JP2012154176A - Aerodynamic noise reducing device - Google Patents

Aerodynamic noise reducing device Download PDF

Info

Publication number
JP2012154176A
JP2012154176A JP2011011067A JP2011011067A JP2012154176A JP 2012154176 A JP2012154176 A JP 2012154176A JP 2011011067 A JP2011011067 A JP 2011011067A JP 2011011067 A JP2011011067 A JP 2011011067A JP 2012154176 A JP2012154176 A JP 2012154176A
Authority
JP
Japan
Prior art keywords
flow
mixer
noise reduction
aerodynamic noise
reduction device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011011067A
Other languages
Japanese (ja)
Other versions
JP5842211B2 (en
Inventor
Tatsuya Ishii
達哉 石井
Hideji Oinuma
秀司 生沼
Kenichiro Nagai
健一郎 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2011011067A priority Critical patent/JP5842211B2/en
Publication of JP2012154176A publication Critical patent/JP2012154176A/en
Application granted granted Critical
Publication of JP5842211B2 publication Critical patent/JP5842211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aerodynamic noise reducing device suitably reducing high frequency noise to be generated during jet ejection and suitably suppressing a thrust loss of a jet engine.SOLUTION: A plurality of sharp mixer members each having a V-shaped cross section that is orthogonal to a longitudinal center axis, the cross section being continuously reduced along the longitudinal center axis, are disposed along a nozzle outlet end, in such a manner that the sectional V-shape intrudes into a jet flow toward a center of the jet flow, at an intrusion angle δ in a position separated from a confluent position of the jet flow and an ambient air flow to a downstream side by a distance d.

Description

本発明は、航空機および高速車両用の空力騒音低減装置、特に簡易構造の部材を付加することで、推力損失増大と高周波数騒音発生のデメリットを抑制しつつ、ジェットと周囲空気の混合を適度に制御して混合騒音を低減する空力騒音低減装置に関する。   The present invention adds an aerodynamic noise reduction device for aircraft and high-speed vehicles, particularly a simple structure member, and suppresses the disadvantages of increased thrust loss and high-frequency noise generation while appropriately mixing the jet and ambient air. The present invention relates to an aerodynamic noise reduction device that controls to reduce mixed noise.

