JP2012156196A - Susceptor device and vapor phase growth apparatus - Google Patents

Susceptor device and vapor phase growth apparatus Download PDF

Info

Publication number
JP2012156196A
JP2012156196A JP2011012062A JP2011012062A JP2012156196A JP 2012156196 A JP2012156196 A JP 2012156196A JP 2011012062 A JP2011012062 A JP 2011012062A JP 2011012062 A JP2011012062 A JP 2011012062A JP 2012156196 A JP2012156196 A JP 2012156196A
Authority
JP
Japan
Prior art keywords
susceptor
growth substrate
growth
wafer
heat radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011012062A
Other languages
Japanese (ja)
Inventor
Yusuke Yokobayashi
裕介 横林
Mutsumi Morita
睦 森田
Masayuki Makishima
政幸 牧嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011012062A priority Critical patent/JP2012156196A/en
Publication of JP2012156196A publication Critical patent/JP2012156196A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a susceptor device adaptable to the warpage in deposition on a wide variety of growth substrates.SOLUTION: The susceptor device having a mounting region for mounting a growth substrate is provided with a mounting section consisting of a plurality of heat radiation parts disposed, respectively, in division areas obtained by dividing the mounting region, each having a heat radiation surface facing the growth substrate, and movable in the thickness direction of the growth substrate.

Description

本発明は半導体装置製造装置に関し、特に、半導体結晶のエピタキシャル成長を行う気相成長装置に関し、特に、成長基板を保持するサセプタ装置およびこれを用いた気相成長装置に関する。   The present invention relates to a semiconductor device manufacturing apparatus, and more particularly to a vapor phase growth apparatus that performs epitaxial growth of a semiconductor crystal, and more particularly, to a susceptor apparatus that holds a growth substrate and a vapor phase growth apparatus using the same.

主に光半導体素子(発光ダイオード)に用いられるIII−V族成長基板は、MOCVD法(Metal Organic Chemical Vapor Deposition)を用いて製造(結晶成長)されるのが一般的である。具体的には、反応炉内において、ヒータにより加熱されたサセプタ上に載置された成長基板の表面に反応ガスを噴きつけ、成長基板上で反応ガスを分解、反応させることで半導体膜を成長基板上に積層させている(特許文献1、参照)。このようなMOCVD装置による製造法では成長基板の反りに起因した不均一な温度分布の発生により素子特性のバラツキが大きくなり、素子製造歩留まりが低下する問題があった。すなわち、結晶成長中に成長基板が反ることでサセプタから成長基板が浮いて周囲よりも表面温度が低下し、成長基板表面の一部で反応ガスの分解、反応効率が異なるため、所望の膜厚や組成を得られずに素子製造歩留まりが低下していた。   A group III-V growth substrate mainly used for an optical semiconductor element (light emitting diode) is generally manufactured (crystal growth) by using a MOCVD method (Metal Organic Chemical Vapor Deposition). Specifically, in a reaction furnace, a reaction gas is sprayed onto the surface of a growth substrate placed on a susceptor heated by a heater, and the reaction gas is decomposed and reacted on the growth substrate to grow a semiconductor film. They are stacked on a substrate (see Patent Document 1). In such a manufacturing method using an MOCVD apparatus, there is a problem in that variations in device characteristics increase due to generation of a non-uniform temperature distribution due to warpage of the growth substrate, resulting in a decrease in device manufacturing yield. That is, when the growth substrate is warped during crystal growth, the growth substrate floats from the susceptor, the surface temperature is lower than the surroundings, and the reaction gas is decomposed and the reaction efficiency is different at a part of the growth substrate surface. The device manufacturing yield was reduced without obtaining the thickness and composition.

一方で成長基板の反りの問題は、特にIII族窒化物半導体、AlInGaN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)の成長基板を製造においては以下のような原因から避けられないのが現状である。第1に、半導体膜の熱膨張係数はAlInGaN層の組成により異なり、それらが複数積層される。各層における最適な結晶成長温度も異なるのでそれぞれの最適温度で結晶成長が行われる。複数の組成の異なるAlInGaN層が約400〜1200℃の範囲で変化する間、各層の熱膨張率の違いにより成長基板(ウエハともいう)に反りが生じる。特にIII族窒化物半導体は、安価でエピタキシャル成長が可能なサファイヤやSiCを材料とした成長基板が多く用いられる(へテロ基板、異種基板)。これらは積層させるAlInGaN層とは熱膨張率がさらに異なるため、結晶成長中のウエハの反りが発生しやすい(各層の熱膨張係数の違い)。第2に、エピタキシャル膜は各層が原子レべルで結合しているため、格子定数が異なると、内部応力が発生する。そのため、一定の温度下でもウエハは反る。格子定数は前記の異種基板とAlInGaN層との間でも異なり、また、各層の組成でも異なる(各層の格子定数の違い)。第3に、成長基板はサセプタからの熱を効率よく受けることや特定の層の結晶成長中にウエハが平坦になるようにする目的で裏面(設置面)を一定の粗さに調整することがある。一方、成長基板の表面(半導体膜が積層される成長面)では、エピタキシャル成長に必要な粗さ、すなわち前記裏面の粗さよりも滑らかなものが要求される。この粗さ(設置面と成長面の表面積)の違いにより成長基板単体でも温度の変化により反りが発生する(成長基板の表裏の面処理の違い)。 On the other hand, the problem of the warp of the growth substrate is that the growth substrate of a group III nitride semiconductor, especially Al x In y Ga z N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1). Is currently inevitable due to the following causes. First, the thermal expansion coefficient of the semiconductor film differs depending on the composition of the Al x In y Ga z N layer, and a plurality of them are stacked. Since the optimum crystal growth temperature in each layer is also different, crystal growth is performed at each optimum temperature. While a plurality of Al x In y Ga z N layers having different compositions change in the range of about 400 to 1200 ° C., the growth substrate (also referred to as a wafer) warps due to the difference in thermal expansion coefficient of each layer. In particular, group III nitride semiconductors often use growth substrates made of sapphire or SiC that can be epitaxially grown at low cost (hetero substrates, heterogeneous substrates). Since these have a thermal expansion coefficient different from that of the laminated Al x In y Ga z N layer, the wafer is likely to warp during crystal growth (difference in thermal expansion coefficient of each layer). Second, since the layers of the epitaxial film are bonded at an atomic level, an internal stress is generated if the lattice constant is different. Therefore, the wafer warps even under a certain temperature. The lattice constant differs between the heterogeneous substrate and the Al x In y Ga z N layer, and also differs in the composition of each layer (difference in the lattice constant of each layer). Thirdly, the back surface (installation surface) of the growth substrate can be adjusted to a certain roughness in order to efficiently receive heat from the susceptor and to make the wafer flat during crystal growth of a specific layer. is there. On the other hand, the surface of the growth substrate (growth surface on which the semiconductor film is laminated) is required to have a roughness that is smoother than the roughness required for epitaxial growth, that is, the roughness of the back surface. Due to the difference in roughness (surface area between the installation surface and the growth surface), the growth substrate alone warps due to temperature change (difference in surface treatment between the front and back surfaces of the growth substrate).

