JP2012157864A - Method for producing anion exchange resin, anion exchange resin, mixed bed resin, and method for producing ultra-pure water for cleaning electronic component/material - Google Patents

Method for producing anion exchange resin, anion exchange resin, mixed bed resin, and method for producing ultra-pure water for cleaning electronic component/material Download PDF

Info

Publication number
JP2012157864A
JP2012157864A JP2012114729A JP2012114729A JP2012157864A JP 2012157864 A JP2012157864 A JP 2012157864A JP 2012114729 A JP2012114729 A JP 2012114729A JP 2012114729 A JP2012114729 A JP 2012114729A JP 2012157864 A JP2012157864 A JP 2012157864A
Authority
JP
Japan
Prior art keywords
anion exchange
exchange resin
resin
toc
aromatic monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012114729A
Other languages
Japanese (ja)
Other versions
JP5585610B2 (en
Inventor
Nagao Fukui
長雄 福井
Tetsuo Mizuniwa
哲夫 水庭
Kazuhiko Tokunaga
和彦 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Kurita Water Industries Ltd
Original Assignee
Mitsubishi Chemical Corp
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Kurita Water Industries Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2012114729A priority Critical patent/JP5585610B2/en
Publication of JP2012157864A publication Critical patent/JP2012157864A/en
Application granted granted Critical
Publication of JP5585610B2 publication Critical patent/JP5585610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an anion exchange resin in which residual impurities and formation of decomposed products are suppressed and the amount of leachables is reduced.SOLUTION: The method for producing the anion exchange resin comprises: a step (a) of copolymerizing a monovinyl aromatic monomer and a cross-linkable aromatic monomer to obtain a cross-linked copolymer; a step (b) of setting the content of a specific leachable compound to be ≤400 μg per 1 g cross-linked copolymer; a step (c) of haloalkylating the cross-linked copolymer to introduce the haloalkyl group of ≤80 mol% into the monovinyl aromatic monomer; a step (d) of removing the specific leachable compound from the haloalkylated cross-linked copolymer; and a step (e) of reacting the haloalkylated cross-linked copolymer with an amine compound.

Description

本発明は、溶出物の少ないアニオン交換樹脂およびその製造方法と、該アニオン交換樹脂を用いた混床樹脂および電子部品・材料洗浄用超純水の製造方法に関する。   The present invention relates to an anion exchange resin with little eluate and a method for producing the same, and a method for producing a mixed bed resin and ultrapure water for cleaning electronic parts and materials using the anion exchange resin.

従来からイオン交換樹脂は、水の浄化のみならず、医薬、食品、化学工業など広い産業分野で使用されている。一般に、イオン交換樹脂は、架橋した三次元の高分子基体に、アニオン交換基あるいはカチオン交換基を導入した化学構造を持っており、アニオン交換基としては、例えば1〜3級アミノ基、アンモニウム基などがよく知られている。
アニオン交換樹脂は、一般にモノビニル芳香族モノマーと架橋性芳香族モノマーとの共重合体にハロアルキル化剤を反応させて、ハロアルキル基を導入し、次いでアミン化合物と反応させて製造される。
Conventionally, ion exchange resins are used not only for purification of water but also in a wide range of industrial fields such as medicine, food, and chemical industries. In general, an ion exchange resin has a chemical structure in which an anion exchange group or a cation exchange group is introduced into a crosslinked three-dimensional polymer substrate. Examples of the anion exchange group include a primary to tertiary amino group, an ammonium group. Are well known.
An anion exchange resin is generally produced by reacting a copolymer of a monovinyl aromatic monomer and a crosslinkable aromatic monomer with a haloalkylating agent to introduce a haloalkyl group and then reacting with an amine compound.

アニオン交換樹脂に要求される性能は、その用途により異なるが、適度の交換容量と水分含有率を有することは共通して望まれている。   Although the performance required for an anion exchange resin varies depending on its use, it is commonly desired to have an appropriate exchange capacity and water content.

従来、架橋共重合体を基体としたイオン交換樹脂は、その使用時に有機物等の溶出が発生するという課題があった。こうした樹脂からの溶出物は、分離や精製の対象となる被処理液の着色・毒性化、樹脂の表面の汚染による脱塩阻害・臭気発生・処理量低下、樹脂の分解による水分の増加等を招く原因となる。特に、シリコンウエハの洗浄、電子部品・材料の洗浄等に用いられる超純水にあっては、微量の溶出物であっても、かかる溶出物がシリコンウエハ表面に吸着し、それが原因で製品に悪影響を及ぼすおそれがあるため、超純水製造用途においては、樹脂からの溶出物量が著しく少ないアニオン交換樹脂が望まれていた。   Conventionally, ion exchange resins based on cross-linked copolymers have a problem that organic substances and the like are eluted when used. The eluate from these resins may cause coloration / toxicity of the liquid to be treated for separation or purification, inhibition of desalination due to contamination of the resin surface, generation of odors, reduction in processing amount, increase in moisture due to decomposition of the resin, etc. Cause incurring. Especially in the case of ultrapure water used for cleaning silicon wafers and electronic parts / materials, even if only a small amount of eluate is adsorbed on the silicon wafer surface, the product is Therefore, an anion exchange resin that has a remarkably small amount of eluate from the resin has been desired for ultrapure water production applications.

樹脂からの溶出物が発生する原因としては、まず、架橋共重合体の製造時に残存する不純物、例えば、未重合の単量体成分(モノマー)、重合不十分の低重合体成分(ダイマー、トリマー、オリゴマー)、遊離重合体成分(線状ポリマー、ポリマー微粒子)、重合反応による副生物等の存在が挙げられる。例えば、スチレン系樹脂の場合、未重合の単量体成分としてスチレンモノマー、ジビニルベンゼン、エチルビニルベンゼン等が、重合不十分の低重合体成分としてスチレンダイマー、スチレントリマー、スチレンオリゴマー等が、遊離重合体成分として線状ポリスチレン、ポリスチレン微粒子等が、重合反応による副生物としてホルムアルデヒドやベンズアルデヒド等が、それぞれ不純物として残留する。
しかしながら、このような不純物の残存を防ぐための有効な手段は知られておらず、従来はこのような不純物を除去するために、イオン交換樹脂や合成吸着剤の製造後や使用前に、蒸留水等でこれを洗浄する工程が必要となり、コストの高騰や工程の煩雑化を招いていた。
Causes of the elution from the resin are firstly impurities remaining during the production of the cross-linked copolymer, such as unpolymerized monomer components (monomers), poorly polymerized low polymer components (dimers, trimers). , Oligomers), free polymer components (linear polymers, polymer fine particles), the presence of by-products by polymerization reaction, and the like. For example, in the case of a styrene resin, styrene monomer, divinylbenzene, ethylvinylbenzene, etc. are used as unpolymerized monomer components, and styrene dimer, styrene trimer, styrene oligomer, etc. are used as free polymer components that are insufficiently polymerized. As a coalescing component, linear polystyrene, polystyrene fine particles and the like remain as impurities, and formaldehyde, benzaldehyde and the like remain as impurities as by-products due to the polymerization reaction, respectively.
However, there is no known effective means for preventing such impurities from remaining. Conventionally, in order to remove such impurities, distillation after ion exchange resin or synthetic adsorbent is produced or used. A process of washing it with water or the like is required, which causes a rise in cost and complication of the process.

また、溶出物発生の別の原因として、架橋共重合体がその使用時や保存時に、時間の経過に伴い酸化等によって分解され、分解物を生じることが挙げられる。
従来、このような分解物の発生を防ぐために、抗酸化能を付与する置換基を導入する技術が提案されている(例えば特許文献1〜3参照)。しかしながら、その効果は十分ではなかった。
Another cause of the generation of the eluate is that the cross-linked copolymer is decomposed by oxidation or the like with the passage of time during use or storage, resulting in a decomposed product.
Conventionally, in order to prevent the generation of such decomposition products, a technique for introducing a substituent imparting antioxidant ability has been proposed (see, for example, Patent Documents 1 to 3). However, the effect was not sufficient.

一方、イオン交換樹脂の交換容量の点では、樹脂交換の頻度をなるべく少なくするために、従来は交換容量の大きいものが望まれる傾向にあった。
特に、超純水製造向けイオン交換樹脂は高流速での水処理を行なうため、被処理水がイオン交換樹脂内部にまで拡散しやすい構造にして、反応速度の面で有利となるように設計される傾向があった。即ち、超純水製造向けイオン交換樹脂においては、交換容量が大きいのみならず、低架橋度で水分含有量の多い樹脂が望まれる傾向にあった。
On the other hand, in terms of the exchange capacity of the ion exchange resin, in order to reduce the frequency of resin exchange as much as possible, a large exchange capacity has been desired in the past.
In particular, ion exchange resins for ultrapure water production are designed to be advantageous in terms of reaction rate by making the water to be treated easy to diffuse into the ion exchange resin because water treatment is performed at a high flow rate. There was a tendency. That is, in the ion exchange resin for producing ultrapure water, there is a tendency that a resin having not only a large exchange capacity but also a low degree of crosslinking and a high water content is desired.

欧州特許出願公開第1078940号明細書European Patent Application No. 1077840 特開平2−115046号公報Japanese Patent Laid-Open No. 2-115046 特開平10−137736号公報JP-A-10-137736

以上の背景から、架橋共重合体を用いたアニオン交換樹脂について、不純物の残存や分解物の発生を防ぎ、使用時における溶出物の発生を抑制するための技術が望まれていた。   In view of the above background, an anion exchange resin using a cross-linked copolymer has been desired to have a technique for preventing the remaining of impurities and the generation of decomposition products and suppressing the generation of eluates during use.

本発明は上記の課題に鑑みて創案されたもので、その目的は、不純物の残存や分解物の発生が抑制された、溶出物の少ないアニオン交換樹脂とその製造方法、並びに、該アニオン交換樹脂を用いた混床樹脂および電子部品・材料洗浄用超純水の製造方法を提供することである。   The present invention was devised in view of the above-mentioned problems, and its object is to suppress the remaining of impurities and the generation of decomposition products, an anion exchange resin with less eluate, a method for producing the same, and the anion exchange resin. It is to provide a method for producing mixed bed resin and ultrapure water for cleaning electronic parts / materials.

本発明者らは上記課題に鑑みて鋭意検討した結果、前述のような交換容量が大きく、水分含有量の多い傾向にあった従来のアニオン交換樹脂よりも、特定の水分含有量との関係において、交換容量が小さいアニオン交換樹脂を用いることにより、上記目的を有効に達し得ることを見出した。   As a result of intensive investigations in view of the above problems, the present inventors have a large exchange capacity as described above, and in relation to a specific water content rather than a conventional anion exchange resin that tends to have a high water content. It has been found that the above object can be effectively achieved by using an anion exchange resin having a small exchange capacity.

また、従来のアニオン交換樹脂よりも小さい交換容量を有するアニオン交換樹脂を製造するために、以下の方法が有効であることを見出した。
(i)モノビニル芳香族モノマーと架橋性芳香族モノマーとの架橋共重合体をハロアルキル化する工程を用いて得られるアニオン交換樹脂において、ハロアルキル化の段階でハロアルキル基導入率を従来よりも少なくすること。
(ii)該ハロアルキル化の段階を、抑制された反応条件、例えば触媒量の低減、反応溶媒の増量、触媒濃度の低減などの反応条件で実施すること。
Moreover, in order to manufacture the anion exchange resin which has a smaller exchange capacity than the conventional anion exchange resin, it discovered that the following methods were effective.
(i) In an anion exchange resin obtained by using a step of haloalkylating a cross-linked copolymer of a monovinyl aromatic monomer and a cross-linkable aromatic monomer, the haloalkyl group introduction rate should be reduced in the haloalkylation step compared to the conventional method. .
(ii) The haloalkylation step is carried out under suppressed reaction conditions, for example, reaction conditions such as reducing the amount of catalyst, increasing the amount of reaction solvent, reducing catalyst concentration.

本発明者らはまた、特定の超純水通水試験におけるΔTOC測定値が特定値以下であるアニオン交換樹脂が、上記目的を有効に達し得ることを見出した。   The present inventors have also found that an anion exchange resin having a ΔTOC measurement value in a specific ultrapure water flow test that is not more than a specific value can effectively achieve the above object.

更に、このようなアニオン交換樹脂およびこれを用いて形成された混床樹脂を用いることにより、溶出物の発生が著しく抑制された高純度の超純水を製造することができることを見出した。   Furthermore, it has been found that by using such an anion exchange resin and a mixed bed resin formed by using such an anion exchange resin, it is possible to produce high purity ultrapure water in which the generation of eluate is remarkably suppressed.

すなわち、本発明の要旨は、下記〔1〕〜〔16〕に存する。   That is, the gist of the present invention resides in the following [1] to [16].

〔1〕 下記(a)〜(e)の工程を含むことを特徴とするアニオン交換樹脂の製造方法。
(a)モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合させて架橋共重合体を得る工程
(b)下記式(I)で示される溶出性化合物の含有量を、モノビニル芳香族モノマーと架橋性芳香族モノマーとの架橋共重合体1gに対して400μg以下とする工程

Figure 2012157864
(式(I)中、Zは、水素原子またはアルキル基を示す。lは自然数を示す。)
(c)前記溶出性化合物の含有量が架橋共重合体1gに対して400μg以下の架橋共重合体をハロアルキル化して、前記モノビニル芳香族モノマーに対して80モル%以下のハロアルキル基を導入する工程
(d)ハロアルキル化された架橋共重合体から、下記式(II)で示される溶出性化合物を除去する工程
Figure 2012157864
(式(II)中、Xは、水素原子、ハロゲン原子、またはハロゲン原子で置換されていても良いアルキル基を示す。Yは、ハロゲン原子を示す。m、nはそれぞれ独立に自然数を示す。)
(e)前記溶出性化合物が除去されたハロアルキル化架橋共重合体をアミン化合物と反応させる工程 [1] A method for producing an anion exchange resin comprising the following steps (a) to (e):
(A) Step of obtaining a crosslinked copolymer by copolymerizing a monovinyl aromatic monomer and a crosslinkable aromatic monomer (b) The content of the eluting compound represented by the following formula (I) The process which makes 400 micrograms or less with respect to 1g of crosslinked copolymers with a crosslinkable aromatic monomer
Figure 2012157864
(In the formula (I), Z represents a hydrogen atom or an alkyl group. L represents a natural number.)
(C) A step of introducing a haloalkyl group of 80 mol% or less with respect to the monovinyl aromatic monomer by haloalkylating a crosslinked copolymer having a content of the eluting compound of 400 μg or less with respect to 1 g of the crosslinked copolymer. (D) A step of removing the eluting compound represented by the following formula (II) from the haloalkylated crosslinked copolymer
Figure 2012157864
(In formula (II), X represents a hydrogen atom, a halogen atom, or an alkyl group which may be substituted with a halogen atom. Y represents a halogen atom. M and n each independently represent a natural number. )
(E) reacting the haloalkylated crosslinked copolymer from which the eluting compound has been removed with an amine compound

〔2〕 〔1〕に記載のアニオン交換樹脂の製造方法によって製造されたアニオン交換樹脂。 [2] An anion exchange resin produced by the method for producing an anion exchange resin according to [1].

〔3〕 Cl形で測定するときの水分含有率WCl(重量%)と単位体積あたりの交換容量QCl(meq/mL−樹脂)とが、下記式(1)〜(5)のいずれかで表されることを特徴とするアニオン交換樹脂。
Cl≦1.25(但し、WCl<38) …(1)
Cl≦1.36(但し、38≦WCl<42) …(2)
Cl≦1.2 (但し、42≦WCl<48) …(3)
Cl≦1.1 (但し、48≦WCl<55) …(4)
Cl≦0.8 (但し、55≦WCl) …(5)
[3] The water content W Cl (wt%) when measured in the Cl form and the exchange capacity Q Cl (meq / mL-resin) per unit volume are any of the following formulas (1) to (5) An anion exchange resin characterized by
Q Cl ≦ 1.25 (W Cl <38) (1)
Q Cl ≦ 1.36 (provided that 38 ≦ W Cl <42) (2)
Q Cl ≦ 1.2 (provided that 42 ≦ W Cl <48) (3)
Q Cl ≦ 1.1 (provided that 48 ≦ W Cl <55) (4)
Q Cl ≦ 0.8 (however, 55 ≦ W Cl ) (5)

〔4〕 Cl形で測定するときの水分含有率WCl(重量%)と単位体積あたりの交換容量QCl(meq/mL−樹脂)とが、下記式(8)で表される〔2〕に記載のアニオン交換樹脂。
Cl≦−0.021WCl+2.28 …(8)
[4] The water content W Cl (wt%) and the exchange capacity Q Cl (meq / mL-resin) per unit volume when measured in the Cl form are represented by the following formula (8) [2] An anion exchange resin as described in 1.
Q Cl ≦ −0.021 W Cl +2.28 (8)

〔5〕 OH形で測定するときの水分含有率WOH(重量%)と単位体積あたりの交換容量QOH(meq/mL−樹脂)とが、下記式(6)または(7)で表されることを特徴とするアニオン交換樹脂。
OH≦1.1(但し、WOH<66) …(6)
OH≦0.9(但し、66≦WOH) …(7)
[5] The water content W OH (wt%) when measured in the OH form and the exchange capacity Q OH (meq / mL-resin) per unit volume are expressed by the following formula (6) or (7). An anion exchange resin characterized by that.
Q OH ≦ 1.1 (W OH <66) (6)
Q OH ≦ 0.9 (provided that 66 ≦ W OH ) (7)

〔6〕 OH形で測定するときの水分含有率WOH(重量%)と単位体積あたりの交換容量QOH(meq/mL−樹脂)とが、下記式(9)で表される〔2〕に記載のアニオン交換樹脂。
OH≦−0.018WOH+2.05 …(9)
[6] The water content W OH (wt%) when measured in the OH form and the exchange capacity Q OH (meq / mL-resin) per unit volume are represented by the following formula (9) [2] An anion exchange resin as described in 1.
Q OH ≦ −0.018 W OH +2.05 (9)

〔7〕 モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合させて得られる架橋共重合体をハロアルキル化した後、アミン化合物と反応させて得られるアニオン交換樹脂であって、前記ハロアルキル化により、前記モノビニル芳香族モノマーに対して80モル%以下のハロアルキル基を導入したことを特徴とするアニオン交換樹脂。 [7] An anion exchange resin obtained by haloalkylating a cross-linked copolymer obtained by copolymerizing a monovinyl aromatic monomer and a cross-linkable aromatic monomer, and then reacting with an amine compound, An anion exchange resin having 80 mol% or less of a haloalkyl group introduced to the monovinyl aromatic monomer.

〔8〕 前記架橋共重合体における下記式(I)で示される溶出性化合物の含有量が架橋共重合体1gに対して400μg以下である〔7〕に記載のアニオン交換樹脂。

Figure 2012157864
(式(I)中、Zは、水素原子またはアルキル基を示す。lは自然数を示す。) [8] The anion exchange resin according to [7], wherein the content of the eluting compound represented by the following formula (I) in the crosslinked copolymer is 400 μg or less with respect to 1 g of the crosslinked copolymer.
Figure 2012157864
(In the formula (I), Z represents a hydrogen atom or an alkyl group. L represents a natural number.)

