JP2012158506A - Hydrogenation method of hydrogen storage material - Google Patents

Hydrogenation method of hydrogen storage material Download PDF

Info

Publication number
JP2012158506A
JP2012158506A JP2011020891A JP2011020891A JP2012158506A JP 2012158506 A JP2012158506 A JP 2012158506A JP 2011020891 A JP2011020891 A JP 2011020891A JP 2011020891 A JP2011020891 A JP 2011020891A JP 2012158506 A JP2012158506 A JP 2012158506A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
lih
less
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011020891A
Other languages
Japanese (ja)
Inventor
Tomoya Matsunaga
朋也 松永
Yuichiro Takeda
雄一郎 武田
Yoshimi Kawamura
芳海 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011020891A priority Critical patent/JP2012158506A/en
Publication of JP2012158506A publication Critical patent/JP2012158506A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogenation method of a hydrogen storage material using a material that contains LiH and B as a starting raw material, and not requiring a hydrogen pressure of 10 MPa or more even under heating.SOLUTION: The hydrogenation method of the hydrogen storage material is provided for hydrogenating a mixture that contains LiH, AlB, and C (carbon) in an amount of larger than 0.1 than Al in an atom ratio.

Description

本発明は、水素貯蔵材料の水素化方法に関し、さらに詳しくはLiHと特定の金属ホウ化物とを含む混合物を水素化することによって水素化するときの水素圧および温度を低減し得る水素貯蔵材料の水素化方法に関するものである。   The present invention relates to a method for hydrogenating a hydrogen storage material. More specifically, the present invention relates to a hydrogen storage material that can reduce hydrogen pressure and temperature when hydrogenating a mixture containing LiH and a specific metal boride. It relates to a hydrogenation method.

従来から、化石燃料の枯渇問題および排出された二酸化炭素による地球温暖化問題があり、化石燃料に替わる次世代のエネルギーとして、水素の利用が世界的に研究され一部では実証試験が始まっている。水素を燃料とする燃料電池は排出物が水だけであり、大気を汚染しないという利点がある。しかし、水素は爆発性が高く、取り扱いが困難な気体であり、水素貯蔵合金等を使用して高圧タンク等に貯蔵する方法が検討されている。
また、近年、錯体水素化物によって従来の水素貯蔵合金の2〜3倍の水素を貯蔵し得ることが見出されている。
Conventionally, there has been a problem of depletion of fossil fuels and global warming due to emitted carbon dioxide. As a next-generation energy alternative to fossil fuels, the use of hydrogen has been studied worldwide and some demonstration tests have begun. . A fuel cell using hydrogen as a fuel has the advantage that it emits only water and does not pollute the atmosphere. However, hydrogen is a gas that is highly explosive and difficult to handle, and a method of storing it in a high-pressure tank or the like using a hydrogen storage alloy or the like has been studied.
Recently, it has been found that complex hydrides can store 2 to 3 times as much hydrogen as conventional hydrogen storage alloys.

これらの水素貯蔵合金や錯体水素化物による水素の貯蔵においては、これら水素貯蔵材料の単位容量および/又は単位質量当たりの水素貯蔵量、水素放出量の大きい材料の開発および水素放出後の混合物を再度水素化して水素放出が可能な水素貯蔵材料を得ることができる材料の開発が重要であり、また装置の腐食を生じさせないために主要材料成分がハロゲンを含有しない非ハロゲン系の水素貯蔵材料についての研究がなされている。
例えば、非特許文献1には、LiBHを例えば水素圧1MPa、873K(600℃)の条件で加熱して分解し水素を放出させる脱水素化反応、およびBとLiHとを例えば水素圧35MPa、873K(600℃)の条件で加熱してLiBHを生成させる水素化反応について記載されている。そして、前記の脱水素化反応とその逆反応である水素化反応として以下の反応式が示されそして脱水素化前と脱水素化後の粉末のX線回折パーターンが図示されている。
LiBH→LiH+B+(3/2)H
LiH+B+(3/2)H→LiBH
In hydrogen storage using these hydrogen storage alloys and complex hydrides, the hydrogen storage amount per unit volume and / or unit mass of these hydrogen storage materials, the development of materials with a large hydrogen release amount, and the mixture after the hydrogen release must be repeated. It is important to develop a material that can be hydrogenated to obtain a hydrogen storage material that can release hydrogen, and a non-halogen-based hydrogen storage material that does not contain halogen in order to prevent corrosion of the apparatus. Research has been done.
For example, in Non-Patent Document 1, LiBH 4 is heated under conditions of, for example, a hydrogen pressure of 1 MPa and 873 K (600 ° C.) to decompose and release hydrogen, and B and LiH are converted into, for example, a hydrogen pressure of 35 MPa, It describes a hydrogenation reaction in which LiBH 4 is produced by heating at 873 K (600 ° C.). The following reaction formula is shown as a hydrogenation reaction which is the reverse reaction of the dehydrogenation reaction, and X-ray diffraction patterns of the powder before and after the dehydrogenation are shown.
LiBH 4 → LiH + B + (3/2) H 2
LiH + B + (3/2) H 2 → LiBH 4