以上のように、ウエハの反りの大きさは、選択する成長基板、半導体膜の層構成(積層数、各層の厚さ、組成)などの様々な要因で変化するので、高い素子製造歩留まりを得るためには、結晶成長中にウエハが反っても全体に亘って均一に加熱し、反応ガスの分解、反応の効率を一定とする必要がある。   As described above, the size of the warpage of the wafer changes depending on various factors such as the growth substrate to be selected and the layer configuration of the semiconductor film (the number of stacked layers, the thickness of each layer, and the composition), thereby obtaining a high device manufacturing yield. For this purpose, even if the wafer is warped during crystal growth, it is necessary to uniformly heat the entire wafer and to make the decomposition of the reaction gas and the efficiency of the reaction constant.

これらの問題を鑑みて、従来技術では、図1(a)に示すように、ウエハと基板ホルダ(またはサセプタ)との間に予め凹部を設けることで上述のウエハの反りによる温度分布の発生を抑えることが提案されている(特許文献2、参照)。   In view of these problems, in the prior art, as shown in FIG. 1A, the above-described temperature distribution due to the warpage of the wafer is generated by providing a recess in advance between the wafer and the substrate holder (or susceptor). It has been proposed to suppress (see Patent Document 2).

特許2628404公報Japanese Patent No. 2628404 特開2010−080614公報JP 2010-080614 A

しかし、従来技術においては、結晶成長中、例えば図1(b)に示すように、ウエハが反って中央部が沈むと基板ホルダ(またはサセプタ)との間隔がウエハの中央と周縁で異なり、図2に示すようなウエハの温度分布が発生する。このように従来技術によっても素子製造歩留まりの向上が不十分な場合があった。   However, in the prior art, during crystal growth, for example, as shown in FIG. 1B, when the wafer is warped and the central portion sinks, the distance from the substrate holder (or susceptor) differs between the center and the periphery of the wafer. A wafer temperature distribution as shown in FIG. As described above, there is a case where improvement of the element manufacturing yield is insufficient even by the conventional technique.

さらに、従来技術においては、図1(c)に示すように、結晶成長中にウエハが反って変形したときにウエハと基板ホルダとの間隔がほぼ全表面で一定とするため結晶成長中のウエハの反り形状と同形状の湾曲凹部を有する基板ホルダを提案している(特許文献2、参照)。これにより、上記の温度分布が改善されるが、前述のようにウエハの反りの大きさは成長基板とその上に積層する半導体膜の種類だけではなく、半導体膜の層構成すなわち積層数、積層順序、各層の組成、各層の厚さなどにも依存するので、上記の温度分布均一化のためには、少なくとも製造するウエハの種類や、半導体膜の積層数、積層順序、各層の組成、もしくは各層の厚さに応じて凹部形状の異なる複数のサセプタまたは基板ホルダを準備する必要がある。従って、従来技術においては、部品コストがかかっていた。また、前述のように温度によってもウエハの反りの大きさが変化するため、1つのウエハのための基板ホルダでも全半導体層の結晶成長中に対して温度分布を最適化することは難しかった。   Furthermore, in the prior art, as shown in FIG. 1C, when the wafer is warped and deformed during crystal growth, the distance between the wafer and the substrate holder is constant over the entire surface. Has proposed a substrate holder having a curved recess having the same shape as the warp shape (see Patent Document 2). As a result, the temperature distribution is improved, but as described above, the size of the warpage of the wafer is not limited to the growth substrate and the type of the semiconductor film laminated thereon, but also the layer configuration of the semiconductor film, that is, the number of laminated layers, Since it depends on the order, the composition of each layer, the thickness of each layer, etc., in order to make the temperature distribution uniform, at least the type of wafer to be manufactured, the number of stacked semiconductor films, the stacking order, the composition of each layer, or It is necessary to prepare a plurality of susceptors or substrate holders having different concave shapes depending on the thickness of each layer. Therefore, in the prior art, the parts cost is high. Further, as described above, since the magnitude of the warpage of the wafer changes depending on the temperature, it is difficult to optimize the temperature distribution even during the crystal growth of all the semiconductor layers even with the substrate holder for one wafer.

そこで、上記問題を鑑みて、本発明は、多品種の成長基板上の成膜における反り量に対応可能なサセプタ装置およびこれを用いた気相成長装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a susceptor device that can cope with the amount of warpage in film formation on a variety of growth substrates, and a vapor phase growth apparatus using the susceptor device.

本発明による成長基板が載置される搭載領域を有するサセプタ装置は、搭載領域を分割して得られた区分領域の各々に配されかつ各々が成長基板に対向する熱輻射面を有し、成長基板の厚さ方向に可動である複数の熱輻射部からなる搭載部を有することを特徴とする。   A susceptor device having a mounting region on which a growth substrate is placed according to the present invention has a heat radiation surface that is disposed in each of divided regions obtained by dividing the mounting region and that faces each growth substrate. It has the mounting part which consists of a several thermal radiation part movable in the thickness direction of a board | substrate.

かかるサセプタ装置においては、熱輻射部は成長基板から離れる方向すなわち成長基板の厚さ方向に伸長する脚部を有し、脚部を離間して取り囲む熱拡散部と、を備えることができる。   In such a susceptor device, the heat radiating portion can include a heat diffusion portion having legs extending in a direction away from the growth substrate, that is, in the thickness direction of the growth substrate, and surrounding the legs separately.

かかるサセプタ装置においては、熱拡散部は脚部よりも高い熱伝導率を有する材料で形成されることができる。熱輻射部の脚部および該脚部を取り囲むように熱伝導率の高い材料からなる熱拡散部を設けているので、サセプタ中央にある脚部および搭載部にも素早く熱を伝達可能としている。これにより搭載部を複数の熱輻射部に分けてもサセプタの外側(熱拡散部を取り囲む加熱部に近い側)と中央で温度差が生じない。   In such a susceptor device, the thermal diffusion part can be formed of a material having a higher thermal conductivity than the leg part. Since the heat radiation portion and the heat diffusion portion made of a material having high thermal conductivity are provided so as to surround the leg portion, heat can be quickly transferred to the leg portion and the mounting portion at the center of the susceptor. Thereby, even if the mounting part is divided into a plurality of heat radiation parts, there is no temperature difference between the outside of the susceptor (the side close to the heating part surrounding the heat diffusion part) and the center.

かかるサセプタ装置においては、複数の熱輻射部において成長基板に接する少なくとも3つの突起が設けることができる。   In such a susceptor device, at least three protrusions in contact with the growth substrate can be provided in the plurality of thermal radiation portions.

かかるサセプタ装置においては、搭載領域は同心円状またはセクタ状または格子状に分割されるようにすることができる。   In such a susceptor device, the mounting area can be divided into concentric circles, sectors, or grids.