〔9〕 下記(A)の超純水通水試験におけるΔTOCが0.5ppb以下である〔2〕ないし〔8〕のいずれかに記載のアニオン交換樹脂。
(A)超純水通水試験
(1)直径30mm、長さ1000mmの空の測定カラムに、室温条件下、比抵抗が18MΩ・cm以上、水温20以上40℃以下の超純水を満たし、該超純水をSV=30hr−1で通水し、測定カラム出口水のTOC濃度(TOC)を測定する。
(2)前記アニオン交換樹脂500mLを前記測定カラムに流し込み充填した後、室温条件下、前記超純水をカラムにSV=30hr−1で通水し、20時間後の測定カラム出口水のTOC濃度(TOC)を測定する。
(3)下記式によってΔTOCを算出する。
ΔTOC(ppb)=TOC−TOC
[9] The anion exchange resin according to any one of [2] to [8], wherein ΔTOC in the ultrapure water flow test of (A) below is 0.5 ppb or less.
(A) Ultrapure water flow test (1) An empty measurement column having a diameter of 30 mm and a length of 1000 mm was filled with ultrapure water having a specific resistance of 18 MΩ · cm or more and a water temperature of 20 to 40 ° C. under room temperature conditions. The ultrapure water is passed at SV = 30 hr −1 , and the TOC concentration (TOC 0 ) of the measurement column outlet water is measured.
(2) After pouring and filling 500 mL of the anion exchange resin into the measurement column, the ultrapure water was passed through the column at SV = 30 hr −1 at room temperature, and the TOC concentration of the measurement column outlet water after 20 hours. Measure (TOC 1 ).
(3) Calculate ΔTOC by the following equation.
ΔTOC (ppb) = TOC 1 −TOC 0

〔10〕 球形のアニオン交換樹脂であって、1粒子あたりの押し潰し強度が7.5N以上である〔2〕ないし〔9〕のいずれかに記載のアニオン交換樹脂。 [10] The anion exchange resin according to any one of [2] to [9], which is a spherical anion exchange resin and has a crushing strength per particle of 7.5 N or more.

〔11〕 下記(A)の超純水通水試験におけるΔTOCが0.2ppb以下であることを特徴とするアニオン交換樹脂。
(A)超純水通水試験
(1)直径30mm、長さ1000mmの空の測定カラムに、室温条件下、比抵抗が18MΩ・cm以上、水温20以上40℃以下の超純水を満たし、該超純水をSV=30hr−1で通水し、測定カラム出口水のTOC濃度(TOC)を測定する。
(2)前記アニオン交換樹脂500mLを前記測定カラムに流し込み充填した後、室温条件下、前記超純水をカラムにSV=30hr−1で通水し、20時間後の測定カラム出口水のTOC濃度(TOC)を測定する。
(3)下記式によってΔTOCを算出する。
ΔTOC(ppb)=TOC−TOC
[11] An anion exchange resin characterized in that ΔTOC in the ultrapure water flow test of (A) below is 0.2 ppb or less.
(A) Ultrapure water flow test (1) An empty measurement column having a diameter of 30 mm and a length of 1000 mm was filled with ultrapure water having a specific resistance of 18 MΩ · cm or more and a water temperature of 20 to 40 ° C. under room temperature conditions. The ultrapure water is passed at SV = 30 hr −1 , and the TOC concentration (TOC 0 ) of the measurement column outlet water is measured.
(2) After pouring and filling 500 mL of the anion exchange resin into the measurement column, the ultrapure water was passed through the column at SV = 30 hr −1 at room temperature, and the TOC concentration of the measurement column outlet water after 20 hours. Measure (TOC 1 ).
(3) Calculate ΔTOC by the following equation.
ΔTOC (ppb) = TOC 1 −TOC 0

〔12〕 球形のアニオン交換樹脂であって、1粒子あたりの押し潰し強度が7.5N以上であることを特徴とするアニオン交換樹脂。 [12] A spherical anion exchange resin, wherein the crushing strength per particle is 7.5 N or more.

〔13〕 アニオン交換樹脂と混合した場合における体積増加率が混合前の150%以下である〔2〕ないし〔12〕のいずれかに記載のアニオン交換樹脂。 [13] The anion exchange resin according to any one of [2] to [12], wherein the volume increase rate when mixed with the anion exchange resin is 150% or less before mixing.

〔14〕 アニオン性解離基を含有する水溶性高分子を接触させて得られる〔2〕ないし〔13〕のいずれかに記載のアニオン交換樹脂。 [14] The anion exchange resin according to any one of [2] to [13], which is obtained by contacting a water-soluble polymer containing an anionic dissociative group.

〔15〕 〔2〕ないし〔14〕のいずれかに記載のアニオン交換樹脂を用いて形成されることを特徴とする混床樹脂。 [15] A mixed-bed resin formed using the anion exchange resin according to any one of [2] to [14].

〔16〕 〔2〕ないし〔14〕のいずれかに記載のアニオン交換樹脂を用いることを特徴とする電子部品・材料洗浄用超純水の製造方法。 [16] A method for producing ultrapure water for washing electronic parts / materials, wherein the anion exchange resin according to any one of [2] to [14] is used.

本発明によれば、不純物の残存や分解物の発生が抑制された、溶出物の少ないアニオン交換樹脂を提供することができ、このアニオン交換樹脂をそのまま、またはこれを用いた混床樹脂により、高純度の電子部品・材料洗浄用超純水を製造することができる。   According to the present invention, it is possible to provide an anion exchange resin with a small amount of eluate in which the remaining of impurities and decomposition products are suppressed, and this anion exchange resin is used as it is or by a mixed bed resin using the anion exchange resin. High purity ultrapure water for cleaning electronic parts and materials can be manufactured.

実施例、比較例、および参考例のCl形アニオン交換樹脂の水分含有率と交換容量の関係を示すグラフである。It is a graph which shows the relationship between the moisture content of the Cl-type anion exchange resin of an Example, a comparative example, and a reference example, and an exchange capacity. 実施例、比較例、および参考例のOH形アニオン交換樹脂の水分含有率と交換容量の関係を示すグラフである。It is a graph which shows the relationship between the moisture content of OH type anion exchange resin of an Example, a comparative example, and a reference example, and an exchange capacity. 実施例および比較例のOH形アニオン交換樹脂の交換容量と超純水洗浄試験におけるΔTOCとの関係を示すグラフである。It is a graph which shows the relationship between the exchange capacity of OH type anion exchange resin of an Example and a comparative example, and (DELTA) TOC in an ultrapure water washing test. 実施例および比較例のCl形アニオン交換樹脂の交換容量とこのCl形アニオン交換樹脂を用いて調製されたOH形アニオン交換樹脂の超純水洗浄試験におけるΔTOCとの関係を示すグラフである。It is a graph which shows the relationship between the exchange capacity of the Cl type anion exchange resin of an Example and a comparative example, and (DELTA) TOC in the ultrapure water washing test of OH type anion exchange resin prepared using this Cl type anion exchange resin. 実施例8及び比較例7の超純水通水試験におけるΔTOCの経時変化を示すグラフである。It is a graph which shows the time-dependent change of (DELTA) TOC in the ultrapure water flow test of Example 8 and Comparative Example 7.

以下、本発明の実施の形態につき詳細に説明する。尚、以下の記載は、本発明の実施態様の一例であって、本発明はその要旨を超えない限り、以下の記載に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the following description is an example of the embodiment of this invention, Comprising: This invention is not limited to the following description, unless the summary is exceeded.

[1]アニオン交換樹脂の製造方法
本発明のアニオン交換樹脂の製造方法は、下記(a)〜(e)の工程を含むことを特徴とする。
(a)モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合させて架橋共重合体を得る工程
(b)下記式(I)で示される溶出性化合物の含有量を、モノビニル芳香族モノマーと架橋性芳香族モノマーとの架橋共重合体1gに対して400μg以下とする工程

Figure 2012157864
(式(I)中、Zは、水素原子又はアルキル基を示す。lは自然数を示す。)
(c)前記溶出性化合物の含有量が架橋共重合体1gに対して400μg以下の架橋共重合体をハロアルキル化して、前記モノビニル芳香族モノマーに対して80モル%以下のハロアルキル基を導入する工程
(d)ハロアルキル化された架橋共重合体から、下記式(II)で示される溶出性化合物を除去する工程
Figure 2012157864
(式(II)中、Xは、水素原子、ハロゲン原子、またはハロゲン原子で置換されていても良いアルキル基を示す。Yは、ハロゲン原子を示す。m、nはそれぞれ独立に自然数を示す。)
(e)前記溶出性化合物が除去されたハロアルキル化架橋共重合体をアミン化合物と反応させる工程 [1] Method for Producing Anion Exchange Resin The method for producing an anion exchange resin of the present invention includes the following steps (a) to (e).
(A) Step of obtaining a crosslinked copolymer by copolymerizing a monovinyl aromatic monomer and a crosslinkable aromatic monomer (b) The content of the eluting compound represented by the following formula (I) The process which makes 400 micrograms or less with respect to 1g of crosslinked copolymers with a crosslinkable aromatic monomer
Figure 2012157864
(In the formula (I), Z represents a hydrogen atom or an alkyl group. L represents a natural number.)
(C) A step of introducing a haloalkyl group of 80 mol% or less with respect to the monovinyl aromatic monomer by haloalkylating a crosslinked copolymer having a content of the eluting compound of 400 μg or less with respect to 1 g of the crosslinked copolymer. (D) A step of removing the eluting compound represented by the following formula (II) from the haloalkylated crosslinked copolymer
Figure 2012157864
(In formula (II), X represents a hydrogen atom, a halogen atom, or an alkyl group which may be substituted with a halogen atom. Y represents a halogen atom. M and n each independently represent a natural number. )
(E) reacting the haloalkylated crosslinked copolymer from which the eluting compound has been removed with an amine compound

[1−1](a)モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合させて架橋共重合体を得る工程
本発明に係るモノビニル芳香族モノマーとしては、スチレン、メチルスチレン、エチルスチレン等のアルキル置換スチレン類、ブロモスチレン等のハロゲン置換スチレン類が挙げられる。これらは1種を単独で用いても良く、2種以上を混合して用いても良い。このうち、スチレンまたはスチレンを主体とするモノマーが好ましい。
[1-1] (a) Step of copolymerizing a monovinyl aromatic monomer and a crosslinkable aromatic monomer to obtain a crosslinked copolymer Examples of the monovinyl aromatic monomer according to the present invention include styrene, methylstyrene, and ethylstyrene. And halogen-substituted styrenes such as bromostyrene. These may be used alone or in combination of two or more. Among these, styrene or a monomer mainly composed of styrene is preferable.

また、架橋性芳香族モノマーとしてはジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、ジビニルキシレン等が挙げられる。これらは1種を単独で用いても良く、2種以上を混合して用いても良い。このうち、ジビニルベンゼンが好ましい。
工業的に製造されるジビニルベンゼンは、通常副生物であるエチルビニルベンゼン(エチルスチレン)を多量に含有しているが、本発明においてはこのようなジビニルベンゼンも使用できる。
Examples of the crosslinkable aromatic monomer include divinylbenzene, trivinylbenzene, divinyltoluene, divinylnaphthalene, and divinylxylene. These may be used alone or in combination of two or more. Of these, divinylbenzene is preferred.
Industrially produced divinylbenzene usually contains a large amount of by-product ethyl vinylbenzene (ethyl styrene), but such divinylbenzene can also be used in the present invention.

架橋性芳香族モノマーの使用量としては、通常全モノマー重量に対して0.5〜30重量%、好ましくは2.5〜12重量%、更に好ましくは4〜10重量%である。架橋性芳香族モノマーの使用量が多く、架橋度が高くなるほど、得られるアニオン交換樹脂の耐酸化性が向上する傾向にある。一方、架橋度が高すぎると、後工程で溶出性オリゴマーの水洗除去が不完全となりやすい。なお、後段の(c)ハロアルキル化工程において、ハロアルキル化の転化率を下げる工程を実施する場合は、ハロアルキル化の副反応としての後架橋反応も抑制されるので、それを補完するために重合時の架橋性芳香族モノマーの添加量を増加させる方法も好適に使用される。   The amount of the crosslinkable aromatic monomer used is usually 0.5 to 30% by weight, preferably 2.5 to 12% by weight, more preferably 4 to 10% by weight, based on the total monomer weight. As the amount of the crosslinkable aromatic monomer used increases and the degree of crosslinking increases, the oxidation resistance of the resulting anion exchange resin tends to improve. On the other hand, when the degree of crosslinking is too high, the leaching oligomers are easily removed by water washing in the subsequent step. In the latter stage (c) haloalkylation step, when the step of reducing the conversion rate of haloalkylation is carried out, the post-crosslinking reaction as a side reaction of haloalkylation is also suppressed. A method of increasing the addition amount of the crosslinkable aromatic monomer is also preferably used.

モノビニル芳香族モノマーと架橋性芳香族モノマーとの共重合反応は、ラジカル重合開始剤を用いて公知の技術に基づいて行うことができる。
ラジカル重合開始剤としては、過酸化ジベンゾイル、過酸化ラウロイル、t−ブチルハイドロパーオキサイド、アゾビスイソブチロニトリル等の1種又は2種以上が用いられ、通常、全モノマー重量に対して0.05重量%以上、5重量%以下で用いられる。
重合様式は、特に限定されるものではなく、溶液重合、乳化重合、懸濁重合等の種々の様式で重合を行うことができるが、このうち均一なビーズ状の共重合体が得られる懸濁重合法が好ましく採用される。懸濁重合法は、一般にこの種の共重合体の製造に使用される溶媒、分散安定剤等を用い、公知の反応条件を選択して行うことができる。
The copolymerization reaction of the monovinyl aromatic monomer and the crosslinkable aromatic monomer can be performed based on a known technique using a radical polymerization initiator.
As the radical polymerization initiator, one kind or two or more kinds such as dibenzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, azobisisobutyronitrile are used. It is used in an amount of 05% by weight or more and 5% by weight or less.
The polymerization mode is not particularly limited, and the polymerization can be carried out in various modes such as solution polymerization, emulsion polymerization, suspension polymerization, etc. Among them, suspension in which a uniform bead-shaped copolymer is obtained. A polymerization method is preferably employed. The suspension polymerization method can be carried out by selecting a known reaction condition using a solvent, a dispersion stabilizer or the like generally used for the production of this type of copolymer.

なお、共重合反応における重合温度は、通常、室温(約18℃〜25℃)以上、好ましくは40℃以上、さらに好ましくは70℃以上であり、通常250℃以下、好ましくは150℃以下、更に好ましくは140℃以下である。重合温度が高すぎると解重合が併発し重合完結度がかえって低下する。重合温度が低すぎると重合完結度が不十分となる。
また、重合雰囲気は、空気下もしくは不活性ガス下で実施可能であり、不活性ガスとしては窒素、二酸化炭素、アルゴン等が使用できる。
また、特開2006−328290号公報に記載の重合法も好適に使用できる。
また、均一粒径の架橋共重合体を得る公知の方法も好適に使用できる。
例えば特開2002−35560号公報、特開2001−294602号公報、特開昭57−102905号公報、特開平3−249931号公報の方法が好適に使用できる。
The polymerization temperature in the copolymerization reaction is usually room temperature (about 18 ° C. to 25 ° C.) or more, preferably 40 ° C. or more, more preferably 70 ° C. or more, and usually 250 ° C. or less, preferably 150 ° C. or less. Preferably it is 140 degrees C or less. If the polymerization temperature is too high, depolymerization occurs at the same time, and the degree of polymerization completion is lowered. If the polymerization temperature is too low, the degree of polymerization completion will be insufficient.
The polymerization atmosphere can be carried out under air or under an inert gas, and nitrogen, carbon dioxide, argon or the like can be used as the inert gas.
Moreover, the polymerization method described in JP-A-2006-328290 can also be suitably used.
Moreover, the well-known method of obtaining the crosslinked copolymer of a uniform particle size can also be used conveniently.
For example, methods disclosed in JP 2002-35560 A, JP 2001-294602 A, JP 57-102905 A, and JP 3-249931 A can be suitably used.

[1−2](b)特定構造を有する溶出性化合物の含有量を、架橋共重合体1gに対して400μg以下とする工程
本発明のアニオン交換樹脂の製造方法は、[1−1]章で得られた架橋共重合体をハロアルキル化する前に、下記式(I)で示される溶出性化合物の含有量(以下「溶出性化合物(I)」と称す場合がある。)を、架橋共重合体1gに対して400μg以下、好ましくは300μg以下、より好ましくは200μg以下とする工程を含む。
[1-2] (b) A step of setting the content of the eluting compound having a specific structure to 400 μg or less with respect to 1 g of the crosslinked copolymer The method for producing an anion exchange resin of the present invention is described in [1-1] chapter. Prior to haloalkylation of the cross-linked copolymer obtained in (1), the content of the eluting compound represented by the following formula (I) (hereinafter sometimes referred to as “eluting compound (I)”) is used as the crosslinking copolymer. It includes a step of 400 μg or less, preferably 300 μg or less, more preferably 200 μg or less with respect to 1 g of the polymer.

Figure 2012157864
(式(I)中、Zは、水素原子またはアルキル基を示す。lは自然数を示す。)
Figure 2012157864
(In the formula (I), Z represents a hydrogen atom or an alkyl group. L represents a natural number.)

ここで、Zのアルキル基は、通常炭素数1〜8のアルキル基であり、好ましくは、メチル基、エチル基、プロピル基、ブチル基であり、さらに好ましくは、メチル基、エチル基である。   Here, the alkyl group of Z is a C1-C8 alkyl group normally, Preferably, they are a methyl group, an ethyl group, a propyl group, and a butyl group, More preferably, they are a methyl group and an ethyl group.

ハロアルキル化に供する架橋共重合体中の前記溶出性化合物(I)の含有量が400μgより多いと、不純物の残存や分解物の発生が抑制された、溶出物の少ないアニオン交換樹脂を得ることができない。該溶出性化合物(I)の含有量は少ない程好ましいが、通常その下限は50μg程度である。   When the content of the eluting compound (I) in the cross-linked copolymer to be subjected to haloalkylation is more than 400 μg, it is possible to obtain an anion exchange resin with a small amount of the eluting material in which the remaining of impurities and the generation of decomposition products are suppressed. Can not. The content of the eluting compound (I) is preferably as small as possible, but the lower limit is usually about 50 μg.

なお、本発明に係る前記溶出性化合物(I)とは、モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合する際に得られる未反応、または反応不十分である副生物である。この溶出性化合物(I)は、製品時におけるイオン交換樹脂の溶出物の原因となるものであり、ポリスチレン換算における重量平均分子量が、通常200以上、好ましくは300以上であり、通常1,000,000以下、好ましくは100,000以下である。例えばスチレン系樹脂の場合、重合不十分の低重合体成分としてスチレンダイマー、スチレントリマー、スチレンオリゴマー等が、遊離重合体成分として線状ポリスチレン、ポリスチレン微粒子等が挙げられる。また重合反応における連鎖移動反応での副生物として、モノマー中に含まれる重合禁止剤の結合した低重合体成分や遊離重合体成分が挙げられる。   The eluting compound (I) according to the present invention is an unreacted or incomplete reaction product obtained when copolymerizing a monovinyl aromatic monomer and a crosslinkable aromatic monomer. This eluting compound (I) causes an ion exchange resin eluate at the time of product, and has a weight average molecular weight in terms of polystyrene of usually 200 or more, preferably 300 or more, and usually 1,000,000. 000 or less, preferably 100,000 or less. For example, in the case of a styrene resin, styrene dimer, styrene trimer, styrene oligomer, etc. are mentioned as low polymer components that are insufficiently polymerized, and linear polystyrene, polystyrene fine particles, etc. are mentioned as free polymer components. Moreover, as a by-product in the chain transfer reaction in the polymerization reaction, a low polymer component or a free polymer component to which a polymerization inhibitor contained in the monomer is bonded can be mentioned.

架橋共重合体中の溶出性化合物(I)の含有量は、例えば、後述の実施例の項に記載される溶出試験により求めることができる。   The content of the eluting compound (I) in the crosslinked copolymer can be determined, for example, by an elution test described in the Examples section described later.

本発明に係る(b)工程は、特に、前記(a)工程における重合条件を調整することにより、(a)工程と同時に行われる。また、重合後、得られた架橋共重合体を洗浄することによって溶出性化合物(I)を除去して、溶出性化合物含有量が低減された架橋共重合体を得ることもできる。   The step (b) according to the present invention is performed simultaneously with the step (a) by adjusting the polymerization conditions in the step (a). Further, after the polymerization, the resulting crosslinked copolymer is washed to remove the eluting compound (I), thereby obtaining a crosslinked copolymer with a reduced content of the eluting compound.