また、非特許文献2には、LiHとMgBとを用いた300℃、200バール(20MPa)で48時間、引き続いて400℃、350バール(35MPa)で24時間の水素化条件での水素化物の製造実験例および以下の反応式が示され、そして水素化生成物のX線回折パーターンが図示されている。
2LiH+MgB+4H→2LiBH+MgH
Non-Patent Document 2 describes a hydride using LiH and MgB 2 at hydrogenation conditions of 300 ° C. and 200 bar (20 MPa) for 48 hours, followed by 400 ° C. and 350 bar (35 MPa) for 24 hours. An example of the production and the following reaction formula are shown, and the X-ray diffraction pattern of the hydrogenated product is shown.
2LiH + MgB 2 + 4H 2 → 2LiBH 4 + MgH 2

ジャーナル・オブ・アロイズ・アンド・コンパウンド(Journal of Alloys and Compounds)404−406(2005)427−430頁Journal of Alloys and Compounds 404-406 (2005) 427-430 ジャーナル・オブ・アロイズ・アンド・コンパウンド(Journal of Alloys and Compounds)440(2005)L18−L21Journal of Alloys and Compounds 440 (2005) L18-L21

しかし、水素貯蔵材料は水素放出後に再度逆反応である水素化(再吸蔵)する必要があり、LiHおよびBを含む物質を出発原材料とする水素貯蔵組成物の水素化方法では高温で10MPa程度以上の高い水素圧を要するというのが共通の理解である。これは、Bを含む物質が安定なため水素化が困難なことによる。
従って、本発明の目的は、LiHおよびBを含む物質を出発原材料とし、加熱下でも10MPa以上の水素圧を必要としない水素貯蔵材料の水素化方法を提供することである。
However, the hydrogen storage material needs to be hydrogenated (re-occlusion), which is a reverse reaction again after hydrogen release, and in the hydrogenation method of a hydrogen storage composition using a substance containing LiH and B as a starting raw material, about 10 MPa or more at high temperature The common understanding is that high hydrogen pressure is required. This is because hydrogenation is difficult because the substance containing B is stable.
Accordingly, an object of the present invention is to provide a method for hydrogenating a hydrogen storage material that uses a substance containing LiH and B as a starting raw material and does not require a hydrogen pressure of 10 MPa or more even under heating.

本発明は、LiHおよびAlB、さらにAlに対して原子比で0.1より多い量のC(炭素)を含む混合物を水素化する水素貯蔵材料の水素化方法に関する。
本発明において、水素化工程における水素圧は加熱前の室温(25℃)における圧力を意味する。
The present invention relates to a hydrogenation method of a hydrogen storage material for hydrogenating a mixture containing LiH and AlB 2 and further C (carbon) in an atomic ratio of more than 0.1 with respect to Al.
In the present invention, the hydrogen pressure in the hydrogenation step means a pressure at room temperature (25 ° C.) before heating.

本発明によれば、LiHとBを含む物質を出発原材料とし、加熱下でも10MPa以上の水素圧を必要としない水素貯蔵材料の水素化方法を得ることができる。   According to the present invention, it is possible to obtain a method for hydrogenating a hydrogen storage material that uses a substance containing LiH and B as a starting raw material and does not require a hydrogen pressure of 10 MPa or more even under heating.

