JP2012154720A - Reference minute gas flow rate introduction device - Google Patents

Reference minute gas flow rate introduction device Download PDF

Info

Publication number
JP2012154720A
JP2012154720A JP2011012907A JP2011012907A JP2012154720A JP 2012154720 A JP2012154720 A JP 2012154720A JP 2011012907 A JP2011012907 A JP 2011012907A JP 2011012907 A JP2011012907 A JP 2011012907A JP 2012154720 A JP2012154720 A JP 2012154720A
Authority
JP
Japan
Prior art keywords
gas
pressure
flow
flow rate
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011012907A
Other languages
Japanese (ja)
Other versions
JP5761706B2 (en
Inventor
Hajime Yoshida
肇 吉田
Hitoshi Akimichi
斉 秋道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011012907A priority Critical patent/JP5761706B2/en
Publication of JP2012154720A publication Critical patent/JP2012154720A/en
Application granted granted Critical
Publication of JP5761706B2 publication Critical patent/JP5761706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device for introducing gas with known minute flow rate in a vacuum container.SOLUTION: A device is constituted of: a micropore filter; a gas reservoir; a gas introduction system; a vacuum pump; a vacuum gauge; a valve; and pipe arrangement, and gas with known minute flow rate can be introduced in the vacuum container in almost all kinds of gas with one device by introducing the gas in a vacuum device while maintaining a condition under which flow of gas passing through the micropore filter satisfies a molecular flow condition by using the micropore filter of which the conductance of the molecular flow and the pressure to be the molecular flow are preliminarily calibrated, since relation between primary pressure and flow rate is linear, different flow rate can be easily generated, the gas with the known flow rate can be introduced even by using mixed gas, temperature dependence can be theoretically corrected, gas, such as water vapor and ethanol vapor with condensability, adsorptivity in which it is difficult to introduce the gas with the known flow rate can be also similarly introduced.

Description

本発明は、真空容器内に、既知の微小流量を持つ、ガスを導入するための装置に関するものである。   The present invention relates to an apparatus for introducing a gas having a known minute flow rate into a vacuum vessel.

従来、真空容器(本願では、1Pa以下を想定したものである)に既知の流量のガスを導入する場合、マスフローコントローラーが多く用いられてきたが、導入できる下限が、10−3Pa・m/s(0.1sccm)程度であった。
これより、低い流量のガスを導入する場合、標準キャピラリーや標準リークが用いられてきたが、標準キャピラリーの場合、気体の流れが途中で中間流になってしまうため、特性が複雑となり、(1)ガス種が変わった場合の流量の補正が困難、(2)一次圧力と導入流量の関係が非線形、(3)混合ガスの場合の流量特性が不明、(4)温度依存性が経験則に基づく、といった問題があった。
一方、標準リークを用いる場合、導入したい数だけ、標準リークを購入しなければならないので、高コストになるという問題があった。さらに、これまでは、水蒸気やエタノール蒸気等、凝縮性・吸着性のあるガスについて、既知の流量のガスを導入することが困難であった。
また、本発明者らは、先に、標準混合ガスリーク用微小孔フィルターの校正方法及び校正装置(特許文献1)を出願している。
Conventionally, when a gas having a known flow rate is introduced into a vacuum vessel (in this application, it is assumed that the pressure is 1 Pa or less), a mass flow controller has been used in many cases, but the lower limit that can be introduced is 10 −3 Pa · m 3. / S (0.1 sccm).
From this, when introducing a gas with a low flow rate, a standard capillary or a standard leak has been used. However, in the case of a standard capillary, the gas flow becomes an intermediate flow in the middle, and the characteristics become complicated. ) It is difficult to correct the flow rate when the gas type changes, (2) The relationship between the primary pressure and the introduction flow rate is nonlinear, (3) The flow rate characteristics in the case of mixed gas are unknown, (4) Temperature dependence is an empirical rule There was a problem of being based.
On the other hand, when standard leaks are used, there is a problem that the number of standard leaks to be introduced has to be purchased, resulting in high costs. Furthermore, until now, it has been difficult to introduce a gas having a known flow rate with respect to a condensable and adsorptive gas such as water vapor or ethanol vapor.
In addition, the present inventors have previously filed an application for a calibration method and a calibration apparatus (Patent Document 1) for a standard mixed gas leak microporous filter.

特願2009−197894号Japanese Patent Application No. 2009-197894

C.D.Ehrlich,J.A.Basford,「J.Vac.ScI.Techno!」 A10(1),p1−17,“Recommended practices for the calibration and use of leaks”C. D. Ehrlich, J .; A. Basford, “J. Vac. ScI. Techno!” A10 (1), p1-17, “Recommended practices for the calibration and use of leaks”.