速度差のある流体が合流するところでは、流体せん断によって渦が発生する。初期の渦は小さいが流体の流れとともに下流へ移動しながら渦の規模を大きくしうる。渦は遠方場では音の伝播となって影響するため、流れを伴う機械装置が騒音を発生する。以下に、旅客機用ジェットエンジンの排気騒音を例に説明する。
旅客機用ジェットエンジンでは、コアノズルから排出される高速ジェットは、周囲のファン流れ又は周囲空気との間で大きなせん断を生じる結果、ノズル下流で大規模構造渦を生成して、ジェット騒音源となる。また、航空機下部には降着用の脚を収納するボックスがあるが、このボックスを開けた状態では機体表面に凹凸が生じ、機体表面側とボックス側とでは速度差に基づく渦放出が起こる。渦はボックスの下流端と干渉して音波を発生して上流端の渦放出に帰還するため、遠方場では騒音発生源となる。
こういった空気の運動に起因する騒音に対して、従来、幾つかの対策が取られてきた。例えば、ジェットエンジンについては、通称ローブミキサ(Lobed Mixer)とよばれる装置があげられる(例えば、特許文献1および本願図16を参照。)。この装置は、流れの混合を促進することで大規模構造渦の生成を妨げて、大きなジェット騒音の発生を妨げる。具体的には、ノズル端部を内側に変形させて、外部空気を内側に導入させて高速流の平均速度を低下させることを狙う。混合騒音の全音響パワーを相似則で表現すると、排気流の平均速度の約8乗に比例することが理論的に知られていることから、ローブミキサによる平均速度低下はジェット騒音の低減に直結する。
しかしながら、ローブミキサのような変形量の大きな混合促進装置は、幾つかの副次的な問題を発生させることが知られている。一つは巡航中のエンジンの推力損失である。平均速度の低下は、運動量保存から導かれるように推力損失に繋がる。離陸上昇時の推力損失のみならず、巡航中のエンジンの推力損失は運航コスト増加を招く。
もうひとつの問題は、高周波数騒音の増大である。ローブミキサがその形状によって強制的に混合を促進することは、別の見方をするとせん断を強め、高周波数音源を形成することを意味する。ノズル直後の高周波数音源はノズル側面方向に寄与する。
図17及び図18は、模型試験によるローブミキサの騒音低減効果を例示する。図17及び図18は、ノズル直径を22mmとし、噴出する空気のマッハ数(流体の噴出速度を音速で割ったもの)を0.9とした時の排気軸方向から30°方向と60°方向におけるローブミキサの騒音低減結果をそれぞれ示す。また、比較用として、ノズル断面形状が円形のノズル(コニカル:Conical)の騒音低減効果も併せて示した。図の横軸は周波数を、縦軸は音圧レベル(SPL:Sound Pressure Level、単位はdB)をそれぞれ表す。
図から明らかな通り、排気軸方向から30°方向では、ローブミキサによって広帯域の騒音が低減されているが、高周波数帯域での騒音レベルが増大されている。特に、側面方向に近づく排気軸方向から60°方向では高周波数域での騒音増加が顕著である。
ところで、航空エンジンの推力損失の問題を解消するために、タブと呼ばれるノズル端部での流れの遮蔽量を抑制する技術(例えば特許文献2を参照。)やセレーションと呼ばれる三角状の切り込みを入れる技術(例えば特許文献3を参照。)が提案されている。前者はタブに代表されるように、ノズル端部に流れの遮蔽率(ノズル断面積に対するタブの遮蔽面積の割合)が数%程度の突起を設けている。突起の下流では、突起が無い場合に比べ混合が促進される一方、ローブミキサ程の推力損失を被らない。突起の断面積としては、長方形、三角形などがある。後者は、例えば通称シェブロン(Chevron)と呼ばれる、谷部で切り込みを有しつつ、その山部を主流側にわずかに傾けた端部形状を有しており、山と谷を結ぶ線上で縦渦を励起して、せん断層の発達を制御する。
タブについては、推力性能に影響する遮蔽率の節約のために、二次元的な投影面積が限定される。その結果、混合促進はローブミキサ程見込めない。混合促進効果が不足する一因として、タブによる排除効果がノズル端部に限定される点があげられる。これに対して、シェブロンはその谷部を出発点に少なくとも山部に至るまでの辺に沿って渦励起を起こすことができる。しかし、山部の侵入量に応じて高周波数騒音を発生するデメリットは大きく、推力損失も含めた調整余地が残る。巡航時の推力損失軽減のためにシェブロンの侵入量を調整する機構も検討されているが、駆動装置付加による寸法や重力増加、所要パワー、故障リスクなどの克服課題はある。また、シェブロンの複雑形状ゆえの加工精度の問題もさることながら、切り込みを入れることによるスロート位置、更には推力性能の安定化といった課題もある。
Where fluids with different speeds merge, vortices are generated by fluid shear. Although the initial vortex is small, the scale of the vortex can be increased while moving downstream with the fluid flow. Since vortices affect sound propagation in the far field, mechanical devices with flow generate noise. Hereinafter, the exhaust noise of a jet engine for a passenger aircraft will be described as an example.
In a passenger jet engine, a high-speed jet discharged from a core nozzle generates a large-scale structural vortex downstream of the nozzle as a result of a large shear between the surrounding fan flow or the surrounding air, and becomes a jet noise source. In addition, there is a box for storing landing gears at the lower part of the aircraft. When the box is opened, the surface of the fuselage is uneven, and vortex shedding occurs based on the speed difference between the aircraft surface and the box. Since the vortex interferes with the downstream end of the box and generates a sound wave and returns to the vortex shedding at the upstream end, it becomes a noise generation source in the far field.
Conventionally, several countermeasures have been taken against noise caused by such air movement. For example, for a jet engine, there is a device called a so-called lobe mixer (see, for example, Patent Document 1 and FIG. 16 of the present application). This device prevents the generation of large jet noise by preventing the generation of large-scale structural vortices by promoting flow mixing. Specifically, the nozzle end is deformed inward, and external air is introduced inward to reduce the average speed of the high-speed flow. Since it is theoretically known that the total acoustic power of mixed noise is expressed by a similarity law, it is proportional to the eighth power of the average velocity of the exhaust flow. Therefore, the decrease in the average velocity by the lobe mixer directly leads to the reduction of the jet noise. .