図1は、実施例および比較例で得られた水素貯蔵材料の水素化率と元素添加量(Al1に対する原子比で示す)との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the hydrogenation rate of the hydrogen storage materials obtained in Examples and Comparative Examples and the amount of element addition (indicated by the atomic ratio relative to Al1). 図2は、各試料のXRD測定結果を示す。FIG. 2 shows the XRD measurement results of each sample.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記C(炭素)量が、Alに対して原子比で0.1より多く0.4未満である水素化方法。
2)前記混合物が、Al、BおよびCを原子比でAl1に対して1.9未満の量のB、および0.1より多い量のCを10MPa未満の水素圧下に加熱して得られるものと、LiHとを混合して得られるものである水素化方法。
3)前記混合物が、Al、BおよびCを原子比でAl1に対して1.6より大で1.9未満の量のB、および0.1より多く0.4未満の量のCを10MPa未満の水素圧下に加熱して得られるものと、LiHとを混合して得られるものである水素化方法。
4)前記水素圧が、1MPa未満である水素化方法。
In particular, in the present invention, the following embodiments can be mentioned.
1) The hydrogenation method in which the amount of C (carbon) is more than 0.1 and less than 0.4 in terms of atomic ratio with respect to Al.
2) The mixture is obtained by heating Al, B and C in an atomic ratio of less than 1.9 B to Al1 and more than 0.1 C under hydrogen pressure of less than 10 MPa. And a hydrogenation method obtained by mixing LiH.
3) The mixture comprises Al, B and C in an atomic ratio of B1 in an amount greater than 1.6 and less than 1.9 relative to Al1, and C in an amount greater than 0.1 and less than 0.4 at 10 MPa. A hydrogenation method which is obtained by mixing LiH with a product obtained by heating under a hydrogen pressure of less than
4) The hydrogenation method wherein the hydrogen pressure is less than 1 MPa.

本発明においては、出発原材料としてLiHおよびAlB、さらにAlに対して原子比で0.1より多い量、好適には0.4未満の量のC(炭素)を組み合わせて用いることが必要であり、これによって前記の従来技術に比べてより低い水素圧、すなわち10MPa未満の水素圧下で且つより低い温度、例えば400℃未満の温度で水素化して水素を放出可能な水素貯蔵材料を得ることが可能となる。 In the present invention, it is necessary to use LiH and AlB 2 as starting raw materials, and further use C (carbon) in an amount of more than 0.1, preferably less than 0.4, in terms of atomic ratio with respect to Al. Thus, it is possible to obtain a hydrogen storage material capable of releasing hydrogen by hydrogenation under a lower hydrogen pressure than that of the prior art, that is, under a hydrogen pressure of less than 10 MPa and at a lower temperature, for example, a temperature of less than 400 ° C. It becomes possible.

本発明においてはCを加えることが必要であり、LiHおよびAlBを組み合わせただけでは、図1に示すように得られる水素貯蔵材料の水素化率は不十分である。
また、前記LiHおよびAlBにCを加えてもCの量がAlに対して原子比で0.1以下であると、得られる水素貯蔵材料は、図2に示すようにCを加える効果が認められずむしろ水素化率が低下する。また、Alに対して原子比で0.4以上であっても効果は向上せず却って材料が不安定になり不利である。
In the present invention, it is necessary to add C, and the hydrogenation rate of the hydrogen storage material obtained as shown in FIG. 1 is insufficient only by combining LiH and AlB 2 .
If the amount of even adding C to the LiH and AlB 2 C is 0.1 or less in atomic ratio to Al, the resulting hydrogen storage material, the effect of adding C as shown in FIG. 2 Rather, the hydrogenation rate decreases. Moreover, even if the atomic ratio is 0.4 or more with respect to Al, the effect is not improved, but the material becomes unstable, which is disadvantageous.

本発明により低い水素圧下で且つより低い温度で水素化して水素を放出可能な理論的な解明は未だ十分にはなされていないが、次のように考え得る。すなわち、本発明の水素貯蔵材料におけるAlBは既知の水素貯蔵材であるMgBに比べてB−B結合が強く水素化し難いと考えられていた。しかし、結晶中に微量のAl欠陥が存在していることが知られており(例えば、J.Phys.Soc.Japan、Vol.71、No.2、2002、408−410頁)、欠陥が反応の起点となり実際にはMgBと同程度に水素化し易い。 Although the theoretical clarification that hydrogen can be released by hydrogenation under a low hydrogen pressure and at a lower temperature according to the present invention has not yet been sufficiently made, it can be considered as follows. That is, it was considered that AlB 2 in the hydrogen storage material of the present invention has a strong BB bond and is difficult to hydrogenate compared to MgB 2 which is a known hydrogen storage material. However, it is known that a very small amount of Al defects exist in the crystal (for example, J. Phys. Soc. Japan, Vol. 71, No. 2, 2002, pages 408-410), and the defects react. In fact, it is as easy to hydrogenate as MgB 2 .