従来の標準キャピラリーや標準リークを用いた場合の上記問題点を、本発明者らが先に出願した標準混合ガスリーク用微小孔フィルターの校正方法及び校正装置(特許文献1参照)で校正した微小孔フィルターを利用したガス導入装置を用いて解決することを目的とし、流れる気体が分子流となるようにした前記微小孔フィルターを用いて、真空容器(1Pa以下)に、既知の微小流量を持つガスを導入するための装置を提供することにある。
この装置を用いることで、ガス種が変わった場合の流量の補正が容易なので、本発明の装置一台で、ほぼあらゆるガス種の既知の微小流量のガスを真空容器に導入できる、且つ、一次圧力と導入流量の関係が線形なので、一次圧力を変えることで異なる既知の流量を容易に導入できる、且つ、混合ガスのそれぞれのガスを独立に扱えるので、混合ガスを使っても既知の流量のガスを導入できる、且つ、導入する流量の温度補正を気体分子運動論に基づいて行える。
Micropores calibrated with the calibration method and calibration apparatus (see Patent Document 1) of the standard mixed gas leak micropore filter previously filed by the present inventors for the above-mentioned problems when using a conventional standard capillary or standard leak A gas having a known minute flow rate in a vacuum vessel (1 Pa or less) using the micropore filter, which aims to solve the problem by using a gas introducing device using a filter, and the flowing gas is a molecular flow. It is in providing the apparatus for introduce | transducing.
By using this device, it is easy to correct the flow rate when the gas type is changed. Therefore, with a single device of the present invention, a known minute flow rate gas of almost any gas type can be introduced into the vacuum vessel. Since the relationship between the pressure and the flow rate is linear, different known flow rates can be easily introduced by changing the primary pressure, and each gas of the mixed gas can be handled independently. Gas can be introduced, and temperature correction of the introduced flow rate can be performed based on gas molecular kinetics.

本発明の基準微小ガス流量導入装置は、微小孔フィルター、ガスリザーバ、ガス導入系、真空ポンプ、ガスリザーバ内の圧力P測定用真空計、バルブ・配管から構成され、ガスを導入したい真空容器(1Pa以下)に接続する。微小孔フィルターは、予め、あるガス種(Nなど)で、分子流が実現する圧力と、分子流のコンダクタンスを校正しておく(特許文献1参照)。混合ガスを用いる場合には、排気特性にガス種依存性が無い、容積輸送式真空ポンプを用いる必要がある。真空計は、隔膜真空計等、ガス種依存性が無いものを用いるか、導入されるガス種に対して校正されているものを用いる。 Reference micro gas flow introduction device of the present invention, microporous filter, gas reservoir, a gas introduction system, the vacuum pump, the pressure P R for measuring gauge in the gas reservoir is constituted by a valve and piping, vacuum container (1 Pa to be introducing a gas Connect to: The micropore filter previously calibrates the pressure at which the molecular flow is realized and the conductance of the molecular flow with a certain gas type (N 2 or the like) (see Patent Document 1). When a mixed gas is used, it is necessary to use a positive displacement vacuum pump that does not depend on the gas type in the exhaust characteristics. A vacuum gauge that does not depend on the gas type, such as a diaphragm vacuum gauge, or that that is calibrated with respect to the introduced gas type is used.

基準微小ガス流量導入方法について述べる。ガスリザーバに任意の気体を導入する。次に、ガスリザーバ内の圧力を、微小孔フィルターと通るガスが分子流を実現する圧力以下(例えば10kPa)に調整する。この時、微小孔フィルターを通って、真空容器に導入されるガス流量Qは、Q=P・Cα・(Mα/M)1/2・(T/T)1/2となる。ここで、Pはガスリザーバの圧力、Cαは校正された微小孔フィルターのガス種αのコンダクタンス、Mαはガス種αの分子量、Mは導入したい任意のガスの分子量、TはCαを校正した時の温度、Tは任意のガスを導入する時の温度である。
混合ガスを導入する場合は、混合ガスの混合比、又は濃度が既知である必要がある。この場合、ガスリザーバ内のガス種iの分圧PRiは、全圧Pと濃度の積で表されるので、Pの変わりにガスリザーバ内のガス種iの分圧PRiを用いることで、真空容器に導入されるガス種iの流量Qを求めることができる。
導入するガスは、例えば、水やエタノールなど、大気圧では液体の物質であっても可能である。この場合、液体を封入した容器をガスリザーバに接続し、真空ポンプで一定時間排気した後、真空ポンプ前のバルブを封じきる。これにより、ガスリザーバ内の圧力Pは、液体の蒸気圧と等しくなり、他のガスと同様に、真空容器内にガスを導入できる。
A method for introducing a reference minute gas flow rate will be described. An arbitrary gas is introduced into the gas reservoir. Next, the pressure in the gas reservoir is adjusted to be equal to or lower than the pressure (for example, 10 kPa) at which the gas passing through the microporous filter realizes a molecular flow. At this time, through the microporous filter, the gas flow rate Q which is introduced into the vacuum vessel, Q = P R · C α · (M α / M) becomes 1/2 · (T 0 / T) 1/2 . Here, P R is the molecular weight of the conductance, M alpha gas species alpha pressures, C alpha gas species micropore filter calibrated alpha of the gas reservoir, M is the molecular weight of any gas to be introduced, T 0 is C alpha Is a temperature when calibrating, and T is a temperature when introducing an arbitrary gas.
When a mixed gas is introduced, the mixing ratio or concentration of the mixed gas needs to be known. In this case, the partial pressure P Ri of gas species i in the gas reservoir is so represented by the product of the total pressure P R and concentration, by using the partial pressure P Ri of gas species i in the gas reservoir instead of P R The flow rate Q i of the gas species i introduced into the vacuum vessel can be obtained.
The gas to be introduced may be a substance that is liquid at atmospheric pressure, such as water or ethanol. In this case, the container filled with the liquid is connected to the gas reservoir, and after evacuating for a certain time with the vacuum pump, the valve before the vacuum pump is completely sealed. Thus, the pressure P R in the gas reservoir is equal to the vapor pressure of the liquid, as well as other gases can introduce gas into the vacuum chamber.