However, it is known that a mixing-enhancement device having a large deformation amount, such as a lobe mixer, causes several secondary problems. One is the thrust loss of the engine while cruising. The decrease in average speed leads to thrust loss as derived from momentum conservation. Not only the thrust loss at the time of takeoff rise, but also the thrust loss of the engine during cruising will increase the operating cost.
Another problem is an increase in high frequency noise. Forcing the lobe mixer to promote mixing by its shape means that, from another point of view, it increases shear and creates a high frequency sound source. The high frequency sound source immediately after the nozzle contributes to the nozzle side surface direction.
17 and 18 illustrate the noise reduction effect of the lobe mixer by the model test. 17 and 18 show that the nozzle diameter is 22 mm and the Mach number of the air to be ejected (the fluid ejection speed divided by the sound speed) is 0.9 and 30 degrees and 60 degrees from the exhaust axis direction. The result of noise reduction of the lobe mixer at is shown. For comparison, the noise reduction effect of a nozzle having a circular nozzle cross section (conical) is also shown. In the figure, the horizontal axis represents frequency, and the vertical axis represents sound pressure level (SPL: Sound Pressure Level, unit is dB).
As is apparent from the figure, in the direction 30 ° from the exhaust shaft direction, wideband noise is reduced by the lobe mixer, but the noise level in the high frequency band is increased. In particular, in the direction of 60 ° from the exhaust axis direction approaching the side surface direction, the noise increase in the high frequency range is significant.
By the way, in order to solve the problem of thrust loss of the aircraft engine, a technique for suppressing the amount of flow blocking at the nozzle end called a tab (see, for example, Patent Document 2) and a triangular notch called serration are inserted. A technique (see, for example, Patent Document 3) has been proposed. In the former, as represented by a tab, a protrusion having a flow shielding rate (ratio of the shielding area of the tab to the nozzle cross-sectional area) of about several percent is provided at the nozzle end. Downstream of the protrusions, mixing is promoted compared to the case without protrusions, but the thrust loss is not as high as that of the lobe mixer. Examples of the cross-sectional area of the protrusion include a rectangle and a triangle. The latter, for example, commonly known as Chevron, has a notch in the valley, but has an end shape that is slightly inclined to the mainstream, and a vertical vortex on the line connecting the mountain and the valley. To control the development of the shear layer.
For the tab, the two-dimensional projected area is limited to save the shielding rate that affects the thrust performance. As a result, mixing acceleration cannot be expected as much as a lobe mixer. One reason why the mixing promotion effect is insufficient is that the removal effect by the tab is limited to the nozzle end. On the other hand, the chevron can cause vortex excitation along the side from the valley to the peak. However, the demerit of generating high-frequency noise according to the amount of intrusion in the mountain is great, and there remains room for adjustment including thrust loss. A mechanism to adjust the amount of chevron penetration to reduce thrust loss during cruising is also being studied, but there are challenges to overcome such as additional dimensions, increased gravity, required power, and failure risk. In addition to the problem of machining accuracy due to the complex shape of the chevron, there are also problems such as the throat position by cutting and the stabilization of thrust performance.