そして、このAlに欠陥が生じている理由は、AlがMgなどと比較して電子供与能が強く、AlB中のB−B結合が電子過剰になっているためである。
従って、AlB中のB−B結合中にBよりも電子を多く持った元素であるC(炭素)をドープすることによって、前記の欠陥を増加させることができると考えられる。
そして、AlBにおけるB−B結合のπ電子を所定量のCを加えることによって過剰にさせて欠陥をさらに増加させることで、Al欠陥を増加させることが可能となり前記反応が促進される、つまり水素化反応が促進されると考えられる。
The reason why the Al is defective is that Al has a stronger electron donating ability than Mg and the like, and the BB bond in AlB 2 has an excess of electrons.
Therefore, it is considered that the defects can be increased by doping C (carbon), which is an element having more electrons than B, in the BB bond in AlB 2 .
Then, by adding a predetermined amount of C to π electrons of the BB bond in AlB 2 to further increase the defects, it is possible to increase Al defects and promote the reaction. It is thought that the hydrogenation reaction is promoted.

このため、Cの添加量は、Alに対して原子比で0.1より多い量が必要となる。しかし、過度に多いと加えられて生成する材料が不安定になる、すなわち生成エネルギーが正になり分解しやすくなると考えられ、前述のようにCの添加量はAlに対して原子比で0.4未満であることが好適である。   For this reason, the amount of C added is required to be greater than 0.1 by atomic ratio with respect to Al. However, if the amount is excessively large, the generated material becomes unstable, that is, the generated energy becomes positive and the material is easily decomposed. As described above, the amount of C added is 0.1 atomic ratio relative to Al. It is preferred that it is less than 4.

本発明の実施態様として、Al、BおよびCを原子比でAl1に対して1.9未満の量のB、および0.1より多い量のC、好適にはAl、BおよびCを原子比でAl1に対して1.6以上で1.9未満の量のB、および0.1より多く0.4未満の量のCを10MPa未満の水素圧下に加熱して得られるものと、LiHとを混合して得られる混合物を水素化する水素貯蔵材料の水素化方法が挙げられる。   In an embodiment of the present invention, the atomic ratio of Al, B and C is less than 1.9 B with respect to Al1, and the amount of C is greater than 0.1, preferably Al, B and C are Obtained by heating B in an amount of 1.6 or more and less than 1.9 to Al1, and C in an amount of more than 0.1 and less than 0.4 under a hydrogen pressure of less than 10 MPa, LiH and The hydrogenation method of the hydrogen storage material which hydrogenates the mixture obtained by mixing is mentioned.

前記の実施態様においては、Al、BおよびCを前記割合で混合し、得られた混合物を耐圧容器に充填し、10MPa未満の水素圧下、例えば1MPa未満の水素圧下に350℃以上の温度、例えば500〜950℃の範囲の温度で1〜5時間程度加熱して組成比がAl:1、B:2−x、C:x(x:原子比でAl1に対するCの原子比)である中間物を得る。この中間物は、図2に示すようにAlBの結晶ピークを示すものである。
得られた中間物に、原子比でAl1に対してLi2となる割合でLiHを加えて均一に混合して水素貯蔵材料を得る。
In the above embodiment, Al, B and C are mixed in the above proportions, the resulting mixture is filled into a pressure vessel, and the temperature is 350 ° C. or higher under a hydrogen pressure of less than 10 MPa, for example, a hydrogen pressure of less than 1 MPa, for example, An intermediate in which the composition ratio is Al: 1, B: 2-x, C: x (x: atomic ratio of C to Al1 in atomic ratio) by heating at a temperature in the range of 500 to 950 ° C. for about 1 to 5 hours. Get. This intermediate shows a crystal peak of AlB 2 as shown in FIG.
LiH is added to the obtained intermediate at a ratio of Li2 with respect to Al1 by atomic ratio and mixed uniformly to obtain a hydrogen storage material.

