JP2012157145A - Bidirectional converter, control circuit thereof, and control method thereof - Google Patents

Bidirectional converter, control circuit thereof, and control method thereof Download PDF

Info

Publication number
JP2012157145A
JP2012157145A JP2011013584A JP2011013584A JP2012157145A JP 2012157145 A JP2012157145 A JP 2012157145A JP 2011013584 A JP2011013584 A JP 2011013584A JP 2011013584 A JP2011013584 A JP 2011013584A JP 2012157145 A JP2012157145 A JP 2012157145A
Authority
JP
Japan
Prior art keywords
voltage
current
storage device
electric power
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011013584A
Other languages
Japanese (ja)
Inventor
Tadashi Kikuchi
正 菊池
Kiyoshi Kuroda
清志 黒田
Motoyasu Sato
元保 佐藤
Isao Hara
伊砂夫 原
Masa Tai
政 戴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TBK Co Ltd
Original Assignee
TBK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TBK Co Ltd filed Critical TBK Co Ltd
Priority to JP2011013584A priority Critical patent/JP2012157145A/en
Publication of JP2012157145A publication Critical patent/JP2012157145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve responsibility of a bidirectional converter at the time when switching is made between charging and discharging of an electric power storage device.SOLUTION: A target voltage setting part 101 sets a target voltage Vwhich represents a target voltage of a load device. A voltage PI control part 103 acquires a target current Irepresenting a target current that flows during charging and discharging of the electric power storage device by PI control which is based on a difference between the set target voltage Vand a voltage Vof the load device. A current PI control part 106 acquires a corrective voltage ΔV by PI control which is based on a difference between the target current Iand a current Ithat flows during charging and discharging of the electric power storage device. A duty ratio deciding part 110 acquires a duty ratio that specifies a degree of conversion between a voltage of the electric power storage device and a voltage of the load device according to the correction voltage ΔV. A voltage conversion part steps up or steps down the voltage according to the acquired duty ratio, for conversion between the voltage of the electric power storage device and the voltage of the load device.

Description

本発明は、電気蓄電装置と負荷装置との間に置かれ、直流電圧の大きさを変換する双方向コンバータ、その制御回路およびその制御方法に関する。   The present invention relates to a bidirectional converter that is placed between an electric power storage device and a load device and converts the magnitude of a DC voltage, its control circuit, and its control method.

例えば、ハイブリッド自動車や電車では、力行運転時には電気蓄電装置の電力をモータに供給し、一方、回生運転時にはモータを発電機として機能させ、モータから出力される電力を電気蓄電装置に供給する。
このような車両等では、モータの駆動力を高めるために電気蓄電装置の電圧を昇圧してモータに印加する。また、モータによって発電された電圧を降圧して電気蓄電装置に印加し、電気蓄電装置を充電する。このため、電圧を変換するための双方向コンバータが電気蓄電装置とモータを含む負荷装置との間に設けられる。
For example, in a hybrid vehicle or a train, the electric power of the electric power storage device is supplied to the motor during power running operation, while the motor functions as a generator during the regenerative operation, and the electric power output from the motor is supplied to the electric power storage device.
In such a vehicle or the like, the voltage of the electric power storage device is boosted and applied to the motor in order to increase the driving force of the motor. Further, the voltage generated by the motor is stepped down and applied to the electric power storage device to charge the electric power storage device. For this reason, a bidirectional converter for converting the voltage is provided between the electric power storage device and the load device including the motor.

このような双方向コンバータの制御方法として、特許文献1は、目標電圧と負荷装置側の電圧の差が少なくなるようにPI(比例・積分)制御を行い、昇圧動作と降圧動作の区別なく双方向コンバータに含まれる2個のスイッチング素子をPWM(Pulth Width Modulation)制御する方法を開示する。
また、特許文献2は、目標電圧と負荷装置側の電圧の差が少なくなるようにPI制御を行い、双方向コンバータに含まれる2個のスイッチング素子のうち、昇圧時には昇圧用のスイッチング素子をPWM制御し、降圧時には昇圧用のスイッチング素子をPWM制御する方法を開示する。
As a control method of such a bidirectional converter, Patent Document 1 performs PI (proportional / integral) control so that the difference between the target voltage and the voltage on the load device side is reduced, and both the boost operation and the step-down operation are not distinguished. Disclosed is a method for PWM (Pulse Width Modulation) control of two switching elements included in a directional converter.
Further, Patent Document 2 performs PI control so that the difference between the target voltage and the voltage on the load device side is reduced, and among the two switching elements included in the bidirectional converter, the switching element for boosting is PWMed during boosting. Disclosed is a method of controlling and PWM controlling a step-up switching element during step-down.

ここで、電気蓄電装置から負荷装置に流れる電流の向きを正とし、負荷装置から電気蓄電装置に流れる電流の向きを負とする。すなわち、回生運転時には負の電流が流れ、力行運転時には正の電流が流れると定義する。   Here, the direction of the current flowing from the electrical storage device to the load device is positive, and the direction of the current flowing from the load device to the electrical storage device is negative. That is, it is defined that a negative current flows during regenerative operation and a positive current flows during power running operation.

特開2010−115056号公報JP 2010-115056 A 特開2009−303423号公報JP 2009-303423 A

特許文献1に開示されている制御方法を用いた双方向コンバータでは、モータが発電機の機能を停止し、電気蓄電装置の電圧により駆動され始めるとき、電気蓄電装置と負荷装置の間に流れる電流を巨視的に見ると、その電流Iは負から0を経て正に変化し、電気蓄電装置の充電から放電に切り換わる。
このとき、理想的には、巨視的に見た電流Iは直線的に変化し、その電流値が0である状態は瞬間的にしか発生しない。しかし、実際には、双方向コンバータの応答性が悪化し、電流Iの値が0付近に張り付く現象が発生する。この現象が発生すると、電流Iの値はなかなか上昇せず、理想的な電流Iに比べて実際の電流Iは小さくなる。そして、この電流Iの値が0付近に停滞する状態が長い時間続いた後、通常の昇圧動作が可能な状態になると、電流Iの値が瞬間的に大きくなり、サージが発生する。
In the bidirectional converter using the control method disclosed in Patent Document 1, when the motor stops the function of the generator and starts to be driven by the voltage of the electric power storage device, the current flowing between the electric power storage device and the load device When the current I A is viewed macroscopically, the current I A changes from negative to positive through zero and switches from charging to discharging of the electric power storage device.
In this case, ideally, the current I A when viewed macroscopically linearly changed, the state current value thereof is 0 only occur instantaneously. However, in practice, the response of the bi-directional converter is deteriorated, the value of the current I A phenomenon occurs sticking around 0. When this occurs, the value of the current I A does not easily increase, the actual current I A is smaller than the ideal current I A. Then, after the value of the current I A is followed by a long time the state of stagnant near 0, the normal boosting operation is ready, the value of the current I A is momentarily increased, the surge is generated.

また、特許文献2に開示されている制御方法を用いた双方向コンバータでは、昇圧動作と降圧動作の切替点に近い電流が微小な領域において、電流の応答が遅れるため昇圧動作又は降圧動作を適切に行うことができない不感帯領域が現れる。このため、特許文献2に記載の発明では、不感帯領域にあるか否かを判定し、不感帯領域にある場合にはPI制御の比例ゲインと積分ゲインを増大させて応答性を向上させる。   In the bidirectional converter using the control method disclosed in Patent Document 2, the current response is delayed in a region where the current close to the switching point between the step-up operation and the step-down operation is small. A dead zone area that cannot be performed appears. For this reason, in the invention described in Patent Document 2, it is determined whether or not it is in the dead zone region, and if it is in the dead zone region, the proportional gain and integral gain of PI control are increased to improve the responsiveness.

本発明は、上記実情に鑑みてなされたものであり、昇圧動作と降圧動作の区別なく制御することができ、電気蓄電装置の充電と放電が切り換わるときの応答性を改善することができる双方向コンバータ、その制御回路およびその制御方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and can be controlled without distinction between a step-up operation and a step-down operation, and both can improve responsiveness when charging and discharging of an electric power storage device are switched. An object of the present invention is to provide a direction converter, a control circuit thereof, and a control method thereof.

上記目的を達成するため、本発明の双方向コンバータは、
充電と放電が可能な電気蓄電装置と直流電力の授受が可能な負荷装置との間にあり、当該電気蓄電装置の電圧と当該負荷装置の電圧を変換する双方向コンバータであって、
電圧の変換の程度を指定するデューティ比に応じて、前記電気蓄電装置の電圧と前記負荷装置の電圧とを変換する電圧変換部と、
前記負荷装置の電圧の目標を示す目標電圧と前記負荷装置の電圧との差に基づいて前記電気蓄電装置の充電時および放電時に流れる電流の目標を示す目標電流を求め、当該目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づいて前記デューティ比を求める制御部と、
を備える。
In order to achieve the above object, the bidirectional converter of the present invention comprises:
A bi-directional converter for converting the voltage of the electrical storage device and the voltage of the load device between the electrical storage device capable of charging and discharging and a load device capable of transferring DC power,
A voltage conversion unit that converts the voltage of the electric power storage device and the voltage of the load device according to a duty ratio that specifies a degree of voltage conversion;
Based on the difference between the target voltage indicating the voltage target of the load device and the voltage of the load device, a target current indicating the target of the current that flows during charging and discharging of the electric power storage device is obtained, and the target current and the electric power A control unit for obtaining the duty ratio based on a difference between a current flowing during charging and discharging of the power storage device;
Is provided.