前記(a)工程における重合条件を調整することにより、溶出性化合物含有量の少ない架橋共重合体を得る場合、かかる重合条件の調整方法としては、例えば、以下のものが挙げられる。   In the case of obtaining a cross-linked copolymer having a low content of the eluting compound by adjusting the polymerization conditions in the step (a), examples of the method for adjusting the polymerization conditions include the following.

[1−2−1]重合温度の調整
前述の如く、本発明における共重合反応における重合温度が高すぎると解重合が併発し重合完結度がかえって低下し、逆に、重合温度が低すぎると重合完結度が不十分となり、溶出性化合物含有量の少ない架橋共重合体を得ることができない。従って、モノビニル芳香族モノマーと架橋性芳香族モノマーとの重合温度は、室温(約18℃〜25℃)以上、好ましくは40℃以上、さらに好ましくは70℃以上で、250℃以下、好ましくは150℃以下、更に好ましくは140℃以下の範囲で適宜調整する。
[1-2-1] Adjustment of polymerization temperature As described above, if the polymerization temperature in the copolymerization reaction in the present invention is too high, depolymerization occurs at the same time, and the degree of completion of the polymerization is lowered. Conversely, if the polymerization temperature is too low, The degree of polymerization completion is insufficient, and a crosslinked copolymer having a low content of eluting compound cannot be obtained. Therefore, the polymerization temperature of the monovinyl aromatic monomer and the crosslinkable aromatic monomer is room temperature (about 18 ° C. to 25 ° C.) or higher, preferably 40 ° C. or higher, more preferably 70 ° C. or higher, and 250 ° C. or lower, preferably 150. It adjusts suitably in the range below 150 degreeC, More preferably 140 degreeC or less.

[1−2−2]脱酸素モノマーの添加
脱酸素モノマーとは、モノマー中の酸素濃度を飽和酸素濃度よりも下げたものをいい、重合不十分の低重合体成分(ダイマー、トリマー、オリゴマー)、遊離重合体成分(線状ポリマー、ポリマー微粒子)、重合反応による副生物等の発生を抑制する役割がある。例えば、通常のスチレン系モノマーの飽和酸素濃度は5重量%から10重量%程度であるが、本発明においては、飽和酸素濃度が5重量%未満、特に3重量%以下の脱酸素モノマーを用いることが好ましい。
[1-2-2] Addition of deoxygenated monomer Deoxygenated monomer refers to a monomer in which the oxygen concentration in the monomer is lower than the saturated oxygen concentration, and a low polymer component (dimer, trimer, oligomer) that is insufficiently polymerized. In addition, it has a role of suppressing generation of free polymer components (linear polymers, polymer fine particles), by-products due to polymerization reaction, and the like. For example, the saturated oxygen concentration of a normal styrenic monomer is about 5% to 10% by weight. In the present invention, a deoxygenated monomer having a saturated oxygen concentration of less than 5% by weight, particularly 3% by weight or less is used. Is preferred.

脱酸素モノマーの具体的な調製法としては、モノマーを不活性ガスでバブリングする方法、膜脱気する方法、不活性ガスをモノマー貯槽の上面気相部に流通する方法、シリカゲルなどのカラムで処理する方法が挙げられる。あるいは市販の脱酸素モノマーも使用できる。中でも好ましくはモノマーを不活性ガスでバブリングする方法であり、この場合、使用する不活性ガスは、窒素、二酸化炭素、アルゴンが好ましい。また、脱酸素モノマーは不活性ガス雰囲気中で保管する。   Specific methods for preparing the deoxygenated monomer include a method of bubbling the monomer with an inert gas, a method of degassing the membrane, a method of circulating the inert gas in the upper gas phase of the monomer storage tank, and a column such as silica gel. The method of doing is mentioned. Alternatively, commercially available deoxygenated monomers can also be used. Among them, the method of bubbling the monomer with an inert gas is preferable, and in this case, the inert gas used is preferably nitrogen, carbon dioxide, or argon. The deoxygenated monomer is stored in an inert gas atmosphere.

脱酸素モノマーの添加量は、モノマー混合物の総量に対し、通常10重量%以上、好ましくは50重量%以上、更に好ましくは80重量%以上である。脱酸素モノマーの添加量が少なすぎると、重合不十分の低重合体成分(ダイマー、トリマー、オリゴマー)、遊離重合体成分(線状ポリマー、ポリマー微粒子)、重合反応による副生物等の発生量が多くなる。   The addition amount of the deoxygenated monomer is usually 10% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more based on the total amount of the monomer mixture. If the amount of deoxygenated monomer is too small, low polymer components (dimers, trimers, oligomers) that are insufficiently polymerized, free polymer components (linear polymers, polymer fine particles), and by-products due to polymerization reactions are generated. Become more.

[1−2−3]重合禁止剤を除去したモノマーの使用
重合で使用するモノビニル芳香族モノマーと架橋性芳香族モノマーとの混合物中の重合禁止剤を除去することにより、重合不十分の低重合体成分(ダイマー、トリマー、オリゴマー)、遊離重合体成分(線状ポリマー、ポリマー微粒子)、重合反応による副生物等の発生を抑制することができ、溶出性化合物含有量の少ない架橋共重合体を得ることができる。
[1-2-3] Use of monomer from which polymerization inhibitor has been removed By removing the polymerization inhibitor in the mixture of monovinyl aromatic monomer and crosslinkable aromatic monomer used in the polymerization, low polymerization A cross-linked copolymer that can suppress the generation of coalesced components (dimers, trimers, oligomers), free polymer components (linear polymers, polymer fine particles), by-products due to polymerization reaction, and has a low content of eluting compounds. Obtainable.

[1−2−4]不純物の少ない架橋性芳香族モノマーの使用
通常、架橋性芳香族モノマー、例えば、ジビニルベンゼン中には、ジエチルベンゼン等の非重合性の不純物が存在し、これが溶出性化合物(I)の生成の原因となることから、重合に用いる架橋性芳香族モノマーは、不純物含有量の少ないものであることが好ましい。
かかる不純物含有量の少ない架橋性芳香族モノマーとしては、例えば、当該架橋性芳香族モノマー含有量(純度)が57重量%以上というような、特定のグレードを選択して使用することが好ましい。その他、例えば蒸留等により不純物を除去することにより、不純物含有量の少ない架橋性芳香族モノマーを得ることもできる。
[1-2-4] Use of a Crosslinkable Aromatic Monomer with Less Impurities Usually, in a crosslinkable aromatic monomer, for example, divinylbenzene, non-polymerizable impurities such as diethylbenzene exist, and this is an eluting compound ( It is preferable that the crosslinkable aromatic monomer used for the polymerization has a low impurity content because it causes generation of I).
As such a crosslinkable aromatic monomer having a low impurity content, it is preferable to select and use a specific grade such that the crosslinkable aromatic monomer content (purity) is 57% by weight or more. In addition, a crosslinkable aromatic monomer having a small impurity content can be obtained by removing impurities by, for example, distillation.

本発明で用いる架橋性芳香族モノマーの架橋性芳香族モノマー含有量(純度)は、特に好ましくは60重量%以上、さらに好ましくは80重量%以上であり、架橋性芳香族モノマー中の非重合性の不純物含有量は、モノマー重量当り通常5重量%以下、好ましくは3重量%以下、更に好ましくは1重量%以下である。この不純物含有量が多すぎると、重合時に不純物に対する連鎖移動反応を起こしやすくなるため、重合終了後のポリマー中に残存する溶出性オリゴマー(ポリスチレン)の量が増加することがあり、溶出性化合物含有量の少ない架橋共重合体を得ることができない。   The crosslinkable aromatic monomer content (purity) of the crosslinkable aromatic monomer used in the present invention is particularly preferably 60% by weight or more, more preferably 80% by weight or more, and is non-polymerizable in the crosslinkable aromatic monomer. The impurity content is usually 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less per monomer weight. If this impurity content is too high, it tends to cause a chain transfer reaction to impurities during polymerization, so the amount of eluting oligomer (polystyrene) remaining in the polymer after polymerization may increase, and the eluting compound content A small amount of a crosslinked copolymer cannot be obtained.

[1−2−5]架橋性芳香族モノマーの使用量の調整
前述の如く、共重合に供する架橋性芳香族モノマーが多くなるほど樹脂の耐酸化性が向上する傾向にある。架橋度が高すぎると、後工程で溶出性オリゴマーの抽出除去が不完全となりやすく、溶出性化合物含有量の少ない架橋共重合体を得にくくなる。従って、架橋性芳香族モノマーの使用量は、全モノマー重量に対して0.5〜30重量%、好ましくは2.5〜12重量%、更に好ましくは4〜10重量%の範囲で適宜調整する。
[1-2-5] Adjustment of use amount of crosslinkable aromatic monomer As described above, the more the crosslinkable aromatic monomer used for copolymerization, the more the oxidation resistance of the resin tends to be improved. If the degree of crosslinking is too high, extraction and removal of the eluting oligomer is likely to be incomplete in the subsequent step, and it becomes difficult to obtain a crosslinked copolymer having a low content of the eluting compound. Therefore, the use amount of the crosslinkable aromatic monomer is appropriately adjusted in the range of 0.5 to 30% by weight, preferably 2.5 to 12% by weight, more preferably 4 to 10% by weight based on the total monomer weight. .

また、前記(a)工程後に、(b)工程を行う場合、以下の洗浄工程を採用することができる。   In addition, when the step (b) is performed after the step (a), the following cleaning step can be employed.

[1−2−6]架橋共重合体を洗浄する工程
本発明では、必要に応じて、前記(a)工程でモノビニル芳香族モノマーと架橋性芳香族モノマーとから製造した架橋共重合体を、後述の(c)ハロアルキル化工程の前に、溶媒を用いて洗浄することにより、前記溶出性化合物(I)を除去することができる。
[1-2-6] Step of washing cross-linked copolymer In the present invention, if necessary, the cross-linked copolymer produced from the monovinyl aromatic monomer and the cross-linkable aromatic monomer in the step (a), The eluting compound (I) can be removed by washing with a solvent before the (c) haloalkylation step described later.

この洗浄方法は、架橋共重合体をカラムに詰めて溶媒を通液するカラム方式か、或いはバッチ洗浄法で行うことができる。
洗浄温度は、通常室温(20℃)以上、好ましくは30℃以上、更に好ましくは50℃以上、特に好ましくは90℃以上、また通常150℃以下、好ましくは130℃以下、更に好ましくは120℃以下である。洗浄温度が高すぎると架橋共重合体の分解を併発する。洗浄温度が低すぎると洗浄効率が低下する。
溶媒との接触時間は、通常5分以上、好ましくは1時間以上、更に好ましくは2時間以上で、通常4時間以下である。溶媒との接触時間が短すぎると洗浄効率が低下し、時間が長すぎると生産性が低下する。
This washing method can be carried out by a column method in which a crosslinked copolymer is packed in a column and a solvent is passed, or by a batch washing method.
The washing temperature is usually room temperature (20 ° C) or higher, preferably 30 ° C or higher, more preferably 50 ° C or higher, particularly preferably 90 ° C or higher, and usually 150 ° C or lower, preferably 130 ° C or lower, more preferably 120 ° C or lower. It is. If the washing temperature is too high, the cross-linked copolymer will be decomposed. If the washing temperature is too low, the washing efficiency is lowered.
The contact time with the solvent is usually 5 minutes or longer, preferably 1 hour or longer, more preferably 2 hours or longer, and usually 4 hours or shorter. If the contact time with the solvent is too short, the cleaning efficiency is lowered, and if the time is too long, the productivity is lowered.

洗浄に用いる溶媒としては、炭素数5以上の脂肪族炭化水素類、例えばペンタン、ヘキサン、ヘプタン等;芳香族炭化水素類、例えばベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン等;アルコール類、例えばメタノール、エタノール、プロパノール、ブタノール等;ケトン類、例えばアセトン、メチルエチルケトン等;エーテル類、例えばジメチルエーテル、ジエチルエーテル、メチラール等;塩素系溶媒、例えばジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン等;フェノール類、例えばフェノール等;が挙げられ、これらは1種を単独で用いても良く、2種以上を混合して用いても良い。これらのうち、好ましくはベンゼン、トルエン、キシレン、アセトン、ジエチルエーテル、メチラール、ジクロロメタン、クロロホルム、ジクロロエタン、トリクロロエタンである。また、これらの溶媒に水を混合して昇温し、共沸状態で洗浄する方法も採ることができる。   Solvents used for washing include aliphatic hydrocarbons having 5 or more carbon atoms, such as pentane, hexane, and heptane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, and the like; alcohols such as methanol, Ethanol, propanol, butanol, etc .; ketones such as acetone, methyl ethyl ketone, etc .; ethers such as dimethyl ether, diethyl ether, methylal, etc .; chlorinated solvents such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, etc .; phenols such as Such as phenol, and the like. These may be used alone or in combination of two or more. Of these, benzene, toluene, xylene, acetone, diethyl ether, methylal, dichloromethane, chloroform, dichloroethane, and trichloroethane are preferable. Further, a method of mixing these solvents with water, raising the temperature, and washing in an azeotropic state can also be employed.

[1−3](c)架橋共重合体をハロアルキル化する工程
前記[1−1]、[1−2]章の工程を経て得られた架橋共重合体は、次いで、膨潤状態で、フリーデル・クラフツ反応触媒の存在下、ハロアルキル化剤を反応させてハロアルキル化する。
[1-3] (c) Step of haloalkylating the crosslinked copolymer The crosslinked copolymer obtained through the steps of [1-1] and [1-2] is then free in a swollen state. A haloalkylating agent is reacted to haloalkylate in the presence of a Dell-Crafts reaction catalyst.

架橋共重合体を膨潤させるには、膨潤溶媒、例えばジクロロエタンを使用することができるが、本発明においては、十分にハロメチル化を進行させるために、ハロアルキル化剤のみにより膨潤させるのが好ましい。   In order to swell the crosslinked copolymer, a swelling solvent such as dichloroethane can be used. In the present invention, it is preferable to swell only with a haloalkylating agent in order to sufficiently promote halomethylation.

フリーデル・クラフツ反応触媒としては、塩化亜鉛、塩化鉄(III)、塩化スズ(IV)、塩化アルミニウム等のルイス酸触媒が挙げられる。これらの触媒は1種を単独で用いても良く、2種以上を混合して用いても良い。   Examples of Friedel-Crafts reaction catalysts include Lewis acid catalysts such as zinc chloride, iron (III) chloride, tin (IV) chloride, and aluminum chloride. These catalysts may be used individually by 1 type, and may mix and use 2 or more types.

ハロアルキル化剤を反応試薬としてだけではなく共重合体の膨潤溶媒として作用させるには、共重合体との親和性が高いものを用いることが好ましく、例えば、クロロメチルメチルエーテル、塩化メチレン、ビス(クロロメチル)エーテル、ポリ塩化ビニル、ビス(クロロメチル)ベンゼン等のハロゲン化合物が挙げられ、これらは1種を単独で用いても良く、2種以上を混合して用いても良いが、より好ましいのはクロロメチルメチルエーテルである。即ち、本発明におけるハロアルキル化とは、好ましくはクロロメチル化である。   In order to make the haloalkylating agent act not only as a reaction reagent but also as a swelling solvent for the copolymer, it is preferable to use one having a high affinity with the copolymer, for example, chloromethyl methyl ether, methylene chloride, bis ( And halogen compounds such as chloromethyl) ether, polyvinyl chloride, bis (chloromethyl) benzene, etc., and these may be used alone or in combination of two or more, but more preferably. Is chloromethyl methyl ether. That is, the haloalkylation in the present invention is preferably chloromethylation.

本発明のアニオン交換樹脂においては、本工程におけるハロアルキル基導入率が、モノビニル芳香族モノマーが100モル%ハロアルキル化されたと仮定したときの理論上のハロゲン含有率に対して80%以下、好ましくは75%以下、更に好ましくは70%以下とすることができる。このハロアルキル基導入率(モノビニル芳香族モノマーが100モル%ハロアルキル化されたと仮定したときの理論上のハロゲン含有率に対する導入されたハロゲン原子の割合の百分率)を高くすると、導入時において、架橋共重合体の主鎖が切れたり、過剰に導入されたハロアルキル基が、導入後に遊離して不純物の原因となるが、このようにハロアルキル基導入率を制限することにより、不純物の生成を抑制して溶出物の少ないアニオン交換樹脂を得ることができる。   In the anion exchange resin of the present invention, the introduction rate of the haloalkyl group in this step is 80% or less, preferably 75 with respect to the theoretical halogen content when the monovinyl aromatic monomer is assumed to be 100 mol% haloalkylated. % Or less, more preferably 70% or less. Increasing this haloalkyl group introduction rate (percentage of the proportion of halogen atoms introduced relative to the theoretical halogen content assuming that the monovinyl aromatic monomer is haloalkylated at 100 mol%) increases the cross-linking The main chain of the coalescence breaks or excessively introduced haloalkyl groups are liberated after introduction and cause impurities. By limiting the introduction rate of haloalkyl groups in this way, the generation of impurities is suppressed and eluted. An anion exchange resin with a small amount can be obtained.

本発明においては、ハロアルキル基の導入量を抑えることにより、ハロアルキル化工程での副反応も低減するので、溶出性のオリゴマーも発生しにくくなると考えられる。また、発生する副生物も、従来処方と比べて後工程で洗浄除去されにくい物質が少なくなると考えられる。その結果、溶出物量が著しく少ないアニオン交換樹脂を得ることができる。   In the present invention, by suppressing the introduction amount of the haloalkyl group, side reactions in the haloalkylation step are also reduced, so that it is considered that an eluting oligomer is hardly generated. Moreover, it is thought that the by-product which generate | occur | produces will also reduce the substance which is hard to wash and remove in a post process compared with a conventional formulation. As a result, an anion exchange resin with a remarkably small amount of eluate can be obtained.

以下に具体的なハロアルキル基導入方法について詳述する。
ハロアルキル化剤の使用量は、架橋共重合体の架橋度、その他の条件により広い範囲から選ばれるが、少なくとも架橋共重合体を十分に膨潤させる量が好ましく、架橋共重合体に対して、通常1重量倍以上、好ましくは2重量倍以上であり、通常50重量倍以下、好ましくは20重量倍以下である。
Hereinafter, a specific method for introducing a haloalkyl group will be described in detail.
The amount of the haloalkylating agent used is selected from a wide range depending on the degree of crosslinking of the crosslinked copolymer and other conditions, but is preferably an amount that at least sufficiently swells the crosslinked copolymer. 1 times or more, preferably 2 times or more, usually 50 times or less, preferably 20 times or less.

また、フリーデル・クラフツ反応触媒の使用量は通常架橋共重合体の重量に対して0.001〜10倍量、好ましくは0.1〜1倍量、更に好ましくは0.1〜0.7倍量である。   The amount of the Friedel-Crafts reaction catalyst used is usually 0.001 to 10 times, preferably 0.1 to 1 times, more preferably 0.1 to 0.7 times the weight of the crosslinked copolymer. Double the amount.

架橋共重合体へのハロアルキル基導入率を80%以下とするための手段としては、反応温度を低くする、活性の低い触媒を用いる、触媒添加量を少なくする等の手段が挙げられる。即ち、架橋共重合体とハロアルキル化剤との反応に影響を与える主因子としては、反応温度、フリーデル・クラフツ反応触媒の活性(種類)およびその添加量、ハロアルキル化剤添加量等が挙げられるため、これらの条件を調整することによりハロアルキル基導入率を制御することができる。   Examples of means for setting the haloalkyl group introduction rate to the crosslinked copolymer to 80% or less include means for lowering the reaction temperature, using a catalyst having low activity, and reducing the amount of catalyst added. That is, the main factors affecting the reaction between the cross-linked copolymer and the haloalkylating agent include reaction temperature, activity (type) of Friedel-Crafts reaction catalyst and its addition amount, haloalkylating agent addition amount, and the like. Therefore, the haloalkyl group introduction rate can be controlled by adjusting these conditions.