前記中間物とLiHとの混合は、ボールミルによる粉砕前処理を施した後、行うことが好適である。
前記の粉砕前処理においては、例えば窒素、Ar、He、Neおよびそれらの組み合わせから選ばれる1つのガス雰囲気下に、通常大気圧にて0.1時間以上、例えば0.1〜24時間の範囲、例えば1〜12時間の範囲の時間ボールミルによる粉砕を施し得る。また、前記の粉砕前処理は、外部から加熱することなく、ボールミル、例えば遊星型ボールミルを用いて、ボールミル内に原料とステンレスボール又はセラミックボールなどの高剛性ボールを入れてボールミルによる粉砕前処理を好適に施し得る。
The mixing of the intermediate and LiH is preferably performed after a pulverization pretreatment by a ball mill.
In the pulverization pretreatment, for example, in one gas atmosphere selected from nitrogen, Ar, He, Ne and combinations thereof, usually at atmospheric pressure for 0.1 hour or more, for example, in the range of 0.1 to 24 hours. For example, grinding with a ball mill for a time in the range of 1 to 12 hours may be applied. The pulverization pretreatment is performed by using a ball mill, for example, a planetary ball mill, without heating from the outside, and putting the raw material and a high-rigidity ball such as a stainless steel ball or a ceramic ball into the ball mill. It can be suitably applied.

前記の水素化は、例えば前記の中間物とLiHとを前記の割合で任意の混合処理法、例えばボールミル中で例えば窒素、Ar、He、Neおよびそれらの組み合わせから選ばれる1つのガス雰囲気下に、通常大気圧にて0.1時間以上、例えば0.1〜24時間の範囲の時間混合処理を行った後、混合物を任意の容器中、例えば耐圧容器中で10MPa未満、例えば1〜5MPaの範囲、例えば1〜3MPa、特に1〜1.5MPaの範囲の水素圧、400℃未満の温度、例えば300〜375℃の範囲の温度で、1〜100時間程度の時間で好適に行い得る。   The hydrogenation may be performed, for example, by mixing the intermediate and LiH in the above proportions in any mixing method, for example, in a ball mill, for example, in one gas atmosphere selected from nitrogen, Ar, He, Ne, and combinations thereof. In general, after performing the mixing treatment at atmospheric pressure for 0.1 hour or more, for example, in the range of 0.1 to 24 hours, the mixture is placed in an arbitrary container, for example, a pressure-resistant container, for example, less than 10 MPa, for example, 1 to 5 MPa. It can be suitably carried out in a range of, for example, 1 to 3 MPa, particularly a hydrogen pressure in the range of 1 to 1.5 MPa, a temperature of less than 400 ° C., for example a temperature in the range of 300 to 375 ° C., for a time of about 1 to 100 hours.

前記の水素化する工程において、LiHとAlBとは少なくともその一部が反応して次の反応によりLiBHとAlとを生成すると考えられる。
2LiH+AlB+3H→2LiBH+Al
In the hydrogenation step, it is considered that at least a part of LiH and AlB 2 react to generate LiBH 4 and Al by the following reaction.
2LiH + AlB 2 + 3H 3 → 2LiBH 4 + Al

前記の水素化工程において,触媒を加えてもよい。
前記の触媒としては、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、Ru、Mo、W、Ta、Zr、Hf、Agから選ばれた1種もしくは2種以上の金属またはその化合物、例えばハロゲン化物、特に塩化物、例えばTiClが好適である。触媒は単独で用いてもよく又は担体に担持させて用いてもよい。前記触媒をLiHおよびMBに加えることによって水素化反応および/又は脱水素反応を促進させ得る。前記触媒の量は水素貯蔵材料中のLiに対して0.01〜10モル%、特に0.1〜10モル%であることが好ましい。
In the hydrogenation step, a catalyst may be added.
Examples of the catalyst include Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, One or more metals selected from Ru, Mo, W, Ta, Zr, Hf, and Ag or compounds thereof, such as halides, particularly chlorides, such as TiCl 3 are preferred. The catalyst may be used alone or supported on a support. The can catalyst to promote hydrogenation and / or dehydrogenation reaction by adding the LiH and MB n a. The amount of the catalyst is preferably 0.01 to 10 mol%, particularly 0.1 to 10 mol%, based on Li in the hydrogen storage material.

本発明によれば、LiHおよびAlBの混合物の水素化時の水素圧および加熱温度の低減化が可能となり、LiHとおよびAlBを出発材料とする水素貯蔵材料から、容易に多くの水素を放出させることが可能となり得る。 According to the present invention, it is possible to reduce the hydrogen pressure and the heating temperature during hydrogenation of a mixture of LiH and AlB 2, the LiH and and AlB 2 from the hydrogen storage material used as the starting material, the easily more hydrogen It may be possible to release.

以下に、実施例を用いて本発明を説明する。これらの実施例は単に説明のためのものであり、本発明を限定するものではない。   Hereinafter, the present invention will be described using examples. These examples are illustrative only and are not intended to limit the invention.