本発明の基準微小ガス流量導入装置を用いることにより、本発明の装置一台で、ほぼあらゆるガス種の、既知の微小流量を持つガスを真空容器に導入できる、且つ、一次圧を変えることで、異なる既知の流量を容易に導入できる、且つ、混合ガスを使っても既知の流量のガスを導入できる、且つ、導入流量の温度依存性を理論的に補正できる、且つ、凝縮性・吸着性のある水蒸気やエタノール蒸気等のガスも同様に導入できる、ことが実現できた。   By using the reference minute gas flow rate introduction device of the present invention, it is possible to introduce almost all kinds of gases having known minute flow rates into the vacuum vessel with one device of the present invention and to change the primary pressure. , Different known flow rates can be easily introduced, and even with mixed gas, known flow rates can be introduced, the temperature dependence of the introduced flow rate can be theoretically corrected, and condensability / adsorption properties It was realized that gases such as water vapor and ethanol vapor could be introduced as well.

図1は、本発明の基準微小ガス流量導入装置の一実施例を示した説明図である。FIG. 1 is an explanatory view showing an embodiment of a reference minute gas flow rate introducing device of the present invention. 図2は、本発明者らが先に出願した微小孔フィルターを校正する装置の概略図である。FIG. 2 is a schematic view of an apparatus for calibrating a microporous filter previously filed by the present inventors.

図1に本発明の基準微小ガス導入装置の一実施例である装置を、ガスを導入したい真空容器に接続したものを示す。図に示すように、装置は、微小孔フィルター、ガスリザーバ、ガス導入系、真空ポンプ、ガスリザーバ内の圧力P測定用真空計、バルブ・配管から構成される。微小孔フィルターは、予め、分子流が実現する圧力と、分子流のコンダクタンスを校正しておく。ここでは、あるガス種αに対しての分子流コンダクタンスがCαであったとする。
この時、任意のガス(分子量M)は、決まった流量Qで、以下の手順で真空容器に導入される。
1)ガスリザーバに、任意のガスを導入する。
2)ガスリザーバ内の圧力を、分子流が実現する圧力範囲まで下げる。
3)この時、導入されるガス流量Qは、以下の式で表される。
FIG. 1 shows an apparatus, which is an embodiment of the reference micro gas introduction apparatus of the present invention, connected to a vacuum vessel into which gas is to be introduced. As shown, apparatus, microporous filter, gas reservoir, a gas introduction system, the vacuum pump, the pressure P R for measuring gauge in the gas reservoir, and a valve and piping. The micropore filter calibrates the pressure realized by the molecular flow and the conductance of the molecular flow in advance. Here, it is assumed that the molecular flow conductance for a certain gas species α is C α .
At this time, an arbitrary gas (molecular weight M) is introduced into the vacuum vessel at a fixed flow rate Q according to the following procedure.
1) An arbitrary gas is introduced into the gas reservoir.
2) Reduce the pressure in the gas reservoir to a pressure range where molecular flow is achieved.
3) At this time, the introduced gas flow rate Q is expressed by the following equation.

ここで、Pは真空計で測定されたガスリザーバ内の圧力、TはCαが校正された時の温度、Tは任意のガスを導入する時の温度である。 Here, the temperature at P R is the pressure in the gas reservoir was measured by the gauge, T 0 is the temperature at which the C alpha is calibrated, T is the introduction of any gas.

本発明の基準微小ガス流量導入装置は、図1に一実施例として示したような本発明の装置を、ガスを導入したい真空容器に接続して用いる。図に示すように、装置は、微小孔フィルター、ガスリザーバ、ガス導入系、真空ポンプ、ガスリザーバ内の圧力PR測定用真空計、バルブ・配管から構成される。微小孔フィルターは、予め、分子流が実現する圧力と、分子流コンダクタンスの値を校正しておく。
ここでは、一例として、微小孔フィルター流れる気体が10kPa以下の時、分子流になるとし、Nの分子流コンダクタンスCN2が1×10−9/sであるとする。
The reference minute gas flow rate introduction apparatus of the present invention uses the apparatus of the present invention as shown in FIG. 1 as an embodiment, connected to a vacuum vessel into which gas is to be introduced. As shown, apparatus, microporous filter, gas reservoir, a gas introduction system, the vacuum pump, the pressure P R for measuring gauge in the gas reservoir, and a valve and piping. The micropore filter calibrates the pressure realized by the molecular flow and the value of the molecular flow conductance in advance.
Here, as an example, when the gas flowing micropore filter is 10kPa or less, and becomes molecular flow, molecular flow conductance C N2 of N 2 is assumed to be 1 × 10 -9 m 3 / s .