反応温度は、採用するフリーデル・クラフツ反応触媒の種類によっても異なるが、通常0℃以上で、最大でも55℃までに抑えることが必要である。
好ましい反応温度の範囲は、使用するハロアルキル化剤、フリーデル・クラフツ反応触媒によって異なるが、例えばハロアルキル化剤にクロロメチルメチルエーテルを用い、フリーデル・クラフツ反応触媒に塩化亜鉛を用いた場合には、通常30℃以上、好ましくは35℃以上であり、通常50℃以下、好ましくは45℃以下である。この際、反応時間等を適宜選択することにより、過度のハロアルキル基導入を抑制することができる。
The reaction temperature varies depending on the type of Friedel-Crafts reaction catalyst to be used, but it is usually 0 ° C. or higher and must be suppressed to 55 ° C. at the maximum.
The preferred reaction temperature range varies depending on the haloalkylating agent and Friedel-Crafts reaction catalyst used. For example, when chloromethyl methyl ether is used as the haloalkylating agent and zinc chloride is used as the Friedel-Crafts reaction catalyst. The temperature is usually 30 ° C. or higher, preferably 35 ° C. or higher, and is usually 50 ° C. or lower, preferably 45 ° C. or lower. At this time, excessive introduction of the haloalkyl group can be suppressed by appropriately selecting the reaction time and the like.

なお、ハロアルキル基導入反応では、後架橋反応も同時に進行しており、後架橋反応により最終製品の強度を確保する意味もあるので、ハロアルキル基導入反応の時間はある程度確保するほうがよい。ハロアルキル化の反応時間は好ましくは30分以上、更に好ましくは3時間以上、更に好ましくは5時間以上である。また好ましくは24時間以下、更に好ましくは12時間以下、さらに好ましくは9時間以下である。   In the haloalkyl group introduction reaction, the post-crosslinking reaction also proceeds at the same time, and there is a meaning of securing the strength of the final product by the post-crosslinking reaction, so it is better to secure a certain time for the haloalkyl group introduction reaction. The reaction time for haloalkylation is preferably 30 minutes or longer, more preferably 3 hours or longer, and even more preferably 5 hours or longer. Further, it is preferably 24 hours or less, more preferably 12 hours or less, and further preferably 9 hours or less.

なお、上記したハロアルキル化反応は、同一反応系内で反応前期から反応後期にかけて反応温度および/または触媒量を、段階的にあるいは連続的に変化させて行っても良い。   The haloalkylation reaction described above may be performed in the same reaction system by changing the reaction temperature and / or the amount of catalyst stepwise or continuously from the first reaction stage to the second reaction stage.

[1−4](d)ハロアルキル化された架橋共重合体(ハロアルキル化架橋共重合体)から、特定構造を有する溶出性化合物を除去する工程
本発明では、前記[1−3]章で得られたハロアルキル化架橋共重合体は、次いで、下記式(II)で示される溶出性化合物(以下「溶出性化合物(II)」と称する場合がある)を除去する処理を行って、ハロアルキル化架橋共重合体1gに対して、前記溶出性化合物(II)の含有量が好ましくは400μg以下、より好ましくは100μg以下、特に好ましくは50μg以下、とりわけ好ましくは30μg以下となるように、ハロアルキル化架橋共重合体を精製することが好ましい。この溶出性化合物(II)含有量が多いと、不純物の残存や分解物の発生が抑制された、溶出物の少ないアニオン交換樹脂を得ることができない。溶出性化合物(II)の含有量は少ない程好ましいが、通常その下限は30μg程度である。
[1-4] (d) Step of removing an eluting compound having a specific structure from a haloalkylated cross-linked copolymer (haloalkylated cross-linked copolymer) The resulting haloalkylated cross-linked copolymer is then subjected to a treatment for removing the eluting compound represented by the following formula (II) (hereinafter sometimes referred to as “eluting compound (II)”), thereby producing a haloalkylated cross-linking copolymer. The haloalkylated cross-linking copolymer is preferably used so that the content of the eluting compound (II) is preferably 400 μg or less, more preferably 100 μg or less, particularly preferably 50 μg or less, particularly preferably 30 μg or less with respect to 1 g of the copolymer. It is preferred to purify the polymer. When the content of the eluting compound (II) is large, it is not possible to obtain an anion exchange resin with a small amount of the eluting material in which the remaining of impurities and the generation of decomposition products are suppressed. Although the content of the eluting compound (II) is preferably as small as possible, the lower limit is usually about 30 μg.

Figure 2012157864
(式(II)中、Xは、水素原子、ハロゲン原子、またはハロゲン原子で置換されていても良いアルキル基を示す。Yは、ハロゲン原子を示す。n、mはそれぞれ独立に自然数を示す。)
Figure 2012157864
(In formula (II), X represents a hydrogen atom, a halogen atom, or an alkyl group which may be substituted with a halogen atom. Y represents a halogen atom. N and m each independently represent a natural number. )

ここで、Xのハロゲン原子で置換されていても良いアルキル基は、通常炭素数1〜10のアルキル基又はハロアルキル基であり、好ましくは、メチル基、エチル基、プロピル基、ブチル基、ハロメチル基、ハロエチル基、ハロプロピル基、ハロブチル基であり、さらに好ましくは、メチル基、エチル基、ハロメチル基、ハロエチル基である。
また、nは通常1以上であり、通常8以下、好ましくは4以下、さらに好ましくは2以下である。
Here, the alkyl group which may be substituted with the halogen atom of X is usually an alkyl group having 1 to 10 carbon atoms or a haloalkyl group, preferably a methyl group, an ethyl group, a propyl group, a butyl group, a halomethyl group. , A haloethyl group, a halopropyl group, and a halobutyl group, and more preferably a methyl group, an ethyl group, a halomethyl group, and a haloethyl group.
N is usually 1 or more, usually 8 or less, preferably 4 or less, and more preferably 2 or less.

なお、本発明に係る前記溶出性化合物(II)は、前記溶出性化合物(I)と同様、製品時におけるイオン交換樹脂の溶出物の原因となるものである。その内訳は、ハロアルキル化の母体となる架橋共重合体に本来含まれる溶出性化合物に由来する物質と、ハロアルキル化の段階で発生する物質とが挙げられる。
ハロアルキル化の母体となる架橋共重合体に本来含まれる溶出性化合物に由来する物質とは、[1−2](b)項記載の溶出性化合物(I)のハロアルキル化物であり、上記式(II)で示される物質に相当する。また、複数のハロアルキル基が導入された物質も含まれる。
ハロアルキル化の段階で発生する物質とは、フリーデルクラフツ反応の逆反応による炭素−炭素結合の開裂に伴い発生する物質が挙げられ、これも上記式(II)で示される。例えば、架橋共重合体の主鎖の開裂により発生する低分子および高分子のポリマーやオリゴマー成分である。
In addition, the eluting compound (II) according to the present invention causes an ion exchange resin eluate at the time of product, like the eluting compound (I). The breakdown includes a substance derived from an eluting compound originally contained in the cross-linked copolymer serving as a matrix for haloalkylation and a substance generated at the stage of haloalkylation.
The substance derived from the eluting compound originally contained in the cross-linked copolymer serving as the matrix of the haloalkylation is a haloalkylated product of the eluting compound (I) described in the item [1-2] (b), It corresponds to the substance shown in II). In addition, substances into which a plurality of haloalkyl groups are introduced are also included.
Examples of the substance generated at the stage of haloalkylation include a substance generated along with the cleavage of the carbon-carbon bond by the reverse reaction of the Friedel-Crafts reaction, which is also represented by the above formula (II). For example, low-molecular and high-molecular polymers and oligomer components generated by cleavage of the main chain of the crosslinked copolymer.

これらの溶出性化合物(II)のポリスチレンスルホン酸換算における重量平均分子量は、通常200以上、好ましくは300以上であり、通常1,000,000以下、好ましくは100,000以下である。溶出性化合物(II)は、例えばスチレン系樹脂の場合、重合不十分の低重合体成分としてスチレンダイマー、スチレントリマー、スチレンオリゴマーのハロアルキル化物等が、遊離重合体成分として線状ポリスチレン、ポリスチレン微粒子のハロアルキル化物が挙げられる。また重合反応における連鎖移動反応での副生物として、モノマー中に含まれる重合禁止剤の結合した低重合体成分や遊離重合体成分のハロアルキル化物が挙げられる。   The weight average molecular weight of these eluting compounds (II) in terms of polystyrene sulfonic acid is usually 200 or more, preferably 300 or more, and usually 1,000,000 or less, preferably 100,000 or less. For example, in the case of a styrene resin, the eluting compound (II) is a styrene dimer, styrene trimer, haloalkylated product of a styrene oligomer or the like as a low polymer component that is insufficiently polymerized, and linear polystyrene or polystyrene fine particles as a free polymer component. And haloalkylated compounds. Further, as a by-product in the chain transfer reaction in the polymerization reaction, there may be mentioned a haloalkylated product of a low polymer component or a free polymer component to which a polymerization inhibitor contained in the monomer is bound.

このような前記溶出性化合物(II)は、例えば、(c)工程で得られたハロアルキル化架橋共重合体を、溶媒により洗浄することにより除去することができる。   Such eluting compound (II) can be removed, for example, by washing the haloalkylated cross-linked copolymer obtained in step (c) with a solvent.

この洗浄方法は、ハロアルキル化架橋共重合体をカラムに詰めて溶媒を通水するカラム方式か、或いはバッチ洗浄法で行うことができる。
洗浄温度は、通常室温(20℃)以上、好ましくは30℃以上、更に好ましくは50℃以上、特に好ましくは90℃以上、また通常150℃以下、好ましくは130℃以下、更に好ましくは120℃以下である。洗浄温度が高すぎると重合体の分解やハロアルキル基脱落を併発する。洗浄温度が低すぎると洗浄効率が低下する。
溶媒との接触時間は、通常5分以上、好ましくは架橋共重合体が80%以上膨潤する時間以上であり、通常4時間以下である。この接触時間が短すぎると洗浄効率が低下し、時間が長すぎると生産性が低下する。
This washing method can be performed by a column method in which a haloalkylated crosslinked copolymer is packed in a column and water is passed through the solvent, or by a batch washing method.
The washing temperature is usually room temperature (20 ° C) or higher, preferably 30 ° C or higher, more preferably 50 ° C or higher, particularly preferably 90 ° C or higher, and usually 150 ° C or lower, preferably 130 ° C or lower, more preferably 120 ° C or lower. It is. If the washing temperature is too high, the polymer will be decomposed and haloalkyl groups may be removed. If the washing temperature is too low, the washing efficiency is lowered.
The contact time with the solvent is usually 5 minutes or longer, preferably the time for which the crosslinked copolymer swells 80% or more, and is usually 4 hours or shorter. If the contact time is too short, the cleaning efficiency is lowered, and if the time is too long, the productivity is lowered.

洗浄に用いる溶媒としては、炭素数5以上の脂肪族炭化水素類、例えばペンタン、ヘキサン、ヘプタン等;芳香族炭化水素類、例えばベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン等;アルコール類、例えばメタノール、エタノール、プロパノール、ブタノール等;ケトン類、例えばアセトン、メチルエチルケトン等;エーテル類、例えばジメチルエーテル、ジエチルエーテル、メチラール等;塩素系溶媒、例えばジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタン等;フェノール類、例えばフェノール等;が挙げられ、これらは1種を単独で用いても良く、2種以上を混合して用いても良い。これらのうち、好ましくはベンゼン、トルエン、キシレン、アセトン、ジエチルエーテル、メチラール、ジクロロメタン、クロロホルム、ジクロロエタン、トリクロロエタンである。   Solvents used for washing include aliphatic hydrocarbons having 5 or more carbon atoms, such as pentane, hexane, and heptane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, and the like; alcohols such as methanol, Ethanol, propanol, butanol, etc .; ketones such as acetone, methyl ethyl ketone, etc .; ethers such as dimethyl ether, diethyl ether, methylal, etc .; chlorinated solvents such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, trichloroethane, etc .; phenols such as Such as phenol, and the like. These may be used alone or in combination of two or more. Of these, benzene, toluene, xylene, acetone, diethyl ether, methylal, dichloromethane, chloroform, dichloroethane, and trichloroethane are preferable.

[1−5](e)ハロアルキル化架橋共重合体をアミン化合物と反応させる工程
本発明におけるアニオン交換樹脂においては、上記のようにして溶出性化合物(II)が除去されたハロアルキル化架橋共重合体にアミン化合物を反応させることにより、アミノ基を導入してアニオン交換樹脂を製造するが、アミノ基の導入についても公知の技術で容易に実施することができる。
例えば、ハロアルキル化架橋共重合体を溶媒中に懸濁し、トリメチルアミンやジメチルエタノールアミンと反応させる方法が挙げられる。
[1-5] (e) Step of reacting haloalkylated crosslinked copolymer with amine compound In the anion exchange resin of the present invention, the haloalkylated crosslinked copolymer from which the eluting compound (II) has been removed as described above. By reacting the compound with an amine compound, an amino group is introduced to produce an anion exchange resin, but the introduction of the amino group can also be easily carried out by a known technique.
For example, a method in which a haloalkylated cross-linked copolymer is suspended in a solvent and reacted with trimethylamine or dimethylethanolamine can be mentioned.

この導入反応の際に用いられる溶媒としては、例えば水、トルエン、ジオキサン、ジメチルホルムアミド、ジクロロエタン等が単独で、あるいは混合して用いられる。
その後は公知の方法によって塩型を各種アニオン型に変えることによってアニオン交換樹脂が得られる。
As the solvent used in the introduction reaction, for example, water, toluene, dioxane, dimethylformamide, dichloroethane or the like is used alone or in combination.
Thereafter, the anion exchange resin can be obtained by changing the salt form to various anion forms by a known method.

前述の如く、ハロアルキル化の工程で反応条件を抑制してハロアルキル基導入率を制御した場合、後架橋の架かり方が弱くなることがある。この場合の対策として、前記(a)工程において、予め架橋性芳香族モノマーの添加量を、従来のアニオン交換樹脂の製法における所望の水分含有率の樹脂を得るに必要な量より多くして架橋共重合体を合成し、その後、本発明のようなハロアルキル化条件をとることによりハロアルキル化導入率を80%以下に抑えることが可能となる。
上記の操作を加えることでハロアルキル化架橋共重合体の架橋密度をコントロールし、その後アミンを反応させてアニオン交換樹脂にした際、望まれる水分含有率および強度とすることができる。
As described above, when the reaction conditions are suppressed in the haloalkylation step to control the introduction rate of the haloalkyl group, the post-crosslinking method may be weakened. As a countermeasure in this case, in the step (a), the amount of the crosslinkable aromatic monomer added in advance is larger than the amount necessary for obtaining a resin having a desired moisture content in the conventional anion exchange resin production method. By synthesizing a copolymer and then taking the haloalkylation conditions as in the present invention, the haloalkylation introduction rate can be suppressed to 80% or less.
By adding the above-described operation, the crosslink density of the haloalkylated cross-linked copolymer is controlled, and when the amine is reacted to form an anion exchange resin, the desired water content and strength can be obtained.

[1−6]OH形アニオン交換樹脂の製造方法
本発明のOH形アニオン交換樹脂は、上記で合成されたCl形のアニオン交換樹脂を公知の再生方法で再生してOH形とすることにより製造することができる。
この再生方法としては、例えば特開2002−102719記載の方法が好適に使用できる。
[1-6] Method for Producing OH Type Anion Exchange Resin The OH type anion exchange resin of the present invention is produced by regenerating the Cl type anion exchange resin synthesized above into a OH form by a known regeneration method. can do.
As this regeneration method, for example, the method described in JP-A-2002-102719 can be suitably used.

[1−7]OH形アニオン交換樹脂の精製方法
本発明のOH形アニオン交換樹脂は、[1−5]または[1−6]までの方法でCl形またはOH形アニオン交換樹脂を製造し、その後は公知の溶出低減方法を適用して超純水用のアニオン交換樹脂とすることができる。
この精製方法としては、例えば、特開2002−102719記載の方法が好適に使用できる。
具体的には、アニオン交換樹脂をアルカリ溶液存在下で加熱洗浄する方法や、カラムで熱水洗浄する方法、溶媒で洗浄する方法が好適に使用できる。また、[1−5]または[1−6]までの方法でCl形またはOH形アニオン交換樹脂を製造後、必要に応じ、得られたアニオン交換樹脂に公知の金属含有量の低減方法を適用することもできる。
[1-7] Purification method of OH-type anion exchange resin The OH-type anion exchange resin of the present invention is a Cl-type or OH-type anion exchange resin produced by the method up to [1-5] or [1-6]. Thereafter, a known elution reduction method can be applied to obtain an anion exchange resin for ultrapure water.
As this purification method, for example, the method described in JP-A No. 2002-102719 can be suitably used.
Specifically, a method of washing an anion exchange resin in the presence of an alkaline solution, a method of washing with hot water using a column, or a method of washing with a solvent can be suitably used. In addition, after producing a Cl-type or OH-type anion exchange resin by the method up to [1-5] or [1-6], a known method for reducing the metal content is applied to the obtained anion exchange resin as necessary. You can also

[1−8]その他の処理
上述のようにして得られる本発明のアニオン交換樹脂は、更に、アニオン交換樹脂の処理として通常行われる各種の処理を施してもよい。例えば、公知の方法によるからみ防止処理を実施してもよい。
[1-8] Other treatments The anion exchange resin of the present invention obtained as described above may be further subjected to various treatments usually performed as a treatment for anion exchange resins. For example, the anti-leaking process may be performed by a known method.

即ち、一般に、アニオン交換樹脂は、カチオン交換樹脂との混床で用いる場合に、カチオン交換樹脂と電気的にからみあう「からみ現象」のため、カチオン交換樹脂とアニオン交換樹脂で形成される混床樹脂の体積が増加しすぎるため、ハンドリングの点で問題となる。   That is, in general, when an anion exchange resin is used in a mixed bed with a cation exchange resin, the mixed bed resin formed of the cation exchange resin and the anion exchange resin because of the “entanglement phenomenon” that is electrically entangled with the cation exchange resin. Since the volume of the material increases excessively, it becomes a problem in terms of handling.

従って、本発明のアニオン交換樹脂にからみ防止処理を実施することにより、カチオン交換樹脂と混合した場合における体積増加率が混合前の150%以下、好ましくは130%以下、さらに好ましくは110%以下とすることが好適である。なお、この体積増加率とはアニオン交換樹脂とカチオン交換樹脂とを混合する前の各々の体積の合計に対する混合後の混床樹脂の体積の割合の百分率である。   Therefore, by carrying out the anti-entanglement treatment on the anion exchange resin of the present invention, the volume increase rate when mixed with the cation exchange resin is 150% or less, preferably 130% or less, more preferably 110% or less before mixing. It is preferable to do. The volume increase rate is a percentage of the ratio of the volume of the mixed bed resin after mixing to the total volume before mixing the anion exchange resin and the cation exchange resin.

このからみ防止処理とは、特開平10−202118号公報や特開2002−102719号公報記載の公知の方法を適用することができる。
具体的には、アニオン交換樹脂1リットルに対して、通常、0.01mmol/L以上、好ましくは0.1mmol/L以上、また、通常10mmol/L以下、好ましくは2mmol/L以下のアニオン性解離基を含有する水溶性高分子で処理することで実施することができる。
As this anti-entanglement treatment, a known method described in JP-A-10-202118 or JP-A-2002-102719 can be applied.
Specifically, it is usually 0.01 mmol / L or more, preferably 0.1 mmol / L or more, and usually 10 mmol / L or less, preferably 2 mmol / L or less per 1 liter of anion exchange resin. It can be carried out by treatment with a water-soluble polymer containing a group.

