until it touches the non-travelable area, A road having a road width defined by the distance between one road edge arc and the other road edge arc is set, and the center of the road width is determined as a road center line for each of the plurality of roads. The curvature and the direction of the road center line are set as the curvature of the road and the direction of the road.

さらにまた、本発明の請求項4に係る無人移動体において、前記道情報認識手段は、走行不能域に達した前記直線状探索線のうちの互いに隣接する直線状探索線の各々の障害到達点の間隔が閾値を越える場合をギャップ有りとしてこれらの障害到達点を結ぶ障害到達線を分岐路候補としてホールドし、前記無人移動体の自己位置における道幅の中央から、該道幅の中央を中心とし且つ前記走行不能域に2点以上で接する内接円を進行方向に向けて一定間隔で順次描き入れて、前記内接円の各中心を結ぶラインが前記分岐路候補である前記障害到達線を通過しない分岐路を交差点として認識し、前記障害到達点のうちの前記無人移動体の自己位置から遠い方の遠到達点に続く走行不能域の境界に基づいて分岐路の道なりラインを設定して、すべての道なりライン毎に道幅、分岐路の長さ及び分岐路の方向を算出する構成としている。   Furthermore, in the unmanned moving body according to claim 4 of the present invention, the road information recognition means is configured to have each obstacle reaching point of each of the linear search lines adjacent to each other among the linear search lines that have reached the inoperable region. If the distance between the obstacles exceeds the threshold, there is a gap and a failure arrival line connecting these failure arrival points is held as a branch path candidate, from the center of the road width at the self-position of the unmanned mobile object, Inscribed circles in contact with the inability to travel at two or more points are drawn sequentially at regular intervals in the direction of travel, and lines connecting the centers of the inscribed circles pass through the obstacle reaching line that is the branch candidate. A branch line that is not allowed to travel is recognized based on the boundary of the untravelable area that follows the far reaching point far from the self-position of the unmanned moving body among the obstacle reaching points. All Road Nari road width for each line, and configured to calculate the direction of the length and branch of the branch road.

さらにまた、本発明の請求項5に係る無人移動体において、前記走行経路生成手段は、前記道情報認識手段で複数の走行路毎に設定した各々の道幅,曲率及び道なり方向に基づいて、該複数の走行路の中から現在走行中の走行路と最も連なり易い走行路を道なり走行路として抽出する構成としている。   Furthermore, in the unmanned mobile body according to claim 5 of the present invention, the travel route generating means is based on each road width, curvature and road direction set for each of a plurality of travel paths by the road information recognition means. From the plurality of travel paths, a travel path that is most easily connected to the travel path that is currently traveling is extracted as a road travel path.

さらにまた、本発明の請求項6に係る無人移動体において、前記交差点旋回経路生成手段は、前記交差点において前記道なり走行路と分岐する他の走行路に向かわせる新規操舵指令を得た時点で、該他の走行路の走行路中央線における前記局所地図上の端部から機軸上に垂線をおろし、前記局所地図上で該垂線及び前記機軸の双方に内接する曲率半径一定の円弧を変更路として設定する構成としている。   Still further, in the unmanned moving body according to claim 6 of the present invention, when the intersection turning route generation means obtains a new steering command to be directed to another traveling route that branches off from the traveling route along the road at the intersection. A vertical line is dropped from the end on the local map on the road center line of the other road on the axis, and an arc having a constant radius of curvature inscribed on both the vertical line and the axis is changed on the local map. The configuration is set as

さらにまた、本発明の請求項7に係る無人移動体において、前記局所地図作成手段は、未舗装道路において明瞭でない道端に点在する走行不能域を互いに連なる走行不能域に近似すると共に、走行可能域内で走行不能域として誤認識される孤立した走行不能域を除去して、局所地図を作成する構成としている。   Furthermore, in the unmanned mobile body according to claim 7 of the present invention, the local map creating means approximates the unrunnable areas scattered on the unclear roadside on the unpaved road to the unrunnable areas connected to each other and can travel. The local map is created by removing the isolated inoperable areas that are erroneously recognized as inoperable areas in the area.

一方、本発明の請求項8に係る発明は、自律走行可能とした無人移動体の制御方法であって、前記無人移動体の進行方向における地形の凹凸の情報を取得すると共に、該無人移動体の自己位置データを取得し、前記進行方向の地形の凹凸の情報に基づいて、走行可能域,走行不能域及び未計測域の判定処理を行った後、この判定結果に基づいて走行可能域,走行不能域及び未計測域を含む局所地図を作成し、次いで、この局所地図に基づいて、前記無人移動体の自己位置から連続する走行可能域を抽出して走行可能域地図を生成し、続いて、前記走行可能域地図から認識される道なり方向,分岐路の位置,分岐路の数,道幅及び曲率の各道情報に基づいて、走行経路を生成すると共に、交差点を曲がる段階では交差点旋回経路を生成し、前記走行経路と、前記交差点旋回経路と、前記無人移動体の自己位置データとに基づいて該無人移動体を走行させる構成としたことを特徴としており、この無人移動体の制御方法の構成を前述した従来の課題を解決するための手段としている。   On the other hand, the invention according to claim 8 of the present invention is a method for controlling an unmanned mobile body capable of autonomous traveling, and acquires information on unevenness of terrain in the traveling direction of the unmanned mobile body, and the unmanned mobile body Self-position data is obtained, and based on the information on the unevenness of the terrain in the traveling direction, after determining the travelable area, the travel impossible area and the unmeasured area, the travelable area based on the determination result, Create a local map including a non-travelable area and an unmeasured area, and then extract a continuous travelable area from the self-position of the unmanned mobile body based on the local map to generate a travelable area map, Based on the road direction, the position of the branch road, the number of branch roads, the road width, and the curvature information recognized from the travelable area map, a travel route is generated and the intersection turns at the stage of turning the intersection. Generate a route The unmanned moving body is configured to travel based on a line route, the intersection turning route, and the self-location data of the unmanned moving body, and the configuration of the control method of the unmanned moving body is described above. It is a means for solving the conventional problems.

また、本発明の請求項9に係る無人移動体の制御方法は、前記局所地図上において前記無人移動体の自己位置データから進行方向で且つ機軸を中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線を展開させて、走行可能域から未計測域に伸びる円弧状探索線が存在する範囲を扇状走行可能域として抽出すると共に、前記自己位置データ取得手段で取得した自己位置データから進行方向に複数の直線状探索線を放射状に展開させて、直線状走行可能域を抽出する構成としている。   According to a ninth aspect of the present invention, there is provided a control method for an unmanned mobile body, wherein the radius of curvature gradually decreases on both sides of the local map from the self-location data of the unmanned mobile body in the traveling direction and centering on the axis. A plurality of arc-shaped search lines are expanded to extract a range where an arc-shaped search line extending from a travelable area to an unmeasured area exists as a fan-shaped travelable area, and the self-position data acquired by the self-position data acquisition unit In this configuration, a plurality of linear search lines are radially developed in the traveling direction to extract a linear travelable area.

さらに、本発明の請求項10に係る無人移動体の制御方法において、前記扇状走行可能域が複数認められる交差点では、前記複数の扇状走行可能域毎に、各々の両端に位置する円弧状探索線間の中央を通過する円弧状探索線を該扇状走行可能域の代表円弧として定めた後、この代表円弧を前記走行不能域に触れるまで両側に平行移動させて、前記走行不能域にそれぞれ触れる一方の路端円弧及び他方の路端円弧の間隔を道幅とする走行路を設定し、これらの複数の走行路毎に、前記道幅の中央を走行路中央線として定めて、この走行路中央線の曲率及び指向方向を該走行路の曲率及び道なり方向として設定する構成としている。   Furthermore, in the control method for an unmanned mobile body according to claim 10 of the present invention, at an intersection where a plurality of fan-like travelable areas are recognized, arc-shaped search lines located at both ends of each of the plurality of fan-like travelable areas. An arc-shaped search line passing through the center between the arcs is defined as a representative arc of the fan-like travelable area, and then the representative arc is moved parallel to both sides until it touches the non-runnable area. A road having an interval between the road edge arc and the other road edge arc is set as a road width, and the center of the road width is determined as a road center line for each of the plurality of roads. The curvature and the directing direction are set as the curvature and the direction of the road.

さらにまた、本発明の請求項11に係る無人移動体の制御方法において、前記走行不能域に達した前記直線状探索線のうちの互いに隣接する直線状探索線の各々の障害到達点の間隔が閾値を越える場合をギャップ有りとしてこれらの障害到達点を結ぶ障害到達線を分岐路候補としてホールドし、前記無人移動体の自己位置における道幅の中央から、該道幅の中央を中心とし且つ前記走行不能域に2点以上で接する内接円を進行方向に向けて一定間隔で順次描き入れて、前記内接円の各中心を結ぶラインが前記分岐路候補である前記障害到達線を通過しない分岐路を交差点として認識し、前記障害到達点のうちの前記無人移動体の自己位置から遠い方の遠到達点に続く走行不能域の境界に基づいて分岐路の道なりラインを設定して、すべての道なりライン毎に道幅、分岐路の長さ及び分岐路の方向を算出する構成としている。   Furthermore, in the control method for an unmanned mobile body according to claim 11 of the present invention, the distance between the obstacle reaching points of the linear search lines adjacent to each other among the linear search lines that have reached the non-running region is set. If the threshold is exceeded, there is a gap, and the failure arrival line connecting these failure arrival points is held as a branch path candidate. From the center of the road width at the self-position of the unmanned mobile body, the center of the road width is the center and the travel impossible Inscribed circles in contact with the region at two or more points are drawn in order at predetermined intervals in the direction of travel, and a branch path in which the lines connecting the centers of the inscribed circles do not pass through the obstacle reaching line that is the branch path candidate Is determined as an intersection, and the road line of the branch road is set based on the boundary of the non-running area following the far reaching point far from the self-position of the unmanned moving body among the obstacle reaching points. road Ri road width for each line, and configured to calculate the direction of the length and branch of the branch road.

さらにまた、本発明の請求項12に係る無人移動体の制御方法において、前記複数の走行路毎に設定した各々の道幅,曲率及び指向方向に基づいて、該複数の走行路の中から前記無人移動体が走行中の走行路と最も連なり易い走行路を道なり走行路として抽出する構成としている。   Furthermore, in the control method for an unmanned mobile body according to claim 12 of the present invention, the unmanned vehicle is selected from the plurality of travel paths based on the road width, curvature, and direction of direction set for each of the plurality of travel paths. The configuration is such that the travel path that is most likely to be linked to the travel path on which the moving body is traveling is extracted as a road and travel path.

さらにまた、本発明の請求項13に係る無人移動体の制御方法は、前記交差点において前記道なり走行路と分岐する他の走行路に前記無人移動体を向かわせる新規操舵指令を得た時点で、前記無人移動体を向かわせようとする前記他の走行路の走行路中央線における前記局所地図上の端部から機軸上に垂線をおろし、前記局所地図上で該垂線及び前記無人移動体の機軸の双方に内接する曲率半径一定の円弧を変更路として設定する構成としている。   Furthermore, the control method for an unmanned mobile body according to claim 13 of the present invention is the time when a new steering command for directing the unmanned mobile body to another road that branches from the road or the road at the intersection is obtained. , A vertical line is dropped on the axis from the end on the local map in the center line of the travel path of the other travel path to which the unmanned mobile body is directed, and the vertical line and the unmanned mobile body on the local map An arc having a constant radius of curvature that is inscribed on both sides of the machine axis is set as the change path.