以下の各例において、中間物の分析はXRD(X線回折分析)によって行い、水素貯蔵材料の評価は、以下に示す方法および装置によって行った。なお、以下に示す評価方法は例示であって、これに限定されず同等の方法によって行い得る。     In each of the following examples, the intermediate was analyzed by XRD (X-ray diffraction analysis), and the hydrogen storage material was evaluated by the method and apparatus shown below. In addition, the evaluation method shown below is an illustration, Comprising: It is not limited to this and can be performed by the equivalent method.

水素化率(%)
測定法:TPD−MS(temperature programmed desorption−mass spectrometry)分析により真空中で加熱することにより水素を脱離させ、その発生量を測定した。
水素放出量は、水素貯蔵材料に対する放出された水素発生量の割合(wt%:質量%)を示す。
水素化率は以下の式より算出した。
水素化率(wt%)=(放出水素質量/水素化処理した混合試料量)×100
Hydrogenation rate (%)
Measurement method: Hydrogen was desorbed by heating in vacuum by TPD-MS (temperature programmed deformation-mass spectrometry), and the amount of generation was measured.
The hydrogen release amount indicates the ratio of the released hydrogen generation amount to the hydrogen storage material (wt%: mass%).
The hydrogenation rate was calculated from the following formula.
Hydrogenation rate (wt%) = (released hydrogen mass / hydrogenated mixed sample amount) × 100

以下の各例において、材料として、LiH(Alfa Aesar社製、98%)、AlB(ALDRICH社製)、Al(レアメタリック社製、純度98%)、B(レアメタリック社製、純度98%)、C(大阪ガスケミカル社製)、TiCl(ALDRICH社製、99.999%)を用いた。
試験に使用した反応容器は、ステンレス製円筒型耐圧容器(21mL)である。
In each of the following examples, the materials are LiH (Alfa Aesar, 98%), AlB 2 (ALDRICH, Al) (Rare Metallic, purity 98%), B (Rare Metallic, purity 98%). ), C (manufactured by Osaka Gas Chemical Company), and TiCl 3 (manufactured by ALDRICH, 99.999%).
The reaction vessel used for the test is a stainless steel cylindrical pressure vessel (21 mL).

実施例1
以下の各工程により各原料の処理を行った。
1)アルゴン雰囲気のグローブボックス中(酸素濃度1ppm以下)にて表1に示す配合比で原料を秤量する。
2)秤量後の試料をすり鉢で混合処理する。
3)混合処理後の試料をペレット化し、耐圧容器に充填し、表1に示す合成条件で熱処理合成する。
4)得られた中間物とLiHとTiClとを、AlB、LiHおよびTiClが1:2:0.03(モル比)となる組成比で秤量する。
5)秤量後の試料を、遊星型ボールミル粉砕機(フリッチュ社製:premium line P−7型)を使用し、Ar雰囲気中、回転数400rpmにて 時間混合処理する。
6)混合後の試料を、3)と同様に耐圧容器に充填し、1MPa水素中、363℃にて約80時間水素化反応する。
7)試験後の試料を、TPD−MS分析にて水素放出量の測定を実施する。
得られた水素貯蔵材料について評価を行った。結果を他の結果とまとめて表2および図1に示す。
また、前記の工程3)で得られた試料についてXRD測定を行った。結果を他の結果とまとめて図2に示す。
Example 1
Each raw material was processed by the following steps.
1) The raw materials are weighed in a mixing ratio shown in Table 1 in a glove box under an argon atmosphere (oxygen concentration of 1 ppm or less).
2) The sample after weighing is mixed in a mortar.
3) The mixed sample is pelletized, filled in a pressure vessel, and heat-treated and synthesized under the synthesis conditions shown in Table 1.
4) The resulting intermediate with LiH and the TiCl 3, AlB 2, LiH and TiCl 3 is 1: 2: Weigh 0.03 a composition ratio (molar ratio).
5) Using a planetary ball mill grinder (manufactured by Fritsch: premium line P-7), the sample after weighing is mixed for a time at an rpm of 400 rpm in an Ar atmosphere.
6) The mixed sample is filled in a pressure-resistant container in the same manner as in 3), and hydrogenated at 363 ° C. for about 80 hours in 1 MPa hydrogen.
7) The hydrogen release amount is measured by TPD-MS analysis on the sample after the test.
The obtained hydrogen storage material was evaluated. The results are shown together with other results in Table 2 and FIG.
Moreover, the XRD measurement was performed about the sample obtained at the said process 3). The results are shown together with other results in FIG.