(1)純ガスの導入方法
ガスリザーバに任意の気体を導入する。次に、ガスリザーバ内の圧力を、微小孔フィルターと通るガスが分子流が実現する圧力以下(ここでは10kPa以下)に調整する。この時、微小孔フィルターを通って、真空容器に導入されるガス流量Qは、気体分子運動論に基づき、以下の式で表される。
(1) Pure gas introduction method Arbitrary gas is introduced into the gas reservoir. Next, the pressure in the gas reservoir is adjusted to be equal to or lower than the pressure at which the gas passing through the microporous filter realizes the molecular flow (here, 10 kPa or lower). At this time, the gas flow rate Q introduced into the vacuum vessel through the micropore filter is expressed by the following equation based on the gas molecule kinetic theory.

ここで、Pはガスリザーバの圧力、MN2はNの分子量、Mは導入したい任意のガスの分子量、TはCN2を測定・校正した時の温度、Tは任意のガスを導入する時の温度である。例えば、ガスリザーバの圧力PにArガス(分子量40)を封入し、10kPaに保ったとすると、真空容器に導入されるArガス流量QArは、 Here, P R is the pressure of the gas reservoir, M N2 molecular weight of N 2, M is the molecular weight of any gas to be introduced, T 0 is the temperature as measured, calibrated C N2, T introduces any gas Is the temperature of the hour. For example, sealed Ar gas (molecular weight 40) to the pressure P R of the gas reservoir, when kept at 10 kPa, Ar gas flow rate Q Ar is introduced into the vacuum vessel,

となり、マスフローコントローラーより、はるかに低い流量のガスを、真空容器に導入することができる。ガスリザーバの圧力を低くすることで、さらに低い流量も容易に発生できる。ガス種を変えても、同様にして、既知の微小流量を導入することが出来る。 Thus, a much lower flow rate gas can be introduced into the vacuum vessel than the mass flow controller. A lower flow rate can be easily generated by lowering the pressure of the gas reservoir. Even if the gas type is changed, a known minute flow rate can be similarly introduced.

(2)混合ガスの導入方法
混合ガスを導入する場合は、真空容器に導入されるガス種iの流量Qは、Pの変わりに、ガスリザーバ内のガス種iの分圧PRiとすることで、同様に、(1)式を使って求めることが出来る。例えば、95%窒素、5%水素の混合ガスを、ガスリザーバに10kPaまで、導入した場合、ガスリザーバ内のそれぞれの分圧PR−N2、PR−H2は、10kPa×0.95、10kPa×0.05となるから、それぞれのガス流量QN2とQH2は以下のようになる。
(2) To introduce the method mixed gas of the mixed gas, the flow rate Q i of the gas species i introduced into the vacuum vessel, instead of P R, and the partial pressure P Ri of gas species i in the gas reservoir Thus, similarly, it can be obtained using equation (1). For example, when a mixed gas of 95% nitrogen and 5% hydrogen is introduced to the gas reservoir up to 10 kPa, the partial pressures P R-N2 and P R-H2 in the gas reservoir are 10 kPa × 0.95, 10 kPa × 0. .05, the gas flow rates Q N2 and Q H2 are as follows.

(3)水やエタノール等、大気では液体であるが、圧力を下げると気体になる物質の導入方法
液体を封入した容器をガスリザーバに接続し、真空ポンプで一定時間排気した後、真空ポンプ前のバルブを封じきる。これにより、ガスリザーバ内の圧力Pは、液体の蒸気圧と等しくなる。導入される気体のガス流量は、上記(1)式で同様に計算できる。
図3に、水蒸気を導入した時の、ガス流量を示す。水の蒸気圧は、23℃の時、2784Paであるから、導入される水蒸気の流量QH2Oは、以下の通りになる。
(3) Method of introducing substances that are liquid in the atmosphere, such as water and ethanol, but become gas when the pressure is reduced Connect the container filled with the liquid to the gas reservoir, evacuate for a certain time with the vacuum pump, Seal the valve. Accordingly, the pressure P R in the gas reservoir is equal to the vapor pressure of the liquid. The gas flow rate of the introduced gas can be calculated in the same manner by the above equation (1).
FIG. 3 shows the gas flow rate when water vapor is introduced. Since the vapor pressure of water is 2784 Pa at 23 ° C., the flow rate Q H2O of the introduced water vapor is as follows.

図2は、本発明で用いる予め校正した微小孔フィルターについて、その校正装置及び校正方法を説明するための図であって、校正装置を示した図である。図2の校正装置は、本発明者らが先に出願した特許文献1の装置と同じであって、微小孔フィルターの上流に、標準混合ガス及び純ガスのガス導入系、容積輸送式真空ポンプ等の真空ポンプ、上流圧力P測定用の隔膜真空計等の真空計を配置し、微小孔フィルターの下流に、真空容器を配置し、前記真空容器には排気用高真空ポンプ、下流圧力P測定用全圧真空計、下流圧力P測定用分圧真空計を接続した微小孔フィルター校正装置において、微小孔フィルターを介して、真空容器に気体を導入した際、真空容器内部の圧力が、全圧真空計、分圧真空計の動作圧力範囲内にあるように、高真空ポンプの排気速度を選択して微小孔フィルターで分子流が実現されているかどうかを校正できるようにしたものである。 FIG. 2 is a diagram for explaining a calibration device and a calibration method for a micropore filter calibrated in advance used in the present invention, and shows the calibration device. The calibration device of FIG. 2 is the same as the device of Patent Document 1 previously filed by the present inventors, and a standard mixed gas and pure gas introduction system, a positive displacement vacuum pump upstream of the microporous filter. vacuum pump etc., arranged vacuum gauge diaphragm gauge or the like of the upstream pressure P u measurement, downstream of the micropore filter, a vacuum vessel is arranged, the vacuum in the chamber high vacuum pump for evacuation, downstream pressure P d measuring total pressure vacuum gauge, the microporous filter calibration apparatus connected downstream pressure P d for measuring partial pressure vacuum gauge, through a micropore filter, upon introduction of the gas into the vacuum vessel, the pressure inside the vacuum chamber In order to calibrate whether or not molecular flow is realized with a micropore filter by selecting the pumping speed of the high vacuum pump so that it is within the operating pressure range of the total pressure vacuum gauge and partial pressure vacuum gauge is there.