さらにまた、本発明の請求項14に係る無人移動体の制御方法は、未舗装道路において明瞭でない道端に点在する走行不能域を互いに連なる走行不能域に近似すると共に、走行可能域内で走行不能域として誤認識される孤立した走行不能域を除去して、局所地図を作成する構成としている。   Furthermore, in the control method for an unmanned mobile body according to claim 14 of the present invention, the untravelable areas scattered on the unclear roadside on the unpaved road are approximated to the untravelable areas connected to each other and cannot travel within the travelable area. It is configured to create a local map by removing isolated inoperable areas that are erroneously recognized as areas.

本発明に係る無人移動体及び無人移動体の制御方法は、道路がある環境下において用いるものであり、舗装道路、未舗装道路及び路肩が十分に整備されていないような道路のいずれの道路がある環境下にも適用可能である。   The unmanned moving body and the method for controlling the unmanned moving body according to the present invention are used in an environment where there is a road, and any roads such as paved roads, unpaved roads, and roads where road shoulders are not sufficiently developed are used. It can also be applied under certain circumstances.

本発明に係る無人移動体及び無人移動体の制御方法において、無人移動体の進行方向における地形の凹凸の情報を取得する外界計測部としては、例えば、水平ラインスキャンタイプの1軸レーザレンジファインダが少なくとも一組あれば事足りるが、断面的な勾配データしか得ることができないデメリットを補うべく、ステレオカメラを使用したり、車高(約20cm)以上の起立障害物を検出するレーザレンジファインダを使用したりすることが望ましい。
そして、走行路を作成するうえで必要な刻々変化する自己位置及び方位を求める手段としては、例えば、GPSや、IMU(慣性計測装置)やデッドレコニングを用いることができる。
In the unmanned moving body and the unmanned moving body control method according to the present invention, for example, a horizontal line scan type uniaxial laser range finder is used as an external measurement unit that acquires information on unevenness of topography in the traveling direction of the unmanned moving body. At least one set is sufficient, but in order to compensate for the disadvantage of only obtaining cross-sectional gradient data, a stereo camera or a laser range finder that detects standing obstacles above the vehicle height (about 20 cm) is used. Is desirable.
For example, GPS, IMU (Inertial Measurement Device), or dead reckoning can be used as means for obtaining the self-position and direction that change every moment necessary for creating the travel path.

また、本発明に係る無人移動体及び無人移動体の制御方法において、走行中の無人移動体がスムーズに走行を継続し得る走行路は、無人移動体の自己位置の進行方向にある走行可能域から未計測域に至る車幅以上の幅を有する領域であるとの判断に基づいて、このような走行可能域から未計測域に至る車幅以上の幅を有する領域の探索を行う。
具体的には、局所地図上において、無人移動体の自己位置から進行方向で且つ機軸を中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線を展開させて、走行可能域から未計測域に伸びる円弧状探索線が存在する範囲を扇状走行可能域として認識する、或いは、自己位置データ取得手段で取得した自己位置データから進行方向に複数の直線状探索線を放射状に展開させて、直線状走行可能域を抽出する。
Further, in the unmanned moving body and the control method of the unmanned moving body according to the present invention, the travel path where the traveling unattended moving body can continue to travel smoothly is the travelable area in the traveling direction of the self-position of the unmanned moving body. Based on the determination that the region has a width equal to or greater than the vehicle width extending from the vehicle to the unmeasured region, a region having a width equal to or greater than the vehicle width from the travelable region to the unmeasured region is searched.
Specifically, on the local map, a plurality of arc-shaped search lines in which the radius of curvature gradually decreases from the self-position of the unmanned moving body in the direction of travel and centered on the axis, the distance from the travelable area is expanded. Recognize the range where the arc-shaped search line extending in the unmeasured area exists as a fan-like travelable area, or develop multiple linear search lines radially in the traveling direction from the self-position data acquired by the self-position data acquisition means Then, a linear travelable area is extracted.

ここで、走行域が扇状を成しているのは現実的でないので、扇状走行可能域を車幅以上の幅を有する走行路に変換する必要がある。
本発明に係る無人移動体及び無人移動体の制御方法において、例えば、扇状走行可能域が複数認められた場合、このエリアを交差点と見なして、複数の扇状走行可能域毎に、各々の両端に位置する円弧状探索線間の中央を通過する円弧状探索線を該扇状走行可能域の代表円弧として定め、この代表円弧を両側にそれぞれ走行不能域に触れるまで平行移動させて、走行路を設定するようにしている。つまり、走行不能域に触れた一方の路端円弧及び他方の路端円弧の間隔が走行路の道幅となる。
Here, since it is not realistic that the traveling area has a fan shape, it is necessary to convert the fan-shaped traveling area into a traveling path having a width equal to or larger than the vehicle width.
In the unmanned moving body and the method for controlling the unmanned moving body according to the present invention, for example, when a plurality of fan-like travelable areas are recognized, the area is regarded as an intersection, and each of the plurality of fan-like travelable areas is provided at both ends. The arc-shaped search line passing through the center between the arc-shaped search lines is defined as the representative arc of the fan-like travelable area, and the travel path is set by moving the representative arc on both sides until the non-travelable area is touched on both sides. Like to do. In other words, the distance between the one road end arc and the other road end arc that touched the untravelable area is the road width of the travel path.

そして、走行中の無人移動体がスムーズに走行を継続し得る走行路は、無人移動体が現在走行中の走行路と無理なく連続するであろうという視点に立ち、本発明に係る無人移動体及び無人移動体の制御方法では、複数の走行路毎に定めた道幅中央に位置する走行路中央線の曲率及び指向方向を該走行路の曲率及び道なり方向として設定し、各々の道幅,曲率及び道なり方向に基づいて、これらの走行路の中から、現在走行中の走行路と最も連なり易い走行路を道なり走行路として抽出して、この道なり走行路に無人移動体が向かうように制御する。   The unmanned moving object according to the present invention is based on the viewpoint that the unmanned moving object in which the unmanned moving object is able to continue running smoothly will continue without difficulty. In the control method for the unmanned moving body, the curvature and the direction of the road center line located at the center of the road width determined for each of the plurality of roads are set as the curvature and road direction of the road, Based on the direction of the road and the direction of the road, from these roads, the road that is most likely to be linked to the road that is currently running is extracted as the road and the road, so that the unmanned moving body is directed to the road and the road. To control.

上記した扇状走行可能域抽出の時点において、無人移動体の自己位置の進行方向にT字路やこのT字路に近いY字路が存在している場合には、無人移動体の自己位置から展開させる複数の円弧状探索線がすべて道路の境界に到達してしまい、走行可能域地図を作成することができなくなることが起こり得る。   If there is a T-junction or a Y-junction close to the T-shaped path in the traveling direction of the self-position of the unmanned mobile body at the time of the fan-shaped travelable area extraction described above, the self-position of the unmanned mobile body It is possible that a plurality of arc-shaped search lines to be developed all reach the road boundary, making it impossible to create a travelable area map.

このような場合に備えて、本発明に係る無人移動体及び無人移動体の制御方法では、局所地図上において、進行方向に複数の直線状探索線を放射状に展開させて、直線状走行可能域を抽出した後に、交差点探索を行う。
すなわち、走行不能域に達した直線状探索線のなかで、隣接する直線状探索線の各々の障害到達点の間隔が閾値を越える場合はこれらの障害到達点を結ぶ障害物到達線を分岐路候補としてホールドし、必要に応じて未計測域に達する直線状探索線のなかで、最も両端に位置する直線状探索線の間隔が閾値を越える場合もこれらの未計測到達点を結ぶ未計測到達線を分岐路候補としてホールドする。
In preparation for such a case, in the unmanned moving body and the unmanned moving body control method according to the present invention, on the local map, a plurality of linear search lines are radially developed in the traveling direction, and a linear travelable area is obtained. After extracting, an intersection search is performed.
In other words, if the distance between the obstacle arrival points of the adjacent linear search lines exceeds the threshold among the straight search lines that have reached the untravelable area, branch the obstacle arrival lines connecting these obstacle arrival points. Holds as a candidate and, if necessary, among the linear search lines that reach the unmeasured area, the unmeasured arrival that connects these unmeasured arrival points even when the distance between the linear search lines located at the two ends exceeds the threshold Hold the line as a branch candidate.

この際、無人移動体の自己位置における道幅の中央から、道幅の中央を中心とし且つ走行不能域に2点以上で接する内接円を進行方向に向けて一定間隔で順次フィットさせていき、内接円の各中心を結ぶラインが分岐路候補である障害到達線を通過しない分岐路を交差点として認識し、内接円が接する障害到達線がない場合は袋小路として認識する。
そして、障害到達点のうちの無人移動体から遠い遠到達点に続く走行不能域の境界に基づいて分岐路の道なりラインを設定して、すべての道なりライン毎に道幅、分岐路の長さ及び分岐路の方向を算出する。
At this time, from the center of the road width at the self-position of the unmanned moving body, inscribed circles that are centered on the center of the road width and touch the two or more points in the inability to travel are sequentially fitted at regular intervals toward the traveling direction. A branch road that does not pass through a failure arrival line that is a branch road candidate is recognized as an intersection, and a line that connects the centers of the tangent circles is recognized as an intersection when there is no failure arrival line that is in contact with the inscribed circle.
Then, branch roads and lines are set based on the boundaries of the non-travelable areas that follow distant destinations that are far from unmanned moving objects among the obstacle arrival points, and the road width and the length of the branch road are set for every road line. And the direction of the branch path are calculated.

一方、交差点において、道なり走行路に無人移動体を向かわせるのではなく、道なり走行路から分岐する他の走行路に無人移動体を向かわせる場合において、無人移動体は、オペレータからの新規操舵指令(方向指令)を得て行動する。すなわち、他の走行路の走行路中央線における局所地図上の端部から無人移動体の機軸に垂線をおろして、局所地図上で該垂線及び無人移動体の機軸の双方に内接する曲率半径一定の円弧を変更路として設定し、この変更路に沿って無人移動体は走行する。   On the other hand, when an unmanned moving body is directed to another traveling path that branches off from the traveling road instead of directing the unmanned moving body to a road or traveling road at an intersection, Acts upon obtaining a steering command (direction command). That is, a constant radius of curvature that is inscribed on both the vertical line and the axis of the unmanned mobile object on the local map is drawn from the edge of the local map on the road center line of the other road to the axis of the unmanned mobile object. The arc is set as a change path, and the unmanned moving body travels along the change path.