好ましくは、本発明の双方向コンバータは、
前記電圧変換部が、前記電気蓄電装置の充電時および放電時に電流が流れることによって両端に電圧が生じるコイルを備え、
前記制御部が、
前記目標電圧と前記負荷装置の電圧との差に基づくPI制御により前記目標電流を求め、
前記目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づくPI制御により補正電圧を求め、
前記電気蓄電装置の電圧と前記コイルの両端に生じる電圧と前記補正電圧とに基づいて前記デューティ比を求める。
Preferably, the bidirectional converter of the present invention comprises:
The voltage conversion unit includes a coil that generates a voltage at both ends due to a current flowing when the electric power storage device is charged and discharged.
The control unit is
Obtaining the target current by PI control based on the difference between the target voltage and the voltage of the load device;
A correction voltage is obtained by PI control based on a difference between the target current and a current flowing during charging and discharging of the electric power storage device,
The duty ratio is obtained based on the voltage of the electric power storage device, the voltage generated at both ends of the coil, and the correction voltage.

好ましくは、本発明の双方向コンバータは、
前記電圧変換部が、
前記電気蓄電装置と前記負荷装置の両方に接続される負極ラインと、
前記電気蓄電装置と前記コイルの一端に接続される第1の正極ラインと、
前記負荷装置に接続される第2の正極ラインと、
前記デューティ比に基づいて第1のゲート信号と第2のゲート信号を生成するゲート信号生成部と、
一端が前記第2の正極ラインに接続され、他端が前記コイルの他端に接続されており、前記第1のゲート信号によって導通と非導通が制御される第1の導電路と、当該第1の導電路の他端から一端に向かう方向にのみ電流を流す第2の導電路とを有する第1の素子と、
一端が前記第1の素子の導電路の他端に接続され、他端が前記負極ラインに接続されており、前記第2のゲート信号によって導通と非導通が制御される第3の導電路と、当該第3の導電路の他端から一端に向かう方向にのみ電流を流す第4の導電路とを有する第2の素子と、
を備え、
前記制御部が、
前記目標電圧を設定する目標電圧設定部と、
前記目標電圧設定部によって設定された目標電圧と前記負荷装置の電圧との差を求め、当該差に基づくPI制御により前記目標電流を求める目標電流決定部と、
前記目標電流決定部によって求められた目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差を求め、当該差に基づくPI制御により前記補正電圧を求める補正電圧決定部と、
前記電気蓄電装置の充電時および放電時に流れる電流に基づいて前記コイルの両端に生じる電圧を求めるコイル電圧取得部と、
前記補正電圧決定部で求められた補正電圧と、前記コイル電圧取得部で求められた前記コイルの両端に生じる電圧と、前記電気蓄電装置の電圧とに基づいてデューティ比に応じた電圧を求める電圧決定部と、
前記電圧決定部によって求められた前記デューティ比に応じた電圧と前記負荷装置の電圧とに基づいて前記デューティ比を求めるデューティ比決定部と、
を備える。
Preferably, the bidirectional converter of the present invention comprises:
The voltage converter is
A negative electrode line connected to both the electric power storage device and the load device;
A first positive electrode line connected to the electric power storage device and one end of the coil;
A second positive line connected to the load device;
A gate signal generation unit that generates a first gate signal and a second gate signal based on the duty ratio;
A first conductive path having one end connected to the second positive electrode line and the other end connected to the other end of the coil, the conduction and non-conduction of which are controlled by the first gate signal; A first element having a second conductive path that allows current to flow only in a direction from the other end of the one conductive path toward the one end;
One end connected to the other end of the conductive path of the first element, the other end connected to the negative electrode line, and a third conductive path whose conduction and non-conduction are controlled by the second gate signal; A second element having a fourth conductive path that allows current to flow only in a direction from the other end of the third conductive path toward the one end;
With
The control unit is
A target voltage setting unit for setting the target voltage;
A target current determination unit that obtains a difference between the target voltage set by the target voltage setting unit and the voltage of the load device, and obtains the target current by PI control based on the difference;
A correction voltage determining unit that calculates a difference between the target current determined by the target current determining unit and a current that flows when the electric power storage device is charged and discharged, and calculates the correction voltage by PI control based on the difference;
A coil voltage acquisition unit for obtaining a voltage generated at both ends of the coil based on a current flowing during charging and discharging of the electric power storage device;
A voltage for obtaining a voltage corresponding to a duty ratio based on the correction voltage obtained by the correction voltage determination unit, the voltage generated at both ends of the coil obtained by the coil voltage acquisition unit, and the voltage of the electric power storage device A decision unit;
A duty ratio determining unit for determining the duty ratio based on a voltage corresponding to the duty ratio determined by the voltage determining unit and a voltage of the load device;
Is provided.

好ましくは、本発明の双方向コンバータは、
前記制御部が、
前記電気蓄電装置の充放電特性に合わせて充電時に流れる電流の電流制限値および放電時に流れる電流の電流制限値が記憶されている記憶部と、
前記電気蓄電装置の充電時または放電時に、前記記憶部に記憶されている電流制限値を前記目標電流の値が超える場合に、前記目標電流の値を前記記憶部に記憶されている電流制限値に置き換えるリミッタと、
を備える。
Preferably, the bidirectional converter of the present invention comprises:
The control unit is
A storage unit storing a current limit value of a current flowing during charging and a current limit value of a current flowing during discharging according to the charge / discharge characteristics of the electric power storage device,
When the electric power storage device is charged or discharged, when the target current value exceeds the current limit value stored in the storage unit, the current limit value stored in the storage unit Limiter to replace with
Is provided.

好ましくは、本発明の双方向コンバータは、
前記負荷装置が、発電機として機能するモータを含み、
前記制御部のリミッタは、前記電気蓄電装置の充電時に流れる電流の電流制限値に基づいて求められたモータの出力電流の電流制限値を前記目標電流の値が超える場合に、前記目標電流の値を前記モータの出力電流の電流制限値に置き換える、
ことを特徴とする請求項4に記載の双方向コンバータ。
Preferably, the bidirectional converter of the present invention comprises:
The load device includes a motor that functions as a generator,
The limiter of the control unit, when the value of the target current exceeds the current limit value of the output current of the motor determined based on the current limit value of the current that flows when charging the electric power storage device, the value of the target current Is replaced with a current limit value of the output current of the motor,
The bidirectional converter according to claim 4.

また、本発明の双方向コンバータの制御回路は、
充電と放電が可能な電気蓄電装置と直流電力の授受が可能な負荷装置との間にあり、電圧の変換の程度を指定するデューティ比に応じて当該電気蓄電装置の電圧と当該負荷装置の電圧を変換する電圧変換部を備える双方向コンバータの制御回路であって、
前記負荷装置の電圧の目標を示す目標電圧と前記負荷装置の電圧との差に基づいて前記電気蓄電装置の充電時および放電時に流れる電流の目標を示す目標電流を求め、当該目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づいて前記デューティ比を求める。
The control circuit of the bidirectional converter of the present invention is
The voltage of the electric power storage device and the voltage of the load device are between the electric power storage device capable of charging and discharging and the load device capable of transferring DC power, and the voltage of the electric power storage device according to the duty ratio that specifies the degree of voltage conversion A bidirectional converter control circuit comprising a voltage converter for converting
Based on the difference between the target voltage indicating the voltage target of the load device and the voltage of the load device, a target current indicating the target of the current that flows during charging and discharging of the electric power storage device is obtained, and the target current and the electric power The duty ratio is obtained based on the difference between the current flowing when the power storage device is charged and discharged.

また、本発明の双方向コンバータの制御方法は、
充電と放電が可能な電気蓄電装置と直流電力の授受が可能な負荷装置との間にあり、電圧の変換の程度を指定するデューティ比に応じて当該電気蓄電装置の電圧と当該負荷装置の電圧を変換する電圧変換部を備える双方向コンバータの制御方法であって、
前記負荷装置の電圧の目標を示す目標電圧と前記負荷装置の電圧との差に基づいて前記電気蓄電装置の充電時および放電時に流れる電流の目標を示す目標電流を求めるステップと、
前記目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づいて前記デューティ比を求めるステップと、
を備える。
Further, the bidirectional converter control method of the present invention includes:
The voltage of the electric power storage device and the voltage of the load device are between the electric power storage device capable of charging and discharging and the load device capable of transferring DC power, and the voltage of the electric power storage device according to the duty ratio that specifies the degree of voltage conversion A bidirectional converter control method including a voltage conversion unit for converting
Obtaining a target current indicating a target of a current flowing during charging and discharging of the electric power storage device based on a difference between a target voltage indicating a target voltage of the load device and a voltage of the load device;
Obtaining the duty ratio based on a difference between the target current and a current flowing when the electric power storage device is charged and discharged;
Is provided.