本発明による気相成長装置においては、反応炉内において成長基板が載置される上記のサセプタ装置と、成長基板上に原料ガスを供給するガス噴射管と、成長基板の表面の反り量分布を検知する基板反り量測定装置と、基板反り量測定装置からの成長基板の表面の反り量分布の信号に応じて、熱輻射部を成長基板の厚さ方向に駆動する駆動機構を有することを特徴とする。結晶成長中にサセプタ凹部(すなわち熱輻射面)の形状を変形可能としたことで、半導体膜を構成する全ての層に対してウエハ面内の温度分布が均一となるような結晶成長を行える。これによりウエハ面内での膜厚や組成のバラツキが減り素子製造歩留まりが向上する。   In the vapor phase growth apparatus according to the present invention, the above susceptor apparatus on which a growth substrate is placed in a reaction furnace, a gas injection pipe for supplying a raw material gas onto the growth substrate, and a warp amount distribution on the surface of the growth substrate. A substrate warpage amount measuring device to be detected, and a drive mechanism for driving the heat radiation portion in the thickness direction of the growth substrate in accordance with a warp amount distribution signal of the growth substrate surface from the substrate warpage amount measuring device. And Since the shape of the susceptor recess (that is, the heat radiation surface) can be deformed during crystal growth, crystal growth can be performed so that the temperature distribution in the wafer surface is uniform for all the layers constituting the semiconductor film. This reduces variations in film thickness and composition within the wafer surface and improves device manufacturing yield.

かかる気相成長装置においては、駆動機構は、脚部下方の全てまたは複数に接続されたサセプタ保持薄板部と、該サセプタ保持薄板部下方に接続され成長基板の厚さ方向に伸縮可能な変形機構と、で構成することができる。かかる気相成長装置においては、駆動機構は、脚部それぞれの下方に接続され成長基板の厚さ方向に伸縮可能な変形機構で構成することができる。   In such a vapor phase growth apparatus, the drive mechanism includes a susceptor holding thin plate portion connected to all or a plurality of lower portions of the legs, and a deformation mechanism connected to the lower portion of the susceptor holding thin plate portion and capable of expanding and contracting in the thickness direction of the growth substrate. And can be configured. In such a vapor phase growth apparatus, the drive mechanism can be configured by a deformation mechanism that is connected to the lower part of each leg portion and can expand and contract in the thickness direction of the growth substrate.

本発明による気相成長装置においては、結晶成長中にウエハとサセプタとの間隔が常にほぼ全面積で一定となるようにサセプタの凹部の形状を変形させることでウエハ面内での温度分布をより均一化し、素子製造歩留まりを向上できる。本発明によれば、異種基板を用いて結晶成長を行うIII族窒化物成長基板製造用などのMOCVD装置を構成可能となる。   In the vapor phase growth apparatus according to the present invention, the temperature distribution in the wafer surface is further improved by changing the shape of the concave portion of the susceptor so that the distance between the wafer and the susceptor is always constant over the entire area during crystal growth. Uniformity can be achieved and the device manufacturing yield can be improved. According to the present invention, it is possible to configure an MOCVD apparatus for manufacturing a group III nitride growth substrate that performs crystal growth using a heterogeneous substrate.

結晶成長中にサセプタ凹部の形状を変形可能としたことで、半導体膜を構成する全ての層に対してウエハ面内の温度分布が均一となるような結晶成長を行える。これによりウエハ面内での膜厚や組成のバラツキが減り素子製造歩留まりが向上する。   By making the shape of the susceptor recesses deformable during crystal growth, crystal growth can be performed so that the temperature distribution in the wafer surface is uniform for all the layers constituting the semiconductor film. This reduces variations in film thickness and composition within the wafer surface and improves device manufacturing yield.

既知の測定方法にて結晶成長中のウエハの反り量を測定し、その値をサセプタの駆動機構にフィードバックすることで各層に最適なサセプタの凹部形状に変形させることが可能になる。従来のように製品毎に凹部形状の異なる基板ホルダなどを準備する必要もないため装置のコストも低減できる。   By measuring the amount of warping of the wafer during crystal growth by a known measuring method and feeding back the value to the driving mechanism of the susceptor, it becomes possible to deform the concave shape of the susceptor optimal for each layer. Since it is not necessary to prepare a substrate holder or the like having a different concave shape for each product as in the prior art, the cost of the apparatus can be reduced.

ウエハと基板ホルダを模式的に示す概略断面図である。It is a schematic sectional drawing which shows a wafer and a substrate holder typically. ウエハ中心からの距離に対するウエハの温度分布を模式的に示すグラフである。It is a graph which shows typically temperature distribution of a wafer to distance from a wafer center. 本発明による実施形態のサセプタ装置が設けられた反応炉を有するMOCVD装置の概略構成を示す概略断面図である。It is a schematic sectional drawing which shows schematic structure of the MOCVD apparatus which has the reaction furnace provided with the susceptor apparatus of embodiment by this invention. 同実施形態のサセプタ装置の搭載部の概略断面図である。It is a schematic sectional drawing of the mounting part of the susceptor apparatus of the embodiment. 同実施形態のサセプタ装置の熱輻射面側から見た搭載部の概略平面図である。It is a schematic plan view of the mounting part seen from the heat radiation surface side of the susceptor device of the same embodiment. 同実施形態のサセプタ装置の搭載部の概略斜視図である。It is a schematic perspective view of the mounting part of the susceptor device of the embodiment. 本発明による他の実施形態のサセプタ装置の搭載部の概略平面図である。It is a schematic plan view of the mounting part of the susceptor apparatus of other embodiment by this invention. 本発明による実施形態のサセプタ装置の搭載部と脚部の組立体の概略斜視図である。It is a schematic perspective view of the assembly part of the mounting part and leg part of the susceptor apparatus of embodiment by this invention. 同実施形態の脚部側から見た図8の線AAに沿った概略断面図である。It is a schematic sectional drawing in alignment with line AA of FIG. 8 seen from the leg part side of the embodiment. 同実施形態のサセプタ装置の熱拡散部の概略斜視図である。It is a schematic perspective view of the thermal diffusion part of the susceptor device of the embodiment. 本発明による実施形態のサセプタ装置の搭載部と脚部と熱拡散部の組立体の概略斜視図である。It is a schematic perspective view of the assembly of the mounting part of the susceptor apparatus of embodiment by this invention, a leg part, and a thermal-diffusion part. 同実施形態の脚部側から見た図11の線BBに沿った概略断面図である。It is a schematic sectional drawing in alignment with line BB of FIG. 11 seen from the leg part side of the embodiment. 本発明による他の実施形態のサセプタ装置のサセプタ保持薄板部の概略平面図である。It is a schematic plan view of the susceptor holding | maintenance thin plate part of the susceptor apparatus of other embodiment by this invention. 本発明による他の実施形態のサセプタ装置の要部の概略構成を示す概略断面図である。It is a schematic sectional drawing which shows schematic structure of the principal part of the susceptor apparatus of other embodiment by this invention.

以下に、本発明による実施形態のサセプタ装置を用いた気相成長装置、すなわちMOCVD装置と、これを用いた結晶成長法について、図面を用いて説明する。   Hereinafter, a vapor phase growth apparatus using a susceptor apparatus according to an embodiment of the present invention, that is, an MOCVD apparatus, and a crystal growth method using the same will be described with reference to the drawings.