ここで、無人移動体の走行中に複数の走行不能域を検出した時点において、まず、通常道路上には孤立した障害物はなく、例え孤立した障害物を検出したとしてもそれは葦などの背丈のある植物等であって踏み倒すことが可能な障害物であるとの判断、及び、連なる走行不能域は道路の境界である(未舗装道路の明瞭でない道端の走行不能域は点在することが多い)との判断に基づいて、本発明に係る無人移動体及び無人移動体の制御方法において、複数の走行不能域が疎に点在する場合には、これらの走行不能域を除去する処理、例えば、ハフ変換、或いは大きさに基づいて走行不能域を除去する処理を施し、一方、複数の走行不能域が比較的密に点在する場合には、これらの走行不能域を互いに連なる走行不能域に近似する処理、例えば、ハフ変換、或いは最小自乗曲線近似により、連なる走行不能域に近似する処理を施す。   Here, at the time when a plurality of unmovable areas are detected while the unmanned moving body is traveling, there are no isolated obstacles on the normal road, and even if an isolated obstacle is detected, it is Judgment that it is an obstacle that can be stepped on because it is a plant etc., and the continuous non-driving area is the boundary of the road (the unmovable area of the unclear roadside of the unpaved road may be scattered In the control method of the unmanned moving body and the unmanned moving body according to the present invention, when a plurality of unrunnable areas are scattered sparsely, the process of removing these unrunnable areas, For example, when a non-runnable area is removed based on the Hough transform or the size, on the other hand, when a plurality of non-runnable areas are scattered relatively densely, these non-runnable areas are connected to each other. Processing that approximates the region, for example Hough transform, or by the least squares curve fitting is subjected to a process that approximates the wheelchair-stranded region contiguous.

本発明に係る無人移動体及び無人移動体の制御方法において、オペレータから特に指示がない場合には、それまで走行してきた走行路に継続し易い道なり走行路が、進行方向の地形の凹凸の情報に基づいて局所地図上で抽出されるので、無人移動体は滑らかに自律走行することとなる。   In the unmanned moving body and the control method of the unmanned moving body according to the present invention, when there is no specific instruction from the operator, the road traveling road that is easy to continue on the traveling road that has been traveled so far is uneven in the terrain in the traveling direction. Since it is extracted on the local map based on the information, the unmanned moving body smoothly runs autonomously.

一方、交差点において、道なり走行路と分岐する他の走行路へ無人移動体を向かわせる場合には、交差点進入時にオペレータが新規操舵指令(方向指令)を出すと、無人移動体がこの指令に従った他の走行路への変更路を設定するので、無人移動体は道なり走行路を走行するのと同様に、変更路を介して円滑に他の走行路へ進行することとなる。   On the other hand, when an unmanned moving body is directed to another traveling road that branches off from the traveling road along the road at the intersection, when the operator issues a new steering command (direction command) when entering the intersection, the unmanned moving body responds to this command. Accordingly, since the changed road to the other traveling path is set, the unmanned moving body smoothly proceeds to the other traveling path through the changed road in the same manner as when traveling on the road.

本発明の請求項1に係る無人移動体及び請求項8に係る無人移動体の制御方法では、上記した構成としているので、舗装道路や未舗装道路や整備されていない道路がある環境下で且つこれらの道路や交差点に関する事前情報が一切得られない状況下で、自律移動可能な無人移動体を遠隔操縦するに際して、曲がり道や交差点を道なりに円滑に走行させることが可能であり、交差点での右左折も曲折の指示を出すだけでスムーズに行わせることができ、したがって、上記した道路環境下における無人移動体の高速走行を実現することが可能であるという非常に優れた効果がもたらされる。   In the unmanned moving body according to claim 1 of the present invention and the unmanned moving body control method according to claim 8, the above-described configuration is employed. In the situation where no prior information on these roads and intersections is available, it is possible to smoothly drive curved roads and intersections along the road when remotely maneuvering autonomous vehicles that can move autonomously. The left / right turn of the vehicle can be smoothly performed simply by giving a turn instruction. Therefore, the above-described unmanned mobile body can be driven at high speed under the road environment. .

また、本発明の請求項2に係る無人移動体及び請求項9に係る無人移動体の制御方法では、曲率半径が漸次小さくなる複数の円弧状探索線を展開させて、走行可能域から未計測域に伸びる円弧状探索線が存在する範囲を扇状走行可能域として認識するようにしているので、道が曲がっている場合において、道なりのイメージを確実に認識することが可能であり、加えて、直線状走行可能域も抽出することができるという非常に優れた効果がもたらされる。   In the unmanned moving body according to claim 2 and the unmanned moving body control method according to claim 9 of the present invention, a plurality of arc-shaped search lines with gradually decreasing radii of curvature are developed, and the unmeasured from the travelable area. Since the range where the arc-shaped search line extending in the area exists is recognized as a fan-like traveling area, it is possible to reliably recognize the image of the road when the road is curved. In addition, a very excellent effect that a linear travelable area can also be extracted is brought about.

さらに、本発明の請求項3に係る無人移動体及び請求項10に係る無人移動体の制御方法では、上記した構成としているので、扇状走行可能域が複数認められる交差点において、複数の扇状走行可能域毎に、車幅以上の道幅を有する走行路を設定することができる。   Furthermore, since the unmanned moving body according to claim 3 and the control method of the unmanned moving body according to claim 10 of the present invention are configured as described above, a plurality of fan-shaped travels are possible at intersections where a plurality of fan-shaped travelable areas are recognized. A traveling road having a road width greater than the vehicle width can be set for each zone.

さらにまた、本発明の請求項4に係る無人移動体及び請求項11に係る無人移動体の制御方法では、上記した構成としているので、T字路やこのT字路に近いY字路が存在している場合であったとしても、分岐路の位置や道幅や方向などといった情報を正しく認識することが可能である。   Furthermore, since the unmanned moving body according to claim 4 and the control method of the unmanned moving body according to claim 11 have the above-described configuration, there is a T-junction or a Y-junction close to the T-junction. Even in such a case, it is possible to correctly recognize information such as the position of the branch road, the road width, and the direction.

さらにまた、本発明の請求項5に係る無人移動体及び請求項12に係る無人移動体の制御方法では、上記した構成としているので、現在走行中の走行路と最も連なり易い道なり走行路を抽出することができる。   Furthermore, in the unmanned moving body according to claim 5 of the present invention and the unmanned moving body control method according to claim 12, the above-described configuration is adopted. Can be extracted.

さらにまた、本発明の請求項6に係る無人移動体及び請求項13に係る無人移動体の制御方法では、上記した構成としているので、交差点において道なり走行路と分岐する他の走行路に向かわせる新規操舵指令を得た場合であったとしても、変更路を介して他の走行路に円滑に向かわせることができる。   Furthermore, since the unmanned moving body according to claim 6 of the present invention and the unmanned moving body control method according to claim 13 are configured as described above, the present invention is directed to other traveling roads that branch off from the traveling road at the intersection. Even if it is a case where a new steering command to be replaced is obtained, it can be smoothly routed to another traveling path via the changed road.

さらにまた、本発明の請求項7に係る無人移動体及び請求項14に係る無人移動体の制御方法では、上記した構成としているので、例えば、道端がはっきりしない未舗装道路を走行している際に、道路上や道端に複数の走行不能域を検出した時点において、道路上の孤立する走行不能域を無視しつつ、連なる走行不能域を道路の境界として捉えて、未舗装道路を円滑に走行させることができる。   Furthermore, since the unmanned moving body according to claim 7 and the unmanned moving body control method according to claim 14 of the present invention have the above-described configuration, for example, when traveling on an unpaved road whose roadside is not clear. In addition, when a plurality of non-driving areas are detected on the road or on the roadside, the isolated non-driving areas on the road are ignored, and the continuous non-driving areas are regarded as road boundaries, and the road is smoothly driven on the unpaved road. Can be made.

本発明の一実施例による無人移動体としての半自律走行車の概略構成説明図である。It is a schematic structure explanatory drawing of the semi-autonomous traveling vehicle as an unmanned mobile body by one Example of this invention. 図1における無人移動体の制御機器の接続ブロック図である。It is a connection block diagram of the control apparatus of the unmanned mobile body in FIG. 図1における無人移動体の制御方法の動作フローチャートである。It is an operation | movement flowchart of the control method of the unmanned mobile body in FIG. 図3の動作フローチャートにおける各ステップに対応した処理要領説明図(a),(b)である。It is processing point explanatory drawing (a), (b) corresponding to each step in the operation | movement flowchart of FIG. 図3の動作フローチャートにおける各ステップに対応した処理要領説明図(a),(b)である。It is processing point explanatory drawing (a), (b) corresponding to each step in the operation | movement flowchart of FIG. 図3の動作フローチャートにおける各ステップに対応した処理要領説明図(a),(b)である。It is processing point explanatory drawing (a), (b) corresponding to each step in the operation | movement flowchart of FIG. 図3の動作フローチャートにおける各ステップに対応した処理要領説明図(a),(b)である。It is processing point explanatory drawing (a), (b) corresponding to each step in the operation | movement flowchart of FIG. 図3の動作フローチャートにおける各ステップに対応した処理要領説明図(a),(b)である。It is processing point explanatory drawing (a), (b) corresponding to each step in the operation | movement flowchart of FIG. 図3の動作フローチャートにおける各ステップに対応した処理要領説明図(a),(b)である。It is processing point explanatory drawing (a), (b) corresponding to each step in the operation | movement flowchart of FIG.

以下、本発明の実施例を図面に基づいて説明する。
図1〜図9は、本発明の一実施例による無人移動体及び無人移動体の制御方法を示しており、この無人移動体の制御方法は、遠隔操縦装置で、無人移動体の移動をコントロールするのに用いられるものとなっている。
Embodiments of the present invention will be described below with reference to the drawings.
1 to 9 show an unmanned mobile body and an unmanned mobile body control method according to an embodiment of the present invention. The unmanned mobile body control method controls the movement of an unmanned mobile body with a remote control device. It is used to do.

この実施例において、無人移動体は、自律して走行可能な半自律走行車Aであり、図1及び図2に示すように、車両制御用コンピュータ10及びこの車両制御用コンピュータ10とLAN11を介して接続される自律走行用コンピュータ30によって制御されるようになっている。   In this embodiment, the unmanned moving body is a semi-autonomous traveling vehicle A that can travel autonomously. As shown in FIGS. 1 and 2, the vehicle control computer 10 and the vehicle control computer 10 and the LAN 11 are used. It is controlled by an autonomous running computer 30 connected in this manner.

車両制御用コンピュータ10の入力側には、アンテナ12と接続する無線LAN13及び遠隔操縦用カメラ14が入出力回路15を介して接続されていると共に、自己位置データ取得部としてのGPS16と、姿勢制御用のバーチカルジャイロ17と、移動速度測定用の車速パルス18がシリアル回線を介して接続されている。   A wireless LAN 13 connected to the antenna 12 and a remote control camera 14 are connected to the input side of the vehicle control computer 10 via an input / output circuit 15, a GPS 16 serving as a self-position data acquisition unit, and attitude control. A vertical gyro 17 for the vehicle and a vehicle speed pulse 18 for measuring the moving speed are connected via a serial line.

また、車両制御用コンピュータ10の出力側には、モータドライバ21を介して操舵用アクチュエータ22及びブレーキ/アクセル用アクチュエータ23が接続されており、モータドライバ21とアクチュエータ22,23と車輪24とで走行機構20を構成している。   Further, a steering actuator 22 and a brake / accelerator actuator 23 are connected to the output side of the vehicle control computer 10 via a motor driver 21, and the vehicle is driven by the motor driver 21, actuators 22, 23 and wheels 24. The mechanism 20 is configured.

車両制御用コンピュータ10は、GPS16やバーチカルジャイロ17で取得した各種情報をLAN11,無線LAN13及びアンテナ12を介して図示しない遠隔操縦装置に送信する機能を有していると共に、この遠隔操縦装置から送信される操作情報に基づいて、モータドライバ21を介して操舵用アクチュエータ22及びブレーキ/アクセル用アクチュエータ23を作動、停止させる機能を有している。   The vehicle control computer 10 has a function of transmitting various information acquired by the GPS 16 and the vertical gyro 17 to a remote control device (not shown) via the LAN 11, the wireless LAN 13, and the antenna 12. The steering actuator 22 and the brake / accelerator actuator 23 are activated and stopped via the motor driver 21 based on the operation information.