特開2002−317698号公報JP 2002-317698 A 特開2000−145475号公報JP 2000-145475 A 特開2003−90300号公報JP 2003-90300 A

上述した通り、ローブミキサは、高速ジェット流と周囲空気流との混合促進効果の点では優れているが、エンジンの推力損失をもたらすと同時に高周波数騒音を増大させるという問題点を有している。
また、タブについては、ローブミキサ程の推力損失をもたらすことはないが、高速ジェット流と周囲空気流との混合促進効果が不足し、高周波数域を含む高速ジェットの騒音低減効果が比較的小さいという問題点を有している。
そこで、本発明は、かかる従来技術の問題点に鑑みなされたものであって、その目的は、ジェット騒音については、簡易構造の部材を付加することで、推力損失増大と高周波数騒音発生のデメリットを抑制しつつ、ジェットと周囲空気の混合を適度に制御して混合騒音を低減する空力騒音低減装置を提供することである。
また、脚騒音を始めとする空力騒音については、簡易構造の部材を付加することで、境界層の剥離制御や異種流体の混合を促進する空力騒音低減装置を提供することにある。
As described above, the lobe mixer is excellent in terms of the effect of promoting the mixing of the high-speed jet flow and the ambient air flow, but has the problem of causing high-frequency noise while causing thrust loss of the engine.
The tab does not cause thrust loss as much as the lobe mixer, but the effect of promoting the mixing of the high speed jet flow and the ambient air flow is insufficient, and the noise reduction effect of the high speed jet including the high frequency range is relatively small. Has a problem.
Therefore, the present invention has been made in view of the problems of the prior art. The purpose of the jet noise is to add thrust loss and high frequency noise by adding a simple structure member. It is to provide an aerodynamic noise reduction device that reduces mixing noise by appropriately controlling mixing of a jet and ambient air while suppressing noise.
Another object of the present invention is to provide an aerodynamic noise reduction apparatus that promotes boundary layer separation control and mixing of different fluids by adding a simple structure member to aerodynamic noise such as leg noise.