比較例1〜6
表1に示す原料を用い、表1に示す合成条件を用いて、前記の工程1)〜6)によって水素貯蔵材料を得た。
得られた水素貯蔵材料について評価を行った。結果を他の結果とまとめて表2および図1に示す。
また、前記の工程3)で得られた試料についてXRD測定を行った。結果を他の結果とまとめて図2に示す。
Comparative Examples 1-6
Using the raw materials shown in Table 1, using the synthesis conditions shown in Table 1, a hydrogen storage material was obtained by the above-described steps 1) to 6).
The obtained hydrogen storage material was evaluated. The results are shown together with other results in Table 2 and FIG.
Moreover, the XRD measurement was performed about the sample obtained at the said process 3). The results are shown together with other results in FIG.

Figure 2012158506
Figure 2012158506

Figure 2012158506
Figure 2012158506

表1、表2および図1の結果から、出発原材料としてLiHおよびAlB、さらにAlに対して原子比で0.1より多い量のC(炭素)を加えることによって、従来技術に比べてより低い水素圧、すなわち10MPa未満の水素圧下で且つより低い温度で水素化して水素を放出可能な水素貯蔵材料を得ることが可能であることが示された。この効果はB−B結合に電子を供給できる炭素に特有の添加効果であり、電子供給能の低いLiなどの添加では、却って水素化率が低下する(比較例5、6)。 From the results of Table 1, Table 2 and FIG. 1, by adding LiH and AlB 2 as starting raw materials and further C (carbon) in an atomic ratio of more than 0.1 with respect to Al, compared to the prior art, It has been shown that it is possible to obtain hydrogen storage materials that can be hydrogenated under low hydrogen pressure, ie hydrogen pressure below 10 MPa, and at lower temperatures to release hydrogen. This effect is an addition effect peculiar to carbon capable of supplying electrons to the BB bond. Addition of Li or the like having a low electron supply ability lowers the hydrogenation rate (Comparative Examples 5 and 6).

また、図2の結果から、前記の工程1)〜3)によって中間物ではAlBが生成していることが確認された(実施例1、比較例2および比較例3)。これらの中間物にはC添加によるピークシフトが認められないが、他のピーク(原材料や副生成物)が確認されないためC添加AlBが生成したと判断される。
さらに、図2から、Li添加AlB(比較例4〜6)については、AlBのピークは確認できるものの、同時に副生成物も生成しているため、目的とする組成になっていない可能性があり得る。
Further, from the results of FIG. 2, it was confirmed that AlB 2 was formed in the intermediate by the above steps 1) to 3) (Example 1, Comparative Example 2 and Comparative Example 3). In these intermediates, no peak shift due to the addition of C is observed, but since other peaks (raw materials and by-products) are not confirmed, it is judged that C-added AlB 2 is formed.
Further, from FIG. 2, for Li-added AlB 2 (Comparative Examples 4 to 6), although the peak of AlB 2 can be confirmed, by-products are also generated at the same time, there is a possibility that the target composition is not achieved. There can be.

本発明の方法によれば、水素化時の水素圧および温度の低減が可能となり、AlBおよびLiH、さらにCを出発原料とする水素貯蔵材料から、容易に多くの水素を放出させることが可能となる。 According to the method of the present invention, the hydrogen pressure and temperature during hydrogenation can be reduced, and a large amount of hydrogen can be easily released from a hydrogen storage material starting from AlB 2 and LiH, and C. It becomes.

Claims (5)