一方、自律走行用コンピュータ30の入力側には、進行方向における地形の凹凸の近距離情報取得に適した外界計測部を構成するレーザセンサ(レーザレンジファインダ)31と、遠距離で且つ広角情報取得に適した自律走行用のステレオカメラ32と、車高(約20cm)以上の起立した障害物を検出する障害物用レーザセンサ33が接続されており、この自律走行用コンピュータ30は、LAN11を介して、レーザセンサ31やステレオカメラ32や障害物用レーザセンサ33で取得した測距データを遠隔操縦装置に送信する機能を有している。   On the other hand, on the input side of the computer 30 for autonomous driving, a laser sensor (laser range finder) 31 that constitutes an external measurement unit suitable for acquiring near-field information on unevenness of topography in the traveling direction, and wide-angle and wide-angle information acquisition Are connected to a stereo camera 32 for autonomous driving and an obstacle laser sensor 33 for detecting an obstacle standing up to a vehicle height (about 20 cm) or more. The autonomous running computer 30 is connected via the LAN 11. Thus, the distance measurement data acquired by the laser sensor 31, the stereo camera 32, or the obstacle laser sensor 33 is transmitted to the remote control device.

図示しない遠隔操縦装置は、半自律走行車Aの遠隔操縦用カメラ14で得た画像を映し出すディスプレーと、遠隔操作部と、車両制御用コンピュータ10及び自律走行用コンピュータ30とLAN11を介してデータのやり取りをする制御部を具備しており、遠隔操作部は、周囲の状況を考慮しながら半自律走行車Aに対して走行方向や走行速度を指示するものとなっている。   A remote control device (not shown) is configured to display the image obtained by the remote control camera 14 of the semi-autonomous vehicle A, the remote control unit, the vehicle control computer 10, the autonomous computer 30 and the LAN 11. The remote control unit is configured to instruct the semi-autonomous traveling vehicle A about the traveling direction and the traveling speed while considering surrounding conditions.

この場合、半自律走行車Aに搭載された上記車両制御用コンピュータ10は、外界計測部であるレーザセンサ31やステレオカメラ32や障害物用レーザセンサ33で取得した測距データに基づいて、走行可能域,走行不能域及び未計測域の判定処理を行うデータ解析部10Aと、このデータ解析部10Aでの判定結果に基づいて走行可能域,走行不能域及び未計測域を含む局所地図を作成する局所地図作成手段10Bと、この局所地図作成手段10Bで作成した局所地図に基づいて、上記GPS16等の自己位置データ取得部で取得した自己位置から連続する走行可能域を抽出して、走行可能域地図を作成する走行可能域地図生成手段10Cと、この走行可能域地図生成手段10Cで作成した走行可能域地図に基づいて、道なり方向,分岐路の位置,分岐路の数,道幅及び曲率の情報を認識する道情報認識手段10Dと、この道情報認識手段10Dで認識した道情報に基づいて、走行経路を作成する走行経路生成手段10Eを備えており、この作成した走行可能域地図内の走行路及び走行速度に従って、走行機構であるモータドライバ21を介して操舵用アクチュエータ22及びブレーキ/アクセル用アクチュエータ23を作動させるようになっている。   In this case, the vehicle control computer 10 mounted on the semi-autonomous vehicle A travels based on distance measurement data acquired by the laser sensor 31, the stereo camera 32, or the obstacle laser sensor 33, which is an external measurement unit. A data analysis unit 10A that performs a determination process for a possible region, a non-travelable region, and an unmeasured region, and a local map that includes a travelable region, a non-runnable region, and an unmeasured region based on the determination result of the data analysis unit 10A Based on the local map creation means 10B and the local map created by the local map creation means 10B, a continuous travelable area is extracted from the self-position acquired by the self-position data acquisition unit such as the GPS 16 and can travel. Based on the travelable area map generation means 10C for creating the area map and the travelable area map created by the travelable area map generation means 10C, the road direction and branching Road information recognition means 10D for recognizing information on the position, the number of branch roads, the road width and the curvature, and a travel route generation means 10E for creating a travel route based on the road information recognized by the road information recognition means 10D. The steering actuator 22 and the brake / accelerator actuator 23 are actuated via the motor driver 21 which is a travel mechanism in accordance with the travel path and travel speed in the created travelable area map.

上記車両制御用コンピュータ10において、例えば、半自律走行車Aの走行中に、オペレータから特に指示がない場合には、上記走行可能域地図上で抽出される走行路に沿って走行させるべく制御するようになっている。   In the vehicle control computer 10, for example, when the semi-autonomous traveling vehicle A travels, if there is no specific instruction from the operator, control is performed to travel along the travel path extracted on the travelable area map. It is like that.

ここで、半自律走行車Aに搭載された上記車両制御用コンピュータ10は、道情報認識手段10Dで認識した道情報に基づいて、交差点を曲がる際の交差点旋回経路を作成する交差点旋回経路生成手段10Fを備えており、交差点で右左折させる指示がオペレータから出された場合には、走行可能域地図上で交差点旋回経路生成手段10Fにより作成される変更路を介して他の走行路へ進行させるべく制御するようになっている。   Here, the vehicle control computer 10 mounted on the semi-autonomous vehicle A generates an intersection turning route generating means for creating an intersection turning route when turning an intersection based on the road information recognized by the road information recognition means 10D. 10F, and when an operator gives an instruction to turn left or right at an intersection, the vehicle travels to another traveling path through a change path created by the intersection turning path generation means 10F on the travelable area map. It is designed to control as much as possible.

そこで、上記車両制御用コンピュータ10による制御要領を具体的に説明する。図3に示すように、ステップS1,S2において半自律走行車Aの走行中にレーザセンサ31等の外界計測部で取得した地形データ(測距データ)に基づいて作成された局所地図内に、複数の走行不能域NGが存在する場合、まず、通常道路上には孤立した障害物はなく、例え孤立した障害物を検出したとしてもそれは葦などの背丈のある植物等であって踏み倒すことが可能な障害物であるとの観点、及び、連なる走行不能域NGは道路の境界であるとの観点から、ステップS3において上記複数の走行不能域NGを除去する処理、例えば、ハフ変換、或いは大きさに基づいて走行不能域を除去する処理を施して、図4(a)に示す疎に点在する走行不能域NG1,NG2は除去し、連なる走行不能域NGのみを残す。   Therefore, the control procedure by the vehicle control computer 10 will be specifically described. As shown in FIG. 3, in the local map created based on the terrain data (ranging data) acquired by the external measurement unit such as the laser sensor 31 during the traveling of the semi-autonomous vehicle A in steps S1 and S2, When there are multiple NG zones, there are no isolated obstacles on the normal road. Even if an isolated obstacle is detected, it is a tall plant such as a kite and can be stepped over. From the viewpoint of being a possible obstacle, and from the viewpoint that the continuous non-runnable areas NG are road boundaries, a process of removing the plurality of non-runnable areas NG in step S3, for example, Hough transform or large Based on the above, a process for removing the non-running area is performed, and the non-running non-running areas NG1 and NG2 shown in FIG. 4 (a) are removed, leaving only the continuous non-running areas NG.

次いで、走行中の半自律走行車Aがスムーズに走行を継続し得る走行路は、半自律走行車Aの自己位置の進行方向にある走行可能域Gから未計測域NMに至る車幅以上の幅を有する領域であるとの観点から、ステップS4,S5において走行可能域地図生成手段10Cにより走行可能域Gから未計測域NMに至る車幅以上の幅を有する領域の探索を行うようにしている。
具体的には、図4(b)に示すように、局所地図作成手段10Bで作成した局所地図上において、上記GPS16等の自己位置データ取得部で取得した(ステップS5)半自律走行車Aの自己位置から進行方向で且つ機軸Lを中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線arcを展開させて、走行可能域Gから未計測域NMに伸びる円弧状探索線arcが存在する範囲を扇状走行可能域SG1,SG2,SG3として認識して走行可能域地図を作成する(ステップS4)。
Next, the travel path on which the traveling semi-autonomous vehicle A can continue traveling smoothly is equal to or greater than the vehicle width from the travelable region G to the unmeasured region NM in the traveling direction of the self-position of the semi-autonomous vehicle A. From the viewpoint of a region having a width, in steps S4 and S5, a region having a width equal to or larger than the vehicle width from the travelable region G to the unmeasured region NM is searched by the travelable region map generating means 10C. Yes.
Specifically, as shown in FIG. 4 (b), on the local map created by the local map creating means 10B, it is obtained by the self-location data obtaining unit such as the GPS 16 (step S5). A plurality of arc-shaped search lines arc extending from the self-position to the unmeasured area NM by developing a plurality of arc-shaped search lines arc that gradually decrease in radius of curvature on both sides of the axis L in the traveling direction. Is recognized as a fan-shaped travelable area SG1, SG2, SG3, and a travelable area map is created (step S4).

この際、半自律走行車Aの自己位置から連なる走行不能域NGまでは、円弧状探索線arcを展開し得ないので走行可能域として認識されることがなく、無駄な空白域Zが生じることになる。
そこで、上記のように扇状走行可能域SG1,SG2,SG3を認識するのに続いて、図5(a)に示すように、ステップS6において半自律走行車Aの自己位置よりも進行方向に所定距離(例えば障害物用レーザセンサ33における障害物検出レンジの半分程度)だけずらせた位置A’から再度進行方向で且つ機軸Lを中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線arcを展開させ、走行可能域Gから未計測域NMに伸びる円弧状探索線arcが存在する範囲を扇状走行可能域SG1’,SG2’,SG3’として認識し直すことで、上記空白域Zを減らして走行域を拡大する。
At this time, since the arc-shaped search line arc cannot be developed from the self-position of the semi-autonomous vehicle A to the continuous non-travelable areas NG, it is not recognized as a travelable area, and a useless blank area Z is generated. become.
Therefore, following the recognition of the fan-like travelable areas SG1, SG2, and SG3 as described above, as shown in FIG. A plurality of arc searches in which the radius of curvature gradually decreases from the position A ′ shifted by a distance (for example, about half of the obstacle detection range in the obstacle laser sensor 33) in the traveling direction and centering on the axis L. By expanding the line arc and re-recognizing the range where the arc-shaped search line arc extending from the travelable area G to the unmeasured area NM exists as the fan-shaped travelable areas SG1 ′, SG2 ′, SG3 ′, the blank area Z Increase the driving range by reducing.