本発明によれば、昇圧動作と降圧動作の区別なく制御することができ、電気蓄電装置の充電と放電が切り換わるときにおける双方向コンバータの応答性を改善することができる。   According to the present invention, the step-up operation and the step-down operation can be controlled without distinction, and the responsiveness of the bidirectional converter when the charging and discharging of the electric power storage device is switched can be improved.

本発明の実施形態に係る双方向コンバータを含む電源システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the power supply system containing the bidirectional | two-way converter which concerns on embodiment of this invention. ゲート信号G1とゲート信号G2の基準となるゲート基準信号GBSと、ゲート信号G1と、ゲート信号G2の波形の一例を示す図である。It is a figure which shows an example of the waveform of the gate reference signal GBS used as the reference | standard of the gate signal G1 and the gate signal G2, the gate signal G1, and the gate signal G2. コイルを流れる電流の変化の一例を示す図である。It is a figure which shows an example of the change of the electric current which flows through a coil. PWM制御回路の構成の一例を示す図である。It is a figure which shows an example of a structure of a PWM control circuit. PWM制御プログラムにおけるPWM制御処理の流れの一例を示す図である。It is a figure which shows an example of the flow of the PWM control process in a PWM control program.

以下、本発明の実施形態に係る双方向コンバータについて図面を参照しながら説明する。   Hereinafter, a bidirectional converter according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る双方向コンバータ10を含む電源システムの構成の一例を示す。
この電源システムは、双方向コンバータ10と、電気蓄電装置20と、平滑用コンデンサ30とで構成される。
双方向コンバータ10は、電気蓄電装置20と負荷装置40の間に配置される。双方向コンバータ10は電気蓄電装置20が放電しているときに電気蓄電装置20の電圧を負荷装置40の電圧に昇圧し、電気蓄電装置20が充電されているときに負荷装置40の電圧を電気蓄電装置20の電圧に降圧する。
電気蓄電装置20は、正極端子と負極端子がそれぞれ正極ラインPL1と負極ラインNLに接続される。電気蓄電装置20は、充放電可能な直流電源であり、例えば、ニッケル水素やリチウムイオン等の二次電池、大容量のコンデンサ等で構成される。電気蓄電装置20の電圧Vは正極ラインPL1と負極ラインNLの間の直流電圧である。
平滑用コンデンサ30は、正極ラインPL2と負極ラインNLの間に負荷装置40と並列に接続される。平滑用コンデンサ30は、負荷装置40の電圧VDCを平滑化する。
負荷装置40は、正極端子と負極端子がそれぞれ正極ラインPL2と負極ラインNLに接続される。負荷装置40は、例えば発電機として機能するモータ等を含む。負荷装置40の電圧VDCは正極ラインPL2と負極ラインNLの間の直流電圧である。
FIG. 1 shows an example of the configuration of a power supply system including a bidirectional converter 10 according to an embodiment of the present invention.
This power supply system includes a bidirectional converter 10, an electric power storage device 20, and a smoothing capacitor 30.
Bidirectional converter 10 is arranged between electric power storage device 20 and load device 40. The bidirectional converter 10 boosts the voltage of the electric power storage device 20 to the voltage of the load device 40 when the electric power storage device 20 is discharged, and supplies the voltage of the load device 40 to the electric power when the electric power storage device 20 is charged. The voltage is stepped down to the voltage of the power storage device 20.
Electric power storage device 20 has a positive electrode terminal and a negative electrode terminal connected to positive electrode line PL1 and negative electrode line NL, respectively. The electric power storage device 20 is a DC power source that can be charged and discharged, and includes, for example, a secondary battery such as nickel hydride or lithium ion, a large-capacity capacitor, and the like. Voltage V B of electric power storage device 20 is a DC voltage between positive line PL1 and negative line NL.
Smoothing capacitor 30 is connected in parallel with load device 40 between positive electrode line PL2 and negative electrode line NL. The smoothing capacitor 30 smoothes the voltage VDC of the load device 40.
Load device 40 has a positive terminal and a negative terminal connected to positive line PL2 and negative line NL, respectively. The load device 40 includes, for example, a motor that functions as a generator. The voltage V DC of the load device 40 is a DC voltage between the positive electrode line PL2 and the negative electrode line NL.

例えば、負荷装置40に含まれるモータが、電気蓄電装置20の電圧により駆動される電動機として機能するとき、電気蓄電装置20は放電し、電気蓄電装置20から負荷装置40に電力が供給される。このとき、電気蓄電装置20から負荷装置40に向けて正の電流Iが流れる。
一方、例えば、負荷装置40に含まれるモータが発電機として機能するとき、負荷装置40から電気蓄電装置20に電力が供給され、電気蓄電装置20は充電される。このとき、負荷装置40から電気蓄電装置20に向けて負の電流Iが流れる。
For example, when a motor included in the load device 40 functions as an electric motor driven by the voltage of the electric power storage device 20, the electric power storage device 20 is discharged and power is supplied from the electric power storage device 20 to the load device 40. At this time, it flows through a positive current I A toward the electric power storage device 20 to the load device 40.
On the other hand, for example, when a motor included in the load device 40 functions as a generator, electric power is supplied from the load device 40 to the electric power storage device 20, and the electric power storage device 20 is charged. At this time, a negative current I A flows from the load device 40 to the electric power storage device 20.

双方向コンバータ10は、スイッチング素子11と、スイッチング素子12と、ダイオード13と、ダイオード14と、コイル15と、ゲート信号生成部16と、後述するPWM制御回路100とを含む。
本実施形態では、スイッチング素子11とスイッチング素子12は、IGBT(Insulated Gate Bipolar Transistor)で構成されるものとする。ただし、スイッチング素子11とスイッチング素子12は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)やバイポーラトランジスタ等の他のスイッチング素子で構成することもできる。
Bidirectional converter 10 includes a switching element 11, a switching element 12, a diode 13, a diode 14, a coil 15, a gate signal generation unit 16, and a PWM control circuit 100 described later.
In the present embodiment, it is assumed that the switching element 11 and the switching element 12 are configured by IGBT (Insulated Gate Bipolar Transistor). However, the switching element 11 and the switching element 12 can also be comprised by other switching elements, such as MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a bipolar transistor.

スイッチング素子11とスイッチング素子12は、正極ラインPL2と負極ラインNLの間に直列に接続される。スイッチング素子11とスイッチング素子12のゲートには、ゲート信号G1とゲート信号G2が入力される。なお、ゲート信号G1とゲート信号G2は、それぞれ第1のゲート信号と第2のゲート信号の一例である。
スイッチング素子11は、コレクタが正極ラインPL2に接続され、エミッタがスイッチング素子12のコレクタに接続される。スイッチング素子11は、コレクタとエミッタの間にゲート信号G1によって導通と非導通が制御される導電路を有する。なお、コレクタとエミッタは、それぞれスイッチング素子11の導電路の一端と他端の一例である。
スイッチング素子12は、コレクタがスイッチング素子11のエミッタに接続され、コレクタが負極ラインNL2に接続される。スイッチング素子12は、コレクタとエミッタの間にゲート信号G2によって導通と非導通が制御される導電路を有する。なお、コレクタとエミッタは、それぞれスイッチング素子12の導電路の一端と他端の一例である。
Switching element 11 and switching element 12 are connected in series between positive electrode line PL2 and negative electrode line NL. A gate signal G 1 and a gate signal G 2 are input to the gates of the switching element 11 and the switching element 12. The gate signal G1 and the gate signal G2 are examples of the first gate signal and the second gate signal, respectively.
Switching element 11 has a collector connected to positive line PL <b> 2 and an emitter connected to the collector of switching element 12. The switching element 11 has a conductive path whose conduction and non-conduction are controlled by the gate signal G1 between the collector and the emitter. The collector and the emitter are examples of one end and the other end of the conductive path of the switching element 11, respectively.
Switching element 12 has a collector connected to the emitter of switching element 11 and a collector connected to negative electrode line NL2. The switching element 12 has a conductive path whose conduction and non-conduction are controlled by the gate signal G2 between the collector and the emitter. The collector and the emitter are examples of one end and the other end of the conductive path of the switching element 12, respectively.

ダイオード13は、アノードとカソードがそれぞれスイッチング素子11のエミッタとコレクタに接続される。ダイオード13は、スイッチング素子11のエミッタからコレクタに向かう方向にのみ電流を流す。ダイオード14は、アノードとカソードがそれぞれスイッチング素子12のエミッタとコレクタに接続される。ダイオード14は、スイッチング素子12のエミッタからコレクタに向かう方向にのみ電流を流す。
なお、ダイオード13とダイオード14は、それぞれスイッチング素子11とスイッチング素子12に内蔵されて一体化されているものであってもよいし、スイッチング素子11とスイッチング素子12とは別途取り付けるものであってもよい。
The diode 13 has an anode and a cathode connected to the emitter and collector of the switching element 11, respectively. The diode 13 flows current only in the direction from the emitter to the collector of the switching element 11. The diode 14 has an anode and a cathode connected to the emitter and collector of the switching element 12, respectively. The diode 14 allows current to flow only in the direction from the emitter to the collector of the switching element 12.
The diode 13 and the diode 14 may be integrated in the switching element 11 and the switching element 12, respectively, or the switching element 11 and the switching element 12 may be separately attached. Good.