図3は、実施形態のサセプタ装置の一例が内部に設けられた反応炉を有するMOCVD装置の概略構成を示す。図3中、1がサセプタ装置を、2が反応炉を、3がフローチャネルを、5がウエハを、6が測定ユニットを、示す。   FIG. 3 shows a schematic configuration of an MOCVD apparatus having a reaction furnace in which an example of the susceptor apparatus of the embodiment is provided. In FIG. 3, 1 is a susceptor device, 2 is a reactor, 3 is a flow channel, 5 is a wafer, and 6 is a measurement unit.

反応炉2内のフローチャネル3は、サセプタ装置1の搭載部上に載置された成長基板(ウエハ)5を露出させるための開口部を有し、原料ガスをウエハ5上に導く。フローチャネル3は、石英ガラス、SiCなどから構成されている。なお、測定ユニット6によりレーザ光を用いてウエハ5表面を観測するため、フローチャネル3のウエハ5上部および反応炉2上部の窓部Wは透光性材料で形成されている。また、フローチャネル3は、ガス噴射管Ginとガス排気管Goutを有しており、ガス噴射管とガス排気管の間の窓部Wの下に開口部が形成されている。この開口部を介してサセプタ装置1の搭載部10上にウエハ5は載置され、ガス噴射管Ginから供給され原料ガスおよびキャリアガスに晒されるように保持される。この例では、結晶成長中は成長基板3の側方のガス噴射管Ginから原料ガスおよびキャリアガスが供給され、結晶成長が行われるが、これに限定されず、装置構成によっては上方から原料ガスおよびキャリアガスが供給されてもよい。   The flow channel 3 in the reaction furnace 2 has an opening for exposing the growth substrate (wafer) 5 mounted on the mounting portion of the susceptor device 1, and guides the source gas onto the wafer 5. The flow channel 3 is made of quartz glass, SiC, or the like. In order to observe the surface of the wafer 5 using the laser beam by the measuring unit 6, the upper portion of the wafer 5 of the flow channel 3 and the window portion W of the upper portion of the reaction furnace 2 are made of a translucent material. The flow channel 3 includes a gas injection pipe Gin and a gas exhaust pipe Gout, and an opening is formed below the window W between the gas injection pipe and the gas exhaust pipe. The wafer 5 is placed on the mounting portion 10 of the susceptor device 1 through this opening, and is supplied from the gas injection pipe Gin and held so as to be exposed to the source gas and the carrier gas. In this example, during the crystal growth, the raw material gas and the carrier gas are supplied from the gas injection tube Gin on the side of the growth substrate 3 to perform the crystal growth. And a carrier gas may be supplied.

測定ユニット6はウエハ5の上方の反応炉2の外に取り付けられている。測定ユニット6は、レーザ光源61および検知部62を含み、レーザ光を窓部Wを介してウエハ5の表面に照射し、同じく反応炉上部の窓Wから反射光を検知部62で検出し、反射光の拡散からウエハ5の表面の反り量を測定する。測定ユニット6は例えば、LayTec社のEpiCurveTT(登録商標)などの基板反り量測定装置を利用することで反りを測定し、そのデータを抽出する。測定ユニット6は制御部Contに接続され、反り量のデータを制御部Contに送る。   The measurement unit 6 is attached outside the reaction furnace 2 above the wafer 5. The measurement unit 6 includes a laser light source 61 and a detection unit 62. The laser unit irradiates the surface of the wafer 5 with a laser beam through the window W. Similarly, the detection unit 62 detects reflected light from the window W in the upper part of the reaction furnace. The amount of warpage of the surface of the wafer 5 is measured from the diffusion of the reflected light. For example, the measurement unit 6 measures a warp by using a substrate warp amount measuring device such as EpiCurveTT (registered trademark) manufactured by RayTec, and extracts the data. The measurement unit 6 is connected to the control unit Cont, and sends warpage data to the control unit Cont.

サセプタ装置1は、ウエハ5を保持する可動サセプタである搭載部10(後述する分割された複数の熱輻射部)と、搭載部に接続された複数の脚部20と、脚部を介して搭載部10を動かす駆動機構Drとを含む。   The susceptor device 1 is mounted via a mounting portion 10 (a plurality of divided heat radiation portions described later) that is a movable susceptor that holds the wafer 5, a plurality of legs 20 connected to the mounting portion, and the legs. And a drive mechanism Dr that moves the unit 10.

サセプタ装置1は、さらに、脚部20を離間して加熱する熱拡散部30と、を含む。熱拡散部30の周囲に離間してこれを囲んで加熱する加熱部Hが設けられている。   The susceptor device 1 further includes a heat diffusion unit 30 that heats the legs 20 while separating them. A heating part H is provided around the thermal diffusion part 30 so as to be spaced apart and heated.

サセプタ装置1の脚部20の下方に取り付けられた駆動機構Drは脚部20それぞれを上下に動かす機構であり、サセプタ保持薄板部40とピエゾアクチュエータ41とを含む。サセプタ保持薄板部40は例えば数mmの厚さを有する円形の金属板などを用いる。サセプタ保持薄板部40の形状は脚部20を保持可能かつピエゾアクチュエータ41により変形可能であれば単純な板状でも構わない。   The drive mechanism Dr attached below the leg portion 20 of the susceptor device 1 is a mechanism for moving each leg portion 20 up and down, and includes a susceptor holding thin plate portion 40 and a piezo actuator 41. As the susceptor holding thin plate portion 40, for example, a circular metal plate having a thickness of several mm is used. The shape of the susceptor holding thin plate portion 40 may be a simple plate shape as long as the leg portion 20 can be held and can be deformed by the piezo actuator 41.

サセプタ保持薄板部40および熱拡散部30はカップ形状の支持部42に周縁部に設けられた段差によりそれぞれ所定の位置に保持される。支持部42の底にピエゾアクチュエータ41が搭載される。ピエゾアクチュエータ41は制御部Contに接続され制御部Contからの信号により駆動される。   The susceptor holding thin plate portion 40 and the heat diffusing portion 30 are each held at a predetermined position by a step provided on the peripheral edge of the cup-shaped support portion 42. A piezo actuator 41 is mounted on the bottom of the support portion 42. The piezo actuator 41 is connected to the control unit Cont and is driven by a signal from the control unit Cont.

複数の熱輻射部それぞれは脚部20を介してサセプタ保持薄板部40に接続される。サセプタ保持薄板部40の中心部がピエゾアクチュエータ41の駆動部に接続される。サセプタ保持薄板部40の外周部が支点として設置される。サセプタ保持薄板部40はピエゾアクチュエータ41の伸縮に応じてたわみ、脚部20を介して接続されている搭載部10の熱輻射面形状をウエハ5の反りに合せて変形させる。   Each of the plurality of heat radiation parts is connected to the susceptor holding thin plate part 40 via the leg part 20. The central portion of the susceptor holding thin plate portion 40 is connected to the drive portion of the piezo actuator 41. The outer peripheral part of the susceptor holding thin plate part 40 is installed as a fulcrum. The susceptor holding thin plate portion 40 bends according to the expansion and contraction of the piezo actuator 41, and deforms the heat radiation surface shape of the mounting portion 10 connected via the leg portion 20 in accordance with the warp of the wafer 5.