ここで、走行可能域SG1,SG2,SG3,SG1’,SG2’,SG3’が扇状を成しているのは現実的でないので、これらの扇状走行可能域SG1,SG2,SG3,SG1’,SG2’,SG3’を車幅以上の幅を有する走行路に変換する必要がある。
上記したように、扇状走行可能域SG1,SG2,SG3,SG1’,SG2’,SG3’が複数認められた場合、図5(b)に示すように、ステップS7において道情報認識手段10Dによってこのエリアを交差点Cと見なすのにつづいて、ステップS8において複数の扇状走行可能域SG1,SG2,SG3,SG1’,SG2’,SG3’(図5(b)では扇状走行可能域SG2’のみ示す)毎に、各々の両端に位置する円弧状探索線arc間の中央を通過する円弧状探索線arcを該扇状走行可能域SG2’の代表円弧Arcとして定める。
Here, since it is not realistic that travelable areas SG1, SG2, SG3, SG1 ', SG2', SG3 'form a fan shape, these fan-shaped travelable areas SG1, SG2, SG3, SG1', SG2 It is necessary to convert ', SG3' into a travel path having a width greater than the vehicle width.
As described above, when a plurality of fan-like travelable areas SG1, SG2, SG3, SG1 ′, SG2 ′, and SG3 ′ are recognized, as shown in FIG. After considering the area as the intersection C, a plurality of fan-like travelable areas SG1, SG2, SG3, SG1 ', SG2', SG3 '(only the fan-like travelable area SG2' is shown in FIG. 5B) in step S8. Each time, an arc-shaped search line arc passing through the center between the arc-shaped search lines arc positioned at both ends is defined as the representative arc Arc of the fan-shaped travelable area SG2 ′.

次に、図6(a)に示すように、ステップS9において道情報認識手段10Dによって代表円弧Arcを両側にそれぞれ走行不能域NGに触れるまで平行移動させて、走行路Roを設定する。つまり、走行不能域NGに触れた一方の路端円弧Rarc及び他方の路端円弧Larcの間隔が走行路Roの道幅dとなり、代表円弧Arcの曲率及び指向方向が走行路Roの曲率及び道なり方向となる。   Next, as shown in FIG. 6A, in step S9, the road information recognizing means 10D moves the representative arc Arc on both sides until it touches the non-travelable area NG to set the travel path Ro. That is, the distance between one road end arc Rarc and the other road end arc Larc that has touched the non-travelable area NG is the road width d of the road Ro, and the curvature and direction of the representative arc Arc are the curvature and road of the road Ro. Direction.

このとき、ステップS10において複数の扇状走行可能域SG1,SG2,SG3,SG1’,SG2’,SG3’毎に求めた道幅d,曲率及び道なり方向が互いに一致するとみなせる場合には、同一の走行路であるとみなす。   At this time, if it can be considered that the road width d, the curvature, and the road direction obtained for each of the plurality of fan-like travelable areas SG1, SG2, SG3, SG1 ′, SG2 ′, and SG3 ′ in step S10 coincide with each other, the same travel Consider it a road.

そして、走行中の半自律走行車Aがスムーズに走行を継続し得る走行路Roは、半自律走行車Aが現在走行中の走行路と無理なく連続するであろうという視点に立ち、走行経路生成手段10Eでは、複数の走行路Ro毎に定めた道幅中央に位置する走行路中央線CLの曲率及び指向方向を該走行路Roの曲率及び道なり方向として設定し、ステップS11において各々の道幅,曲率及び道なり方向に基づいて、これらの走行路Roの中から、現在走行中の走行路と最も連なり易い道なり方向Pの走行路Roを道なり走行路Rとして生成して、この道なり走行路Rに半自律走行車Aが向かうように制御する。   The travel route Ro on which the traveling semi-autonomous vehicle A can continue traveling smoothly is based on the viewpoint that the semi-autonomous traveling vehicle A will be reasonably continuous with the current traveling route. In the generation means 10E, the curvature and direction of the road center line CL located at the center of the road width determined for each of the plurality of roads Ro are set as the curvature and road direction of the road Ro, and each road width is set in step S11. Based on the curvature and the road direction, a road R in the road direction P that is most easily connected to the currently running road is generated as a road R from the road Ro. The semi-autonomous traveling vehicle A is controlled so as to face the traveling path R.

一方、交差点Cにおいて、道なり走行路Rに半自律走行車Aを向かわせるのではなく、道なり走行路Rと分岐する他の走行路に半自律走行車Aを向かわせる場合には、半自律走行車Aの車両制御用コンピュータ10に対してオペレータが新規操舵指令(方向指令)を出力する。   On the other hand, at the intersection C, when the semi-autonomous vehicle A is not directed toward the road R running path R, but the semi-autonomous vehicle A is directed to another road that branches off the road R running road, The operator outputs a new steering command (direction command) to the vehicle control computer 10 of the autonomous vehicle A.

上記車両制御用コンピュータ10の交差点旋回経路生成手段10Fでは、図6(b)に示すように、ステップS12において道なり走行路Rと分岐する他の走行路Rlの走行路中央線CL’における局所地図上の端部から半自律走行車Aの機軸Lに重なっている走行路中央線CL上に垂線VLをおろし、局所地図上で該垂線VL及び走行路中央線CLの双方に内接する曲率半径一定の円弧、及び、この円弧の走行路中央線CLへの接点Dと半自律走行車Aと繋ぐ直線を変更路Rcとして設定して、半自律走行車Aがこの変更路Rcに沿って走行するように制御する。   In the intersection turning route generation means 10F of the computer 10 for vehicle control, as shown in FIG. 6 (b), a local road on the route center line CL ′ of the other route R1 that branches off from the route R on the road in step S12. A vertical line VL is dropped from the end of the map onto the road center line CL overlapping the axis L of the semi-autonomous vehicle A, and the radius of curvature is inscribed on both the vertical line VL and the road center line CL on the local map. A certain arc and a straight line connecting the arc D and the contact point D to the semi-autonomous vehicle A are set as the change road Rc, and the semi-autonomous car A travels along the change road Rc. Control to do.

ここで、上記ステップS4の扇状走行可能域抽出の時点において、半自律走行車Aの自己位置の進行方向にT字路やこのT字路に近いY字路が存在している場合には、半自律走行車Aの自己位置から展開させる複数の円弧状探索線arcがすべて道路の境界に到達してしまい、走行可能域地図を作成することができなくなることが起こり得る。   Here, at the time of the fan-like travelable area extraction in step S4, when there is a T-junction or a Y-junction close to the T-junction in the traveling direction of the self-position of the semi-autonomous traveling vehicle A, A plurality of arc-shaped search lines arc developed from the self-location of the semi-autonomous traveling vehicle A all reach the road boundary, and it may not be possible to create a travelable area map.

このような場合に備えて、上記車両制御用コンピュータ10では、上記ステップS3からステップS13に進み、局所地図作成手段10Bで作成した局所地図上において、図7(a)に示すように、走行可能域地図生成手段10Cにより進行方向に複数の直線状探索線strを放射状に展開させて、直線状走行可能域Tを抽出した後、ステップS14において交差点探索を行う。   In preparation for such a case, the vehicle control computer 10 proceeds from step S3 to step S13, and can travel on the local map created by the local map creating means 10B as shown in FIG. 7 (a). The area map generating means 10C radially expands a plurality of linear search lines str in the traveling direction to extract a linear travelable area T, and then performs an intersection search in step S14.

具体的には、図7(b)に示すように、走行不能域NGに達した直線状探索線strのうちの互いに隣接する直線状探索線strの各々の障害到達点h,hの間隔iが閾値を越える場合をギャップ有りとしてこの障害到達点h,h間を分岐路候補としてホールドし、一方、未計測域NMに達する直線状探索線strのうちの最も両端に位置する直線状探索線strの間隔jが閾値を越える場合もこれらの未計測到達点k,kをホールドする。つまり、ステップS14では、道情報認識手段10Dによって、上記のようにホールドされる分岐路候補としての障害到達点h,h間や未計測到達点k,kが複数ある場合を交差点であると認識し、ホールドされる障害到達点h,hや未計測到達点k,kがない場合を袋小路として認識する。   Specifically, as shown in FIG. 7 (b), the distance i between the obstacle arrival points h and h of the linear search lines str adjacent to each other among the linear search lines str that has reached the non-runnable area NG. If the distance exceeds the threshold value, the gap between the failure arrival points h and h is held as a branch path candidate, and on the other hand, the linear search line located at the most ends of the linear search lines str reaching the unmeasured area NM Even when the interval j of str exceeds the threshold value, these unmeasured arrival points k and k are held. That is, in step S14, the road information recognition unit 10D recognizes the case where there are a plurality of failure arrival points h and h as a branch path candidate held as described above or a plurality of unmeasured arrival points k and k as an intersection. Then, the case where there are no failure reaching points h and h and unmeasured reaching points k and k to be held is recognized as a dead path.

この際、図8(a)に示すように、ホールドされる障害到達点h,hのうちの半自律走行車Aの自己位置に近い走行不能域NGに位置する障害到達点hを近到達点hnとし、半自律走行車Aの自己位置に遠い走行不能域NGに位置する障害到達点hをその走行不能域NG上において上記近到達点hnに最も接近させ得る地点を遠到達点hfとする。また、未計測域NMに到達する直線状探索線strのうちの最も両端に位置する直線状探索線strがそれぞれ隣接する走行不能域NG上の端点m,mをホールドする。   At this time, as shown in FIG. 8 (a), the obstacle arrival point h located in the untravelable area NG near the own position of the semi-autonomous vehicle A among the obstacle arrival points h and h held is set as the near arrival point. Let hn be a far reaching point hf where the obstacle reaching point h located in the untravelable area NG far from the self position of the semi-autonomous traveling vehicle A can be closest to the near reach point hn on the untravelable area NG. . Further, the end points m and m on the non-runnable area NG adjacent to the linear search lines str located at both ends of the linear search lines str reaching the unmeasured area NM are held.

次に、ステップS15において、半自律走行車Aの自己位置から、図8(b)に示すように、それまで進んできた道なりのライン(道路のほぼ中央の二点鎖線)に直交する線分Bを描き、この線分B上の一点を中心Oとし且つ走行不能域NGに2点以上で接する内接円Qを求め、この内接円Qの中心から進行方向に向けて一定間隔で且つ内接円Qの直径が最も大きくなるように半径を変化させつつ内接円Qを走行不能域NGに順次フィットさせ、このようにして走行不能域NGに順次フィットさせた内接円Qの中心Oを結んで道なりラインPa(図8(b)に一点鎖線で示す)とする。そして、内接円Qが走行可能域の最も遠方の部位に達するまで、内接円Qのフィットを繰り返す。   Next, in step S15, as shown in FIG. 8 (b), a line orthogonal to a road line (a two-dot chain line at the center of the road) that has traveled so far from the self-position of the semi-autonomous vehicle A as shown in FIG. Draw a segment B, find an inscribed circle Q that has one point on the segment B as the center O and touches the non-runnable area NG at two or more points, and from the center of the inscribed circle Q toward the traveling direction at regular intervals In addition, the inscribed circle Q is sequentially fitted to the non-runnable area NG while changing the radius so that the diameter of the inscribed circle Q becomes the largest. The center O is connected to form a road line Pa (indicated by a one-dot chain line in FIG. 8B). Then, the fitting of the inscribed circle Q is repeated until the inscribed circle Q reaches the farthest part of the travelable area.

次いで、ステップS16において、障害到達点hn,hfを結ぶ障害到達線Hや、端点m,mを結ぶ未計測到達線Mを内接円Qの各中心を結ぶ道なりラインPsが通過しない場合は、この分岐路を交差点である(Yes)と判定してステップS17に進んで分岐路の道なりを探索する。   Next, in step S16, when the road reaching line H that connects the centers of the inscribed circles Q does not pass through the obstacle reaching line H that connects the obstacle reaching points hn and hf and the unmeasured reaching line M that connects the end points m and m. The branch path is determined to be an intersection (Yes), and the process proceeds to step S17 to search for the path of the branch path.