コイル15は、その一端が正極ラインPL1に接続され、その他端がスイッチング素子11のエミッタとスイッチング素子12のコレクタとが接続された接続ノードNDに接続される。接続ノードNDの電圧Vはコイル15の他端と負極ラインNLの間の電圧である。
なお、電流I(I)は、電気蓄電装置20の放電時に電気蓄電装置20から負荷装置40に向けて流れ、電気蓄電装置20の充電時に負荷装置40から電気蓄電装置20に向けて流れるが、この電流I(I)はコイル15を流れる電流でもある。電流I(I)が流れることにより、コイル15の両端に電圧Vが生じる。ここで、後で図3を参照して説明するように、電流Iは実際にコイル15に流れる電流であり、電流Iは巨視的に見た場合のコイル15に流れる電流である。
One end of coil 15 is connected to positive electrode line PL1, and the other end is connected to connection node ND to which the emitter of switching element 11 and the collector of switching element 12 are connected. Voltage V e of the connection node ND is the voltage between the other end and a negative electrode line NL of the coil 15.
The current I A (I L ) flows from the electric power storage device 20 toward the load device 40 when the electric power storage device 20 is discharged, and flows from the load device 40 toward the electric power storage device 20 when the electric power storage device 20 is charged. However, this current I A (I L ) is also a current flowing through the coil 15. When the current I A (I L ) flows, a voltage V L is generated at both ends of the coil 15. Here, as described with reference to FIG. 3 below, the current I L is the current actually flowing through the coil 15, the current I A is the current flowing in the coil 15 when viewed macroscopically.

後述するPWM制御回路100(図4参照)は、電気蓄電装置の電圧と負荷装置の電圧の変換の程度を指定するデューティ比αを生成し、ゲート信号生成部16に送る。ゲート信号生成部16は、受け取ったデューティ比αを示す信号に応じて、ゲート信号G1とゲート信号G2を生成する。
図2は、ゲート信号G1とゲート信号G2の基準となるゲート基準信号GBSと、ゲート信号G1と、ゲート信号G2の波形の一例を示す。
ゲート基準信号GBSの周期がTであり、その電位レベルがハイレベルである期間がThであるとき、ゲート基準信号GBSのデューティ比はTh/Tで定義される。ゲート信号生成部16は、ゲート基準信号GBSのデューティ比がPWM制御回路100から送信されるデューティ比αと一致するように、ゲート基準信号GBSを生成する。
そして、ゲート信号生成部16は、ゲート信号G1を、ゲート基準信号GBSの立ち上がりからデッドタイムd1だけ遅れて立ち上がり、ゲート基準信号GBSが立ち下がるとともに立ち下がるように生成する。また、ゲート信号生成部16は、ゲート信号G2を、ゲート基準信号GBSの立ち下がりからデッドタイムd2だけ遅れて立ち上がり、ゲート基準信号GBSが立ち上がるとともに立ち下がるように生成する。
The PWM control circuit 100 (see FIG. 4) described later generates a duty ratio α that specifies the degree of conversion between the voltage of the electric power storage device and the voltage of the load device, and sends the duty ratio α to the gate signal generation unit 16. The gate signal generator 16 generates a gate signal G1 and a gate signal G2 according to the received signal indicating the duty ratio α.
FIG. 2 shows an example of the waveforms of the gate reference signal GBS, the gate signal G1, and the gate signal G2, which serve as a reference for the gate signal G1 and the gate signal G2.
When the period of the gate reference signal GBS is T and the period during which the potential level is high is Th, the duty ratio of the gate reference signal GBS is defined as Th / T. The gate signal generation unit 16 generates the gate reference signal GBS so that the duty ratio of the gate reference signal GBS matches the duty ratio α transmitted from the PWM control circuit 100.
Then, the gate signal generation unit 16 generates the gate signal G1 so that the gate signal G1 rises with a delay by the dead time d1 from the rise of the gate reference signal GBS, and the gate reference signal GBS falls and falls. Further, the gate signal generation unit 16 generates the gate signal G2 such that it rises with a delay of the dead time d2 from the fall of the gate reference signal GBS and falls as the gate reference signal GBS rises.

ゲート信号G1は、スイッチング素子11のゲートに供給される。ゲート信号G1の電位レベルがハイレベルである期間にスイッチング素子11はオン(導通)状態となり、ゲート信号G1の電位レベルがローレベルである期間にスイッチング素子11はオフ(非導通)状態となる。
ゲート信号G2は、スイッチング素子12のゲートに供給される。ゲート信号G2の電位レベルがハイレベルである期間にスイッチング素子12はオン(導通)状態となり、ゲート信号G2の電位レベルがローレベルである期間にスイッチング素子12はオフ(非導通)状態となる。
デッドタイムd1とデッドタイムd2の期間には、スイッチング素子11とスイッチング素子12のいずれもオフとなる。これにより、スイッチング素子11とスイッチング素子12が同時にオン(導通)となって正極ラインPL2と負極ラインNLとが短絡されることが防止される。
The gate signal G1 is supplied to the gate of the switching element 11. The switching element 11 is turned on (conductive) during a period when the potential level of the gate signal G1 is high, and the switching element 11 is turned off (non-conductive) while the potential level of the gate signal G1 is low.
The gate signal G2 is supplied to the gate of the switching element 12. The switching element 12 is turned on (conductive) during the period when the potential level of the gate signal G2 is high, and the switching element 12 is turned off (non-conductive) while the potential level of the gate signal G2 is low.
During the period of dead time d1 and dead time d2, both switching element 11 and switching element 12 are turned off. As a result, switching element 11 and switching element 12 are simultaneously turned on (conducted) to prevent short circuit between positive electrode line PL2 and negative electrode line NL.

デューティ比αが小さくなると、スイッチング素子12がオンである期間が長くなる。このとき、巨視的に見た場合のコイル15に流れる電流Iは、正の方向に増加する。
例えば、ハイブリッド自動車等において、運転手がブレーキを踏んでいる場合、電気蓄電装置20は充電されている。このとき、運転手がブレーキを離し、アクセルを踏んだ場合、負荷装置40側に電流を流すためPWM制御回路100はデューティ比αを小さくする。デューティ比αが小さくなると、図3に示すように、実際にコイルに流れる電流Iはゲート基準信号GBSの周期にあわせて周期的に増減を繰り返すが、巨視的に見た場合のコイル15に流れる電流Iは、最初負であるが、徐々に増加して時刻t0において負から正に変化する。
When the duty ratio α decreases, the period during which the switching element 12 is on increases. At this time, the current I A flowing through the coil 15 when viewed macroscopically increases in the positive direction.
For example, in a hybrid vehicle or the like, when the driver is stepping on the brake, the electric power storage device 20 is charged. At this time, if the driver releases the brake and steps on the accelerator, the PWM control circuit 100 decreases the duty ratio α in order to flow current to the load device 40 side. When the duty ratio α is small, as shown in FIG. 3, actually current I L flowing through the coil is cyclically repeatedly increases and decreases in accordance with the period of the gate the reference signal GBS, but the coil 15 when viewed macroscopically current I a flowing is the first negative, positive changes from negative at time t0 gradually increased to.

逆にデューティ比αが大きくなると、スイッチング素子11がオンである期間が長くなる。このとき、巨視的に見た場合のコイル15に流れる電流Iは負の方向に増加(すなわち、減少)する。
なお、電流Iが負のとき、電流Iは負荷装置40から電気蓄電装置20に向けて流れる。一方、電流Iが正のとき、電流Iは電気蓄電装置20から負荷装置40に向けて流れる。
Conversely, when the duty ratio α increases, the period during which the switching element 11 is on becomes longer. At this time, the current I A flowing through the coil 15 when viewed macroscopically increases (that is, decreases) in the negative direction.
Incidentally, when the current I A is negative, the current I A flows toward the electric power storage device 20 from the load device 40. On the other hand, when the current I A is positive, the current I A flows toward the electric power storage device 20 to the load device 40.

図4は、PWM制御回路100の構成の一例を示す。
PWM制御回路100は、目標電圧設定部101と、減算器102と、電圧PI制御部103と、リミッタ104と、減算器105と、電流PI制御部106と、コイル電圧取得部107と、加算器108と、減算器109と、デューティ比決定部110とを有する。
FIG. 4 shows an example of the configuration of the PWM control circuit 100.
The PWM control circuit 100 includes a target voltage setting unit 101, a subtractor 102, a voltage PI control unit 103, a limiter 104, a subtractor 105, a current PI control unit 106, a coil voltage acquisition unit 107, and an adder. 108, a subtractor 109, and a duty ratio determination unit 110.

図示しない2つの電圧センサがそれぞれ電気蓄電装置20の電圧Vと負荷装置40の電圧VDCを検出し、検出された値をPWM制御回路100に送る。
また、図示しない電流センサが実際にコイル15を流れる電流Iを検出し、検出された値をPWM制御回路100に送る。PWM制御回路100は、巨視的に見た場合の電流Iを求める。このとき、PWM制御回路100は、ゲート基準信号GBSの1周期ごとに1回電流Iをサンプリングすることにより電流Iを求めてもよいし、ゲート基準信号GBSの1周期ごとに複数回サンプリングし、それらを平均することにより電流Iを求めてもよい。
Two voltage sensors (not shown) detect the voltage V B of the electric power storage device 20 and the voltage V DC of the load device 40, respectively, and send the detected values to the PWM control circuit 100.
Further, to detect the current I L flowing through the actual coil 15 is a current sensor (not shown), and sends the detected value to the PWM control circuit 100. PWM control circuit 100 determines the current I A when viewed macroscopically. At this time, PWM control circuit 100 may be determine the current I A by sampling once current I L for each cycle of the gate the reference signal GBS, sampled multiple times in each cycle of the gate the reference signal GBS and it may be obtained current I a by averaging them.