制御部Contは、測定ユニット6からの上記反りの大きさのデータに基づきサセプタ装置1の脚部20の下方に取り付けられた駆動機構Drをフィードバック制御し、熱輻射部の各々の高さを制御することでウエハ5の形状に合せて搭載部10を変形させる。駆動機構Drは測定ユニット6により検知した反り量に応じてピエゾアクチュエータ41の伸縮変形させて、上記搭載部の熱輻射部の各々の高さを上下動可能にしている。   The control part Cont performs feedback control of the drive mechanism Dr attached below the leg part 20 of the susceptor device 1 based on the data of the warp magnitude from the measurement unit 6, and controls the height of each heat radiation part. As a result, the mounting portion 10 is deformed in accordance with the shape of the wafer 5. The drive mechanism Dr allows the piezoelectric actuator 41 to expand and contract in accordance with the amount of warpage detected by the measurement unit 6 so that the height of each heat radiation portion of the mounting portion can be moved up and down.

サセプタ装置1、加熱部Hおよび支持部42は断熱材IMで離間して囲まれることが好ましい。支持部42も断熱材で形成され加熱部Hからの熱を極力受けないようにすることが好ましい。   It is preferable that the susceptor device 1, the heating part H, and the support part 42 are surrounded by a heat insulating material IM. It is preferable that the support portion 42 is also formed of a heat insulating material so as not to receive heat from the heating portion H as much as possible.

支持部42を含みサセプタ装置1は、外部に設けたサセプタ回転機構部(図示せず)によって任意の回転数で回転させることができる。ウィルソンシール、Oリングシール、ベローズシール、磁気カップリングシール、磁気流体シールなどを用いた気密シール機構43を介して、支持部42を含みサセプタ装置1は、反応炉2外のサセプタ回転機構部に接続されている。サセプタ装置1は、原料ガスの供給量分布(ガス流の分布)の影響を低減するため結晶成長中回転されてもよい。   The susceptor device 1 including the support portion 42 can be rotated at an arbitrary number of rotations by a susceptor rotation mechanism portion (not shown) provided outside. The susceptor device 1 including the support portion 42 is connected to the susceptor rotation mechanism portion outside the reactor 2 through an airtight seal mechanism 43 using a Wilson seal, an O-ring seal, a bellows seal, a magnetic coupling seal, a magnetic fluid seal, or the like. It is connected. The susceptor device 1 may be rotated during crystal growth in order to reduce the influence of the supply amount distribution (gas flow distribution) of the source gas.

以下に、上記のサセプタ装置1の構成要素を詳細に説明する。   Below, the component of said susceptor apparatus 1 is demonstrated in detail.

−−搭載部−−
図4は、本発明が適用された実施形態のサセプタ装置1の搭載部10の断面図を示す。搭載部10は、ウエハ5に対向する円形の搭載領域Pを中央から同心円状に分割して得られた区分領域P1、P2、P3、P4のそれぞれに配された複数の熱輻射部10a、10b、10c、10dからなる。すべての熱輻射部がウエハ5に対向する熱輻射面RAを有する。よって、図5の平面図に示すように、搭載部10は、中央の円柱形状の熱輻射部10aに対して、円管形状の間隙を空け入れ子構造のように順に遊嵌する円管形状の熱輻射部10b、熱輻射部10c、熱輻射部10dからなる。搭載部10の熱輻射部10a、10b、10c、10d各々は、ウエハ5に対向してウエハの厚さ方向TKに可動であり、図6(a)の斜視図に示すように、中央の熱輻射部10aから外側の円管形状の熱輻射部10dすべて同一高さのサセプタ面を形成することができ、図6(b)の斜視図に示すように、中央の熱輻射部10aを最も下に動かし内側から外側への順に管状熱輻射部10b、10c、10dの熱輻射面の深さを階段状になすことができる。具体的には、図6(b)に示すようにサセプタ装置1の結晶成長中にウエハ5を載置する搭載部10を複数の熱輻射部に区分けし、各熱輻射部を独立して上下可動としてあるので、結晶成長中のウエハ5に合せていわゆるサセプタ凹部の形状を変化させることができる。これによりウエハのほぼ全面で搭載部10とウエハ5の間隔が一定となり、温度分布が均一となりやすい。
--- Mounting part--
FIG. 4 is a sectional view of the mounting portion 10 of the susceptor device 1 according to the embodiment to which the present invention is applied. The mounting unit 10 includes a plurality of heat radiation units 10a and 10b arranged in each of the divided regions P1, P2, P3, and P4 obtained by concentrically dividing the circular mounting region P facing the wafer 5 from the center. 10c, 10d. All the heat radiation parts have a heat radiation surface RA facing the wafer 5. Therefore, as shown in the plan view of FIG. 5, the mounting portion 10 has a circular tube shape in which a circular tube-shaped gap is loosely fitted in sequence to the central cylindrical heat radiation portion 10 a like a nested structure. It consists of a heat radiation part 10b, a heat radiation part 10c, and a heat radiation part 10d. Each of the heat radiation portions 10a, 10b, 10c, and 10d of the mounting portion 10 is movable in the thickness direction TK of the wafer so as to face the wafer 5. As shown in the perspective view of FIG. A susceptor surface having the same height can be formed from the radiating portion 10a to the outer circular tube-shaped heat radiating portion 10d. As shown in the perspective view of FIG. The depths of the heat radiation surfaces of the tubular heat radiation portions 10b, 10c, and 10d can be stepped in order from the inside to the outside. Specifically, as shown in FIG. 6B, the mounting portion 10 on which the wafer 5 is placed during crystal growth of the susceptor device 1 is divided into a plurality of heat radiation portions, and each heat radiation portion is vertically moved. Since it is movable, the shape of the so-called susceptor recess can be changed in accordance with the wafer 5 during crystal growth. As a result, the distance between the mounting portion 10 and the wafer 5 is constant over almost the entire surface of the wafer, and the temperature distribution tends to be uniform.

好ましくは、搭載部10の少なくとも一部の熱輻射部に円錐、多角錘または半球状の突起Ptを設けることができる。これによりウエハ5を点で支持できるので、搭載部10からの熱伝導による加熱の影響を低減でき、更に温度分布が均一となる。突起Ptは搭載部10と一体に形成してもよいが、搭載部10よりも熱伝導率の低い別の材料により構成するのが上記熱伝導の影響を低減でき、さらに好ましい。複数の熱輻射部10a、10b、10c、10dにおいてウエハ5に接する少なくとも3つの突起Ptが設けられていればよい。これは、少なくとも3つの突起Ptがあれば、それらの接触点にて確定される1つの平面にてウエハ5を支持できるからである。ウエハ5と熱輻射部との間を非接触とすることで接触による熱伝導の有無による反りの影響を受け難くなり、ウエハ5を全体に亘って均一な温度とすることが可能になる。   Preferably, at least a part of the heat radiation portion of the mounting portion 10 can be provided with a cone, a polygonal pyramid, or a hemispherical protrusion Pt. As a result, the wafer 5 can be supported by dots, so that the influence of heating due to heat conduction from the mounting portion 10 can be reduced, and the temperature distribution becomes uniform. The protrusions Pt may be formed integrally with the mounting portion 10, but it is more preferable that the protrusions Pt be made of another material having a lower thermal conductivity than the mounting portion 10 because the influence of the heat conduction can be reduced. It is only necessary to provide at least three protrusions Pt in contact with the wafer 5 in the plurality of heat radiation portions 10a, 10b, 10c, and 10d. This is because if there are at least three protrusions Pt, the wafer 5 can be supported on one plane determined at the contact point thereof. By making non-contact between the wafer 5 and the heat radiation part, it becomes difficult to be affected by warpage due to the presence or absence of heat conduction due to contact, and the wafer 5 can be kept at a uniform temperature throughout.