ここで、障害到達点hn,hfのうちの半自律走行車Aの自己位置に近い近到達点hnに続く走行不能域NGの境界は、半自律走行車Aのレーザセンサ31等の外界計測部では計測し得ないことが多く、一方、障害到達点hn,hfのうちの半自律走行車Aの自己位置から遠い遠到達点hfに続く走行不能域NGの境界は、外界計測部により道のやや奥まった部位まで計測し得ることから、ステップS17において、図9(a)に示すように、遠到達点hfに続く走行不能域NGの境界から障害到達線Hの半分の位置に探索点xを設定し、この探索点xを該境界に沿って未計測域NMに至るまで複数設定し、これらの探索点xを結んで分岐路の道なりラインPb(図9(a)に一点鎖線で示す)とする。   Here, of the obstacle arrival points hn, hf, the boundary of the non-travelable area NG following the near arrival point hn close to the self-position of the semi-autonomous vehicle A is an external measurement unit such as the laser sensor 31 of the semi-autonomous vehicle A. In many cases, the boundary of the non-travelable area NG that follows the far reaching point hf far from the self-position of the semi-autonomous traveling vehicle A among the obstacle reaching points hn and hf is determined by the external measurement unit. Since it is possible to measure to a slightly deeper part, in step S17, as shown in FIG. 9 (a), the search point x is located at a position half of the obstacle arrival line H from the boundary of the untravelable area NG following the far arrival point hf. A plurality of search points x are set up to the unmeasured area NM along the boundary, and these search points x are connected to form a branch road Pb (FIG. 9A) by a one-dot chain line. Show).

そして、上記ステップS9において、図9(b)に示すように、ステップS15で求めた道なりラインPa(ステップS16において交差点でない(No)と判定された場合の道なりライン)及びステップS17で求めた分岐路の道なりラインPbを含むすべての道なりラインに対して、道情報認識手段10Dによって、道幅dn、分岐路の長さUn及び分岐路の方向θnが算出される(nは道なりラインの本数、図9(b)では3本)。   Then, in step S9, as shown in FIG. 9B, the road line Pa obtained in step S15 (the road line in the case where it is determined that the vehicle is not an intersection in step S16 (No)) and the road line obtained in step S17. The road information recognition means 10D calculates the road width dn, the branch path length Un, and the branch path direction θn for all road lines including the branch road line Pb (n is a road road). The number of lines, 3 in FIG. 9B).

このように、上記した実施例では、オペレータから特に指示がない場合において、それまで走行してきた走行路に継続し易い道なり走行路Rが、測距データに基づいて局所地図上で抽出されるので、舗装道路や未舗装道路や整備されていない道路がある環境下で且つこれらの道路や交差点に関する事前情報が一切得られない状況下でも、半自律走行車Aは道なり走行路Rに沿って滑らかに自律走行することとなる。   As described above, in the above-described embodiment, when there is no specific instruction from the operator, the road R that is easy to continue to the road that has been traveled so far is extracted on the local map based on the distance measurement data. Therefore, even in an environment where there are paved roads, unpaved roads and undeveloped roads, and no prior information on these roads and intersections can be obtained, the semi-autonomous vehicle A follows the road and the road R And autonomously running smoothly.

加えて、上記した実施例では、交差点Cで道なり走行路Rと分岐する他の走行路Rlへ半自律走行車Aを向かわせる場合において、オペレータからの新規操舵指令(方向指令)に従って他の走行路Rlへの変更路Rcを設定するので、交差点Cへの進入時にオペレータが新規操舵指令を出すだけで、半自律走行車Aは、道なり走行路Rを走行するのと同様に、変更路Rcを介して円滑に他の走行路Rlへ進行することとなる。   In addition, in the above-described embodiment, when the semi-autonomous traveling vehicle A is directed to another traveling route Rl that is on the road at the intersection C and branches off from the traveling route R, the other steering command (direction command) from the operator Since the change route Rc to the travel route Rl is set, the semi-autonomous traveling vehicle A can be changed in the same manner as when the semi-autonomous traveling vehicle A travels on the road and travels the road R just by issuing a new steering command when entering the intersection C. The vehicle travels smoothly to the other traveling road Rl via the road Rc.

さらに、上記した実施例では、走行可能域Gから未計測域NMに至る扇状走行可能域SG1,SG2,SG3を認識したのち、半自律走行車Aの自己位置よりも進行方向に所定距離(例えば障害物用レーザセンサ33における障害物検出レンジの半分程度)だけずらせた位置A’から再度進行方向で且つ機軸Lを中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線arcを展開させることで、走行可能域Gから未計測域NMに至る範囲を扇状走行可能域SG1’,SG2’,SG3’として認識し、扇状走行可能域SG1,SG2,SG3から交差点Cを認識し直すようにしているので、交差点Cの見直し機会を減らすことができ、その結果、交差点Cにおける走行可能域Gを拡大し得ることとなる。   Further, in the above-described embodiment, after recognizing the fan-shaped travelable areas SG1, SG2, SG3 from the travelable area G to the unmeasured area NM, a predetermined distance (for example, in the traveling direction from the self position of the semi-autonomous traveling vehicle A) A plurality of arc-shaped search lines arc that gradually decrease in radius of curvature on both sides from the position A ′ shifted from the position A ′ shifted by only about half of the obstacle detection range in the obstacle laser sensor 33 around the axis L. By expanding, the range from the travelable area G to the unmeasured area NM is recognized as fan-shaped travelable areas SG1 ′, SG2 ′, SG3 ′, and the intersection C is re-recognized from the fan-shaped travelable areas SG1, SG2, SG3. As a result, the opportunity to review the intersection C can be reduced, and as a result, the travelable area G at the intersection C can be expanded.

さらにまた、上記した実施例では、局所地図上において、半自律走行車Aの自己位置から、進行方向に複数の直線状探索線strを放射状に展開させて、直線状走行可能域Tを抽出した後に、交差点探索を行うようにしているので、例えば、図7(a)に破線で示すように、未計測域NMに至る部分が閉塞されたT字路やY字路であったとしても、分岐路の位置や道幅や方向などといった情報を正しく認識し得ることとなる。   Furthermore, in the above-described embodiment, on the local map, from the self-position of the semi-autonomous vehicle A, a plurality of linear search lines str are radially developed in the traveling direction, and the linear travelable area T is extracted. Since the intersection search is performed later, for example, as shown by a broken line in FIG. 7A, even if the portion reaching the unmeasured area NM is a closed T-junction or Y-junction, Information such as the position of the branch road, the road width, and the direction can be correctly recognized.

したがって、上記した実施例では、半自律走行車Aに予め入力しておく道路情報がラフであったとしても、道なりを正確に認識し得ることから、様々な道路環境下において、半自律走行車Aを高速で且つ滑らかに走行させ得ることとなるのに加えて、半自律走行車Aを操るオペレータの負担の軽減が図られることとなる。   Therefore, in the above-described embodiment, even if the road information input in advance to the semi-autonomous vehicle A is rough, the road can be accurately recognized. In addition to being able to drive the vehicle A at high speed and smoothly, the burden on the operator who operates the semi-autonomous vehicle A can be reduced.

また、上記した実施例では、無人移動体が半自律走行車Aである場合を示したが、これに限定されるものではなく、無人移動体が自律歩行するロボットであったり、自律飛行する航空機であったりしてもよい。   In the above-described embodiments, the case where the unmanned moving body is the semi-autonomous traveling vehicle A has been shown. However, the present invention is not limited to this, and the unmanned moving body is an autonomously walking robot or an autonomously flying aircraft. It may be.

10 車両制御用コンピュータ
10A データ解析部(車両制御用コンピュータ)
10B 局所地図作成手段(車両制御用コンピュータ)
10C 走行可能域地図生成手段(車両制御用コンピュータ)
10D 道情報認識手段(車両制御用コンピュータ)
10E 走行経路生成手段(車両制御用コンピュータ)
10F 交差点旋回経路生成手段(車両制御用コンピュータ)
16 GPS(自己位置データ取得部)
17 バーチカルジャイロ(自己位置データ取得部)
18 車速パルス(自己位置データ取得部)
21 モータドライバ(走行機構)
22 操舵用アクチュエータ(走行機構)
23 ブレーキ/アクセル用アクチュエータ(走行機構)
24 車輪(走行機構)
31 自律走行用レーザセンサ(外界計測部)
32 ステレオカメラ(外界計測部)
33 障害物用レーザセンサ(外界計測部)
A 半自律走行車(無人移動体)
Arc 代表円弧
arc 円弧状探索線
C 交差点
CL 走行路中央線
d 道幅
G 走行可能域
H 障害到達線
hf(h) 遠到達点(障害到達点)
i 障害到達点の間隔
L 半自律走行車の機軸
Larc 他方の路端円弧
NG 走行不能域
O 内接円の中心
P 道なり方向
Pa 内接円の中心を結んだ道なりライン
Pb 分岐路の道なりライン
Q 内接円
R 道なり走行路
Rarc 一方の路端円弧
Rc 変更路
Rl 他の走行路
Ro 走行路
SG1,SG2,SG3,SG1’,SG2’,SG3’ 扇状走行可能域
str 直線状探索線
T 直線状走行可能域
VL 垂線
10 Vehicle Control Computer 10A Data Analysis Unit (Vehicle Control Computer)
10B Local map creation means (vehicle control computer)
10C Travelable area map generation means (vehicle control computer)
10D road information recognition means (vehicle control computer)
10E Travel route generation means (vehicle control computer)
10F Intersection turning route generation means (vehicle control computer)
16 GPS (Self-location data acquisition unit)
17 Vertical gyro (Self-position data acquisition unit)
18 Vehicle speed pulse (Self-position data acquisition unit)
21 Motor driver (traveling mechanism)
22 Steering actuator (traveling mechanism)
23 Brake / Accelerator actuator (traveling mechanism)
24 wheels (traveling mechanism)
31 Laser sensor for autonomous driving (external measurement unit)
32 Stereo camera (external measurement unit)
33 Obstacle laser sensor (external measurement unit)
A Semi-autonomous vehicle (unmanned vehicle)
Arc representative arc arc arc-shaped search line C intersection CL running path center line d road width G travelable area H obstacle reaching line hf (h) far reaching point (failure reaching point)
i Interval between obstacle reaching points L Axle of semi-autonomous traveling vehicle Arc on the other road edge NG Non-travelable area O Center P of inscribed circle Path or direction Pa Path or line connecting the center of inscribed circle Pb Branch road Nari Line Q Inscribed Circle R Nari Nana Road Rarc One Road Edge Arc Rc Change Road Rl Other Nero Road Ro Nine Roads SG1, SG2, SG3, SG1 ', SG2', SG3 'Fan-like Travelable Area str Str linear search Line T Straight running area VL Vertical

Claims (14)