本発明で用いるのに好適なアニオン性解離基を含有する水溶性高分子としては、例えば、特開平10−202118号公報や特開2002−102719号公報記載の公知の水溶性高分子などが挙げられ、好ましくは、ポリスチレンスルホン酸、ポリビニルベンジルスルホン酸、ポリマレイン酸、ポリ(メタ)アクリル酸、ポリビニルスルホン酸などが挙げられる。なかでもポリスチレンスルホン酸、ポリビニルスルホン酸を用いるのが好ましい。これらは1種を単独で用いても良く、2種以上を混合して用いても良い。   Examples of the water-soluble polymer containing an anionic dissociation group suitable for use in the present invention include known water-soluble polymers described in JP-A-10-202118 and JP-A-2002-102719. Preferably, polystyrene sulfonic acid, polyvinyl benzyl sulfonic acid, polymaleic acid, poly (meth) acrylic acid, polyvinyl sulfonic acid and the like can be mentioned. Of these, polystyrene sulfonic acid and polyvinyl sulfonic acid are preferably used. These may be used alone or in combination of two or more.

[2]アニオン交換樹脂
本発明のアニオン交換樹脂は、以下に記載する物性ないし特性を有するものであり、好ましくは、上述の本発明のアニオン交換樹脂の製造方法により製造されるが、何らその製造方法に制限はない。
[2] Anion exchange resin The anion exchange resin of the present invention has the following physical properties and characteristics, and is preferably manufactured by the above-described method for manufacturing an anion exchange resin of the present invention. There is no limit to the method.

なお、本発明のアニオン交換樹脂の形状や構造には特に限定されず、例えば形状としては、一般的に用いられているビーズ状のものの他、繊維状、粉状、板状、膜状のような各種形状としたものも含まれる。
また、本発明のアニオン交換樹脂の水分含有率としては、通常25重量%以上75重量%以下であるが、実用的には30重量%以上60重量%以下の範囲とするのが好ましい。
The shape and structure of the anion exchange resin of the present invention are not particularly limited. For example, the shape may be a fiber, powder, plate, membrane or the like in addition to commonly used beads. Various shapes are also included.
The water content of the anion exchange resin of the present invention is usually 25% by weight or more and 75% by weight or less, but practically, it is preferably in the range of 30% by weight or more and 60% by weight or less.

[2−1]水分含有率および交換容量
[2−1−1]Cl形で測定するときの水分含有率と単位体積あたりの交換容量
本発明のアニオン交換樹脂或いは本発明の好適態様のアニオン交換樹脂について、Cl形で測定するときの水分含有率WCl(重量%)と単位体積あたりの交換容量QCl(meq/mL−樹脂)とは、下記式(1)〜(5)のいずれかで表される。
[2-1] Moisture content and exchange capacity [2-1-1] Moisture content and exchange capacity per unit volume when measured in Cl form Anion exchange resin of the present invention or anion exchange of a preferred embodiment of the present invention Regarding the resin, the water content W Cl (wt%) and the exchange capacity per unit volume Q Cl (meq / mL-resin) when measured in the Cl form are any of the following formulas (1) to (5): It is represented by

Cl≦1.25(但し、WCl<38) …(1)
Cl≦1.36(但し、38≦WCl<42) …(2)
Cl≦1.2 (但し、42≦WCl<48) …(3)
Cl≦1.1 (但し、48≦WCl<55) …(4)
Cl≦0.8 (但し、55≦WCl) …(5)
Q Cl ≦ 1.25 (W Cl <38) (1)
Q Cl ≦ 1.36 (provided that 38 ≦ W Cl <42) (2)
Q Cl ≦ 1.2 (provided that 42 ≦ W Cl <48) (3)
Q Cl ≦ 1.1 (provided that 48 ≦ W Cl <55) (4)
Q Cl ≦ 0.8 (however, 55 ≦ W Cl ) (5)

このアニオン交換樹脂の水分含有率WCl(重量%)と単位重量あたりの交換容量QCl(meq/mL−樹脂)は、好ましくは、下記式(1')〜(5')のいずれかで表される。 The water content W Cl (% by weight) of this anion exchange resin and the exchange capacity per unit weight Q Cl (meq / mL-resin) are preferably any of the following formulas (1 ′) to (5 ′): expressed.

Cl≦1.23(但し、WCl<38) …(1')
Cl≦1.36(但し、38≦WCl<42) …(2')
Cl≦1.2 (但し、42≦WCl<48) …(3')
Cl≦1.1 (但し、48≦WCl<55) …(4')
Cl≦0.8 (但し、55≦WCl) …(5')
Q Cl ≦ 1.23 (however, W Cl <38) ... ( 1 ')
Q Cl ≦ 1.36 (provided that 38 ≦ W Cl <42) (2 ′)
Q Cl ≦ 1.2 (provided that 42 ≦ W Cl <48) (3 ′)
Q Cl ≦ 1.1 (provided that 48 ≦ W Cl <55) (4 ′)
Q Cl ≦ 0.8 (however, 55 ≦ W Cl ) (5 ′)

または、本発明のアニオン交換樹脂或いは本発明の好適態様のアニオン交換樹脂について、Cl形で測定するときの水分含有率WCl(重量%)と単位体積あたりの交換容量QCl(meq/mL−樹脂)とは、下記式(8)で表される。
Cl≦−0.021WCl+2.28 …(8)
Alternatively, for the anion exchange resin of the present invention or the anion exchange resin of the preferred embodiment of the present invention, the water content W Cl (wt%) when measured in the Cl form and the exchange capacity per unit volume Q Cl (meq / mL− (Resin) is represented by the following formula (8).
Q Cl ≦ −0.021 W Cl +2.28 (8)

前述の様に、一般のアニオン交換樹脂は、水分含有率が多く、かつ交換容量が大きいという傾向がある。
本発明のCl形アニオン交換樹脂或いは本発明の好適態様のCl形アニオン交換樹脂は、前記式(1)〜(5)、好ましくは(1')〜(5')、または、前記式(8)で規定されるように、同程度の水分含有率をもつ従来のアニオン交換樹脂と比較して、交換容量が小さいことを特徴とする。
As described above, general anion exchange resins tend to have a high moisture content and a large exchange capacity.
The Cl-type anion exchange resin of the present invention or the Cl-type anion exchange resin of the preferred embodiment of the present invention has the above formulas (1) to (5), preferably (1 ′) to (5 ′), or the above formula (8). ), The exchange capacity is small as compared with a conventional anion exchange resin having a similar moisture content.

このように、同程度の水分含有率をもつ従来のアニオン交換樹脂と比較して、交換容量が小さいCl形アニオン交換樹脂が、従来樹脂と比べて、不純物の残存や分解物の発生を防ぎ、使用時における溶出物の発生を抑制している理由としては、以下の通り推定される。   In this way, compared to conventional anion exchange resins having a similar water content, the Cl-type anion exchange resin having a small exchange capacity prevents residual impurities and generation of decomposition products compared to conventional resins, The reason for suppressing the generation of eluate during use is estimated as follows.

(i)多重官能基化不純物の低減
ハロアルキル化反応では架橋共重合体のモノマーユニット1個に対し複数のハロアルキル基の導入も起こっている。このような不純物が存在すると、有機溶媒に対する溶解度が低いため、有機溶媒で除去しようにも多大な負荷がかかっていた。また、アミノ化時の立体障害が大きい為、複数個のハロアルキル基全てがアミノ化されずに残る可能性があり、その結果、水洗性の低い不純物(以下「多重官能基化不純物」と称する。)が最終製品に残留して、使用時の溶出物の発生原因となっていると推定される。
一方、本発明のアニオン交換樹脂は、従来樹脂と比べて過剰な交換基を持たないぶん、多重官能基化不純物の量が少なくなっていると考えられる。
(I) Reduction of Multifunctional Impurity Impurities In the haloalkylation reaction, a plurality of haloalkyl groups are also introduced into one monomer unit of the crosslinked copolymer. If such impurities are present, the solubility in the organic solvent is low, so that a great load is imposed on the removal with the organic solvent. Further, since the steric hindrance at the time of amination is large, all of a plurality of haloalkyl groups may remain without being aminated, and as a result, impurities with low water washability (hereinafter referred to as “multifunctionalized impurities”). ) Remains in the final product, and is estimated to be the cause of elution during use.
On the other hand, the anion exchange resin of the present invention does not have an excess of exchange groups as compared with conventional resins, and it is considered that the amount of polyfunctionalized impurities is reduced.

(ii)交換基そのものを減らすことによる溶出量の低減
アニオン交換樹脂からの溶出物の一つとして、トリメチルアミンなどのアミン類が知られている。このアミン類の溶出は、交換基の脱落が原因とされている。
一方、本発明のアニオン交換樹脂は、従来樹脂に比べて交換基の量が少ないので、交換基の脱落由来の溶出が減少すると考えられる。
(ii) Reduction of the amount of elution by reducing the exchange group itself As one of the eluates from an anion exchange resin, amines such as trimethylamine are known. This elution of amines is attributed to the loss of exchange groups.
On the other hand, since the anion exchange resin of the present invention has a small amount of exchange groups as compared with conventional resins, it is considered that elution due to the exchange group dropping off decreases.

(iii)選択的ハロアルキル化による交換基脱落抑制
通常のアニオン交換樹脂は、モノマーユニット1個に対して複数個の交換基を有する場合があり、これによる立体障害により交換基の脱落が起こりやすくなっていると考えられる。従って、かかる交換基の脱離を抑制するには、モノマーユニット1個に対して1個ずつ交換基が入るようにすべきである。
しかして、本発明のアニオン交換樹脂は、従来樹脂と比べて交換容量が少ないため、モノマーユニット1個あたりに複数個の交換基を持つことが少ない。これにより、交換基同士の立体障害が少なくなるため、交換基の脱落が少なくなり、使用時において交換基の脱落由来の溶出が減少すると考えられる。
(iii) Suppression of exchange group removal by selective haloalkylation Ordinary anion exchange resins may have a plurality of exchange groups per monomer unit, and the steric hindrance makes it easy to cause exchange group removal. It is thought that. Therefore, in order to suppress the elimination of such exchange groups, one exchange group should be introduced for each monomer unit.
Therefore, since the anion exchange resin of the present invention has a smaller exchange capacity than conventional resins, it is less likely to have a plurality of exchange groups per monomer unit. Thereby, since the steric hindrance between the exchange groups is reduced, the elimination of the exchange groups is reduced, and it is considered that the elution resulting from the exchange group removal is reduced during use.

(iv)ハロアルキル化時の炭素−炭素結合開裂の抑制
ハロアルキル化の工程では、通常ルイス酸を加えてフリーデルクラフツ反応(炭素−炭素結合の生成)を行なっている。この反応では、逆反応により炭素−炭素結合の開裂も起こるので、架橋共重合体の主鎖の開裂を併発し、低分子オリゴマーや高分子の線状ポリマーの溶出物を発生させている。
一方、本発明の交換基の少ないアニオン交換樹脂は、このような炭素−炭素結合の開裂や、主鎖開裂が少なくなっているので、溶出物も少なくなっていると考えられる。
(iv) Inhibition of carbon-carbon bond cleavage during haloalkylation In the haloalkylation step, a Lewis acid is usually added to carry out a Friedel-Crafts reaction (generation of a carbon-carbon bond). In this reaction, the carbon-carbon bond is also cleaved by the reverse reaction, and therefore, the main chain of the crosslinked copolymer is cleaved to generate an eluate of a low-molecular oligomer or a high-molecular linear polymer.
On the other hand, the anion exchange resin having a small number of exchange groups according to the present invention is considered to have less eluate because such carbon-carbon bond cleavage and main chain cleavage are reduced.

なお、本発明に係るCl形アニオン交換樹脂の交換容量QClおよび水分含有率WClは、以下の方法で分析、測定される。 Incidentally, exchange capacity Q Cl and water content W Cl of Cl type anion exchange resin according to the present invention, the analysis in the following manner, is measured.

〔交換容量QClおよび水分含有率WClの測定方法〕
アニオン交換樹脂をカラムに詰め、これに樹脂容量の25倍量の5重量%NaCl水溶液を通液し、アニオン型をCl型に変換する。この樹脂を10ml採り、カラムに詰め、2NのNaOH水溶液を樹脂の75倍量通液してアニオン型をOH型に変換する。洗浄濾液が中性になるまで十分に脱塩水で洗浄し、その後、5重量%NaCl水溶液を樹脂の25倍量通液し、流出液を全て捕集する。この流出液を塩酸で滴定することにより、交換容量QCl(meq/mL−樹脂)を算出する。
[Measurement method of exchange capacity QCl and water content WCl ]
An anion exchange resin is packed in a column, and a 5% by weight aqueous NaCl solution having a volume 25 times the resin volume is passed through the column to convert the anion type to the Cl type. 10 ml of this resin is taken, packed in a column, and 2N NaOH aqueous solution is passed through 75 times the amount of resin to convert the anion type to OH type. Wash thoroughly with demineralized water until the washing filtrate becomes neutral, and then pass 5% by weight of 5% by weight NaCl aqueous solution to collect all the effluent. By titrating the effluent with hydrochloric acid, to calculate the exchange capacity Q Cl (meq / mL- resin).

また、アニオン型をCl型に変換した樹脂を遠心分離して付着した水分を除去した後、重量を測定する。その後、105±2℃の恒温乾燥器中で約4時間乾燥する。デシケーター中で放冷した後、重量を測定し、水分含有率WCl(重量%)を算出する。 Further, the resin whose anion type is converted to Cl type is centrifuged to remove the adhering water, and then the weight is measured. Thereafter, it is dried for about 4 hours in a constant temperature dryer at 105 ± 2 ° C. After standing to cool in a desiccator, the weight is measured and the water content W Cl (% by weight) is calculated.

本発明に係るアニオン交換樹脂において、交換容量QClおよび水分含有率WClを前記式(1)〜(5)、好ましくは(1’)〜(5’)、または前記式(8)を満足させる方法としては、例えば、モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合させて得られる架橋共重合体をハロアルキル化した後、アミン化合物と反応させて得られるアニオン交換樹脂の場合は、
(a)ハロアルキル化の段階でハロアルキル基導入率を従来よりも少なくする方法
(b)該ハロアルキル化の段階を、抑制された反応条件、例えば触媒量の低減、反応溶媒の増量、触媒濃度の低減などの反応条件で実施する方法
(c)モノビニル芳香族モノマーと架橋性芳香族モノマーとの架橋共重合体の段階で特定の溶出性化合物の含有量を一定値以下に抑制する方法
等が挙げられる。
In the anion exchange resin according to the present invention, the exchange capacity Q Cl and the water content W Cl satisfy the above formulas (1) to (5), preferably (1 ′) to (5 ′), or the above formula (8). For example, in the case of an anion exchange resin obtained by haloalkylating a crosslinked copolymer obtained by copolymerizing a monovinyl aromatic monomer and a crosslinkable aromatic monomer and then reacting with an amine compound,
(A) A method of reducing the introduction rate of haloalkyl groups in the stage of haloalkylation compared to the prior art (b) The stage of the haloalkylation is controlled under controlled reaction conditions, for example, reduction of catalyst amount, increase of reaction solvent, reduction of catalyst concentration. (C) A method of suppressing the content of a specific eluting compound to a certain value or less at the stage of a cross-linked copolymer of a monovinyl aromatic monomer and a cross-linkable aromatic monomer, etc. .

[2−1−2]OH形で測定するときの水分含有率と単位体積あたりの交換容量
本発明のアニオン交換樹脂或いは本発明の好適態様のアニオン交換樹脂は、OH形で測定するときの水分含有率WOH(重量%)と単位体積あたりの交換容量QOH(meq/mL−樹脂)とが、下記式(6)または(7)で表される。
[2-1-2] Moisture content when measuring in OH form and exchange capacity per unit volume The anion exchange resin of the present invention or the anion exchange resin of a preferred embodiment of the present invention is water content when measured in the OH form. The content W OH (% by weight) and the exchange capacity Q OH (meq / mL-resin) per unit volume are represented by the following formula (6) or (7).

OH≦1.1(但し、WOH<66) …(6)
OH≦0.9(但し、66≦WOH) …(7)
Q OH ≦ 1.1 (W OH <66) (6)
Q OH ≦ 0.9 (provided that 66 ≦ W OH ) (7)

または、本発明のアニオン交換樹脂或いは本発明の好適態様のアニオン交換樹脂について、OH形で測定するときの水分含有率WOH(重量%)と単位体積あたりの交換容量QOH(meq/mL−樹脂)とは、下記式(9)で表される。
OH≦−0.018WOH+2.05 …(9)
Alternatively, for the anion exchange resin of the present invention or the anion exchange resin of the preferred embodiment of the present invention, the water content W OH (wt%) when measured in the OH form and the exchange capacity Q OH per unit volume (meq / mL− (Resin) is represented by the following formula (9).
Q OH ≦ −0.018 W OH +2.05 (9)

前述の様に、従来のアニオン交換樹脂或いは本発明の好適態様のOH形アニオン交換樹脂は、水分含有率が多く、かつ交換容量が大きいという傾向がある。
本発明のOH形アニオン交換樹脂は、前記式(6),(7)、または前記式(9)で規定されるように、同程度の水分含有率をもつ従来のアニオン交換樹脂と比較して、交換容量が小さいことを特徴とする。
As described above, the conventional anion exchange resin or the OH type anion exchange resin of the preferred embodiment of the present invention tends to have a high moisture content and a large exchange capacity.
The OH type anion exchange resin of the present invention is compared with the conventional anion exchange resin having the same water content as defined by the formula (6), (7) or the formula (9). The exchange capacity is small.

このように、同程度の水分含有率をもつ従来のアニオン交換樹脂と比較して、交換容量が小さいOH形アニオン交換樹脂が、従来樹脂と比べて、不純物の残存や分解物の発生を防ぎ、使用時における溶出物の発生を抑制している理由は、本発明のCl形アニオン交換樹脂の説明において前述した通りである。   In this way, OH-type anion exchange resin with a small exchange capacity compared to a conventional anion exchange resin having a similar moisture content prevents impurities from remaining and generation of decomposition products, compared to conventional resins, The reason for suppressing the generation of eluate during use is as described above in the description of the Cl-type anion exchange resin of the present invention.

なお、本発明に係るOH形アニオン交換樹脂の交換容量QOHと水分含有率WOHは、以下の方法で分析、測定される。 The exchange capacity Q OH and the water content W OH of the OH type anion exchange resin according to the present invention are analyzed and measured by the following method.

〔交換容量QOHおよび水分含有率WOHの測定方法〕
OH形のアニオン交換樹脂を10ml採り、カラムに詰め、5重量%NaCl水溶液を樹脂の25倍量通液し、流出液を全て捕集する。この流出液を塩酸で滴定することにより、交換容量QOH(meq/mL−樹脂)を算出する。
[Measurement method of exchange capacity Q OH and moisture content W OH ]
Take 10 ml of OH-type anion exchange resin, pack it in a column, and pass 5% by weight 5% NaCl aqueous solution through the resin to collect all the effluent. By titrating the effluent with hydrochloric acid, the exchange capacity Q OH (meq / mL-resin) is calculated.

また、水分含有量WOHは、OH形アニオン交換樹脂を遠心分離して付着した水分を除去した後、カールフィッシャー法によりデジタル式自動滴定装置(例えば三菱化学社製「カールフィッシャーKF07型」相当のものなど)を用いて以下の手順で測定する。
試料約5gを20mLの秤量瓶に正確に測り、その中からスプーンで約0.1gを速やかにとり、それをカールフィッシャー試薬にて水分を「0」にしたメタノール約30mLの中に投入する。次に、攪拌しながらカールフィッシャー試薬を滴下し、最後の1滴を加えてから30秒間電流計の指示がストップしている点を終点とし、水分含有率WOH(重量%)を算出する。
In addition, the water content W OH is equivalent to a digital automatic titration apparatus (for example, “Karl Fischer KF07 Model” manufactured by Mitsubishi Chemical Corporation) by the Karl Fischer method after removing water adhering by centrifuging the OH anion exchange resin. ) Using the following procedure.
About 5 g of a sample is accurately measured in a 20 mL weighing bottle, and about 0.1 g is quickly taken with a spoon, and it is put into about 30 mL of methanol whose moisture is set to “0” with a Karl Fischer reagent. Next, the Karl Fischer reagent is dropped while stirring, and the water content W OH (% by weight) is calculated with the point where the instruction of the ammeter is stopped for 30 seconds after the last drop is added, as the end point.