目標電圧設定部101は、たとえば負荷装置40に含まれるモータのトルクと回転速度、電気蓄電装置20の残存容量等に基づいて、負荷装置40の電圧VDCの目標を示す目標電圧V DCを求め、減算器102に送る。
減算器102は、次の(1)式に示すように、目標電圧V DCと、電圧センサによって負荷装置40の電圧VDCとの差εを求め、電圧PI制御部103に送る。
The target voltage setting unit 101 sets a target voltage V * DC indicating a target of the voltage V DC of the load device 40 based on, for example, the torque and rotation speed of the motor included in the load device 40, the remaining capacity of the electric power storage device 20, and the like. Obtained and sent to the subtractor 102.
The subtractor 102 obtains a difference ε V between the target voltage V * DC and the voltage V DC of the load device 40 using a voltage sensor as shown in the following equation (1), and sends the difference ε V to the voltage PI control unit 103.

Figure 2012157145
Figure 2012157145

電圧PI制御部103は、次の(2)式に示すように、差εを基にPI(比例・積分)制御を行ってコイル15を流れる電流の目標を示す目標電流Iを求め、リミッタ104に送る。ここで、KPiとKliは一般に定数であるが、変数であってもよい。 Voltage PI control unit 103, as shown in the following equation (2), determine the target current I * indicating the target of the current flowing in the coil 15 by performing a PI (proportional-integral) control based on the difference epsilon V, Send to limiter 104. Here, K Pi and K li are generally constants, but may be variables.

Figure 2012157145
Figure 2012157145

リミッタ104は、過大な電流Iが流れ、電源システム等を損傷させることを防止するために、目標電流Iの値が所定の範囲に入るように制限する。
更に、目標電流Iにより、電気蓄電装置20の充放電管理の制御を行うことができる。例えば、電気蓄電装置20の電圧、電流の充放電特性に合わせて電気蓄電装置20の充放電の電流制限値(すなわち、充電時に流れる電流の電流制限値および放電時に流れる電流の電流制限値)を予めROM(Read Only Memory)やフラッシュメモリ等を含むPWM制御回路100内に設けられた記憶部(図示なし)に記憶しておく。充電時または放電時に目標電流Iの値が記憶されている電流制限値を超える場合、リミッタ104が目標電流Iの値を記憶されている電流制限値に置き換えることにより、電気蓄電装置20の充放電管理の制御を同時に行うことができる。
Limiter 104, an excessive current I A flows, in order to prevent damaging the power supply system or the like, the value of the target current I * is limited to fall within a predetermined range.
Furthermore, the charge / discharge management of the electric power storage device 20 can be controlled by the target current I * . For example, the current limiting value of charging / discharging of the electric power storage device 20 according to the voltage and current charging / discharging characteristics of the electric power storage device 20 (that is, the current limiting value of the current flowing during charging and the current limiting value of the current flowing during discharging) The information is stored in advance in a storage unit (not shown) provided in the PWM control circuit 100 including a ROM (Read Only Memory), a flash memory, and the like. When the value of the target current I * exceeds the stored current limit value at the time of charging or discharging, the limiter 104 replaces the value of the target current I * with the stored current limit value. Control of charge / discharge management can be performed simultaneously.

また、負荷装置40に含まれるモータが発電機として機能する場合に、電気蓄電装置20の充電時に流れる電流の電流制限値により、負荷であるモータの出力電流の電流制限値を連動して設定することも可能である。例えば、パワー不変の原則で、電気蓄電装置20の充電時に流れる電流の電流制限値により、モータの出力電流の電流制限値を算出できる。負荷装置40はインバータで誘導モータを駆動する場合に、次の(3)式の関係がある。   Further, when the motor included in the load device 40 functions as a generator, the current limit value of the output current of the motor that is the load is set in conjunction with the current limit value of the current that flows when the electric power storage device 20 is charged. It is also possible. For example, on the principle of power invariance, the current limit value of the motor output current can be calculated from the current limit value of the current that flows when the electric power storage device 20 is charged. When the load device 40 drives the induction motor with an inverter, there is a relationship of the following equation (3).

Figure 2012157145
Figure 2012157145

ここで、Vは電気蓄電装置20の電圧であり、IA_limは電気蓄電装置20の充電時に流れる電流の電流制限値であり、Vは誘導モータの電圧であり、Im_lim1は誘導モータの出力電流の電流制限値、COSφは誘導モータの力率である。
また、負荷装置は直流モータの場合、次の(4)式の関係がある。
Here, V B is the voltage of the electric power storage device 20, I A_lim is the current limit value of the current that flows when the electric power storage device 20 is charged, V m is the voltage of the induction motor, and I m_lim1 is the voltage of the induction motor. The output current limit value, COSφ, is the power factor of the induction motor.
When the load device is a direct current motor, there is a relationship of the following equation (4).

Figure 2012157145
Figure 2012157145

ここでは、VDCは負荷装置40の電圧、つまり直流モータの電圧であり、Im_lim2は直流モータの出力電流の電流制限値である。
従って、上記(3)式または(4)式により、モータの出力電流の電流制限値Im_lim1、Im_lim2を算出することができる。目標電流Iの値がモータの出力電流の電流制限値を超える場合、リミッタ104が目標電流Iの値をモータの出力電流の電流制限値に置き換えることにより、負荷装置40とモータを保護することができる。
なお、上述した電気蓄電装置20の充電時に流れる電流の電流制限値とモータの出力電流の電流制限値を算出する際に、誤差を考えて、モータの出力電流の電流制限値をやや小さめに設定することが望ましい。
Here, VDC is the voltage of the load device 40, that is, the voltage of the DC motor, and Im_lim2 is the current limit value of the output current of the DC motor.
Therefore, the current limit values I m_lim1 and I m_lim2 of the motor output current can be calculated by the above formula (3) or (4). When the value of the target current I * exceeds the current limit value of the motor output current, the limiter 104 protects the load device 40 and the motor by replacing the value of the target current I * with the current limit value of the motor output current. be able to.
When calculating the current limit value of the current flowing when charging the electric power storage device 20 and the current limit value of the motor output current, the current limit value of the motor output current is set slightly smaller in consideration of errors. It is desirable to do.

減算器105は、次の(5)式に示すように、目標電流Iとコイル15を流れる電流Iとの差εを求め、電流PI制御部106に送る。 Subtractor 105, as shown in the following equation (5), obtains a difference epsilon A between the current I A flowing through the target current I * and the coil 15, and sends the current PI control unit 106.

Figure 2012157145
Figure 2012157145

電流PI制御部106は、次の(6)式に示すように、差εを基にPI制御を行って補正電圧ΔVを求め、減算器109に送る。ここで、KPvとKlvは一般に定数であるが、変数であってもよい。 The current PI control unit 106 performs PI control based on the difference ε A as shown in the following equation (6), obtains a correction voltage ΔV, and sends it to the subtractor 109. Here, K Pv and K lv are generally constants, but may be variables.

Figure 2012157145
Figure 2012157145

コイル電圧取得部107は、次の(7)式に示すように、コイル15を電流Iが流れることによりコイル15の両端に生じる電圧Vを求め、加算器108に送る。ここで、Lはコイル15のインダクタンス値、Tはゲート基準信号GBSの周期、I(t)は時刻tにコイル15を流れる電流I、I(t−T)は時刻(t−T)、すなわち時刻tより1周期T前にコイル15を流れる電流Iである。 Coil voltage acquiring unit 107, as shown in the following equation (7), obtains the voltage V L generated across the coil 15 by flowing through the coil 15 a current I A, and sends to the adder 108. Here, L is the inductance value of the coil 15, T is the period of the gate reference signal GBS, I A (t) is the current I A flowing through the coil 15 at time t, and I A (t−T) is the time (t−T). ), that is, the current I a flowing through the coil 15 in one period T before the time t.

Figure 2012157145
Figure 2012157145

加算器108は、次の(8)式に示すように、電気蓄電装置20の電圧Vとコイル15の両端に生じる電圧Vを加算して電圧Vを求め、減算器109に送る。 As shown in the following equation (8), the adder 108 adds the voltage V B of the electric power storage device 20 and the voltage V L generated at both ends of the coil 15 to obtain the voltage Ve and sends the voltage Ve to the subtractor 109.

Figure 2012157145
Figure 2012157145

減算器109は、次の(9)式に示すように、電圧Vから上式(6)により求められた補正電圧ΔVを減算し、デューティ比に応じた電圧Vpwmを求め、デューティ比決定部110に送る。 Subtractor 109, as shown in the following equation (9), by subtracting the correction voltage ΔV obtained by the above equation (6) from the voltage V e, obtains the voltage V pwm corresponding to the duty ratio, the duty ratio determining Send to part 110.