自律走行可能とした無人移動体であって、
自律して走行させるための走行機構と、
進行方向の地形の凹凸の情報を取得する外界計測部と、
自己位置及び方位を取得する自己位置データ取得部と、
前記外界計測部で得た進行方向における地形の凹凸の情報に基づいて、走行可能域,走行不能域及び未計測域の判定処理を行うデータ解析部と、
前記データ解析部での判定結果に基づいて走行可能域,走行不能域及び未計測域を含む局所地図を作成する局所地図作成手段と、
前記局所地図作成手段で作成した局所地図に基づいて、前記自己位置データ取得手段で取得した自己位置から連続する走行可能域を抽出して、走行可能域地図を生成する走行可能域地図生成手段と、
前記走行可能域地図生成手段で生成した走行可能域地図に基づいて、道なり方向,分岐路の位置,分岐路の数,道幅及び曲率の情報を認識する道情報認識手段と、
前記道情報認識手段で認識した道情報に基づいて、走行経路を生成する走行経路生成手段と、
前記道情報認識手段で認識した道情報に基づいて、交差点を曲がる段階における交差点旋回経路を生成する交差点旋回経路生成手段を備え、
前記走行経路生成手段で生成された走行経路と、前記交差点旋回経路生成手段で生成された交差点旋回経路と、前記自己位置データ取得手段で取得した自己位置データとに基づいて前記走行機構を動作させて自律して走行する
ことを特徴とする無人移動体。
An unmanned mobile body capable of autonomous driving,
A traveling mechanism for autonomously traveling;
An external measurement unit that acquires information on the unevenness of the terrain in the traveling direction;
A self-position data acquisition unit for acquiring the self-position and direction;
Based on the information on the unevenness of the terrain in the traveling direction obtained in the external measurement unit, a data analysis unit that performs a determination process of a travelable area, a travel impossible area, and an unmeasured area,
A local map creating means for creating a local map including a travelable area, a travel impossible area and an unmeasured area based on the determination result in the data analysis unit;
Based on the local map created by the local map creating means, a continuous travelable area is extracted from the self-position acquired by the self-position data acquiring means, and a travelable area map generating means for generating a travelable area map; ,
Road information recognition means for recognizing road direction, position of branch road, number of branch roads, road width and curvature based on the travel area map generated by the travel area map generation means;
A travel route generating means for generating a travel route based on the road information recognized by the road information recognition means;
Based on the road information recognized by the road information recognition means, comprising an intersection turning route generating means for generating an intersection turning route at the stage of turning an intersection,
The travel mechanism is operated based on the travel route generated by the travel route generation means, the intersection turn route generated by the intersection turn route generation means, and the self-position data acquired by the self-position data acquisition means. An unmanned moving body characterized by autonomous driving.
前記走行可能域地図生成手段は、前記局所地図作成手段で作成された局所地図上において、前記自己位置データ取得手段で取得した自己位置データから進行方向で且つ機軸を中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線を展開させて、走行可能域から未計測域に伸びる円弧状探索線が存在する範囲を扇状走行可能域として抽出すると共に、前記自己位置データ取得手段で取得した自己位置データから進行方向に複数の直線状探索線を放射状に展開させて、直線状走行可能域を抽出する請求項1に記載の無人移動体。   The travelable area map generation means has a radius of curvature on both sides of the direction of travel from the self-position data acquired by the self-position data acquisition means on the local map created by the local map creation means and centered on the axis. By expanding a plurality of arc-shaped search lines that gradually become smaller, a range in which an arc-shaped search line extending from a travelable area to an unmeasured area exists is extracted as a fan-shaped travelable area and acquired by the self-position data acquisition unit The unmanned moving body according to claim 1, wherein a plurality of linear search lines are radially developed from the self-position data in the traveling direction to extract a linear travelable area. 前記道情報認識手段は、前記扇状走行可能域が複数認められる交差点において、前記複数の扇状走行可能域毎に、各々の両端に位置する円弧状探索線間の中央を通過する円弧状探索線を該扇状走行可能域の代表円弧として定めた後、この代表円弧を前記走行不能域に触れるまで両側に平行移動させて、前記走行不能域にそれぞれ触れる一方の路端円弧及び他方の路端円弧の間隔を道幅とする走行路を設定し、これらの複数の走行路毎に、前記道幅の中央を走行路中央線として定めて、この走行路中央線の曲率及び指向方向を該走行路の曲率及び道なり方向として設定する請求項2に記載の無人移動体。   The road information recognition means, at an intersection where a plurality of fan-shaped travelable areas are recognized, for each of the plurality of fan-shaped travelable areas, arc-shaped search lines passing through the center between the arc-shaped search lines located at both ends. After defining the representative arc of the fan-like travelable area, the representative arc is translated to both sides until it touches the non-travelable area, and one road end arc and the other road end arc touch each of the non-travelable areas. A travel path having a road width as an interval is set, and for each of the plurality of travel paths, the center of the road width is determined as a travel path center line, and the curvature and direction of the travel path center line are set to the curvature of the travel path and The unmanned moving body according to claim 2, wherein the unmanned moving body is set as a road direction. 前記道情報認識手段は、走行不能域に達した前記直線状探索線のうちの互いに隣接する直線状探索線の各々の障害到達点の間隔が閾値を越える場合をギャップ有りとしてこれらの障害到達点を結ぶ障害到達線を分岐路候補としてホールドし、前記無人移動体の自己位置における道幅の中央から、該道幅の中央を中心とし且つ前記走行不能域に2点以上で接する内接円を進行方向に向けて一定間隔で順次描き入れて、前記内接円の各中心を結ぶラインが前記分岐路候補である前記障害到達線を通過しない分岐路を交差点として認識し、前記障害到達点のうちの前記無人移動体の自己位置から遠い方の遠到達点に続く走行不能域の境界に基づいて分岐路の道なりラインを設定して、すべての道なりライン毎に道幅、分岐路の長さ及び分岐路の方向を算出する請求項2又は3に記載の無人移動体。   The road information recognizing means determines that there is a gap when the distance between the obstacle arrival points of the linear search lines adjacent to each other among the linear search lines that have reached the inoperable region is a gap. The obstacle reaching line connecting the two is held as a branching path candidate, and the inscribed circle that is centered on the center of the road width and touches the non-running area at two or more points from the center of the road width at the self-position of the unmanned moving body in the traveling direction A line connecting each center of the inscribed circle is recognized as an intersection, and a branch path that does not pass through the fault arrival line as the branch path candidate, A branch road line is set based on the boundary of the inability to travel following the far reaching point far from the self-position of the unmanned mobile body, and the road width, the length of the branch road and Branch direction Unmanned mobile body according to claim 2 or 3 calculates. 前記走行経路生成手段は、前記道情報認識手段で複数の走行路毎に設定した各々の道幅,曲率及び指向方向に基づいて、該複数の走行路の中から現在走行中の走行路と最も連なり易い走行路を道なり走行路として抽出する請求項3又は4に記載の無人移動体。   The travel route generation unit is connected to the currently traveled travel route from the plurality of travel routes based on the road width, curvature and pointing direction set for each of the plurality of travel routes by the road information recognition unit. The unmanned mobile body according to claim 3, wherein an easy traveling path is extracted as a road traveling path. 前記交差点旋回経路生成手段は、前記交差点において前記道なり走行路と分岐する他の走行路に向かわせる新規操舵指令を得た時点で、該他の走行路の走行路中央線における前記局所地図上の端部から機軸上に垂線をおろし、前記局所地図上で該垂線及び前記機軸の双方に内接する曲率半径一定の円弧を変更路として設定する請求項5に記載の無人移動体。   When the intersection turning route generating means obtains a new steering command to go to another traveling route that branches off the road or the traveling route at the intersection, the intersection turning route generating means is on the local map on the traveling route center line of the other traveling route. The unmanned moving body according to claim 5, wherein a perpendicular line is dropped from the end of the axis on the axis, and an arc having a constant radius of curvature inscribed on both the vertical line and the axis is set as the change path on the local map. 前記局所地図作成手段は、未舗装道路において明瞭でない道端に点在する走行不能域を互いに連なる走行不能域に近似すると共に、走行可能域内で走行不能域として誤認識される孤立した走行不能域を除去して、局所地図を作成する請求項1に記載の無人移動体。   The local map creating means approximates non-runnable areas scattered on indefinite roadsides on an unpaved road to non-runnable areas that are connected to each other, and isolated non-runnable areas that are erroneously recognized as non-runnable areas within the drivable areas. The unmanned moving body according to claim 1, wherein a local map is created by removing the unmanned moving body. 自律走行可能とした無人移動体の制御方法であって、
前記無人移動体の進行方向における地形の凹凸の情報を取得すると共に、該無人移動体の自己位置データを取得し、
前記進行方向の地形の凹凸の情報に基づいて、走行可能域,走行不能域及び未計測域の判定処理を行った後、この判定結果に基づいて走行可能域,走行不能域及び未計測域を含む局所地図を作成し、
次いで、この局所地図に基づいて、前記無人移動体の自己位置から連続する走行可能域を抽出して走行可能域地図を生成し、
続いて、前記走行可能域地図から認識される道なり方向,分岐路の位置,分岐路の数,道幅及び曲率の各道情報に基づいて、走行経路を生成すると共に、交差点を曲がる段階では交差点旋回経路を生成し、
前記走行経路と、前記交差点旋回経路と、前記無人移動体の自己位置データとに基づいて該無人移動体を走行させる
ことを特徴とする無人移動体の制御方法。
A method for controlling an unmanned mobile body capable of autonomous traveling,
While obtaining information on the unevenness of the terrain in the traveling direction of the unmanned mobile body, obtaining self-position data of the unmanned mobile body,
Based on the information on the unevenness of the terrain in the traveling direction, after determining the travelable area, the travel impossible area and the unmeasured area, the travelable area, the travel impossible area and the unmeasured area are determined based on the determination result. Create a local map containing
Next, based on this local map, a continuous travelable area is extracted from the self-position of the unmanned mobile body to generate a travelable area map,
Subsequently, based on the road direction recognized from the travelable area map, the position of the branch road, the number of branch roads, the road width, and the curvature information, a travel route is generated, and at the stage of turning the intersection, Generate a swivel path,
A method for controlling an unmanned moving body, wherein the unmanned moving body is caused to travel based on the traveling route, the intersection turning route, and the self-location data of the unmanned moving body.
前記局所地図上において前記無人移動体の自己位置データから進行方向で且つ機軸を中心にしてその両側に曲率半径が漸次小さくなる複数の円弧状探索線を展開させて、走行可能域から未計測域に伸びる円弧状探索線が存在する範囲を扇状走行可能域として抽出すると共に、前記自己位置データ取得手段で取得した自己位置データから進行方向に複数の直線状探索線を放射状に展開させて、直線状走行可能域を抽出する請求項8に記載の無人移動体の制御方法。   On the local map, a plurality of arc-shaped search lines are developed from the self-position data of the unmanned moving body in the traveling direction and centered on the axis to gradually decrease the radius of curvature on both sides thereof. A range in which an arc-shaped search line extending in a straight line is extracted as a fan-like travelable area, and a plurality of linear search lines are radially expanded from the self-position data acquired by the self-position data acquisition means in the traveling direction, The method for controlling an unmanned mobile body according to claim 8, wherein a region where the vehicle can travel is extracted. 前記扇状走行可能域が複数認められる交差点では、前記複数の扇状走行可能域毎に、各々の両端に位置する円弧状探索線間の中央を通過する円弧状探索線を該扇状走行可能域の代表円弧として定めた後、この代表円弧を前記走行不能域に触れるまで両側に平行移動させて、前記走行不能域にそれぞれ触れる一方の路端円弧及び他方の路端円弧の間隔を道幅とする走行路を設定し、これらの複数の走行路毎に、前記道幅の中央を走行路中央線として定めて、この走行路中央線の曲率及び指向方向を該走行路の曲率及び道なり方向として設定する請求項9に記載の無人移動体の制御方法。   At intersections where a plurality of fan-like travelable areas are recognized, arc-shaped search lines passing through the center between the arc-shaped search lines located at both ends of each of the plurality of fan-like travelable areas are representative of the fan-like travelable areas. After defining as an arc, the representative arc is moved parallel to both sides until it touches the non-travelable area, and the road having the road width as the distance between one road end arc and the other road end arc touching the non-travelable area respectively. The center of the road width is determined as the road center line for each of the plurality of roads, and the curvature and direction of the road center line are set as the curvature and road direction of the road. Item 10. A method for controlling an unmanned mobile object according to Item 9. 前記走行不能域に達した前記直線状探索線のうちの互いに隣接する直線状探索線の各々の障害到達点の間隔が閾値を越える場合をギャップ有りとしてこれらの障害到達点を結ぶ障害到達線を分岐路候補としてホールドし、前記無人移動体の自己位置における道幅の中央から、該道幅の中央を中心とし且つ前記走行不能域に2点以上で接する内接円を進行方向に向けて一定間隔で順次描き入れて、前記内接円の各中心を結ぶラインが前記分岐路候補である前記障害到達線を通過しない分岐路を交差点として認識し、前記障害到達点のうちの前記無人移動体の自己位置から遠い方の遠到達点に続く走行不能域の境界に基づいて分岐路の道なりラインを設定して、すべての道なりライン毎に道幅、分岐路の長さ及び分岐路の方向を算出する請求項9又は10に記載の無人移動体の制御方法。   A failure arrival line connecting these failure arrival points is defined as a gap when the interval between the failure arrival points of the linear search lines adjacent to each other among the linear search lines that have reached the inoperable region is determined to be a gap. Hold as a branching path candidate, from the center of the road width at the self-position of the unmanned mobile body, with an inscribed circle centered on the center of the road width and in contact with the non-running area at two or more points at regular intervals toward the traveling direction Recognize as a crossing a branch that does not pass through the obstacle reaching line that is the branch candidate, and draws one by one, and the unmanned moving body self of the obstacle reaching point A branch road line is set based on the boundary of the inaccessible area following the far reaching point far from the position, and the road width, the length of the branch road, and the direction of the branch road are calculated for every road line. Claim 9 Control method for an unmanned movable body as claimed in 10. 前記複数の走行路毎に設定した各々の道幅,曲率及び道なり方向に基づいて、該複数の走行路の中から前記無人移動体が走行中の走行路と最も連なり易い走行路を道なり走行路として抽出する請求項10又は11に記載の無人移動体の制御方法。   Based on the road width, curvature and road direction set for each of the plurality of travel paths, the unmanned moving body travels along the travel path that is most likely to be connected to the travel path on which the unmanned moving body is traveling. The method for controlling an unmanned mobile body according to claim 10 or 11, wherein the unmanned moving body is extracted as a road. 前記交差点において前記道なり走行路と分岐する他の走行路に前記無人移動体を向かわせる新規操舵指令を得た時点で、前記無人移動体を向かわせようとする前記他の走行路の走行路中央線における前記局所地図上の端部から機軸上に垂線をおろし、前記局所地図上で該垂線及び前記無人移動体の機軸の双方に内接する曲率半径一定の円弧を変更路として設定する請求項12に記載の無人移動体の制御方法。   At the time of obtaining a new steering command for directing the unmanned moving body to another traveling path that branches off the road and the traveling road at the intersection, the traveling path of the other traveling path that is intended to direct the unmanned moving body A vertical line is dropped on an axis from an end on the local map at a center line, and an arc having a constant curvature radius inscribed on both the vertical line and the axis of the unmanned mobile object is set as a change path on the local map. 12. A method for controlling an unmanned mobile object according to 12. 未舗装道路において明瞭でない道端に点在する走行不能域を互いに連なる走行不能域に近似すると共に、走行可能域内で走行不能域として誤認識される孤立した走行不能域を除去して、局所地図を作成する請求項8に記載の無人移動体の制御方法。   On the unpaved road, the unmovable areas scattered on the roadsides that are not clear are approximated to the unmovable areas that are connected to each other, and the isolated unmovable areas that are misrecognized as unmovable areas within the unmovable areas are removed, and a local map is created. The method for controlling an unmanned mobile body according to claim 8 to be created.
JP2011018190A 2011-01-31 2011-01-31 Unmanned moving body and control method of unmanned moving body Active JP5666327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018190A JP5666327B2 (en) 2011-01-31 2011-01-31 Unmanned moving body and control method of unmanned moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018190A JP5666327B2 (en) 2011-01-31 2011-01-31 Unmanned moving body and control method of unmanned moving body