本発明に係るOH形アニオン交換樹脂において、交換容量QOHおよび水分含有率WOHを上記式(6),(7)、または前記式(9)を満足させる方法は、前述の、本発明に係るCl形アニオン交換樹脂の交換容量QClおよび水分含有率WClを前記式(1)〜(5)、好ましくは前記式(1’)〜(5’)、または前記式(8)を満足させる方法と同様である。 In the OH type anion exchange resin according to the present invention, the method for satisfying the above formula (6), (7), or the above formula (9) for the exchange capacity Q OH and the water content W OH is described in the present invention. The exchange capacity Q Cl and the water content W Cl of the Cl- type anion exchange resin satisfy the above formulas (1) to (5), preferably the above formulas (1 ′) to (5 ′) or the above formula (8). It is the same as the method of making it.

[2−2]超純水通水試験におけるΔTOC
本発明のアニオン交換樹脂は、下記(A)の超純水通水試験におけるΔTOCが0.5ppb以下であることが好ましく、0.2ppb以下であることが更に好ましい。
[2-2] ΔTOC in ultrapure water flow test
In the anion exchange resin of the present invention, ΔTOC in the ultrapure water flow test of the following (A) is preferably 0.5 ppb or less, and more preferably 0.2 ppb or less.

(A)超純水通水試験
(1)直径30mm、長さ1000mmの空の測定カラムに、室温条件下、比抵抗が18MΩ・cm以上、水温20〜40℃の超純水を満たし、該超純水をSV=30hr−1で通水し、測定カラム出口水のTOC濃度(TOC)を測定する。
(2)前記アニオン交換樹脂500mLを前記測定カラムに流し込み充填した後、室温条件下、前記超純水をカラムにSV=30hr−1で通水し、20時間後の測定カラム出口水のTOC濃度(TOC)を測定する。
(3)下記式によってΔTOCを算出する。
ΔTOC(ppb)=TOC−TOC
(A) Ultrapure water flow test (1) An empty measurement column having a diameter of 30 mm and a length of 1000 mm was filled with ultrapure water having a specific resistance of 18 MΩ · cm or more and a water temperature of 20 to 40 ° C. under room temperature conditions, Ultrapure water is passed at SV = 30 hr −1 , and the TOC concentration (TOC 0 ) of the measurement column outlet water is measured.
(2) After pouring and filling 500 mL of the anion exchange resin into the measurement column, the ultrapure water was passed through the column at SV = 30 hr −1 at room temperature, and the TOC concentration of the measurement column outlet water after 20 hours. Measure (TOC 1 ).
(3) Calculate ΔTOC by the following equation.
ΔTOC (ppb) = TOC 1 −TOC 0

上記(A)超純水通水試験における比抵抗、およびTOC濃度の測定装置は、本発明の技術的意義を失わない程度に市販の測定機器が用いられるが、電子部品・材料洗浄用超純水の製造に用いられるアニオン交換樹脂の場合は精度の高いものが望ましい。
比抵抗測定器としては、例えばDKK社製「AQ−11」を挙げることができる。また、TOC測定器としては、例えばアナテル社製「A−1000XP型」、「A−1000型」、「A−100SE」、「S20P」、シーバス社製「500RL型」を挙げることができる。
As the measurement device for the specific resistance and TOC concentration in the above (A) ultrapure water flow test, commercially available measuring instruments are used to such an extent that the technical significance of the present invention is not lost. In the case of an anion exchange resin used for water production, a highly accurate resin is desirable.
An example of the specific resistance measuring device is “AQ-11” manufactured by DKK. Examples of the TOC measuring instrument include “A-1000XP type”, “A-1000 type”, “A-100SE”, “S20P” manufactured by Anatel, and “500RL type” manufactured by Seabass.

上述の(A)超純水通水試験におけるΔTOCが0.5ppbを超えるものでは、超純水、特に半導体等の電子部品・材料洗浄用超純水を製造するためのアニオン交換樹脂としては、溶出物による純度低下の問題があり、好ましくない。   In the case where ΔTOC in the above-mentioned (A) ultrapure water flow test exceeds 0.5 ppb, as an anion exchange resin for producing ultrapure water, particularly ultrapure water for cleaning electronic parts and materials such as semiconductors, There is a problem of purity reduction due to eluate, which is not preferable.

[2−3]体積増加率
本発明のアニオン交換樹脂は、前述の如くからみ防止処理を実施することにより、カチオン交換樹脂と混合した場合における体積増加率が混合前の150%以下、好ましくは130%以下、さらに好ましくは10%以下とすることが好適である。この体積増加率が大き過ぎると、アニオン交換樹脂とカチオン交換樹脂とで形成される混床樹脂の体積が増加しすぎるため、ハンドリングの点で問題となる。
従って、このような体積増加率となるように、必要に応じて、前述のからみ防止処理を施すことが好ましい。
[2-3] Volume increase rate The anion exchange resin of the present invention has a volume increase rate of 150% or less, preferably 130, when mixed with the cation exchange resin by carrying out the anti-entanglement treatment as described above. % Or less, more preferably 10% or less. If the volume increase rate is too large, the volume of the mixed bed resin formed by the anion exchange resin and the cation exchange resin increases excessively, which causes a problem in handling.
Therefore, it is preferable to perform the above-described entanglement prevention treatment as necessary so as to achieve such a volume increase rate.

なお、アニオン交換樹脂の体積増加率は以下の方法で測定される。
<体積増加率測定法>
1)アニオン交換樹脂1部を水中スラリー状態でメスシリンダーに量り取る。
2)カチオン交換樹脂1部を水中スラリー状態でメスシリンダーに量り取る。
3)アニオン交換樹脂にカチオン交換樹脂を流し込み、上下に10回振ったあと、得られ
た混床樹脂の体積を測定する。
4)次式により体積増加率を決定する。
(体積増加率)% = (混床樹脂体積)/(アニオン交換樹脂体積
+カチオン交換樹脂体積)×100
The volume increase rate of the anion exchange resin is measured by the following method.
<Volume increase rate measurement method>
1) Weigh 1 part of anion exchange resin into a graduated cylinder in a slurry state in water.
2) Weigh 1 part of cation exchange resin into a graduated cylinder in a slurry state in water.
3) Pour the cation exchange resin into the anion exchange resin, shake it up and down 10 times, and measure the volume of the obtained mixed bed resin.
4) The volume increase rate is determined by the following equation.
(Volume increase rate)% = (mixed bed resin volume) / (anion exchange resin volume)
+ Cation exchange resin volume) x 100

[2−4]押し潰し強度
本発明のアニオン交換樹脂は、1粒子あたりの押し潰し強度が7.5N以上、好ましくは、9N以上、さらに好ましくは10N以上であり、通常50N以下、好ましくは30N以下であることが好ましい。
[2-4] Crushing strength The anion exchange resin of the present invention has a crushing strength per particle of 7.5 N or more, preferably 9 N or more, more preferably 10 N or more, and usually 50 N or less, preferably 30 N. The following is preferable.

このように、通常のアニオン交換樹脂に比べて、押し潰し強度が高い本発明のアニオン交換樹脂は、溶出物が少ないものとなる。
押し潰し強度の高いアニオン交換樹脂が溶出物が少ない理由は、以下のように推定される。
交換基の全く入っていないアニオン交換樹脂(つまりモノビニル芳香族モノマーとポリビニル芳香族モノマーとの架橋共重合体)の一例として、スチレンとジビニルベンゼンの架橋共重合体は、通常20N以上の硬い粒子であり、かつΔTOCは、水溶性の溶出物を全く含まないのでゼロに近いものである。
従って、本発明のように、従来樹脂よりも交換容量の低いアニオン交換樹脂の場合、押し潰し強度は高く、かつ前述の(A)超純水通水試験におけるΔTOCは低いものが得られると考えられる。
Thus, the anion exchange resin of the present invention, which has a higher crushing strength than ordinary anion exchange resins, has less eluate.
The reason why the anion exchange resin having a high crushing strength has less eluate is estimated as follows.
As an example of an anion exchange resin containing no exchange groups (that is, a cross-linked copolymer of a monovinyl aromatic monomer and a polyvinyl aromatic monomer), a cross-linked copolymer of styrene and divinylbenzene is usually hard particles of 20 N or more. And ΔTOC is close to zero because it does not contain any water-soluble eluate.
Therefore, in the case of an anion exchange resin having a lower exchange capacity than a conventional resin as in the present invention, it is considered that a crushing strength is high and a ΔTOC in the above-mentioned (A) ultrapure water flow test is low. It is done.

なお、本発明において、アニオン交換樹脂の押し潰し強度は以下のように測定される。
<押し潰し強度測定法>
(1)球形のアニオン交換樹脂のうち850μmのフルイを通過し600μmのフルイに残
るものを数100個採取し、測定まで脱塩水中に保管する。
(2)サンプルをランダムに最低60個選び、シャチロンテスター又は同等品にて強度測定
を行う。
(3)全ての粒子についての強度の平均値を算出する。
In the present invention, the crushing strength of the anion exchange resin is measured as follows.
<Crushing strength measurement method>
(1) Collect hundreds of spherical anion exchange resins that pass through a 850 μm sieve and remain on a 600 μm sieve and store in demineralized water until measurement.
(2) Select at least 60 samples at random and measure the strength with a Chatillon tester or equivalent.
(3) The average value of the intensity for all particles is calculated.

[3]混床樹脂、超純水の製造方法
本発明の混床樹脂は、本発明のアニオン交換樹脂と任意のカチオン交換樹脂とを用いて、例えば、特開2002−102719号公報などの公知の方法により製造することができる。
また、本発明のアニオン交換樹脂を用いた混床樹脂により、例えば、特開2002−102719号公報などの公知の方法により、溶出物の少ない、高純度の超純水を製造することができる。
[3] Production method of mixed bed resin and ultrapure water The mixed bed resin of the present invention uses the anion exchange resin of the present invention and an arbitrary cation exchange resin, and is known, for example, in JP-A-2002-102719. It can manufacture by the method of.
In addition, the mixed bed resin using the anion exchange resin of the present invention can produce high-purity ultrapure water with less eluate, for example, by a known method such as JP-A-2002-102719.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.

[実施例1]
スチレン(工業グレード、出光社製)590gと、ジビニルベンゼン(工業グレード、純度63重量%、非重合性の不純物含有量0.09重量%、ダウ社製)85g(全モノマー量に対し8重量%)を混合し、窒素ガスを該モノマー混合物に1L/minで1時間通気させ、酸素濃度1mg/Lの脱酸素モノマー混合物を調製した。この混合物に過酸化ジベンゾイル(純度75重量%、wet品。日本油脂製)1.8g、t−ブチルパーオキシベンゾエート(純度99重量%、日本油脂製)1.4gを混合し、0.1%ポリビニルアルコール(工業用、日本合成化学社製、グレードGH−20)水溶液2025gに懸濁させた。該懸濁液を攪拌しながら80℃で5時間保持、その後120℃で4時間反応させ、架橋共重合体を得た。
得られた架橋共重合体に対して下記手順により溶出試験を行って、溶出性化合物(I)である溶出性ポリスチレン量を定量した。
[Example 1]
590 g of styrene (industrial grade, manufactured by Idemitsu) and 85 g of divinylbenzene (industrial grade, purity 63 wt%, non-polymerizable impurity content 0.09 wt%, manufactured by Dow) 8 wt% based on the total amount of monomers And nitrogen gas was bubbled through the monomer mixture for 1 hour at 1 L / min to prepare a deoxygenated monomer mixture having an oxygen concentration of 1 mg / L. To this mixture, 1.8 g of dibenzoyl peroxide (purity 75 wt%, wet product, manufactured by NOF Corporation) and 1.4 g of t-butyl peroxybenzoate (purity 99 wt%, manufactured by NOF Corporation) were mixed, and 0.1% The suspension was suspended in 2025 g of an aqueous solution of polyvinyl alcohol (for industrial use, manufactured by Nippon Synthetic Chemical Co., Ltd., grade GH-20). The suspension was stirred at 80 ° C. for 5 hours and then reacted at 120 ° C. for 4 hours to obtain a crosslinked copolymer.
The obtained crosslinked copolymer was subjected to a dissolution test according to the following procedure, and the amount of soluble polystyrene as the soluble compound (I) was quantified.

<溶出性ポリスチレン量の定量>
1)架橋共重合体1重量部を三角フラスコにとる。
2)テトラヒドロフラン(和光純薬製高速液体クロマトグラフィー用グレード)4.5重
量倍量を添加する。
3)40℃で5時間保持する。
4)得られたテトラヒドロフラン上澄み液と水とを1:7(体積比)の割合で混合する。
5)得られた溶液の濁度をUV法で測定し、同様の手法で測定されたポリスチレン標品の
テトラヒドロフラン溶液の検量線に基づいて溶出性ポリスチレン量を決定する。
<Quantification of amount of elution polystyrene>
1) Take 1 part by weight of a crosslinked copolymer in an Erlenmeyer flask.
2) Add 4.5 parts by weight of tetrahydrofuran (grade for high performance liquid chromatography manufactured by Wako Pure Chemical Industries, Ltd.).
3) Hold at 40 ° C. for 5 hours.
4) The resulting tetrahydrofuran supernatant and water are mixed at a ratio of 1: 7 (volume ratio).
5) The turbidity of the obtained solution is measured by the UV method, and the amount of elution polystyrene is determined based on the calibration curve of the tetrahydrofuran solution of the polystyrene sample measured by the same method.

上記架橋共重合体150gを丸底4つ口フラスコに入れ、クロロメチルメチルエーテル(純度90%、自製品)525gを加え、室温で8時間かけて共重合体を十分膨潤させた。その後、フリーデル・クラフツ反応触媒として塩化亜鉛56g(阪和工業製)を添加し、浴の温度を40℃にして攪拌しながら8時間反応させ、クロロメチル化架橋共重合体を得た。   150 g of the above crosslinked copolymer was put into a round bottom four-necked flask, 525 g of chloromethyl methyl ether (purity 90%, own product) was added, and the copolymer was sufficiently swollen over 8 hours at room temperature. Thereafter, 56 g of zinc chloride (manufactured by Hanwa Kogyo Co., Ltd.) was added as a Friedel-Crafts reaction catalyst, and the reaction was carried out for 8 hours while stirring at a bath temperature of 40 ° C. to obtain a chloromethylated crosslinked copolymer.

上記クロロメチル化架橋共重合体をメタノール(日本アルコール販売製)3.5倍体積量とトルエン(和光純薬製、試薬)10倍体積量で13時間バッチ洗浄したあと、30重量%トリメチルアミン水溶液(和光純薬製試薬)を添加し、30℃で攪拌しながら8時間反応させてI型4級アンモニウム型アニオン交換樹脂(Cl形)を得た。   The chloromethylated crosslinked copolymer was batch washed with 3.5 times volume of methanol (manufactured by Nippon Alcohol Sales) and 10 times volume of toluene (manufactured by Wako Pure Chemicals, reagent) for 13 hours, and then 30% by weight trimethylamine aqueous solution ( Wako Pure Chemical Reagent) was added and reacted for 8 hours with stirring at 30 ° C. to obtain an I-type quaternary ammonium-type anion exchange resin (Cl-type).

上記I型4級アンモニウム型アニオン交換樹脂の交換容量と水分量を[2−1−1]で前述した〔交換容量QClおよび水分含有WClの測定方法〕を用いて測定した。 It was measured using the aforementioned exchange capacity and moisture content of the type I quaternary ammonium type anion-exchange resin [2-1-1] [Measurement method of exchange capacity Q Cl and water content W Cl].

また、上記で得られたI型4級アンモニウム型アニオン交換樹脂を反応容器に入れ、1N−NaOH(和光純薬製)水溶液中、100℃で8時間攪拌した。その後、樹脂を取り出し、カラムに充填して水洗した後、重曹水溶液(和光純薬製試薬)とNaOH(和光純薬製試薬)水溶液とを通液して再生を行ない、OH形のアニオン交換樹脂に変換した。   Further, the I-type quaternary ammonium type anion exchange resin obtained above was put in a reaction vessel and stirred at 100 ° C. for 8 hours in a 1N-NaOH (manufactured by Wako Pure Chemical Industries) aqueous solution. Then, the resin is taken out, packed in a column, washed with water, regenerated by passing through an aqueous sodium bicarbonate solution (Wako Pure Chemicals reagent) and an aqueous NaOH (Wako Pure Chemicals reagent) aqueous solution, and an OH-type anion exchange resin. Converted to.

再生後、樹脂をビーカーに入れ、平均分子量1×10のポリスチレンスルホン酸溶液を攪拌しながら添加した。アニオン交換樹脂1リットルに対するスルホン酸基の量は0.2mmol/L−樹脂とした。このスラリーをカラムに移し、特級メタノールを室温で通液し、最後に超純水で水洗し、超純水用のアニオン交換樹脂とした。 After regeneration, the resin was placed in a beaker and a polystyrene sulfonic acid solution having an average molecular weight of 1 × 10 4 was added with stirring. The amount of sulfonic acid groups per liter of anion exchange resin was 0.2 mmol / L-resin. This slurry was transferred to a column, special grade methanol was passed through at room temperature, and finally washed with ultrapure water to obtain an anion exchange resin for ultrapure water.

OH形アニオン交換樹脂の交換容量と水分量を[2−1−2]で前述した〔交換容量QOHおよび水分含有率WOHの測定方法〕を用いて測定した。 The exchange capacity and water content of the OH type anion exchange resin were measured using the [Method for measuring exchange capacity Q OH and water content W OH ] described in [2-1-2].

また、得られたアニオン交換樹脂について、前述の(A)超純水通水試験により、ΔTOCを求めた。
これらの結果を表1に示す。
Moreover, about the obtained anion exchange resin, (DELTA) TOC was calculated | required by the above-mentioned (A) ultrapure water flow test.
These results are shown in Table 1.

なお、表1には、架橋共重合体合成時の全モノマー中のジビニルベンゼン含有率、架橋共重合体のハロアルキル化の際のハロアルキル基導入率、ハロアルキル化架橋共重合体のクロル含有率を併記した。   In Table 1, the divinylbenzene content in all monomers during the synthesis of the crosslinked copolymer, the haloalkyl group introduction rate during the haloalkylation of the crosslinked copolymer, and the chloro content of the haloalkylated crosslinked copolymer are also shown. did.

また、クロロメチル化架橋共重合体のメタノールとトルエンによるバッチ洗浄の有無と、このバッチ洗浄を行ったことによる前記溶出性化合物(II)の除去量を下記方法で調べ、結果を表1に示した。
<溶出性化合物(II)の除去量の定量>
1)クロロメチル化架橋共重合体のトルエン洗浄液1体積部をサンプル瓶にとる。
2)1)にメタノール(和光純薬1級試薬)2体積部を添加し、混合する。
3)得られた溶液の濁度をUV法で測定し、同様の手法で測定されたポリスチレン標品のトルエン溶液の検量線に基づいて溶出性化合物(II)の除去量を決定する。
なお、表1中、「−」はデータがないことを示す。
The presence or absence of batch washing of the chloromethylated cross-linked copolymer with methanol and toluene, and the amount of the eluting compound (II) removed by this batch washing were examined by the following method. The results are shown in Table 1. It was.
<Quantification of removal amount of eluting compound (II)>
1) Take 1 volume part of toluene washing solution of chloromethylated cross-linked copolymer in a sample bottle.
2) Add 2 parts by volume of methanol (1st grade Wako Pure Chemical Reagent) to 1) and mix.
3) The turbidity of the obtained solution is measured by the UV method, and the removal amount of the eluting compound (II) is determined based on the calibration curve of the toluene solution of the polystyrene sample measured by the same method.
In Table 1, “-” indicates that there is no data.