Figure 2012157145
Figure 2012157145

デューティ比決定部110は、次の(10)式に示すように、デューティ比に応じた電圧Vpwmを負荷装置の電圧VDCで割り、デューティ比αを求める。そして、デューティ比決定部110は、デューティ比αをゲート信号生成部16に送る。 As shown in the following equation (10), the duty ratio determination unit 110 divides the voltage V pwm corresponding to the duty ratio by the voltage V DC of the load device to obtain the duty ratio α. Then, the duty ratio determination unit 110 sends the duty ratio α to the gate signal generation unit 16.

Figure 2012157145
Figure 2012157145

PWM制御回路100の各機能をハードウェアで実現するのではなく、コンピュータまたはDSP(Digital Signal Processor)で実現することもできる。この場合、コンピュータまたはDSP(以下、コンピュータ等という。)のCPU(Central Processing Unit)が記憶装置に格納されているPWM制御プログラムを実行することにより、PWM制御回路100の各機能を実現する。   Each function of the PWM control circuit 100 can be realized not by hardware but by a computer or a DSP (Digital Signal Processor). In this case, each function of the PWM control circuit 100 is realized by executing a PWM control program stored in the storage device by a CPU (Central Processing Unit) of a computer or a DSP (hereinafter referred to as a computer or the like).

図5は、PWM制御プログラムにおけるPWM制御処理の流れの一例を示す。
図示しない2つの電圧センサと1つの電流センサによって検出された電気蓄電装置20の電圧V、負荷装置40の電圧VDCおよびコイル15を流れる電流Iは所定の周期でサンプリングされる。そして、これらはA/D(Analog−to−Digital)変換されて、入力装置からコンピュータ等に入力される。その際、電磁ノイズを除去するために、電気蓄電装置20の電圧V、負荷装置40の電圧VDCがA/D変換された数値をローパスフィルタLPF(Low Pass Filter)、または移動平均などにより平滑化する処理を行うこともできる。
以下では、デジタル信号に変換された電気蓄電装置20の電圧V、負荷装置40の電圧VDCおよびコイル15を流れる電流Iをそれぞれ電気蓄電装置20の電圧V、負荷装置40の電圧VDCおよびコイル15を流れる電流Iの測定値という。
FIG. 5 shows an example of the flow of PWM control processing in the PWM control program.
Voltage V B of the electric power storage device 20 detected by the two voltage sensors (not shown) and one current sensor, a current I L flowing through the voltage V DC and the coil 15 of the load device 40 is sampled at a predetermined period. These are A / D (Analog-to-Digital) converted and input from an input device to a computer or the like. At this time, in order to remove electromagnetic noise, the numerical value obtained by A / D converting the voltage V B of the electric power storage device 20 and the voltage V DC of the load device 40 is obtained by a low pass filter LPF (Low Pass Filter) or a moving average. A smoothing process can also be performed.
In the following, the voltage V B of the electric power storage device 20 which is converted into a digital signal, the voltage V B of the voltage V DC and the coil 15 respectively electrically power storage device current I L flowing through 20 of the load device 40, the load device 40 voltage V DC and that measurements of the current I L flowing through the coil 15.

CPUは、負荷装置の電圧の目標値V DCと、電圧センサによって測定された負荷装置の電圧VDCの測定値との差εを求め(S101)、差εを基にPI制御を行ってコイルを流れる電流の目標値Iを求める(S102)。そして、CPUは、電流の目標値Iの値が所定の範囲に入るように制限する(S103)。
CPUは、電流の目標値Iとコイルを流れる電流Iの測定値の差ε求め(S104)、差εを基にPI制御を行ってデューティ比αを求めるための補正値ΔVを求める(S105)。
The CPU obtains a difference ε V between the target value V * DC of the load device voltage and the measured value of the load device voltage V DC measured by the voltage sensor (S101), and performs PI control based on the difference ε V. The target value I * of the current flowing through the coil is obtained (S102). Then, the CPU limits the current target value I * so that it falls within a predetermined range (S103).
The CPU obtains a difference ε A between the target value I * of the current and the measured value of the current I A flowing through the coil (S104), and performs a PI control based on the difference ε A to obtain a correction value ΔV for obtaining the duty ratio α. Obtained (S105).

CPUは、コイル15を電流Iが流れることによりコイル15の両端に生じる電圧Vを求める(S106)。そして、CPUは、電圧Vに電気蓄電装置20の電圧Vを加算して電圧Vを求め、電圧VからステップS106で求めた補正値ΔVを減算してデューティ比に応じた電圧Vpwmを求める(S107)。
CPUは、デューティ比に応じた電圧Vpwmを負荷装置の電圧VDCで割り、デューティ比αを求める(S108)。そして、CPUは、求められたデューティ比αをゲート信号生成部16に送る。
The CPU obtains the voltage V L generated across the coil 15 by flowing through the coil 15 a current I A (S106). Then, CPU obtains the voltage V e by adding the voltage V B of the electric power storage device 20 to the voltage V L, the voltage V corresponding to the duty ratio by subtracting the correction value ΔV calculated in step S106 from the voltage V e pwm is obtained (S107).
The CPU divides the voltage V pwm according to the duty ratio by the voltage V DC of the load device to obtain the duty ratio α (S108). Then, the CPU sends the obtained duty ratio α to the gate signal generation unit 16.

上述した実施形態に示したように、デューティ比に応じた電圧Vpwmは、上記(9)式に示すように、電気蓄電装置20の電圧Vとコイル15の両端に生じる電圧Vを加算し、更に補正電圧ΔVを減算することによって求められる。
ここで、上記(7)式から分かるようにコイル15を流れる電流Iの変化が小さくなると、電圧Vは小さくなる。従って、電流Iの値が0付近に停滞するとき、電圧Vは小さくなる。
また、電流Iの値が0付近に停滞するとき、上記(5)式で示される電流の目標値Iとコイル15を流れる電流Iの差εが大きくなる。差εが大きくなると、上記(6)式に示される補正電圧ΔVが大きくなる。
As shown in the above-described embodiment, the voltage V pwm corresponding to the duty ratio is obtained by adding the voltage V B of the electric power storage device 20 and the voltage VL generated at both ends of the coil 15 as shown in the above equation (9). Further, it is obtained by subtracting the correction voltage ΔV.
Here, the change of the current I A flowing through the coil 15 as can be seen from equation (7) becomes smaller, the voltage V L becomes small. Therefore, when the value of the current I A is stagnant in the vicinity of 0, the voltage V L becomes small.
Further, when the value of the current I A is stagnant in the vicinity of 0, the difference epsilon A current I A flowing through the target value I * and the coil 15 of the current represented by the equation (5) becomes larger. When the difference epsilon A increases, the correction voltage ΔV represented by the above equation (6) is increased.

従って、電流Iの値が0付近に停滞するとき、電圧Vが小さくなり、補正電圧ΔVが大きくなるため、上記(7)式で示されるデューティ比に応じた電圧Vpwmは小さくなる。
デューティ比αは上記(8)式に示すようにデューティ比に応じた電圧Vpwmを負荷装置の電圧VDCで割った値であるため、このとき、デューティ比αが小さくなる。
デューティ比αが小さくなるほど、コイル15に流れる電流Iは増加する。
Thus, current when the value of I A stagnates near 0, the voltage V L becomes small, the correction voltage ΔV is increased, the voltage V pwm corresponding to the duty ratio represented by the equation (7) becomes smaller.
Since the duty ratio α is a value obtained by dividing the voltage V pwm corresponding to the duty ratio by the voltage V DC of the load device as shown in the above equation (8), at this time, the duty ratio α becomes small.
As the duty ratio α decreases, the current I A flowing through the coil 15 increases.

このように、PWM制御回路100は、電流Iの値が0付近に停滞すると、コイル15に流れる電流Iを増加させる。このため、仮に電流Iの値が0付近に張り付く現象が発生したとしても、その現象は早期に解消される。 Thus, PWM control circuit 100, the value of the current I A is stagnant in the vicinity of 0, increasing the current I A flowing through the coil 15. Therefore, even as a phenomenon that if sticking around value 0 of the current I A occurs, the phenomenon is eliminated early.