図2の校正装置を用いて微小孔フィルターを校正する方法には、上記特許文献1に記載されているように、(1)微小孔フィルター上流に純ガスを導入し、下流に配置された真空容器を高真空ポンプで排気速度Cで排気したとき、上流圧力Pを隔膜真空計等の真空計で、下流圧力Pを全圧真空計で測定し、式C=C/Pを使って、上流圧力Pを変えながらCを求め、Cが一定となる圧力領域を、分子流が実現している領域として校正し、さらに、ガス種を変えてCを測定し、その比が気体の質量数の1/2乗になっていることにより、分子流が実現しているとして校正する、(2)微小孔フィルター上流に標準混合ガスを導入し、下流に配置された真空容器を高真空ポンプでガス種iの排気速度CPiで排気したとき、上流の全圧Pを隔膜真空計等の真空計で測定し、上流の全圧Pを変えながら下流のガス種iの分圧Pdiを分圧真空計で測定し、Pdi/P比が一定となる圧力領域を、分子流が実現している領域として校正し、さらに、CPi・Pdiの値と、CFi・P・mの値と(ここで、CFiはガス種iの微小孔フィルターのコンダクタンス、mは標準混合ガスにおけるガス種iの濃度である)、を比較して両者が等しくなっている圧力範囲を、分子流が実現している圧力範囲として校正する、(3)微小孔フィルター上流に標準混合ガスを導入し、下流に配置された真空容器を高真空ポンプで排気速度CPiで排気したとき、上流の全圧Pを隔膜真空計等の真空計で測定し、上流の全圧Pを変えながら下流の全圧Pを全圧真空計で測定し、CFi・P・mの値(ここで、CFiはガス種iの微小孔フィルターのコンダクタンス、mは標準混合ガスにおけるガス種iの濃度である)、を求め、この求めた値をさらにCPiで除した値を全てのガス種iについて求めて総和し、この総和した値が、全圧真空計で測定した下流の全圧Pと等しくなっている圧力範囲を分子流が実現している圧力範囲として校正する、以上の3つの校正方法が考えられる。
そして、本発明の基準微小ガス流量導入装置には、上記のいずれかの校正方法で予め分子流が実現されることが校正されている微小孔フィルターを用いることを特徴としている。
In the method of calibrating the micropore filter using the calibration device of FIG. 2, as described in Patent Document 1 above, (1) a pure gas is introduced upstream of the micropore filter and a vacuum disposed downstream. when evacuated at the vessel discharge rate C P at the high vacuum pump, the upstream pressure P u in a vacuum gauge such as diaphragm gauge to measure the downstream pressure P d at full pressure vacuum gauge, wherein C F = C P P d / P u is used to obtain C F while changing the upstream pressure P u , the pressure region where C F is constant is calibrated as the region where the molecular flow is realized, and further, the gas type is changed to change C F , And calibrate that the molecular flow is realized by the ratio being the 1/2 power of the mass number of the gas. (2) Introduce the standard mixed gas upstream of the micropore filter and downstream in the exhaust speed C Pi of the gas species i and arranged vacuum chamber at a high vacuum pump When you care, the total pressure P u of the upstream measured with a vacuum gauge, such as a diaphragm gauge, while changing the total pressure P u upstream to measure the partial pressure P di downstream of the gas species i in minutes, pressure vacuum gauge, The pressure region where the P di / P u ratio is constant is calibrated as the region where the molecular flow is realized, and the value of C Pi · P di and the value of C Fi · P u · m i (here in, C Fi conductance microporous filter of the gas species i, m i is the concentration of a gas species i in a standard mixed gas), the pressure range to which both are equal by comparing the molecular flow is achieved (3) When the standard mixed gas is introduced upstream of the microporous filter and the vacuum vessel disposed downstream is exhausted at the exhaust speed CPi by the high vacuum pump, the upstream total pressure P u It was measured with a vacuum gauge such as diaphragm gauge, while changing the total pressure P u in the upstream The total pressure P d of the flow was measured in all pressure vacuum gauge, C Fi of · P u · m i values (here, C Fi conductance microporous filter of the gas species i, m i is a gas at standard mixed gas is the concentration of species i), the calculated, the value obtained by dividing this calculated value the more C Pi all sums are calculated for gas species i, the sum value is, downstream of which was measured at every pressure vacuum gauge The above three calibration methods can be considered in which the pressure range equal to the total pressure Pd is calibrated as the pressure range in which the molecular flow is realized.
The reference micro gas flow rate introducing device of the present invention is characterized by using a micropore filter that has been calibrated in advance to realize a molecular flow by any of the calibration methods described above.