[実施例2]
全モノマー中のジビニルベンゼン含有率が10重量%となるようにしてスチレンとジビニルベンゼンとを共重合させた以外は、実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。
[Example 2]
An anion exchange resin was produced in the same manner as in Example 1 except that styrene and divinylbenzene were copolymerized so that the divinylbenzene content in all monomers was 10% by weight. It was shown in 1.

[実施例3]
全モノマー中のジビニルベンゼン含有率が4.5重量%になるようにしてスチレンとジビニルベンゼンとを共重合させ、かつクロロメチル化の反応浴の温度を30℃にした以外は、実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。
[Example 3]
Example 1 except that styrene and divinylbenzene were copolymerized so that the divinylbenzene content in all monomers was 4.5% by weight, and the temperature of the chloromethylation reaction bath was 30 ° C. An anion exchange resin was produced in the same manner, and the measurement results are shown in Table 1.

[実施例4]
クロロメチル化の触媒量を45gにした以外は、実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。なお、このアニオン交換樹脂については、前述の[2−4]の押し潰し強度の測定と[2−3]の体積増加率の測定も行い、結果を表1に併記した。
[Example 4]
An anion exchange resin was produced in the same manner as in Example 1 except that the amount of chloromethylation catalyst was 45 g. Table 1 shows the measurement results. In addition, about this anion exchange resin, the crushing strength measurement of [2-4] mentioned above and the volume increase rate of [2-3] were also measured, and the result was written together in Table 1.

[実施例5]
クロロメチル化の反応浴の温度を45℃にした以外は、実施例4と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。なお、このアニオン交換樹脂については、前述の[2−4]の押し潰し強度の測定も行い、結果を表1に併記した。
[Example 5]
An anion exchange resin was produced in the same manner as in Example 4 except that the temperature of the reaction bath for chloromethylation was 45 ° C. Table 1 shows the measurement results. In addition, about this anion exchange resin, the crushing strength measurement of the above-mentioned [2-4] was also performed, and the result was written together in Table 1.

[実施例6]
全モノマー中のジビニルベンゼン含有率が4.5重量%になるようにしてスチレンとジビニルベンゼンとを共重合させ、クロロメチル化の触媒量を45gにした以外は、実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。
[Example 6]
Anion was obtained in the same manner as in Example 1 except that styrene and divinylbenzene were copolymerized so that the divinylbenzene content in all monomers was 4.5% by weight and the amount of chloromethylation catalyst was 45 g. An exchange resin was produced, and the measurement results are shown in Table 1.

[実施例7]
390μmの均一粒径のスチレン・ジビニルベンゼン架橋共重合体を実施例1と同様の仕込み組成で製造し、かつクロロメチル化の触媒量を45gにした以外は、実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。なお、このアニオン交換樹脂については、前述の[2−4]の押し潰し強度の測定と、[2−3]の体積増加率の測定も行い、結果を表1に併記した。
[Example 7]
Anion exchange was carried out in the same manner as in Example 1 except that a 390 μm uniform particle size styrene / divinylbenzene crosslinked copolymer was produced with the same charge composition as in Example 1 and the amount of chloromethylation catalyst was 45 g. Resin was manufactured and the measurement results are shown in Table 1. In addition, about this anion exchange resin, the crushing strength measurement of [2-4] mentioned above and the volume increase rate of [2-3] were also measured, and the result was written together in Table 1.

[比較例1]
全モノマー中のジビニルベンゼン含有率が4.5重量%になるようにしてスチレンとジビニルベンゼンとを共重合させ、かつクロロメチル化の反応浴の温度を60℃にした以外は、実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。
[Comparative Example 1]
Example 1 except that styrene and divinylbenzene were copolymerized so that the divinylbenzene content in all monomers was 4.5% by weight, and the temperature of the chloromethylation reaction bath was 60 ° C. An anion exchange resin was produced in the same manner, and the measurement results are shown in Table 1.

[比較例2、3]
全モノマー中のジビニルベンゼン含有率を、それぞれ8または6重量%となるようにしてスチレンとジビニルベンゼンとを共重合させた以外は、比較例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。
[Comparative Examples 2 and 3]
An anion exchange resin was produced in the same manner as in Comparative Example 1 except that styrene and divinylbenzene were copolymerized so that the divinylbenzene content in each monomer was 8 or 6% by weight, respectively. The measurement results are shown in Table 1.

[比較例4]
全モノマー中のジビニルベンゼン含有率が4.5重量%になるようにしてスチレンとジビニルベンゼンとを反応させた以外は実施例1と同様にして架橋共重合体を得た。
得られた架橋共重合体140重量部にクロロメチルメチルエーテル490重量部を添加し、架橋共重合体を十分膨潤させた。その後フリーデルクラフツ反応触媒として塩化亜鉛52重量部を添加し、溶液の温度を50℃に保ち、攪拌しながら8時間反応させた。
得られたクロロメチル化架橋共重合体を用いて実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。なお、このアニオン交換樹脂については、前述の[2−4]の押し潰し強度の測定も行い、結果を表1に併記した。
[Comparative Example 4]
A crosslinked copolymer was obtained in the same manner as in Example 1 except that styrene and divinylbenzene were reacted so that the divinylbenzene content in all monomers was 4.5% by weight.
To 140 parts by weight of the obtained cross-linked copolymer, 490 parts by weight of chloromethyl methyl ether was added to sufficiently swell the cross-linked copolymer. Thereafter, 52 parts by weight of zinc chloride was added as a Friedel-Crafts reaction catalyst, the temperature of the solution was kept at 50 ° C., and the reaction was allowed to proceed for 8 hours with stirring.
Using the obtained chloromethylated cross-linked copolymer, an anion exchange resin was produced in the same manner as in Example 1, and the measurement results are shown in Table 1. In addition, about this anion exchange resin, the crushing strength measurement of the above-mentioned [2-4] was also performed, and the result was written together in Table 1.

[比較例5]
全モノマー中のジビニルベンゼン含有率が4.5重量%になるようにしてスチレンとジビニルベンゼンとを共重合させ、かつクロロメチル化の反応浴の温度を50℃にした以外は、実施例1と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。
[Comparative Example 5]
Example 1 except that styrene and divinylbenzene were copolymerized so that the divinylbenzene content in all monomers was 4.5% by weight, and the temperature of the chloromethylation reaction bath was 50 ° C. An anion exchange resin was produced in the same manner, and the measurement results are shown in Table 1.

[比較例6]
クロロメチル化架橋共重合体のメタノールおよびトルエンによるバッチ洗浄を行わなかったこと以外は、比較例5と同様にしてアニオン交換樹脂の製造を行い、各測定結果を表1に示した。
[Comparative Example 6]
An anion exchange resin was produced in the same manner as in Comparative Example 5 except that the chloromethylated cross-linked copolymer was not subjected to batch washing with methanol and toluene, and the measurement results are shown in Table 1.

[参考例1]
参考例1として、市販されているOH形アニオン交換樹脂(商品名 ダイヤイオン(登録商標)SAT20L ロット4L682、三菱化学(株)製)の水分含有量と交換容量ならびに超純水通水試験のΔTOCデータを表1に示す。
[Reference Example 1]
As Reference Example 1, the water content and exchange capacity of a commercially available OH-type anion exchange resin (trade name: Diaion (registered trademark) SAT20L lot 4L682, manufactured by Mitsubishi Chemical Corporation) and ΔTOC of ultrapure water flow test The data is shown in Table 1.

Figure 2012157864
Figure 2012157864

[参考例2〜13]
参考例2〜13として、市販されているCl形アニオン交換樹脂の水分含有量と交換容量を表2に示す。
ダイヤイオン(登録商標:三菱化学(株)製)の値は、それぞれ水分含有量と交換容量の規格の最下限を示した。また、アンバーライト(登録商標:ローム・アンド・ハース社製)については、参考文献(「イオン交換樹脂 その技術と応用」、実用編、オルガノ株式会社 改訂2版 平成9年3月)の第2ページの、「アンバーライト一覧表(陰イオン交換樹脂)」に記載の水分含有量とイオン交換量の最下限を示した。
[Reference Examples 2 to 13]
As Reference Examples 2 to 13, the water content and exchange capacity of commercially available Cl-type anion exchange resins are shown in Table 2.
The value of Diaion (registered trademark: manufactured by Mitsubishi Chemical Corporation) indicates the lower limit of the specifications of the water content and the exchange capacity, respectively. As for Amberlite (registered trademark: manufactured by Rohm and Haas), reference literature (“Ion-exchange resin, its technology and application”, practical edition, Organo Corporation, revised 2nd edition, March 1997) The lower limit of the water content and ion exchange amount described in “Amberlite List (Anion Exchange Resin)” on the page is shown.

Figure 2012157864
Figure 2012157864

実施例、比較例、および参考例のCl形アニオン交換樹脂の水分含有率と交換容量の関係を図1に示す。
実施例、比較例、および参考例のOH形アニオン交換樹脂の水分含有率と交換容量の関係を図2に示す。
FIG. 1 shows the relationship between the moisture content and the exchange capacity of the Cl-type anion exchange resins of Examples, Comparative Examples, and Reference Examples.
FIG. 2 shows the relationship between the moisture content and the exchange capacity of the OH-type anion exchange resins of Examples, Comparative Examples, and Reference Examples.

また、実施例および比較例に記載しているOH形アニオン交換樹脂の交換容量を横軸にとり、縦軸にはその超純水洗浄試験におけるΔTOCをプロットしたものを図3に、Cl形アニオン交換樹脂の交換容量を横軸にとり、縦軸には該Cl形アニオン交換樹脂を用いて調製されたOH形アニオン交換樹脂の超純水洗浄試験におけるΔTOCをプロットしたものを図4に示す。   Also, the horizontal axis represents the exchange capacity of the OH type anion exchange resin described in Examples and Comparative Examples, and the vertical axis represents ΔTOC in the ultrapure water washing test, and FIG. FIG. 4 shows a plot of ΔTOC in an ultrapure water washing test of an OH-type anion exchange resin prepared using the Cl-type anion exchange resin on the horizontal axis.

表1,2のアニオン交換樹脂の交換容量と、水分含有率の比較から明らかなように、本発明で得られたアニオン交換樹脂は、水分含有率が同程度の従来法による樹脂に比し、いずれも低い交換容量を有する。また、ΔTOCの値を比較することより明らかなように、本発明のアニオン交換樹脂は、従来法による樹脂に比し、いずれも低いΔTOC値である。さらに、重合段階での溶出性ポリスチレン量も、従来法による架橋共重合体に比し、いずれも低い。
また、カチオン交換樹脂と混合した場合における体積増加率はいずれも混合前の150%を超えてはいなかった。
As is clear from the comparison of the exchange capacity of the anion exchange resins in Tables 1 and 2 and the moisture content, the anion exchange resin obtained in the present invention is compared with the resin by the conventional method having the same moisture content, Both have a low exchange capacity. Further, as is clear from comparing the values of ΔTOC, the anion exchange resin of the present invention has a low ΔTOC value as compared with the resin obtained by the conventional method. Furthermore, the amount of elution polystyrene in the polymerization stage is lower than that of the conventional crosslinked copolymer.
Further, the volume increase rate when mixed with the cation exchange resin did not exceed 150% before mixing.

また、図3,4より、いずれも、アニオン交換樹脂の交換容量とΔTOCは、正の相関関係があることが分かった。
図3および図4のような交換容量とΔTOCの間に正の相関関係がある理由として、交換基の全く入っていないアニオン交換樹脂(つまりモノビニル芳香族モノマーとポリビニル芳香族モノマーとの架橋共重合体)には水溶性の溶出物を全く含まないのでΔTOCは限りなくゼロに近づくことが考えられる。
また、図3からは、OH形アニオン交換樹脂の交換容量が1.10meq/mL以下の場合、従来品よりもΔTOCが低減される。
また、図4からは、Cl形アニオン交換樹脂で測定した場合の交換容量が1.38meq/mL以下の場合、従来品よりもΔTOCが低減される。
3 and 4, it was found that both the exchange capacity of the anion exchange resin and ΔTOC have a positive correlation.
The reason why there is a positive correlation between the exchange capacity and ΔTOC as shown in FIG. 3 and FIG. 4 is that an anion exchange resin having no exchange groups (that is, a cross-linked copolymer of a monovinyl aromatic monomer and a polyvinyl aromatic monomer) (Coupled) does not contain any water-soluble eluate, so ΔTOC may approach zero as much as possible.
Moreover, from FIG. 3, when the exchange capacity of OH type anion exchange resin is 1.10 meq / mL or less, (DELTA) TOC is reduced rather than a conventional product.
Moreover, from FIG. 4, when the exchange capacity when measured with a Cl-type anion exchange resin is 1.38 meq / mL or less, ΔTOC is reduced as compared with the conventional product.

{超純水通水試験におけるΔTOC}
[実施例8]
直径40mm、長さ500mmの空カラムに室温条件下、抵抗率=18.2MΩ・cm以上、水温=25℃、TOC=0.5μg/Lの超純水を満たし、該超純水をSV=60hr−1で通水し、測定カラム出口のTOC濃度(TOC)を測定した。
次に、実施例1のアニオン交換樹脂500mLを前記測定カラムに充填した後、室温条件下、前記超純水をカラムにSV=60hr−1で通水し、測定カラム出口のTOC濃度(TOC)を測定した。
下記式によりΔTOCを算出した。結果を図5に示す。
ΔTOC=TOC−TOC
尚、TOC測定装置としてはアナテル社製「A−1000」を使用した。
{ΔTOC in ultrapure water flow test}
[Example 8]
An empty column having a diameter of 40 mm and a length of 500 mm was filled with ultrapure water having a resistivity = 18.2 MΩ · cm or more, a water temperature = 25 ° C., and a TOC = 0.5 μg / L under room temperature conditions. Water was passed through at 60 hr −1 , and the TOC concentration (TOC 0 ) at the measurement column outlet was measured.
Next, after 500 mL of the anion exchange resin of Example 1 was packed in the measurement column, the ultrapure water was passed through the column at SV = 60 hr −1 at room temperature, and the TOC concentration at the outlet of the measurement column (TOC 1 ) Was measured.
ΔTOC was calculated by the following formula. The results are shown in FIG.
ΔTOC = TOC 1 -TOC 0
As the TOC measuring device, “A-1000” manufactured by Anatel was used.

[比較例7]
栗田工業社製超純水製造用アニオン交換樹脂(品名EX−AG)を用いた以外は実施例8と同様にしてΔTOCを算出した。結果を図5に示す。
図5より明らかなように、実施例8のものは、通水初期からΔTOCが低く、本発明で得られたアニオン交換樹脂が他のアニオン交換樹脂に比してTOCの溶出が低いことが明らかである。
[Comparative Example 7]
ΔTOC was calculated in the same manner as in Example 8 except that an anion exchange resin (product name EX-AG) for producing ultrapure water manufactured by Kurita Kogyo Co., Ltd. was used. The results are shown in FIG.
As is clear from FIG. 5, in Example 8, ΔTOC is low from the beginning of water flow, and it is clear that the anion exchange resin obtained in the present invention has lower TOC elution than other anion exchange resins. It is.

Claims (16)