以上説明したように、本発明によれば、負荷装置40の電圧VDCが目標電圧V DCとなるように制御してコイル15を流れる電流Iの目標電流Iの値を求め、更にコイル15を流れる電流Iがその目標電流Iとなるように制御することにより、昇圧動作と降圧動作の区別なく制御することができ、電気蓄電装置の充電と放電が切り換わるときにおける双方向コンバータ10の応答性を改善することができる。
本発明によれば、コイル15を流れる電流Iの値が0付近に張り付く現象がなくなるか、または仮にコイル15を流れる電流Iの値が0付近に張り付く現象が発生したとしても、その現象は早期に解消されるため、双方向コンバータの応答性が改善する。このため、負荷装置と並列に接続される平滑用コンデンサの容量を小さくすることができる。
また、本発明によれば、仮にコイル15を流れる電流Iの値が0付近に張り付く現象が発生したとしても、その現象は早期に解消されるため、特許文献1に記載されている電源システムと異なり、電流Iが0付近に張り付いている状態が終わったとき、電流Iが急激に上昇し、サージが発生することはない。
As described above, according to the present invention, it obtains a target current I * of the value of the current I A flowing through the coil 15 voltage V DC of the load device 40 is controlled to be the target voltage V * DC, further by current I a flowing through the coil 15 is controlled to be the target current I *, it can be controlled without distinguishing between the boost operation and the buck operation, bidirectional in when switching the charging and discharging of electric power storage device The responsiveness of the converter 10 can be improved.
According to the present invention, even as a phenomenon in which the value of the current I A flowing or phenomenon that the value of the current I A flowing through the coil 15 from sticking in the vicinity of 0 is eliminated, or if the coil 15 is stuck around 0 occur, the phenomenon Is eliminated at an early stage, so that the response of the bidirectional converter is improved. For this reason, the capacity | capacitance of the smoothing capacitor connected in parallel with a load apparatus can be made small.
Further, according to the present invention, if for the phenomenon that the value of the current I A flowing through the coil 15 from sticking in the vicinity of 0 even though occurs, the phenomenon is eliminated early, the power supply system described in Patent Document 1 Unlike, when the end of the state where the current I a is stuck in the vicinity of 0, the current I a increases rapidly, does not surge occurs.

なお、PWM制御回路100は、上述した負荷装置40の電圧VDCが目標電圧V DCとなるように制御する電圧制御、および電流Iが目標電流Iとなるように制御する電流制御をコイル15の電流I等のサンプリング周期(数十μSECから数百μSEC)の一回毎または複数回毎に実施するために、双方向コンバータ10の応答性が速やかになる。このように応答性が速やかになることによっても負荷装置と並列に接続される平滑用コンデンサの容量を小さくすることができる。
更に、DSP等で実現されたPWM制御回路100の演算スピードに応じてサンプリング周期を短縮すると、コイル15のインダクタンス値Lを小さくすることができる。その場合に、付随効果として双方向コンバータ10のスイッチング音も小さくすることができる。
Incidentally, PWM control circuit 100, a voltage control for controlling so that the voltage V DC of the load device 40 described above becomes the target voltage V * DC, and a current I A is the current control for controlling so that the target current I * to carry out every once or every plurality of sampling periods, such as the current I L of the coil 15 (tens of .mu.sec hundred .mu.sec), response of the bi-directional converter 10 is quickly. Thus, the capacity | capacitance of the smoothing capacitor | condenser connected in parallel with a load apparatus can also be made small by responsiveness becoming quick.
Furthermore, if the sampling period is shortened according to the calculation speed of the PWM control circuit 100 realized by a DSP or the like, the inductance value L of the coil 15 can be reduced. In that case, the switching sound of the bidirectional converter 10 can also be reduced as an accompanying effect.

以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、本発明の範囲に含まれる。
また、本発明はハイブリッド自動車や電車等の力行運転と回生運転を行う車両等に限らず、電気蓄電装置と負荷装置との間で直流電圧の大きさを変換するシステムであって、電気蓄電装置の充電時には負荷装置から電気蓄電装置に向けて電流が流れ、電気蓄電装置の放電時には電気蓄電装置から負荷装置に向けて電流が流れるシステムに適用することができる。
While the embodiments of the present invention have been described above, various modifications and combinations required for design reasons and other factors are included in the scope of the present invention.
The present invention is not limited to a vehicle that performs power running operation and regenerative operation such as a hybrid vehicle or a train, but is a system that converts the magnitude of a DC voltage between an electric power storage device and a load device, and the electric power storage device The present invention can be applied to a system in which a current flows from the load device toward the electric power storage device during charging, and a current flows from the electric power storage device toward the load device when the electric power storage device is discharged.

10…双方向コンバータ、11…スイッチング素子、12…スイッチング素子、13、14…ダイオード、15…コイル、16…ゲート信号生成部、20…電気蓄電装置、30…平滑用コンデンサ、40…負荷装置、100…PWM制御回路、101…目標電圧設定部、102、105、109…減算器、103…電圧PI制御部、104…リミッタ、106…電流PI制御部、107…コイル電圧取得部、108…加算器、110…デューティ比決定部 DESCRIPTION OF SYMBOLS 10 ... Bidirectional converter, 11 ... Switching element, 12 ... Switching element, 13, 14 ... Diode, 15 ... Coil, 16 ... Gate signal production | generation part, 20 ... Electric power storage device, 30 ... Smoothing capacitor, 40 ... Load device, DESCRIPTION OF SYMBOLS 100 ... PWM control circuit 101 ... Target voltage setting part 102, 105, 109 ... Subtractor 103 ... Voltage PI control part 104 ... Limiter 106 ... Current PI control part 107 ... Coil voltage acquisition part 108 ... Addition 110, duty ratio determining unit

Claims (7)