Claims (3)

(1)微小孔フィルター上流に純ガスを導入し、下流に配置された真空容器を高真空ポンプで排気速度Cで排気したとき、上流圧力Pを真空計で、下流圧力Pを全圧真空計で測定し、式C=C/Pを使って、上流圧力Pを変えながらCを求め、Cが一定となる圧力領域を、分子流が実現している領域として校正し、さらに、ガス種を変えてCを測定し、その比が気体の質量数の1/2乗になっていることにより、分子流が実現しているとして校正する校正方法、又は、(2)微小孔フィルター上流に標準混合ガスを導入し、下流に配置された真空容器を高真空ポンプでガス種iの排気速度CPiで排気したとき、上流の全圧Pを真空計で測定し、上流の全圧Pを変えながら下流のガス種iの分圧Pdiを分圧真空計で測定し、Pdi/P比が一定となる圧力領域を、分子流が実現している領域として校正し、さらに、CPi・Pdiの値と、CFi・P・mの値と(ここで、CFiはガス種iの微小孔フィルターのコンダクタンス、mは標準混合ガスにおけるガス種iの濃度である)、を比較して両者が等しくなっている圧力範囲を、分子流が実現している圧力範囲として校正する校正方法、又は、(3)微小孔フィルター上流に標準混合ガスを導入し、下流に配置された真空容器を高真空ポンプで排気速度CPiで排気したとき、上流の全圧Pを真空計で測定し、上流の全圧Pを変えながら下流の全圧Pを全圧真空計で測定し、CFi・P・mの値(ここで、CFiはガス種iの微小孔フィルターのコンダクタンス、mは標準混合ガスにおけるガス種iの濃度である)、を求め、この求めた値をさらにCPiで除した値を全てのガス種iについて求めて総和し、この総和した値が、全圧真空計で測定した下流の全圧Pと等しくなっている圧力範囲を分子流が実現している圧力範囲として校正する校正方法により、予め微小孔フィルターにより分子流が実現できることが校正されている微小孔フィルターを用いた基準微小ガス流量導入装置であって、
当該微小孔フィルター、ガスリザーバ、ガス導入系、真空ポンプ、真空計から構成される装置で、分子流のコンダクタンスと分子流になる圧力を予め校正しておいた前記微小孔フィルターを用い、微小孔フィルターを通る気体の流れが分子流条件を満たす条件を保ちながら、真空装置にガスを導入することにより、本発明の装置一台で、ほぼあらゆるガス種において、既知の微小流量を持つガスを、真空容器に導入できる、且つ、一次圧力と流量の関係が線形なので、異なる流量を容易に発生できる、且つ、混合ガスを使っても、既知の流量のガスを導入できる、且つ、温度依存性が理論的に補正できる、且つ、凝縮性・吸着性のある、水蒸気やエタノール蒸気等、これまで既知の流量のガスを導入することが困難であったガスも同様に導入できる、ことを特徴とする基準微小ガス流量導入装置。
(1) introducing a pure gas into the microporous filter upstream, when a vacuum vessel which is located downstream to the exhaust the exhaust rate C P at the high vacuum pump, the upstream pressure P u in the gauge, the downstream pressure P d total Measured with a pressure gauge, and using the formula C F = C P P d / P u , C F is obtained while changing the upstream pressure P u , and the molecular flow realizes the pressure region where C F is constant. Calibration method for calibrating that the molecular flow is realized by calibrating as a region in which the gas flow is changed, measuring CF by changing the gas type, and the ratio being the 1/2 power of the mass number of the gas Or (2) When the standard mixed gas is introduced upstream of the micropore filter and the vacuum vessel disposed downstream is exhausted by the high vacuum pump at the exhaust speed CPi of the gas species i, the upstream total pressure Pu is measured with a vacuum gauge, the partial pressure of the downstream gas species i while changing the total pressure P u in the upstream P The i was measured in minutes pressure vacuum gauge, a pressure region P di / P u ratio becomes constant, calibrated as a region molecular flow is realized, further, the value of C Pi · P di, C Fi · P u of · m i values and (where, C Fi conductance microporous filter of the gas species i, m i is the concentration of a gas species i in the standard gas mixture), is equal both to compare Calibration method that calibrates the pressure range as the pressure range realized by the molecular flow, or (3) A standard mixed gas is introduced upstream of the microporous filter, and the vacuum vessel placed downstream is evacuated with a high vacuum pump When exhausted at the speed C Pi , the upstream total pressure P u is measured with a vacuum gauge, the downstream total pressure P d is measured with a total pressure vacuum gauge while changing the upstream total pressure P u , and C Fi · P u · m i values (here, C Fi Koh microporous filter gas species i Inductance, m i is the concentration of a gas species i in a standard mixed gas), the calculated, a value obtained by dividing this calculated value further C Pi sums asking for all gas species i, is the sum value , by the calibration method of calibrating a pressure range which is equal to the total pressure P d of the downstream were measured in all pressure vacuum gauge as a pressure range in which molecular flow is realized, the calibration that molecular flow can be achieved by pre micropore filter A reference micro gas flow rate introduction device using a microporous filter,
A device comprising the micropore filter, a gas reservoir, a gas introduction system, a vacuum pump, and a vacuum gauge, and using the micropore filter in which the conductance of the molecular flow and the pressure to become the molecular flow are calibrated in advance, By introducing the gas into the vacuum apparatus while maintaining the condition that the gas flow through the molecular flow condition is satisfied, the gas having a known minute flow rate can be evacuated in almost all kinds of gas by one apparatus of the present invention. Since the relationship between the primary pressure and the flow rate can be introduced into the container and the relationship between the primary pressure and the flow rate is linear, it is possible to easily generate different flow rates. Gas that could not be introduced with known flow rates, such as water vapor and ethanol vapor, that can be corrected automatically and that is condensable and adsorbable Kill, reference micro gas flow introduction device, characterized in that.
分子量Mαのガス種αを使い、温度Tで、校正された前記微小孔フィルターの分子流コンダクタンスをCα、ガスリザーバの圧力をP、導入したい純ガスβの分子量をMβ、導入する時の温度をTとした時、導入される純ガスβの流量Qβを、P・Cα・(Mα/Mβ1/2・(T/T)1/2で、表すことを特徴とする請求項1記載の基準微小ガス流量導入装置。 Using a gas species α having a molecular weight M α and introducing a molecular flow conductance of the calibrated microporous filter C α , a gas reservoir pressure P R , and a molecular weight of the pure gas β to be introduced M β at a temperature T 0. when the temperature at the time is T, the flow rate Q beta pure gas beta introduced, at P R · C α · (M α / M β) 1/2 · (T 0 / T) 1/2, expressed The reference minute gas flow rate introduction device according to claim 1. 分子量Mαのガス種αを使い、温度Tで、校正された前記微小孔フィルターの分子流コンダクタンスをCα、ガスリザーバの圧力をP、導入したい混合ガスの中のガス種βの濃度をmβ、分子量をMβ、導入する時の温度をTとした時、導入される混合ガスの中のガス種βの流量Qβを、P・mβ・Cα・(Mα/Mβ1/2・(T/T)1/2で、表すことを特徴とする請求項1記載の基準微小ガス流量導入装置。 Use gas species alpha molecular weight M alpha, at a temperature T 0, the calibrated molecular flow conductance of the microporous filter was C alpha, the pressure of the gas reservoir P R, the concentration of gaseous species β in the mixed gas to be introduced m beta, a molecular weight M beta, when the temperature at the introduction is T, the flow rate Q beta gas species beta in the mixed gas introduced, P R · m β · C α · (M α / M The reference minute gas flow rate introduction device according to claim 1, wherein β ) 1/2 · (T 0 / T) 1/2 .
JP2011012907A 2011-01-25 2011-01-25 Standard micro gas flow rate introduction method Active JP5761706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012907A JP5761706B2 (en) 2011-01-25 2011-01-25 Standard micro gas flow rate introduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012907A JP5761706B2 (en) 2011-01-25 2011-01-25 Standard micro gas flow rate introduction method