LiHおよびAlB、さらにAlに対して原子比で0.1より多い量のC(炭素)を含む混合物を水素化する水素貯蔵材料の水素化方法。 A method for hydrogenating a hydrogen storage material, comprising hydrogenating a mixture containing LiH and AlB 2 and further containing C (carbon) in an atomic ratio of more than 0.1 with respect to Al. 前記C(炭素)量が、Alに対して原子比で0.1より多く0.4未満である請求項1に記載の水素化方法。   The hydrogenation method according to claim 1, wherein the amount of C (carbon) is more than 0.1 and less than 0.4 in terms of atomic ratio with respect to Al. 前記混合物が、Al、BおよびCを原子比でAl1に対して1.9未満の量のB、および0.1より多い量のCを5MPa未満の水素圧下に加熱して得られるものと、LiHとを混合して得られるものである請求項1に記載の水素化方法。   The mixture is obtained by heating Al, B and C in an atomic ratio of less than 1.9 B with respect to Al1 and greater than 0.1 C under a hydrogen pressure of less than 5 MPa; The hydrogenation method according to claim 1, wherein the hydrogenation method is obtained by mixing LiH. 前記混合物が、Al、BおよびCを原子比でAl1に対して1.6より大で1.9未満の量のB、および0.1より多く0.4未満の量のCを5MPa未満の水素圧下に加熱して得られるものと、LiHとを混合して得られるものである請求項1〜3のいずれか1項に記載の水素化方法。   The mixture comprises Al, B and C in an atomic ratio of B in an amount greater than 1.6 and less than 1.9 relative to Al1, and an amount of C greater than 0.1 and less than 0.4 less than 5 MPa. The hydrogenation method according to any one of claims 1 to 3, wherein the hydrogenation method is obtained by mixing LiH with one obtained by heating under hydrogen pressure. 前記水素圧が、1MPa未満である請求項3又は4に記載の水素化方法。   The hydrogenation method according to claim 3 or 4, wherein the hydrogen pressure is less than 1 MPa.
JP2011020891A 2011-02-02 2011-02-02 Hydrogenation method of hydrogen storage material Withdrawn JP2012158506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020891A JP2012158506A (en) 2011-02-02 2011-02-02 Hydrogenation method of hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020891A JP2012158506A (en) 2011-02-02 2011-02-02 Hydrogenation method of hydrogen storage material

Publications (1)

Publication Number Publication Date
JP2012158506A true JP2012158506A (en) 2012-08-23

Family

ID=46839356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020891A Withdrawn JP2012158506A (en) 2011-02-02 2011-02-02 Hydrogenation method of hydrogen storage material

Country Status (1)

Country Link
JP (1) JP2012158506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108689383A (en) * 2018-08-16 2018-10-23 广东工业大学 A kind of metallic boron hydrides composite material and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108689383A (en) * 2018-08-16 2018-10-23 广东工业大学 A kind of metallic boron hydrides composite material and preparation method

Similar Documents

Publication Publication Date Title
KR100922512B1 (en) Methods of Preparing Hydrogen Storing Composition
KR100870528B1 (en) Reversible hydrogen storage system and methods for use thereof
Xia et al. Mixed-metal (Li, Al) amidoborane: Synthesis and enhanced hydrogen storage properties
Varin et al. The effect of sequential and continuous high-energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2FeH6
US7749484B2 (en) Li-B-Mg-X system for reversible hydrogen storage
Liu et al. Mechanisms for the enhanced hydrogen desorption performance of the TiF 4-catalyzed Na 2 LiAlH 6 used for hydrogen storage
Kato et al. Interface reactions and stability of a hydride composite (NaBH 4+ MgH 2)
Polanski et al. The influence of the milling time on the yield of Mg2FeH6 from a two-step synthesis conducted in a custom-made reactor
Kumar et al. Catalytic effect of bis (cyclopentadienyl) nickel II on the improvement of the hydrogenation-dehydrogenation of Mg-MgH2 system
JP2007145680A (en) Hydrogen generating material and hydrogen generating method
US8163267B1 (en) Method of synthesizing magnesium-cobalt pentahydride
Stan et al. Structural and hydrogen absorption/desorption properties of YNi4− xAlxMg compounds (with 0≤ x≤ 1.5)
Ourane et al. The new ternary intermetallic NdNiMg5: Hydrogen sorption properties and more
JP5532949B2 (en) Hydrogenation method of hydrogen storage material
JP2012158506A (en) Hydrogenation method of hydrogen storage material
JP4793900B2 (en) Hydrogen storage material and method for producing the same
Milanese et al. Effect of C (graphite) doping on the H2 sorption performance of the Mg–Ni storage system
JP5823961B2 (en) High capacity stabilized complex hydrides for hydrogen storage
JP2005306724A (en) Material for hydrogen storage, production method for the same, and method for storing hydrogen
JP2011144094A (en) Method of hydrogenating hydrogen storing material
JP2011079689A (en) Hydrogen storage material and method of using the same
JP2007320815A (en) Hydrogen storage material and hydrogen generation method
JP2011032145A (en) Method of using hydrogen storage material
JP5174188B2 (en) Doped hydrogen storage material
Stan et al. In situ X-ray diffraction under H2 of the pseudo-AB2 compounds: YNi3. 5Al0. 5Mg

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513