前記目的を達成するために請求項1に記載の空力騒音低減装置では、主流に対し流れ特性の異なる副流を混合させ該主流と該副流のせん断に起因する空力騒音を低減させる空力騒音低減装置であって、
前記空力騒音低減装置は、長手中心軸に直交する断面形状が突形状であり且つ該断面形状が長手中心軸に沿って連続的に減少する先鋭ミキサ部材を複数備え、前記主流と前記副流の合流位置を含む下流の位置において前記突形状が該主流の中心側に向かう形態で該主流に斜めから侵入し、該主流の表層を部分的に分断することを特徴とする。
上述した通り、ローブミキサ、タブ等はジェット流と周囲空気流との混合を強制的に促進することによって大規模構造渦の生成を妨げる機構であるが、その一方でエンジンの推力低下、高周波数騒音の増大という副次的が問題を引き起こすことになる。
詳細については後述するが、本願発明者は、ローブミキサを備えたノズルとそれを備えない円形ノズルにおいて各ノズルがジェット流を噴出する時のノズル後方の排気圧力場(全圧)を鋭意詳細に解析した結果、ローブミキサを備えたノズルでは、主流(ジェット流)表層における流れが、主流から完全に分断された幾つかの(ローブ数に対応した)小流れに分割され、そして、主流の流れ場の規模が縮小することにより、主流の排気圧(全圧)が低下し、これによりエンジンの推力損失を引き起こし、更に主流から小流れが分割することが高周波数騒音の発生源となることを見出した。
この解析結果から、本願発明者は、主流と周囲空気流との混合を促進するミキサ部材を、主流表層を部分的に分断する(主流表層に切り込みを形成する)形状とすることにより、主流から小流れが分割しなくなり、これによりエンジンの推力損失を抑制するのと同時に高周波数騒音の発生を抑制することが可能となるのではと考え、本発明を考案するに至った。なお、本願発明者は、後述する通り、ミキサ部材の上記形状がエンジンの推力損失の抑制ならびに高周波数騒音発生の抑制に有効であることを模型を使用した実証試験によって確認した。また、ここで言う副流とは、主流に隣接する流れ特性の異なる流れ場のことを意味し、例えば主流がジェット流、ファン流の場合は、副流とはそれぞれファン流、周囲空気のことを意味する。
In order to achieve the above object, the aerodynamic noise reduction device according to claim 1, wherein a secondary flow having different flow characteristics is mixed with a main flow to reduce aerodynamic noise caused by shearing of the main flow and the sub flow. A device,
The aerodynamic noise reduction device includes a plurality of sharp mixer members whose cross-sectional shape perpendicular to the longitudinal central axis is a projecting shape and whose cross-sectional shape continuously decreases along the longitudinal central axis. In the downstream position including the merging position, the protruding shape enters the main flow obliquely in a form toward the center side of the main flow, and the surface layer of the main flow is partially divided.
As described above, lobe mixers, tubs, etc. are mechanisms that prevent the generation of large-scale structural vortices by forcibly promoting the mixing of the jet flow and the ambient air flow. The side effect of the increase is the problem.
Although the details will be described later, the inventor of the present application has made a detailed analysis of the exhaust pressure field (total pressure) behind the nozzle when each nozzle ejects a jet flow in a nozzle with a lobe mixer and a circular nozzle without it. As a result, in a nozzle equipped with a lobe mixer, the flow in the main flow (jet flow) surface layer is divided into several small flows (corresponding to the number of lobes) completely separated from the main flow, and the flow field of the main flow is By reducing the scale, we found that the mainstream exhaust pressure (total pressure) decreased, which caused engine thrust loss, and that a small flow split from the mainstream was the source of high-frequency noise. .
From this analysis result, the inventor of the present application has made the mixer member that promotes the mixing of the main flow and the ambient air flow into a shape that partially cuts the main flow surface layer (forms a cut in the main flow surface layer), thereby removing the main flow from the main flow. The small flow is no longer divided, thereby suppressing the thrust loss of the engine and at the same time suppressing the generation of high-frequency noise, leading to the invention. In addition, the inventor of the present application confirmed that the above-described shape of the mixer member is effective for suppressing the thrust loss of the engine and the generation of high-frequency noise, as will be described later, through a demonstration test using a model. In addition, the side flow here means a flow field adjacent to the main flow and having different flow characteristics. For example, when the main flow is a jet flow or a fan flow, the side flow is a fan flow or ambient air, respectively. Means.

請求項2に記載の空力騒音低減装置では、前記先鋭ミキサ部材は、前記主流の表層を部分的に分断する面上に、該部材断面の代表寸法の1/10以下の代表寸法を有する一又は複数の溝、窪みまたは突起を備えることとした。
上記空力騒音低減装置では、先鋭ミキサ部材の主流に接する面上(主流中心に向かう面上)に上記溝等を設けることにより、主流と周囲空気流とのせん断層において上記溝等を含む突起形状が主流表層を好適に分断し、これにより主流と周囲空気流との混合を促進するように作用する。
The aerodynamic noise reduction device according to claim 2, wherein the sharp mixer member has a representative dimension that is 1/10 or less of a representative dimension of a cross section of the member on a surface that partially divides the mainstream surface layer. A plurality of grooves, depressions or protrusions were provided.
In the aerodynamic noise reduction device, by providing the groove or the like on the surface of the sharp mixer member that contacts the main flow (on the surface toward the main flow center), a protrusion shape including the groove or the like in the shear layer of the main flow and the surrounding air flow Preferably divides the mainstream surface layer, thereby promoting the mixing of the mainstream with the ambient airflow.