充電と放電が可能な電気蓄電装置と直流電力の授受が可能な負荷装置との間にあり、当該電気蓄電装置の電圧と当該負荷装置の電圧を変換する双方向コンバータであって、
電圧の変換の程度を指定するデューティ比に応じて、前記電気蓄電装置の電圧と前記負荷装置の電圧とを変換する電圧変換部と、
前記負荷装置の電圧の目標を示す目標電圧と前記負荷装置の電圧との差に基づいて前記電気蓄電装置の充電時および放電時に流れる電流の目標を示す目標電流を求め、当該目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づいて前記デューティ比を求める制御部と、
を備えることを特徴とする双方向コンバータ。
A bi-directional converter for converting the voltage of the electrical storage device and the voltage of the load device between the electrical storage device capable of charging and discharging and a load device capable of transferring DC power,
A voltage conversion unit that converts the voltage of the electric power storage device and the voltage of the load device according to a duty ratio that specifies a degree of voltage conversion;
Based on the difference between the target voltage indicating the voltage target of the load device and the voltage of the load device, a target current indicating the target of the current that flows during charging and discharging of the electric power storage device is obtained, and the target current and the electric power A control unit for obtaining the duty ratio based on a difference between a current flowing during charging and discharging of the power storage device;
A bidirectional converter characterized by comprising:
前記電圧変換部が、前記電気蓄電装置の充電時および放電時に電流が流れることによって両端に電圧が生じるコイルを備え、
前記制御部が、
前記目標電圧と前記負荷装置の電圧との差に基づくPI制御により前記目標電流を求め、
前記目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づくPI制御により補正電圧を求め、
前記電気蓄電装置の電圧と前記コイルの両端に生じる電圧と前記補正電圧とに基づいて前記デューティ比を求める、
ことを特徴とする請求項1に記載の双方向コンバータ。
The voltage conversion unit includes a coil that generates a voltage at both ends due to a current flowing when the electric power storage device is charged and discharged.
The control unit is
Obtaining the target current by PI control based on the difference between the target voltage and the voltage of the load device;
A correction voltage is obtained by PI control based on a difference between the target current and a current flowing during charging and discharging of the electric power storage device,
Obtaining the duty ratio based on the voltage of the electric power storage device, the voltage generated at both ends of the coil, and the correction voltage;
The bidirectional converter according to claim 1.
前記電圧変換部が、
前記電気蓄電装置と前記負荷装置の両方に接続される負極ラインと、
前記電気蓄電装置と前記コイルの一端に接続される第1の正極ラインと、
前記負荷装置に接続される第2の正極ラインと、
前記デューティ比に基づいて第1のゲート信号と第2のゲート信号を生成するゲート信号生成部と、
一端が前記第2の正極ラインに接続され、他端が前記コイルの他端に接続されており、前記第1のゲート信号によって導通と非導通が制御される第1の導電路と、当該第1の導電路の他端から一端に向かう方向にのみ電流を流す第2の導電路とを有する第1の素子と、
一端が前記第1の素子の導電路の他端に接続され、他端が前記負極ラインに接続されており、前記第2のゲート信号によって導通と非導通が制御される第3の導電路と、当該第3の導電路の他端から一端に向かう方向にのみ電流を流す第4の導電路とを有する第2の素子と、
を備え、
前記制御部が、
前記目標電圧を設定する目標電圧設定部と、
前記目標電圧設定部によって設定された目標電圧と前記負荷装置の電圧との差を求め、当該差に基づくPI制御により前記目標電流を求める目標電流決定部と、
前記目標電流決定部によって求められた目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差を求め、当該差に基づくPI制御により前記補正電圧を求める補正電圧決定部と、
前記電気蓄電装置の充電時および放電時に流れる電流に基づいて前記コイルの両端に生じる電圧を求めるコイル電圧取得部と、
前記補正電圧決定部で求められた補正電圧と、前記コイル電圧取得部で求められた前記コイルの両端に生じる電圧と、前記電気蓄電装置の電圧とに基づいてデューティ比に応じた電圧を求める電圧決定部と、
前記電圧決定部によって求められた前記デューティ比に応じた電圧と前記負荷装置の電圧とに基づいて前記デューティ比を求めるデューティ比決定部と、
を備える、
ことを特徴とする請求項2に記載の双方向コンバータ。
The voltage converter is
A negative electrode line connected to both the electric power storage device and the load device;
A first positive electrode line connected to the electric power storage device and one end of the coil;
A second positive line connected to the load device;
A gate signal generation unit that generates a first gate signal and a second gate signal based on the duty ratio;
A first conductive path having one end connected to the second positive electrode line and the other end connected to the other end of the coil, the conduction and non-conduction of which are controlled by the first gate signal; A first element having a second conductive path that allows current to flow only in a direction from the other end of the one conductive path toward the one end;
One end connected to the other end of the conductive path of the first element, the other end connected to the negative electrode line, and a third conductive path whose conduction and non-conduction are controlled by the second gate signal; A second element having a fourth conductive path that allows current to flow only in a direction from the other end of the third conductive path toward the one end;
With
The control unit is
A target voltage setting unit for setting the target voltage;
A target current determination unit that obtains a difference between the target voltage set by the target voltage setting unit and the voltage of the load device, and obtains the target current by PI control based on the difference;
A correction voltage determining unit that calculates a difference between the target current determined by the target current determining unit and a current that flows when the electric power storage device is charged and discharged, and calculates the correction voltage by PI control based on the difference;
A coil voltage acquisition unit for obtaining a voltage generated at both ends of the coil based on a current flowing during charging and discharging of the electric power storage device;
A voltage for obtaining a voltage corresponding to a duty ratio based on the correction voltage obtained by the correction voltage determination unit, the voltage generated at both ends of the coil obtained by the coil voltage acquisition unit, and the voltage of the electric power storage device A decision unit;
A duty ratio determining unit for determining the duty ratio based on a voltage corresponding to the duty ratio determined by the voltage determining unit and a voltage of the load device;
Comprising
The bidirectional converter according to claim 2.
前記制御部が、
前記電気蓄電装置の充放電特性に合わせて充電時および放電時に流れる電流の電流制限値が記憶されている記憶部と、
前記電気蓄電装置の充電時または放電時に、前記記憶部に記憶されている電流制限値を前記目標電流の値が超える場合に、前記目標電流の値を前記記憶部に記憶されている電流制限値に置き換えるリミッタと、
を備えることを特徴とする請求項1乃至3のいずれか1項に記載の双方向コンバータ。
The control unit is
A storage unit storing a current limit value of a current that flows during charging and discharging according to the charge / discharge characteristics of the electric power storage device,
When the electric power storage device is charged or discharged, when the target current value exceeds the current limit value stored in the storage unit, the current limit value stored in the storage unit Limiter to replace with
The bidirectional converter according to any one of claims 1 to 3, further comprising:
前記負荷装置が、発電機として機能するモータを含み、
前記制御部のリミッタは、前記電気蓄電装置の充電時に流れる電流の電流制限値に基づいて求められたモータの出力電流の電流制限値を前記目標電流の値が超える場合に、前記目標電流の値を前記モータの出力電流の電流制限値に置き換える、
ことを特徴とする請求項4に記載の双方向コンバータ。
The load device includes a motor that functions as a generator,
The limiter of the control unit, when the value of the target current exceeds the current limit value of the output current of the motor determined based on the current limit value of the current that flows when charging the electric power storage device, the value of the target current Is replaced with a current limit value of the output current of the motor,
The bidirectional converter according to claim 4.
充電と放電が可能な電気蓄電装置と直流電力の授受が可能な負荷装置との間にあり、電圧の変換の程度を指定するデューティ比に応じて当該電気蓄電装置の電圧と当該負荷装置の電圧を変換する電圧変換部を備える双方向コンバータの制御回路であって、
前記負荷装置の電圧の目標を示す目標電圧と前記負荷装置の電圧との差に基づいて前記電気蓄電装置の充電時および放電時に流れる電流の目標を示す目標電流を求め、当該目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づいて前記デューティ比を求めることを特徴とする双方向コンバータの制御回路。
The voltage of the electric power storage device and the voltage of the load device are between the electric power storage device capable of charging and discharging and the load device capable of transferring DC power, and the voltage of the electric power storage device according to the duty ratio that specifies the degree of voltage conversion A bidirectional converter control circuit comprising a voltage converter for converting
Based on the difference between the target voltage indicating the voltage target of the load device and the voltage of the load device, a target current indicating the target of the current that flows during charging and discharging of the electric power storage device is obtained, and the target current and the electric power A control circuit for a bidirectional converter, characterized in that the duty ratio is obtained based on a difference between a current flowing during charging and discharging of a power storage device.
充電と放電が可能な電気蓄電装置と直流電力の授受が可能な負荷装置との間にあり、電圧の変換の程度を指定するデューティ比に応じて当該電気蓄電装置の電圧と当該負荷装置の電圧を変換する電圧変換部を備える双方向コンバータの制御方法であって、
前記負荷装置の電圧の目標を示す目標電圧と前記負荷装置の電圧との差に基づいて前記電気蓄電装置の充電時および放電時に流れる電流の目標を示す目標電流を求めるステップと、
前記目標電流と前記電気蓄電装置の充電時および放電時に流れる電流との差に基づいて前記デューティ比を求めるステップと、
を備えることを特徴とする双方向コンバータの制御方法。
The voltage of the electric power storage device and the voltage of the load device are between the electric power storage device capable of charging and discharging and the load device capable of transferring DC power, and the voltage of the electric power storage device according to the duty ratio that specifies the degree of voltage conversion A bidirectional converter control method including a voltage conversion unit for converting
Obtaining a target current indicating a target of a current flowing during charging and discharging of the electric power storage device based on a difference between a target voltage indicating a target voltage of the load device and a voltage of the load device;
Obtaining the duty ratio based on a difference between the target current and a current flowing when the electric power storage device is charged and discharged;
A control method for a bidirectional converter, comprising:
JP2011013584A 2011-01-26 2011-01-26 Bidirectional converter, control circuit thereof, and control method thereof Pending JP2012157145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013584A JP2012157145A (en) 2011-01-26 2011-01-26 Bidirectional converter, control circuit thereof, and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013584A JP2012157145A (en) 2011-01-26 2011-01-26 Bidirectional converter, control circuit thereof, and control method thereof

Publications (1)

Publication Number Publication Date
JP2012157145A true JP2012157145A (en) 2012-08-16

Family

ID=46838268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013584A Pending JP2012157145A (en) 2011-01-26 2011-01-26 Bidirectional converter, control circuit thereof, and control method thereof

Country Status (1)

Country Link
JP (1) JP2012157145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109541A (en) * 2013-12-04 2015-06-11 株式会社デンソー Digital filter
JP2015162951A (en) * 2014-02-27 2015-09-07 株式会社 日立産業制御ソリューションズ bidirectional converter
CN110100381A (en) * 2016-12-23 2019-08-06 瑞士优北罗股份有限公司 The improvement of single inductor multi output adjuster

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267582A (en) * 2006-02-28 2007-10-11 Yaskawa Electric Corp Step-up/step-down chopper device and driving method therefor
JP2009199764A (en) * 2008-02-19 2009-09-03 Honda Motor Co Ltd Hybrid direct current power supply system and fuel cell vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267582A (en) * 2006-02-28 2007-10-11 Yaskawa Electric Corp Step-up/step-down chopper device and driving method therefor
JP2009199764A (en) * 2008-02-19 2009-09-03 Honda Motor Co Ltd Hybrid direct current power supply system and fuel cell vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109541A (en) * 2013-12-04 2015-06-11 株式会社デンソー Digital filter
JP2015162951A (en) * 2014-02-27 2015-09-07 株式会社 日立産業制御ソリューションズ bidirectional converter
CN110100381A (en) * 2016-12-23 2019-08-06 瑞士优北罗股份有限公司 The improvement of single inductor multi output adjuster
JP2020502988A (en) * 2016-12-23 2020-01-23 ユー−ブロックス、アクチエンゲゼルシャフトu−blox AG Improvement of single inductor multi output regulator
CN110100381B (en) * 2016-12-23 2021-11-12 瑞士优北罗股份有限公司 Single inductor multiple output regulator improvements

Similar Documents

Publication Publication Date Title
JP7140045B2 (en) drive circuit
US20130234510A1 (en) Electric vehicle inverter device
EP2838187A2 (en) Resonant converter and method of operating the same
JP2011018533A (en) Secondary battery temperature-increasing control apparatus and vehicle including the same, and secondary battery temperature-increasing control method
JP5478190B2 (en) DCDC converter system
US10031190B2 (en) Voltage detection device
US11190117B2 (en) Apparatus and method for storing energy
US9343973B2 (en) Power conversion apparatus
JP2019221063A5 (en)
JP2012157145A (en) Bidirectional converter, control circuit thereof, and control method thereof
US8855953B2 (en) Electrical power control device and electrical power calculation method in electrical power control device
JP2019170073A (en) Dcdc converter for vehicle
JP2011167011A (en) Dc-dc converter system
JP2010004728A (en) Power conversion apparatus
JP6358376B2 (en) Storage battery conversion device, power supply system, and power supply control method
JP2012249348A (en) Power supply control system
JP5273206B2 (en) Battery heating system
JP6350218B2 (en) Power converter
JP6636595B1 (en) Power converter
JP6962379B2 (en) Power storage device
JP2012115018A (en) Power controller
JP5112906B2 (en) Storage battery drive DC voltage converter and control method of storage battery drive DC voltage converter
JPWO2011074154A1 (en) DC / DC converter
JP6378549B2 (en) Charge / discharge device
JP5494191B2 (en) Chopper circuit manufacturing method, chopper circuit, DC / DC converter, fuel cell system, and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310