一般的な成長基板、例えばC面サファイヤ基板を用いる場合は、結晶成長中お椀状に変形するため、上記例では搭載部10を同心円状に区分けしたが、搭載部10の各熱輻射部の形状は同心円状に限らず、例えば、図7(a)(b)(c)(d)の平面図に示すように、それぞれ矩形熱輻射面を含む熱輻射部Recとなるような格子状(図7(a)(b))や、それぞれ扇形熱輻射面を有する熱輻射部Secとなるようなセクタ状(図7(c))や、それぞれ正六角形熱輻射面を有する熱輻射部Hexとなるようなハニカム状(図7(d))などに区分けして、より複雑なウエハ5の変形に対応可能なように構成しても良い。   When a general growth substrate, for example, a C-plane sapphire substrate is used, the mounting portion 10 is concentrically divided in the above example because it deforms into a bowl shape during crystal growth. However, the shape of each heat radiation portion of the mounting portion 10 Is not limited to the concentric circles, but, for example, as shown in the plan views of FIGS. 7A, 7B, 7C, and 7D, each has a lattice shape (see FIG. 7) that forms a heat radiation portion Rec including a rectangular heat radiation surface. 7 (a) (b)), a sector shape (FIG. 7 (c)) that becomes a heat radiation portion Sec having a fan-shaped heat radiation surface, and a heat radiation portion Hex each having a regular hexagonal heat radiation surface. Such a honeycomb shape (FIG. 7D) may be divided so as to be able to cope with more complicated deformation of the wafer 5.

搭載部10の材料は通常のMOCVD装置用のサセプタに使用されるもので良い。例えば、III族窒化物成長基板の製造では、カーボン、石英(シリカ)、アルミナ、Si、SiC、窒化ホウ素などが一般的に用いられる。搭載部10は表面を白色塗装、白色の窒化ホウ素で形成、周囲に断熱材を設置するなどして加熱部Hからの熱を極力受けないようにするのが好ましい。   The material of the mounting portion 10 may be one used for a susceptor for a normal MOCVD apparatus. For example, carbon, quartz (silica), alumina, Si, SiC, boron nitride and the like are generally used in the manufacture of a group III nitride growth substrate. It is preferable that the mounting portion 10 be made of white paint, white boron nitride, and a heat insulating material around it so as not to receive heat from the heating portion H as much as possible.

−−脚部−−
図8に示すように、搭載部10の熱輻射部10a、10b、10c、10dの各々はウエハ5から離れるウエハ5の厚さ方向TKに平行に伸長する脚部20が設けられている。図9に示すように、脚部20は、搭載部10の区分けされた熱輻射部10a、10b、10c、10d毎に少なくとも1つ接続されている。例えば、中央の熱輻射部10aには1本の円形断面の脚部20が、その周りの熱輻射部10bには4本、10cには8本、10dには8本のセクタ形状断面の脚部20がそれぞれ接続されている。脚部20は搭載部10を上下させる駆動の役割と、熱拡散部30からの熱を搭載部10へと伝達する役割を有する。脚部20はそれぞれ熱輻射部10a、10b、10c、10d同士の間隙よりも広い間隔を空け、それぞれの脚部20が熱拡散部30で囲まれ得るように形成されている。これにより脚部の表面積が大きくなり、時間当たりに熱拡散部30から受け取れる熱量が多くなる。脚部20に用いられる材料は、上記通常のMOCVD装置用のサセプタに使用されるものであればいずれも使用できるが、熱拡散部30からの熱を効率よく吸収するために特にカーボン、SiCなどの黒色の材料が好ましい。脚部20は、熱拡散部30と一体としても別体としても形成できる。
--- Leg-
As shown in FIG. 8, each of the heat radiation portions 10 a, 10 b, 10 c, and 10 d of the mounting portion 10 is provided with a leg portion 20 that extends parallel to the thickness direction TK of the wafer 5 that is away from the wafer 5. As shown in FIG. 9, at least one leg portion 20 is connected to each of the heat radiation portions 10 a, 10 b, 10 c, 10 d of the mounting portion 10. For example, the central heat radiating portion 10a has one circular cross-section leg 20, the surrounding heat radiating portion 10b has four legs, 10c has eight legs, and 10d has eight sector-shaped cross-section legs. The units 20 are connected to each other. The leg portion 20 has a role of driving the mounting portion 10 up and down and a role of transmitting heat from the heat diffusion portion 30 to the mounting portion 10. The leg portions 20 are formed so as to be spaced apart from the gaps between the heat radiation portions 10 a, 10 b, 10 c, and 10 d, respectively, so that each leg portion 20 can be surrounded by the heat diffusion portion 30. Thereby, the surface area of the leg portion is increased, and the amount of heat that can be received from the heat diffusion unit 30 per unit time is increased. Any material can be used as the material used for the leg 20 as long as it is used for the susceptor for the above-described normal MOCVD apparatus. However, in order to efficiently absorb the heat from the thermal diffusion unit 30, carbon, SiC, etc. The black material is preferred. The leg portion 20 can be formed integrally with the heat diffusion portion 30 or as a separate body.

−−熱拡散部−−
熱拡散部30は加熱部Hからの熱を一旦受け、全体に熱を均一に拡散させてから各脚部20に熱を伝える役割を有する。図10に示すように、円柱形の熱拡散部30の本体には脚部20に平行な貫通孔31が設けられ、図11に示すように、貫通孔31は全ての脚部20が遊嵌して通過できるような断面形状で穿孔されており、この貫通孔31の側面から上記の各脚部20へと熱が伝えられる。
--- Heat diffusion part--
The heat diffusing unit 30 has a role of receiving heat from the heating unit H once and diffusing the heat uniformly throughout and then transferring the heat to each leg 20. As shown in FIG. 10, a through hole 31 parallel to the leg portion 20 is provided in the main body of the cylindrical heat diffusing portion 30, and all the leg portions 20 are loosely fitted in the through hole 31 as shown in FIG. The through holes 31 are perforated in a cross-sectional shape so that heat can be transferred from the side surfaces of the through holes 31 to the leg portions 20.