下記(a)〜(e)の工程を含むことを特徴とするアニオン交換樹脂の製造方法。
(a)モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合させて架橋共重合体を得る工程
(b)下記式(I)で示される溶出性化合物の含有量を、モノビニル芳香族モノマーと架橋性芳香族モノマーとの架橋共重合体1gに対して400μg以下とする工程
Figure 2012157864
(式(I)中、Zは、水素原子またはアルキル基を示す。lは自然数を示す。)
(c)前記溶出性化合物の含有量が架橋共重合体1gに対して400μg以下の架橋共重合体をハロアルキル化して、前記モノビニル芳香族モノマーに対して80モル%以下のハロアルキル基を導入する工程
(d)ハロアルキル化された架橋共重合体から、下記式(II)で示される溶出性化合物を除去する工程
Figure 2012157864
(式(II)中、Xは、水素原子、ハロゲン原子、またはハロゲン原子で置換されていても良いアルキル基を示す。Yは、ハロゲン原子を示す。m、nはそれぞれ独立に自然数を示す。)
(e)前記溶出性化合物が除去されたハロアルキル化架橋共重合体をアミン化合物と反応させる工程
The manufacturing method of the anion exchange resin characterized by including the process of following (a)-(e).
(A) Step of obtaining a crosslinked copolymer by copolymerizing a monovinyl aromatic monomer and a crosslinkable aromatic monomer (b) The content of the eluting compound represented by the following formula (I) The process which makes 400 micrograms or less with respect to 1g of crosslinked copolymers with a crosslinkable aromatic monomer
Figure 2012157864
(In the formula (I), Z represents a hydrogen atom or an alkyl group. L represents a natural number.)
(C) A step of introducing a haloalkyl group of 80 mol% or less with respect to the monovinyl aromatic monomer by haloalkylating a crosslinked copolymer having a content of the eluting compound of 400 μg or less with respect to 1 g of the crosslinked copolymer. (D) A step of removing the eluting compound represented by the following formula (II) from the haloalkylated crosslinked copolymer
Figure 2012157864
(In formula (II), X represents a hydrogen atom, a halogen atom, or an alkyl group which may be substituted with a halogen atom. Y represents a halogen atom. M and n each independently represent a natural number. )
(E) reacting the haloalkylated crosslinked copolymer from which the eluting compound has been removed with an amine compound
請求項1に記載のアニオン交換樹脂の製造方法によって製造されたアニオン交換樹脂。   An anion exchange resin produced by the method for producing an anion exchange resin according to claim 1. Cl形で測定するときの水分含有率WCl(重量%)と単位体積あたりの交換容量QCl(meq/mL−樹脂)とが、下記式(1)〜(5)のいずれかで表されることを特徴とするアニオン交換樹脂。
Cl≦1.25(但し、WCl<38) …(1)
Cl≦1.36(但し、38≦WCl<42) …(2)
Cl≦1.2 (但し、42≦WCl<48) …(3)
Cl≦1.1 (但し、48≦WCl<55) …(4)
Cl≦0.8 (但し、55≦WCl) …(5)
The water content W Cl (wt%) and the exchange capacity per unit volume Q Cl (meq / mL-resin) when measured in the Cl form are represented by any of the following formulas (1) to (5). An anion exchange resin characterized by that.
Q Cl ≦ 1.25 (W Cl <38) (1)
Q Cl ≦ 1.36 (provided that 38 ≦ W Cl <42) (2)
Q Cl ≦ 1.2 (provided that 42 ≦ W Cl <48) (3)
Q Cl ≦ 1.1 (provided that 48 ≦ W Cl <55) (4)
Q Cl ≦ 0.8 (however, 55 ≦ W Cl ) (5)
Cl形で測定するときの水分含有率WCl(重量%)と単位体積あたりの交換容量QCl(meq/mL−樹脂)とが、下記式(8)で表される請求項2に記載のアニオン交換樹脂。
Cl≦−0.021WCl+2.28 …(8)
The water content W Cl (wt%) and the exchange capacity per unit volume Q Cl (meq / mL-resin) when measured in the Cl form are represented by the following formula (8). Anion exchange resin.
Q Cl ≦ −0.021 W Cl +2.28 (8)
OH形で測定するときの水分含有率WOH(重量%)と単位体積あたりの交換容量QOH(meq/mL−樹脂)とが、下記式(6)または(7)で表されることを特徴とするアニオン交換樹脂。
OH≦1.1(但し、WOH<66) …(6)
OH≦0.9(但し、66≦WOH) …(7)
The water content W OH (wt%) when measured in the OH form and the exchange capacity Q OH (meq / mL-resin) per unit volume are expressed by the following formula (6) or (7). Characteristic anion exchange resin.
Q OH ≦ 1.1 (W OH <66) (6)
Q OH ≦ 0.9 (provided that 66 ≦ W OH ) (7)
OH形で測定するときの水分含有率WOH(重量%)と単位体積あたりの交換容量QOH(meq/mL−樹脂)とが、下記式(9)で表される請求項2に記載のアニオン交換樹脂。
OH≦−0.018WOH+2.05 …(9)
The water content W OH (wt%) and the exchange capacity per unit volume Q OH (meq / mL-resin) when measured in the OH form are represented by the following formula (9). Anion exchange resin.
Q OH ≦ −0.018 W OH +2.05 (9)
モノビニル芳香族モノマーと架橋性芳香族モノマーとを共重合させて得られる架橋共重合体をハロアルキル化した後、アミン化合物と反応させて得られるアニオン交換樹脂であって、前記ハロアルキル化により、前記モノビニル芳香族モノマーに対して80モル%以下のハロアルキル基を導入したことを特徴とするアニオン交換樹脂。   An anion exchange resin obtained by haloalkylating a cross-linked copolymer obtained by copolymerizing a monovinyl aromatic monomer and a cross-linkable aromatic monomer and then reacting with an amine compound, wherein the monovinyl An anion exchange resin, wherein 80 mol% or less of a haloalkyl group is introduced relative to an aromatic monomer. 前記架橋共重合体における下記式(I)で示される溶出性化合物の含有量が架橋共重合体1gに対して400μg以下である請求項7に記載のアニオン交換樹脂。
Figure 2012157864
(式(I)中、Zは、水素原子またはアルキル基を示す。lは自然数を示す。)
The anion exchange resin according to claim 7, wherein the content of the eluting compound represented by the following formula (I) in the crosslinked copolymer is 400 μg or less with respect to 1 g of the crosslinked copolymer.
Figure 2012157864
(In the formula (I), Z represents a hydrogen atom or an alkyl group. L represents a natural number.)
下記(A)の超純水通水試験におけるΔTOCが0.5ppb以下である請求項2ないし8のいずれか1項に記載のアニオン交換樹脂。
(A)超純水通水試験
(1)直径30mm、長さ1000mmの空の測定カラムに、室温条件下、比抵抗が18MΩ・cm以上、水温20以上40℃以下の超純水を満たし、該超純水をSV=30hr−1で通水し、測定カラム出口水のTOC濃度(TOC)を測定する。
(2)前記アニオン交換樹脂500mLを前記測定カラムに流し込み充填した後、室温条件下、前記超純水をカラムにSV=30hr−1で通水し、20時間後の測定カラム出口水のTOC濃度(TOC)を測定する。
(3)下記式によってΔTOCを算出する。
ΔTOC(ppb)=TOC−TOC
The anion exchange resin according to any one of claims 2 to 8, wherein ΔTOC in the ultrapure water flow test of (A) below is 0.5 ppb or less.
(A) Ultrapure water flow test (1) An empty measurement column having a diameter of 30 mm and a length of 1000 mm was filled with ultrapure water having a specific resistance of 18 MΩ · cm or more and a water temperature of 20 to 40 ° C. under room temperature conditions. The ultrapure water is passed at SV = 30 hr −1 , and the TOC concentration (TOC 0 ) of the measurement column outlet water is measured.
(2) After pouring and filling 500 mL of the anion exchange resin into the measurement column, the ultrapure water was passed through the column at SV = 30 hr −1 at room temperature, and the TOC concentration of the measurement column outlet water after 20 hours. Measure (TOC 1 ).
(3) Calculate ΔTOC by the following equation.
ΔTOC (ppb) = TOC 1 −TOC 0
球形のアニオン交換樹脂であって、1粒子あたりの押し潰し強度が7.5N以上である請求項2ないし9のいずれか1項に記載のアニオン交換樹脂。   The anion exchange resin according to any one of claims 2 to 9, which is a spherical anion exchange resin and has a crushing strength per particle of 7.5 N or more. 下記(A)の超純水通水試験におけるΔTOCが0.2ppb以下であることを特徴とするアニオン交換樹脂。
(A)超純水通水試験
(1)直径30mm、長さ1000mmの空の測定カラムに、室温条件下、比抵抗が18MΩ・cm以上、水温20以上40℃以下の超純水を満たし、該超純水をSV=30hr−1で通水し、測定カラム出口水のTOC濃度(TOC)を測定する。
(2)前記アニオン交換樹脂500mLを前記測定カラムに流し込み充填した後、室温条件下、前記超純水をカラムにSV=30hr−1で通水し、20時間後の測定カラム出口水のTOC濃度(TOC)を測定する。
(3)下記式によってΔTOCを算出する。
ΔTOC(ppb)=TOC−TOC
An anion exchange resin characterized in that ΔTOC in the ultrapure water flow test of (A) below is 0.2 ppb or less.
(A) Ultrapure water flow test (1) An empty measurement column having a diameter of 30 mm and a length of 1000 mm was filled with ultrapure water having a specific resistance of 18 MΩ · cm or more and a water temperature of 20 to 40 ° C. under room temperature conditions. The ultrapure water is passed at SV = 30 hr −1 , and the TOC concentration (TOC 0 ) of the measurement column outlet water is measured.
(2) After pouring and filling 500 mL of the anion exchange resin into the measurement column, the ultrapure water was passed through the column at SV = 30 hr −1 at room temperature, and the TOC concentration of the measurement column outlet water after 20 hours. Measure (TOC 1 ).
(3) Calculate ΔTOC by the following equation.
ΔTOC (ppb) = TOC 1 −TOC 0
球形のアニオン交換樹脂であって、1粒子あたりの押し潰し強度が7.5N以上であることを特徴とするアニオン交換樹脂。   A spherical anion exchange resin, wherein the crushing strength per particle is 7.5 N or more. アニオン交換樹脂と混合した場合における体積増加率が混合前の150%以下である請求項2ないし12のいずれか1項に記載のアニオン交換樹脂。   The anion exchange resin according to any one of claims 2 to 12, wherein the volume increase rate when mixed with an anion exchange resin is 150% or less before mixing. アニオン性解離基を含有する水溶性高分子を接触させて得られる請求項2ないし13のいずれか1項に記載のアニオン交換樹脂。   The anion exchange resin according to any one of claims 2 to 13, which is obtained by bringing a water-soluble polymer containing an anionic dissociative group into contact therewith. 請求項2ないし14のいずれか1項に記載のアニオン交換樹脂を用いて形成されることを特徴とする混床樹脂。   A mixed bed resin formed using the anion exchange resin according to any one of claims 2 to 14. 請求項2ないし14のいずれか1項に記載のアニオン交換樹脂を用いることを特徴とする電子部品・材料洗浄用超純水の製造方法。   A method for producing ultrapure water for washing electronic parts and materials, characterized in that the anion exchange resin according to any one of claims 2 to 14 is used.
JP2012114729A 2007-04-19 2012-05-18 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials Active JP5585610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114729A JP5585610B2 (en) 2007-04-19 2012-05-18 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007110652 2007-04-19
JP2007110652 2007-04-19
JP2012114729A JP5585610B2 (en) 2007-04-19 2012-05-18 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008105848A Division JP2008284545A (en) 2007-04-19 2008-04-15 Method for manufacturing anion exchange resin, anion exchange resin, mixed bed resin and method for manufacturing ultrapure water for cleaning electronic parts/material

Publications (2)

Publication Number Publication Date
JP2012157864A true JP2012157864A (en) 2012-08-23
JP5585610B2 JP5585610B2 (en) 2014-09-10

Family

ID=40144769

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008105849A Active JP5589261B2 (en) 2007-04-19 2008-04-15 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials
JP2008105848A Pending JP2008284545A (en) 2007-04-19 2008-04-15 Method for manufacturing anion exchange resin, anion exchange resin, mixed bed resin and method for manufacturing ultrapure water for cleaning electronic parts/material
JP2012114729A Active JP5585610B2 (en) 2007-04-19 2012-05-18 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008105849A Active JP5589261B2 (en) 2007-04-19 2008-04-15 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials
JP2008105848A Pending JP2008284545A (en) 2007-04-19 2008-04-15 Method for manufacturing anion exchange resin, anion exchange resin, mixed bed resin and method for manufacturing ultrapure water for cleaning electronic parts/material

Country Status (2)

Country Link
JP (3) JP5589261B2 (en)
CN (1) CN101663094B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130626A1 (en) * 2007-04-19 2010-05-27 Kurita Water Industries Ltd. Method for manufacturing anion exchange resin, anion exchange resin, method for manufacturing cation exchange resin, cation exchange resin, mixed bed resin, and method for manufacturing ultrapure water for washing electronic component material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589261B2 (en) * 2007-04-19 2014-09-17 栗田工業株式会社 Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials
JP2010132846A (en) 2008-03-30 2010-06-17 Fujifilm Corp Resin molded product and polymer film
CN105451849B (en) * 2013-08-06 2017-10-10 陶氏环球技术有限责任公司 The method that oil-containing aqueous mixture is handled with cationic ion-exchange resin
EP3040350A4 (en) 2013-08-30 2017-04-05 Kuraray Co., Ltd. Novel vinyl alcohol based copolymer, production method for same, and ion exchange membrane
CN113101902A (en) * 2021-04-13 2021-07-13 北京赛科康仑环保科技有限公司 Adsorption material for acidic phosphate extraction system, preparation method and application

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083276A (en) * 1973-11-28 1975-07-05
JPS5084689A (en) * 1973-11-28 1975-07-08
JPS50140596A (en) * 1974-04-30 1975-11-11
JPS50149785A (en) * 1974-05-21 1975-12-01
JPS5390179A (en) * 1977-01-21 1978-08-08 Tokyo Yuuki Kagaku Kougiyou Kk Method of manufacturing anion exchange resin
JPS59161410A (en) * 1983-03-07 1984-09-12 Asahi Chem Ind Co Ltd Terpolymer having basicity and its preparation
JPS61130306A (en) * 1984-11-23 1986-06-18 ザ ダウ ケミカル カンパニー Preparation of anion exchange resin containing extremely little chlorine content
JPH01315349A (en) * 1988-06-13 1989-12-20 Tokyo Organ Chem Ind Ltd Anion exchange resin
JPH054051A (en) * 1990-11-22 1993-01-14 Mitsubishi Kasei Corp Ion exchange resin for production of ultrapure water, its production and production of ultrapure water using same
JPH0549948A (en) * 1991-08-20 1993-03-02 Nippon Rensui Kk Anion exchange resin for producing ultrapure water and production of ultrapure water using the same
JPH07330818A (en) * 1994-06-08 1995-12-19 Mitsubishi Chem Corp Production of spherical cross-linked copolymer
JPH08208744A (en) * 1994-12-05 1996-08-13 Mitsubishi Chem Corp Strongly basic anion exchange resin and its production
JPH09150066A (en) * 1995-11-28 1997-06-10 Mitsubishi Chem Corp Manufacture of anionic exchange resin
JPH09255730A (en) * 1996-03-26 1997-09-30 Mitsubishi Chem Corp Production of cross-linked copolymer
JPH10137736A (en) * 1996-11-18 1998-05-26 Kurita Water Ind Ltd Polymeric material for water treatment
JP2002035607A (en) * 2000-05-18 2002-02-05 Mitsubishi Chemicals Corp Anion exchange resin
JP2002102719A (en) * 2000-07-28 2002-04-09 Mitsubishi Chemicals Corp Mixed bed type ion exchange resin bed and anion exchange resin used in the same
JP2002119872A (en) * 2000-10-12 2002-04-23 Mitsubishi Chemicals Corp Anion exchange resin
JP2002136882A (en) * 2000-08-25 2002-05-14 Mitsubishi Chemicals Corp Method for manufacturing anion exchanger and anion exchanger
JP2003211004A (en) * 2002-01-22 2003-07-29 Kurita Water Ind Ltd Tangle preventing agent for ion exchange resin and anion exchange resin using the same
JP2006328290A (en) * 2005-05-30 2006-12-07 Mitsubishi Chemicals Corp Method of manufacturing granular polymer, method of manufacturing ion-exchange resin and method of manufacturing synthetic adsorbent, as well as anion-exchange resin, cation-exchange resin and synthetic adsorbent
JP2008266443A (en) * 2007-04-19 2008-11-06 Kurita Water Ind Ltd Method of producing cation-exchange resin, cation-exchange resin, mixed bed resin, and method of producing ultra pure water for washing electronic component/material
JP2008264670A (en) * 2007-04-19 2008-11-06 Kurita Water Ind Ltd Method for manufacturing anion exchange resin, anion exchange, mixed bed resin and method for manufacturing ultrapure water for cleaning electric appliance/material
JP2008284545A (en) * 2007-04-19 2008-11-27 Kurita Water Ind Ltd Method for manufacturing anion exchange resin, anion exchange resin, mixed bed resin and method for manufacturing ultrapure water for cleaning electronic parts/material
JP2011174073A (en) * 2011-03-18 2011-09-08 Mitsubishi Chemicals Corp Method of manufacturing granular polymer, method of manufacturing ion-exchange resin, and method of manufacturing synthetic adsorbent, as well as anion-exchange resin and cation-exchange resin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289924A (en) * 1994-03-01 1995-11-07 Tohoku Electric Power Co Inc Silica removing resin
JPH09221523A (en) * 1996-02-15 1997-08-26 Tohoku Electric Power Co Inc Anion exchanger
JP3997658B2 (en) * 1999-07-23 2007-10-24 三菱化学株式会社 Production method of ion exchanger
DE19949465A1 (en) * 1999-08-25 2001-03-01 Bayer Ag Bead polymers of styrene, phenol derivatives and crosslinking agents and their hydrolysis and sulfonation products

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083276A (en) * 1973-11-28 1975-07-05
JPS5084689A (en) * 1973-11-28 1975-07-08
JPS50140596A (en) * 1974-04-30 1975-11-11
JPS50149785A (en) * 1974-05-21 1975-12-01
JPS5390179A (en) * 1977-01-21 1978-08-08 Tokyo Yuuki Kagaku Kougiyou Kk Method of manufacturing anion exchange resin
JPS59161410A (en) * 1983-03-07 1984-09-12 Asahi Chem Ind Co Ltd Terpolymer having basicity and its preparation
JPS61130306A (en) * 1984-11-23 1986-06-18 ザ ダウ ケミカル カンパニー Preparation of anion exchange resin containing extremely little chlorine content
JPH01315349A (en) * 1988-06-13 1989-12-20 Tokyo Organ Chem Ind Ltd Anion exchange resin
JPH054051A (en) * 1990-11-22 1993-01-14 Mitsubishi Kasei Corp Ion exchange resin for production of ultrapure water, its production and production of ultrapure water using same
JPH0549948A (en) * 1991-08-20 1993-03-02 Nippon Rensui Kk Anion exchange resin for producing ultrapure water and production of ultrapure water using the same
JPH07330818A (en) * 1994-06-08 1995-12-19 Mitsubishi Chem Corp Production of spherical cross-linked copolymer
JPH08208744A (en) * 1994-12-05 1996-08-13 Mitsubishi Chem Corp Strongly basic anion exchange resin and its production
JPH09150066A (en) * 1995-11-28 1997-06-10 Mitsubishi Chem Corp Manufacture of anionic exchange resin
JPH09255730A (en) * 1996-03-26 1997-09-30 Mitsubishi Chem Corp Production of cross-linked copolymer
JPH10137736A (en) * 1996-11-18 1998-05-26 Kurita Water Ind Ltd Polymeric material for water treatment
JP2002035607A (en) * 2000-05-18 2002-02-05 Mitsubishi Chemicals Corp Anion exchange resin
JP2002102719A (en) * 2000-07-28 2002-04-09 Mitsubishi Chemicals Corp Mixed bed type ion exchange resin bed and anion exchange resin used in the same
JP2002136882A (en) * 2000-08-25 2002-05-14 Mitsubishi Chemicals Corp Method for manufacturing anion exchanger and anion exchanger
JP2002119872A (en) * 2000-10-12 2002-04-23 Mitsubishi Chemicals Corp Anion exchange resin
JP2003211004A (en) * 2002-01-22 2003-07-29 Kurita Water Ind Ltd Tangle preventing agent for ion exchange resin and anion exchange resin using the same
JP2006328290A (en) * 2005-05-30 2006-12-07 Mitsubishi Chemicals Corp Method of manufacturing granular polymer, method of manufacturing ion-exchange resin and method of manufacturing synthetic adsorbent, as well as anion-exchange resin, cation-exchange resin and synthetic adsorbent
JP2008266443A (en) * 2007-04-19 2008-11-06 Kurita Water Ind Ltd Method of producing cation-exchange resin, cation-exchange resin, mixed bed resin, and method of producing ultra pure water for washing electronic component/material
JP2008264670A (en) * 2007-04-19 2008-11-06 Kurita Water Ind Ltd Method for manufacturing anion exchange resin, anion exchange, mixed bed resin and method for manufacturing ultrapure water for cleaning electric appliance/material
JP2008284545A (en) * 2007-04-19 2008-11-27 Kurita Water Ind Ltd Method for manufacturing anion exchange resin, anion exchange resin, mixed bed resin and method for manufacturing ultrapure water for cleaning electronic parts/material
JP2011174073A (en) * 2011-03-18 2011-09-08 Mitsubishi Chemicals Corp Method of manufacturing granular polymer, method of manufacturing ion-exchange resin, and method of manufacturing synthetic adsorbent, as well as anion-exchange resin and cation-exchange resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100130626A1 (en) * 2007-04-19 2010-05-27 Kurita Water Industries Ltd. Method for manufacturing anion exchange resin, anion exchange resin, method for manufacturing cation exchange resin, cation exchange resin, mixed bed resin, and method for manufacturing ultrapure water for washing electronic component material
US8476324B2 (en) * 2007-04-19 2013-07-02 Kurita Water Industries Ltd. Method for manufacturing anion exchange resin, anion exchange resin, method for manufacturing cation exchange resin, cation exchange resin, mixed bed resin, and method for manufacturing ultrapure water for washing electronic component material

Also Published As

Publication number Publication date
JP2008284545A (en) 2008-11-27
JP5589261B2 (en) 2014-09-17
JP2008285665A (en) 2008-11-27
CN101663094B (en) 2013-03-13
JP5585610B2 (en) 2014-09-10
CN101663094A (en) 2010-03-03

Similar Documents

Publication Publication Date Title
KR101557269B1 (en) Method for producing anion exchange resin anion exchange resin method for producing cation exchange resin cation exchange resin mixed bed resin and method for producing ultra-pure water for cleaning electronic device/material
JP5585610B2 (en) Method for producing anion exchange resin, method for producing anion exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials
US6924317B2 (en) Process for producing coarse-particle anion-exchanger gels
EP2763793A2 (en) Aminated ion exchange resins and production methods thereof
JP5700901B2 (en) Method for producing cation exchange resin, method for producing cation exchange resin, mixed bed resin, and ultrapure water for cleaning electronic parts and materials
EP2387549B1 (en) Chromium removal by using ion exchange resins comprising interpenetrating polymer networks
US4785020A (en) Method for preparation of anion exchange resins having very low chlorine content
KR910005666B1 (en) Preparation of anion exchange resins having very low chlorine content
EP0716099B1 (en) Strongly basic anion exchange resin and process for its production
US2689832A (en) Method of converting weakly basic anion-exchange resins to strongly basic resins
JP2016141738A (en) Water-treatment resin and pure water production method using the same
JP2014077149A (en) Method for producing cation exchange resin, cation exchange resin, mixed bed resin, and method for producing ultrapure water for washing electronic component material
TW201829297A (en) Aqueous hydrogen peroxide purification method and purification device
JP2008264670A (en) Method for manufacturing anion exchange resin, anion exchange, mixed bed resin and method for manufacturing ultrapure water for cleaning electric appliance/material
JPH08208744A (en) Strongly basic anion exchange resin and its production
WO2019112776A1 (en) Treatment of water containing chromium (iv) by means of anion exchanger containing tin(ii) oxide
WO2017222978A1 (en) Treating vinyl aromatic resin
WO2019112775A1 (en) Polymeric beads
WO2017222980A1 (en) Vinyl aromatic resin
WO2017222981A1 (en) Removing colloidal cobalt from an aqueous composition
JPH04501578A (en) Method for producing anion exchange resin with very low chlorine content

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130909

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5585610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250