Publications (2)

Publication Number Publication Date
JP2012154720A true JP2012154720A (en) 2012-08-16
JP5761706B2 JP5761706B2 (en) 2015-08-12

Family

ID=46836608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012907A Active JP5761706B2 (en) 2011-01-25 2011-01-25 Standard micro gas flow rate introduction method

Country Status (1)

Country Link
JP (1) JP5761706B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944366A (en) * 2012-11-07 2013-02-27 北京伏尔特技术有限公司 Ventilation window filter leak tightness test method
CN103645020A (en) * 2013-12-19 2014-03-19 北京伏尔特技术有限公司 Filter sealing performance detection device
WO2014080798A1 (en) * 2012-11-21 2014-05-30 独立行政法人産業技術総合研究所 Reference leak generating device and ultra-fine leak testing device using same
JP5703365B1 (en) * 2013-12-25 2015-04-15 株式会社ピュアロンジャパン Manufacturing method of micropore filter
JP2016161315A (en) * 2015-02-27 2016-09-05 株式会社Ti Flow rate calibration device
WO2017061626A1 (en) * 2015-10-08 2017-04-13 Vista株式会社 Leak inspection device and leak inspection method
CN111896677A (en) * 2020-06-15 2020-11-06 中国科学院微电子研究所 Trace gas analysis device and method
CN117419996A (en) * 2023-10-18 2024-01-19 北京东方计量测试研究所 Device and method for preparing standard mixed gas by adopting flowmeter under vacuum condition
CN117490783A (en) * 2023-10-18 2024-02-02 北京东方计量测试研究所 The lower limit is 5×10 -18 Pa·m 3 Flow meter of/s and method of use thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300611A (en) * 2015-11-04 2016-02-03 成都国光电气股份有限公司 Multi-point support easily distinguishable welding line detection device for various kinds of electronic tubes
CN105258857A (en) * 2015-11-04 2016-01-20 成都国光电气股份有限公司 Multipoint-supporting easy-distinguishing weld joint detection device of multiple types of electronic pipes
CN105258861A (en) * 2015-11-04 2016-01-20 成都国光电气股份有限公司 Multipoint-supporting cleaning-free weld joint detection device of multiple kinds of electronic pipes
CN105258856A (en) * 2015-11-04 2016-01-20 成都国光电气股份有限公司 Multi-type multipoint-supporting weld joint quick detection device of electronic pipe
CN105300613A (en) * 2015-11-04 2016-02-03 成都国光电气股份有限公司 Multi-point support welding line detection device for multiple kinds of electronic members
CN105258855A (en) * 2015-11-04 2016-01-20 成都国光电气股份有限公司 Multipoint-supporting cleaning-free weld joint detection method of multiple kinds of electronic pipes
CN105300633A (en) * 2015-11-04 2016-02-03 成都国光电气股份有限公司 Multi-point support detection method for bending kind electronic tubes
CN105300612A (en) * 2015-11-04 2016-02-03 成都国光电气股份有限公司 Multi-point support welding line fast detection process for various kinds of electronic tubes
CN105300634A (en) * 2015-11-04 2016-02-03 成都国光电气股份有限公司 Multi-point support cleaning free welding line detection device for bending type electronic tubes
CN107036769B (en) * 2017-04-18 2019-01-08 中国工程物理研究院材料研究所 It is a kind of for calibrating the system and method for different probe gas vacuum leak leak rates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217549A (en) * 1992-02-06 1993-08-27 Fujitsu Ltd Calibration of quadrupole mass spectrometer
JP2006189425A (en) * 2005-01-06 2006-07-20 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Standard calibrated leak