請求項3に記載の空力騒音低減装置では、前記先鋭ミキサ部材は、該部材の長手中心軸と前記主流の中心方向との成す角度が該主流の下流に沿って減少または増加する形状であることとした。
上記空力騒音低減装置では、先鋭ミキサ部材の長手中心軸を上記構成とすることにより、主流に侵入した先鋭ミキサ部材が主流に対し抵抗とならずに主流と周囲空気流との混合を促進するように作用する。
The aerodynamic noise reduction device according to claim 3, wherein the sharp mixer member has a shape in which an angle formed between a longitudinal central axis of the member and a central direction of the main flow decreases or increases along the downstream of the main flow. It was.
In the above-described aerodynamic noise reduction apparatus, by setting the longitudinal central axis of the sharp mixer member to the above-described configuration, the sharp mixer member that has entered the main flow does not become resistant to the main flow, and promotes mixing of the main flow and the ambient air flow. Act on.

請求項4に記載の空力騒音低減装置では、前記先鋭ミキサ部材は、前記主流と前記副流の合流位置において複数配設され、その配設位置ならびに前記主流に対する侵入角度および/または侵入量の何れかは可変であることとした。
上記空力騒音低減装置では、上記ミキサ部材の個数、配設位置、主流に対する侵入角度または侵入量を可変とすることにより、様々な流れ特性の主流に対しても、主流と周囲空気流とのせん断層において部材突起形状が主流表層を好適に分断し、これにより主流と周囲空気流との混合を促進し、これにより、エンジンの場合は、推力損失を好適に低減し、なお且つ高周波数騒音の発生を好適に抑制することができるようになる。また、このことは上記ミキサ部材の主流に対する侵入形態(部材の個数、配設位置、主流に対する侵入角度または侵入量)を制御量(操作量または調整量)として、エンジンの推力損失および騒音の音響特性を能動的に制御可能であることを示唆している。
5. The aerodynamic noise reduction device according to claim 4, wherein a plurality of the sharp mixer members are disposed at a merging position of the main flow and the substream, and any one of the disposed position and an intrusion angle and / or an intrusion amount with respect to the main flow. This is variable.
In the aerodynamic noise reduction device, the main flow and the ambient air flow are not affected by the main flow with various flow characteristics by making the number of mixer members, the position of the mixer, the penetration angle or the penetration amount relative to the main flow variable. In the fault, the shape of the member projections suitably divides the mainstream surface layer, thereby promoting the mixing of the mainstream and the surrounding airflow, which, in the case of an engine, favorably reduces thrust loss, and also reduces high-frequency noise. Generation | occurrence | production can be suppressed suitably. In addition, this means that the mixing form of the mixer member with respect to the main flow (number of members, arrangement position, intrusion angle or intrusion amount with respect to the main flow) is a control amount (operation amount or adjustment amount), and engine thrust loss and noise acoustics This suggests that the characteristics can be actively controlled.

請求項5に記載の空力騒音低減装置では、前記先鋭ミキサ部材は、内部に閉流路または前記主流の中心とは反対側の面に開流路が設けられ、該流路の上流は空気供給手段または前記副流に連通し、下流は前記主流に連通することとした。
上記空力騒音低減装置では、上記ミキサ部材の内部または主流の中心とは反対側の面に閉流路または開流路をそれぞれ設けることにより、主流と周囲空気流とのせん断層において主流と周囲空気流との混合状態(混合度合い)を変えることができるようになる。
6. The aerodynamic noise reduction device according to claim 5, wherein the sharp mixer member is provided with a closed flow path or an open flow path on a surface opposite to the center of the main flow, and an air supply is provided upstream of the flow path. It communicated with the means or the substream, and the downstream communicated with the mainstream.
In the aerodynamic noise reduction device, the main flow and the ambient air are formed in the shear layer of the main flow and the ambient air flow by providing a closed flow path or an open flow path in the mixer member or on the surface opposite to the center of the main flow. The mixing state (mixing degree) with the flow can be changed.