図12は熱拡散部30の断面を示し、加熱部Hから遠い熱拡散部30の中心部まで熱を素早く伝えるため、示すように、熱拡散部30は中心から外側に向かって放射状に広がる肉厚の厚い熱伝達部HTを形成することが好ましい。   FIG. 12 shows a cross section of the heat diffusing section 30, and in order to quickly transfer heat to the center of the heat diffusing section 30 far from the heating section H, as shown, the heat diffusing section 30 is radially spread from the center toward the outside. It is preferable to form a thick heat transfer portion HT.

熱拡散部30は例えば脚部20よりも熱伝導率の高い材料で構成されていることが好ましい。熱拡散部30には例えばタングステンなどの耐熱性金属、カーボン、カーボンに人工ダイヤモンドなどの高熱伝導材料を混合した混合物などを利用できる。   The thermal diffusion part 30 is preferably made of a material having a higher thermal conductivity than the leg part 20, for example. For the thermal diffusion part 30, for example, a heat-resistant metal such as tungsten, carbon, a mixture of carbon and a high thermal conductive material such as artificial diamond, or the like can be used.

これらにより、サセプタ中央にある脚部および搭載部にも素早く熱を伝達可能としている。従って、搭載部を複数の熱輻射部に分けてもサセプタの外側(加熱部Hに近い側)と中央で温度差が生じることがない。   As a result, heat can be quickly transferred to the leg portion and the mounting portion at the center of the susceptor. Therefore, even if the mounting part is divided into a plurality of heat radiation parts, there is no temperature difference between the outside of the susceptor (the side close to the heating part H) and the center.

図12に示すように、サセプタ装置1(搭載部10)を温めるための加熱部Hは熱拡散部30の側方を囲むように形成され、熱拡散部30内で十分に熱が拡散されてから貫通孔31を介して各熱輻射部に接続された脚部20へと熱が移る。これにより、搭載部10を複数に区分けしても内側と外側にある熱輻射部をほぼ同時に加熱することが可能となり、温度分布が更に均一となる。熱輻射部がなくて搭載部10の側方を加熱部Hが囲むように形成すると内側にある熱輻射部まで熱が伝導され難く温度分布が不均一となりやすいが、上記構成ではかかる問題は生じない。   As shown in FIG. 12, the heating part H for warming the susceptor device 1 (mounting part 10) is formed so as to surround the side of the thermal diffusion part 30, and heat is sufficiently diffused in the thermal diffusion part 30. The heat is transferred from the through holes 31 to the leg portions 20 connected to the heat radiation portions. Thereby, even if the mounting portion 10 is divided into a plurality of portions, the heat radiation portions on the inner side and the outer side can be heated almost simultaneously, and the temperature distribution becomes more uniform. If there is no heat radiating part and the heating part H surrounds the side of the mounting part 10, heat is not easily conducted to the heat radiating part on the inside and the temperature distribution tends to be non-uniform, but the above configuration causes such a problem. Absent.

−−駆動機構−−
駆動機構Drは脚部20それぞれを上下に動かす伸縮可能な変形機構である。図3に示す例ではピエゾアクチュエータ41がサセプタ保持薄板部40を変形させて、変形したサセプタ保持薄板部40が脚部20それぞれを上下に動かす。
--- Drive mechanism--
The drive mechanism Dr is a deformable mechanism that can extend and contract each leg 20 up and down. In the example shown in FIG. 3, the piezo actuator 41 deforms the susceptor holding thin plate portion 40, and the deformed susceptor holding thin plate portion 40 moves each of the leg portions 20 up and down.

サセプタ保持薄板部40は図3に示す円形金属板他、図13に示すように脚部20の配列とウエハの変形を考慮して円形金属板の外周から熱伝達部HTに沿って中心に向う切り込みNotchを入れると、よりウエハの形状に合せた変形が可能になり好ましい。   In addition to the circular metal plate shown in FIG. 13, the susceptor holding thin plate portion 40 is directed from the outer periphery of the circular metal plate to the center along the heat transfer portion HT in consideration of the arrangement of the legs 20 and the deformation of the wafer as shown in FIG. It is preferable to insert a notch notch, because it enables deformation in accordance with the shape of the wafer.

図3に示すピエゾアクチュエータ41は、ウエハ上部に取り付けた測定ユニット6からのウエハの「反り」の情報に基づき制御部Contによりフィードバック制御される。   The piezoelectric actuator 41 shown in FIG. 3 is feedback-controlled by the control unit Cont based on information on the “warp” of the wafer from the measurement unit 6 attached to the upper part of the wafer.

ピエノアクチュエータは一例であって限定されることはないが、その他の電磁気アクチュエータなどの電気的駆動システムを用いてもよい。   The piezoelectric actuator is an example and is not limited, but an electric drive system such as another electromagnetic actuator may be used.

さらに、ピエゾアクチュエータ41をサセプタ保持薄板部40の中心に1つ配置する形態に限らず、搭載部10毎または脚部20毎に1つ準備するなど、複数用いてもよい。複数のピエゾアクチュエータ41を個々またはグループ毎に高さを調整することでより複雑なウエハの変形に対応可能となる。この場合、サセプタ保持薄板部40は省略することもできる。例えば、図14に示すように、搭載部10の熱輻射部毎に1本の脚部20を設けそれぞれに1つのピエゾアクチュエータ41を接続させて、ピエゾアクチュエータ41をそれぞれ独立に制御部Contによりフィードバック制御される以外、上記実施形態構成と同様に構成できる。   Furthermore, the piezoelectric actuator 41 is not limited to the form in which one piezo actuator 41 is arranged at the center of the susceptor holding thin plate portion 40, and a plurality of piezoelectric actuators 41 may be used such as preparing one for each mounting portion 10 or each leg portion 20. By adjusting the height of each of the plurality of piezoelectric actuators 41 or for each group, it is possible to cope with more complicated wafer deformation. In this case, the susceptor holding thin plate portion 40 can be omitted. For example, as shown in FIG. 14, one leg 20 is provided for each heat radiation part of the mounting part 10 and one piezo actuator 41 is connected to each leg, and each piezo actuator 41 is fed back independently by the control part Cont. Except for being controlled, it can be configured in the same manner as in the above embodiment.