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217549A (en) * 1992-02-06 1993-08-27 Fujitsu Ltd Calibration of quadrupole mass spectrometer
JP2006189425A (en) * 2005-01-06 2006-07-20 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Standard calibrated leak

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014015189; 田村芳一: 'キャピラリー標準リークの考察' 平成22年度春季講演大会講演概要集 , 20100525, P.17-20 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944366A (en) * 2012-11-07 2013-02-27 北京伏尔特技术有限公司 Ventilation window filter leak tightness test method
JPWO2014080798A1 (en) * 2012-11-21 2017-01-05 国立研究開発法人産業技術総合研究所 Reference leak generator and ultra-fine leak test apparatus using the same
WO2014080798A1 (en) * 2012-11-21 2014-05-30 独立行政法人産業技術総合研究所 Reference leak generating device and ultra-fine leak testing device using same
CN103645020A (en) * 2013-12-19 2014-03-19 北京伏尔特技术有限公司 Filter sealing performance detection device
JP5703365B1 (en) * 2013-12-25 2015-04-15 株式会社ピュアロンジャパン Manufacturing method of micropore filter
WO2015098406A1 (en) * 2013-12-25 2015-07-02 株式会社ピュアロンジャパン Process for manufacturing micropore filter
US10137501B2 (en) 2013-12-25 2018-11-27 Pureron Japan Co., Ltd. Method for manufacturing micropore filter
JP2016161315A (en) * 2015-02-27 2016-09-05 株式会社Ti Flow rate calibration device
WO2017061626A1 (en) * 2015-10-08 2017-04-13 Vista株式会社 Leak inspection device and leak inspection method
JP2017072491A (en) * 2015-10-08 2017-04-13 Vista株式会社 Leakage inspection device and leakage inspection method
CN111896677A (en) * 2020-06-15 2020-11-06 中国科学院微电子研究所 Trace gas analysis device and method
CN117419996A (en) * 2023-10-18 2024-01-19 北京东方计量测试研究所 Device and method for preparing standard mixed gas by adopting flowmeter under vacuum condition
CN117490783A (en) * 2023-10-18 2024-02-02 北京东方计量测试研究所 The lower limit is 5×10 -18 Pa·m 3 Flow meter of/s and method of use thereof

Also Published As

Publication number Publication date
JP5761706B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5761706B2 (en) Standard micro gas flow rate introduction method
US20200402783A1 (en) Novel partial-pressure mass spectrometer calibration device and method
JP5419082B2 (en) Calibration method and calibration device for standard mixed gas leak micropore filter
CN110376272B (en) On-line measuring device and method for gas partial pressure
Gorman et al. Hydrogen permeation through metals
JP6281915B2 (en) Gas permeability measuring device
JP2015052614A (en) Method and device for inspecting air-tightness
KR102475663B1 (en) Method and device for measuring permeation by mass spectrometry
US10254189B2 (en) Static expansion method
JP2010190751A (en) Gas permeability measuring device and gas permeability measuring method for film material
RU2017122386A (en) LEAKAGE TEST WITH A CARRIER GAS IN A FILM CAMERA
Al-Ismaily et al. A shortcut method for faster determination of permeability coefficient from time lag experiments
CN112782264B (en) Device and method for detecting and calibrating trace harmful gas in closed space
JPWO2016114003A1 (en) Gas permeability measuring device
JP2014002038A (en) Vapor permeability measuring apparatus and vapor permeability measuring method
CN112945356B (en) Gas flow meter system and method of use
JP6508674B2 (en) Flow calibration device
JP2014149215A (en) Gas permeability evaluation device
RU2680159C9 (en) Method for determining volumes of closed cavities
JP6618672B2 (en) Porous substance characteristic measuring apparatus and porous substance characteristic measuring method
JP5963204B2 (en) Pre-calibrated micro leak filter for gas leak
CN206420834U (en) A kind of gas chromatograph vacuum sampling device
JP7219435B2 (en) Pore size distribution measuring device for nanoporous membrane
Hauer et al. Outgassing rate measurements with the difference method in the framework of EMRP IND12
Petkov et al. UHV system for quasistatic characterization of adsorbers for medium vacuum applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5761706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250