請求項6に記載の空力騒音低減装置では、前記先鋭ミキサ部材は、前記部材の先端以外に前記流路と前記主流を連通する連通孔を備えることとした。
上記空力騒音低減装置では、上記ミキサ部材の先端以外に流路と主流を連通する連通孔を設けることにより、主流と周囲空気流とのせん断層において主流と周囲空気流との混合度合いをより広い範囲にわたり好適に変えることができるようになる。
In the aerodynamic noise reduction device according to claim 6, the sharp mixer member includes a communication hole for communicating the flow path and the main flow in addition to the tip of the member.
In the aerodynamic noise reduction device, by providing a communication hole that communicates the flow path and the main flow in addition to the tip of the mixer member, the degree of mixing of the main flow and the surrounding air flow is wider in the shear layer of the main flow and the surrounding air flow. It becomes possible to suitably change over the range.

請求項7に記載の空力騒音低減装置では、前記流路に前記主流および前記副流とは物性の異なる二次流体を流すこととした。
上記空力騒音低減装置では、上記ミキサ部材の内部流路に物性の異なる二次流体(例えば、水、水蒸気等)を流すことにより、主流と周囲空気流とのせん断層に二次流体が混合されることにより、主流と周囲空気流との混合度合いをより広い範囲にわたり好適に変えることができるようになる。
In the aerodynamic noise reduction device according to claim 7, a secondary fluid having physical properties different from those of the main flow and the secondary flow is caused to flow through the flow path.
In the aerodynamic noise reduction device, the secondary fluid is mixed into the shear layer of the main flow and the ambient air flow by flowing secondary fluids (for example, water, water vapor, etc.) having different physical properties through the internal flow path of the mixer member. As a result, the mixing degree of the main flow and the ambient air flow can be suitably changed over a wider range.

請求項8に記載の空力騒音低減装置では、前記二次流体の圧力または流量を変える圧力または流量調整機構を備えることとした。
上記空力騒音低減装置では、二次流体の圧力または流量を例えば定常的または周期的に変える圧力または流量調整機構(例えば、調圧弁または流量調整弁、上記弁のコントローラ並びに圧力または流量センサから成る圧力または流量調整機構)等を備えることにより、主流と周囲空気流との混合度合いを好適に変えることができるようになる。また、このことは二次流体の流量を制御量(操作量または調整量)として主流と周囲空気流との混合度合いを能動的に制御可能であることを示唆し、ひいては、二次流体の流量を制御量(操作量または調整量)としてエンジンの推力損失の抑制ならびに騒音の音響特性を能動的に制御可能であることを示唆している。
In the aerodynamic noise reduction device according to the eighth aspect, a pressure or flow rate adjusting mechanism for changing the pressure or flow rate of the secondary fluid is provided.
In the aerodynamic noise reduction device, a pressure or flow rate adjusting mechanism that changes the pressure or flow rate of the secondary fluid, for example, regularly or periodically (for example, a pressure comprising a pressure regulating valve or a flow rate regulating valve, a controller of the valve, and a pressure or flow rate sensor) In addition, the degree of mixing of the main flow and the ambient air flow can be suitably changed by providing the flow rate adjusting mechanism or the like. This also suggests that the degree of mixing of the main flow and the ambient air flow can be actively controlled by using the flow rate of the secondary fluid as a control amount (operation amount or adjustment amount). Is a control amount (operation amount or adjustment amount), suggesting that the thrust loss of the engine can be suppressed and the acoustic characteristics of noise can be actively controlled.