サセプタ装置1
2 反応炉
3 フローチャネル
5 ウエハ
6 測定ユニット
10 搭載部
10a、10b、10c、10d 熱輻射部
20 脚部
30 熱拡散部
31 貫通孔
41 ピエゾアクチュエータ
40 サセプタ保持薄板部
42 支持部
43 サセプタ回転機構部
61 レーザ光源
62 検知部
Cont 制御部
H 加熱部
Dr 駆動機構
Pt 突起
Susceptor device 1
2 Reactor 3 Flow Channel 5 Wafer 6 Measurement Unit 10 Mounting Part 10a, 10b, 10c, 10d Thermal Radiation Part 20 Leg Part 30 Thermal Diffusion Part 31 Through Hole 41 Piezo Actuator 40 Susceptor Holding Thin Plate Part 42 Support Part 43 Susceptor Rotating Mechanism Part 61 Laser light source 62 Detection unit Cont control unit H heating unit Dr drive mechanism Pt protrusion

Claims (8)

成長基板が載置される搭載領域を有するサセプタ装置であって、
前記搭載領域を分割して得られた区分領域の各々に配されかつ各々が前記成長基板に対向する熱輻射面を有し、前記成長基板の厚さ方向に可動である複数の熱輻射部からなる搭載部を有することを特徴とするサセプタ装置。
A susceptor device having a mounting area on which a growth substrate is placed,
A plurality of heat radiation portions arranged in each of the divided regions obtained by dividing the mounting region and each having a heat radiation surface facing the growth substrate and movable in the thickness direction of the growth substrate. A susceptor device having a mounting portion.
前記熱輻射部は前記成長基板から離れる前記成長基板の厚さ方向に伸長する脚部を有し、前記脚部を離間して取り囲む熱拡散部と、を備えたことを特徴とする請求項1に記載のサセプタ装置。   2. The heat radiation portion includes a heat diffusion portion having a leg portion extending in a thickness direction of the growth substrate that is separated from the growth substrate, and surrounding the leg portion with a space therebetween. A susceptor device according to claim 1. 前記熱拡散部は前記脚部よりも高い熱伝導率を有する材料で形成されていることを特徴とする請求項2に記載のサセプタ装置。   The susceptor device according to claim 2, wherein the thermal diffusion part is formed of a material having a higher thermal conductivity than the leg part. 前記複数の熱輻射部において前記成長基板に接する少なくとも3つの突起が設けられたことを特徴とする請求項1乃至3の何れか1に記載のサセプタ装置。   The susceptor device according to any one of claims 1 to 3, wherein at least three protrusions in contact with the growth substrate are provided in the plurality of thermal radiation portions. 前記搭載領域は同心円状またはセクタ状または格子状に分割されていることを特徴とする請求項1乃至4の何れか1に記載のサセプタ装置。   The susceptor device according to any one of claims 1 to 4, wherein the mounting region is divided into concentric circles, sectors, or grids. 反応炉内において成長基板が載置される請求項2乃至5の何れか1に記載のサセプタ装置と、
前記成長基板上に原料ガスを供給するガス噴射管と、
前記成長基板の表面の反り量分布を検知する基板反り量測定装置と、
前記基板反り量測定装置からの前記成長基板の表面の反り量分布の信号に応じて、前記熱輻射部を前記成長基板の厚さ方向に駆動する駆動機構を有することを特徴とする気相成長装置。
The susceptor device according to any one of claims 2 to 5, wherein a growth substrate is placed in a reaction furnace,
A gas injection pipe for supplying a source gas onto the growth substrate;
A substrate warpage amount measuring device for detecting a warpage amount distribution on the surface of the growth substrate;
Vapor phase growth characterized by having a drive mechanism for driving the thermal radiation portion in the thickness direction of the growth substrate in accordance with a warp amount distribution signal on the surface of the growth substrate from the substrate warpage amount measuring device. apparatus.
前記駆動機構は、前記脚部下方の全てまたは複数に接続されたサセプタ保持薄板部と、該サセプタ保持薄板部下方に接続された前記成長基板の厚さ方向に伸縮可能な変形機構と、で構成されたことを特徴とする請求項6に記載の気相成長装置。   The drive mechanism is composed of a susceptor holding thin plate portion connected to all or a plurality of lower portions of the leg portion, and a deformation mechanism capable of expanding and contracting in the thickness direction of the growth substrate connected to the lower portion of the susceptor holding thin plate portion. The vapor phase growth apparatus according to claim 6, wherein 前記駆動機構は、前記脚部それぞれの下方に接続された前記成長基板の厚さ方向に伸縮可能な変形機構で構成されたことを特徴とする請求項6に記載の気相成長装置。   The vapor phase growth apparatus according to claim 6, wherein the drive mechanism is configured by a deformation mechanism that can be expanded and contracted in a thickness direction of the growth substrate that is connected to a lower side of each of the leg portions.
JP2011012062A 2011-01-24 2011-01-24 Susceptor device and vapor phase growth apparatus Pending JP2012156196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012062A JP2012156196A (en) 2011-01-24 2011-01-24 Susceptor device and vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012062A JP2012156196A (en) 2011-01-24 2011-01-24 Susceptor device and vapor phase growth apparatus

Publications (1)

Publication Number Publication Date
JP2012156196A true JP2012156196A (en) 2012-08-16

Family

ID=46837661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012062A Pending JP2012156196A (en) 2011-01-24 2011-01-24 Susceptor device and vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JP2012156196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204928A (en) * 2018-05-25 2019-11-28 日機装株式会社 Susceptor, semiconductor manufacturing method, and semiconductor manufacturing apparatus
JP2020002424A (en) * 2018-06-27 2020-01-09 株式会社アルバック Substrate support mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204928A (en) * 2018-05-25 2019-11-28 日機装株式会社 Susceptor, semiconductor manufacturing method, and semiconductor manufacturing apparatus
JP2020002424A (en) * 2018-06-27 2020-01-09 株式会社アルバック Substrate support mechanism
JP7038013B2 (en) 2018-06-27 2022-03-17 株式会社アルバック Board support mechanism

Similar Documents

Publication Publication Date Title
US10438795B2 (en) Self-centering wafer carrier system for chemical vapor deposition
US9487862B2 (en) Semiconductor growing apparatus
KR101294129B1 (en) Wafer carrier with varying thermal resistance
EP2037485B1 (en) Fabrication apparatus and fabrication method of semiconductor device produced by heating a substrate
CN106663630B (en) Apparatus and method for calibrating a susceptor
JP6184479B2 (en) A rotating disk reactor with a ferrofluidic seal for chemical vapor deposition
CN103074606A (en) Graphite plate, reaction chamber with graphite plate, and substrate heating method
CN1529900A (en) Assembly comprising heat-distribution plate and edge support
CN105442039A (en) Graphite disc for accommodating silicon substrate for MOCVD (metal-organic chemical vapor deposition)
CN105556655A (en) Carbon fiber ring susceptor
US20120164347A1 (en) Susceptor for cvd apparatus, cvd apparatus and substrate heating method using the same
JP2012156196A (en) Susceptor device and vapor phase growth apparatus
JP2011077171A (en) Vapor deposition device
CN112789719A (en) Base seat
JP2013004593A (en) Substrate support apparatus and vapor deposition apparatus
KR20130024816A (en) Vapor growth apparatus and vapor growth method
CN105568371A (en) Graphite disc for improving mean value of wavelengths of all rings of silicon-based nitride
US20150259827A1 (en) Susceptor
KR20200071276A (en) Wafer carrier for large wafer
CN117881819A (en) Wafer carrier assembly with base and lid constraint arrangement to control thermal gap
KR20020011793A (en) wide area heating module for fabricating semiconductor device
CN112011826B (en) Method for depositing epitaxial layers on the front side of a wafer and device for carrying out the method
JP2006186105A (en) Epitaxial growth device and susceptor used therefor
JP4758385B2 (en) Vapor growth apparatus and vapor growth method
US20150034010A1 (en) Susceptor and apparatus including the same