Publications (2)

Publication Number Publication Date
JP2012159954A true JP2012159954A (en) 2012-08-23
JP5666327B2 JP5666327B2 (en) 2015-02-12

Family

ID=46840451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018190A Active JP5666327B2 (en) 2011-01-31 2011-01-31 Unmanned moving body and control method of unmanned moving body

Country Status (1)

Country Link
JP (1) JP5666327B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206999A (en) * 2015-04-24 2016-12-08 株式会社Ihiエアロスペース Obstacle detecting device, and method
JP2018030500A (en) * 2016-08-25 2018-03-01 トヨタ自動車株式会社 Automatic operation system
CN107792071A (en) * 2016-08-26 2018-03-13 法乐第(北京)网络科技有限公司 A kind of running method and device of unmanned equipment
JP2018097528A (en) * 2016-12-12 2018-06-21 株式会社Ihiエアロスペース Unmanned mobile body and control method of unmanned mobile body
JP2018147158A (en) * 2017-03-03 2018-09-20 株式会社Ihiエアロスペース Control method of unmanned mobile body
CN108831177A (en) * 2018-05-31 2018-11-16 郑州思达科锐网络科技有限公司 A kind of pilotless automobile turns around control method and device
CN108983766A (en) * 2017-06-02 2018-12-11 本田技研工业株式会社 Automatic ride control system and server unit
JP2019164724A (en) * 2018-03-20 2019-09-26 株式会社Ihi Remote control system
JP2020076663A (en) * 2018-11-08 2020-05-21 株式会社Ihiエアロスペース Unmanned mobile object and method for controlling unmanned mobile object
JP2023053947A (en) * 2017-05-31 2023-04-13 ズークス インコーポレイテッド Vehicles with interchangeable drive modules and drive modules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248705A (en) * 1988-08-10 1990-02-19 Honda Motor Co Ltd Automatic travel device
JP2005332204A (en) * 2004-05-20 2005-12-02 Univ Waseda Movement control device, environment recognition device, and program for controlling moving object
JP2007328486A (en) * 2006-06-07 2007-12-20 Yaskawa Electric Corp Moving robot
JP2009110154A (en) * 2007-10-29 2009-05-21 Ihi Corp Route generator, route generating method, and moving device provided with route generator
JP2010507514A (en) * 2006-10-11 2010-03-11 オートリブ ディベロップメント エービー Analysis method around the vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248705A (en) * 1988-08-10 1990-02-19 Honda Motor Co Ltd Automatic travel device
JP2005332204A (en) * 2004-05-20 2005-12-02 Univ Waseda Movement control device, environment recognition device, and program for controlling moving object
JP2007328486A (en) * 2006-06-07 2007-12-20 Yaskawa Electric Corp Moving robot
JP2010507514A (en) * 2006-10-11 2010-03-11 オートリブ ディベロップメント エービー Analysis method around the vehicle
JP2009110154A (en) * 2007-10-29 2009-05-21 Ihi Corp Route generator, route generating method, and moving device provided with route generator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206999A (en) * 2015-04-24 2016-12-08 株式会社Ihiエアロスペース Obstacle detecting device, and method
JP2018030500A (en) * 2016-08-25 2018-03-01 トヨタ自動車株式会社 Automatic operation system
CN107792071A (en) * 2016-08-26 2018-03-13 法乐第(北京)网络科技有限公司 A kind of running method and device of unmanned equipment
JP2018097528A (en) * 2016-12-12 2018-06-21 株式会社Ihiエアロスペース Unmanned mobile body and control method of unmanned mobile body
JP2018147158A (en) * 2017-03-03 2018-09-20 株式会社Ihiエアロスペース Control method of unmanned mobile body
JP2023053947A (en) * 2017-05-31 2023-04-13 ズークス インコーポレイテッド Vehicles with interchangeable drive modules and drive modules
JP7542593B2 (en) 2017-05-31 2024-08-30 ズークス インコーポレイテッド Vehicle with interchangeable drive module and drive module
CN108983766A (en) * 2017-06-02 2018-12-11 本田技研工业株式会社 Automatic ride control system and server unit
CN108983766B (en) * 2017-06-02 2021-07-23 本田技研工业株式会社 Automatic driving control system
JP7027208B2 (en) 2018-03-20 2022-03-01 株式会社Ihi Remote control system
JP2019164724A (en) * 2018-03-20 2019-09-26 株式会社Ihi Remote control system
CN108831177B (en) * 2018-05-31 2021-03-19 苏州睿源科技信息有限公司 Method and device for controlling turning around of unmanned automobile
CN108831177A (en) * 2018-05-31 2018-11-16 郑州思达科锐网络科技有限公司 A kind of pilotless automobile turns around control method and device
JP2020076663A (en) * 2018-11-08 2020-05-21 株式会社Ihiエアロスペース Unmanned mobile object and method for controlling unmanned mobile object
JP7195883B2 (en) 2018-11-08 2022-12-26 株式会社Ihiエアロスペース unmanned mobile and control method for unmanned mobile

Also Published As

Publication number Publication date
JP5666327B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5666327B2 (en) Unmanned moving body and control method of unmanned moving body
US11414130B2 (en) Methods and systems for lane changes using a multi-corridor representation of local route regions
US20220282990A1 (en) Generating a Navigational Map
US11680801B2 (en) Navigation based on partially occluded pedestrians
US20230175852A1 (en) Navigation systems and methods for determining object dimensions
JP2021524410A (en) Determining the drive envelope
KR101133037B1 (en) Path updating method for collision avoidance of autonomous vehicle and the apparatus
US20220340138A1 (en) Methods and systems for generating trajectory of an autonomous vehicle for traversing an intersection
US20230159053A1 (en) Systems and methods for local horizon and occluded road segment detection
US11731630B2 (en) Methods and systems for asserting right of way for traversing an intersection
JP5382770B2 (en) Unmanned mobile system
CN102789233A (en) Vision-based combined navigation robot and navigation method
US12110028B2 (en) Systems and methods for detecting an open door
US12030518B2 (en) Lane changing based only on local information
JP6910023B2 (en) How to control unmanned moving objects
US20230211726A1 (en) Crowdsourced turn indicators
US20230202473A1 (en) Calculating vehicle speed for a road curve
US20230206608A1 (en) Systems and methods for analyzing and resolving image blockages
JP2020154623A (en) Traffic control system
JP2012145998A (en) Autonomous traveling body
EP4326589A1 (en) Methods and systems for inferring unpainted stop lines for autonomous vehicles
WO2023133420A1 (en) Traffic light oriented network
JP7009827B2 (en) Vehicle information storage method, vehicle travel control method, and vehicle information storage device
Manikandan et al. Hardware and Software Design for Mobile Robot’s Navigation over On-road and Off-road Curvature Paths
GB2616114A (en) Vehicle navigation with pedestrians and determining vehicle free space

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141210

R150 Certificate of patent or registration of utility model

Ref document number: 5666327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250