請求項9に記載の空力騒音低減装置では、前記先鋭ミキサ部材を収納する収納機構を備えることとした。
上記空力騒音低減装置では、上記ミキサ部材を収納する収納機構を設けることにより、例えば巡航時において上記ミキサ部材が空気抵抗とならなくなる。
The aerodynamic noise reduction device according to claim 9 is provided with a storage mechanism that stores the sharp mixer member.
In the aerodynamic noise reduction device, by providing a storage mechanism for storing the mixer member, the mixer member does not become an air resistance during cruise, for example.

請求項10に記載の空力騒音低減装置では、前記先鋭ミキサ部材は、航空エンジンのコアノズル、ファンダクト又はパイロンの何れかに対して適用されることとした。
上記空力騒音低減装置では、航空エンジンの上記部位に対し、上記ミキサ部材を上記形態で設けることにより、例えば(主流としての)ジェット流と(副流としての)ファン流とのせん断層において部材突起形状がジェット流の表層を好適に分断し、ジェット流とファン流との混合を促進し、エンジンの推力損失を好適に抑制しながらジェット流とファン流とのせん断に起因する高周波数騒音の発生を好適に抑制することが可能となる。
In the aerodynamic noise reduction device according to claim 10, the sharp mixer member is applied to any one of a core nozzle, a fan duct, and a pylon of an aero engine.
In the aerodynamic noise reduction device, by providing the mixer member in the above-described form with respect to the portion of the aircraft engine, for example, in the shear layer of the jet flow (as the main flow) and the fan flow (as the sub flow) Generation of high-frequency noise due to shear between jet and fan flow, while the shape suitably divides the surface layer of jet flow, promotes mixing of jet flow and fan flow, and favorably suppresses engine thrust loss Can be suitably suppressed.

請求項11に記載の空力騒音低減装置では、前記先鋭ミキサ部材は、航空機の翼前縁、翼後縁もしくは翼面上または胴体の脚収納部もしくは脚柱、或いは車両の車体表面における凹凸面の何れかに対して適用されることとした。
上記空力騒音低減装置では、航空機の翼および胴体または車両の上記各部位に対し、上記先鋭ミキサ部材を上記形態で設けることにより、例えば(主流としての)翼表面流と(副流としての)翼前縁とスラットとの間の隙間流とのせん断層において、翼表面流の表層を好適に分断し、翼表面流と隙間流との混合を促進し、翼表面流と隙間流とのせん断に起因する高周波数騒音の発生を好適に抑制することが可能となる。
The aerodynamic noise reduction device according to claim 11, wherein the sharp mixer member is formed on a wing leading edge, a wing trailing edge or a wing surface of an aircraft, a leg storage portion or a pedestal of a fuselage, or an uneven surface on a vehicle body surface of a vehicle. It was decided to apply to either.
In the aerodynamic noise reduction device, for example, a blade surface flow (as a mainstream) and a blade (as a substream) are provided by providing the sharp mixer member in the above-described form for each part of an aircraft wing and fuselage or vehicle. In the shear layer of the crevice flow between the leading edge and the slat, the surface layer of the wing surface flow is suitably divided to promote mixing of the wing surface flow and the crevice flow, and to shear the blade surface flow and the crevice flow. It is possible to suitably suppress the occurrence of the high frequency noise caused.

本発明の空力騒音低減装置によれば、ローブミキサ等の従来技術に見られるような、ミキサ部材が主流から複数の小さな流れ場を分割し、複数の小さな流れ場とその周囲副流との混合を促進し、これにより主流と副流とのせん断に係る騒音レベルを低減するのではなく、ミキサ部材が主流と周囲副流とのせん断層において 主流表層をV形状に分断する(主流表層に切り込みを形成する)ことにより、その分断部位を基に主流と周囲副流との混合を促進し、主流と副流とのせん断に係る騒音レベルを低減することに特徴がある。すなわち、従来技術では、ミキサ部材が主流から複数の小さな流れ場を分割させるため主流の流れ場の規模が縮小し、主流がジェット流の場合、エンジンの推力損失を引き起こすと共に、流れ場の分割に起因して高周波数騒音を増大させることになる。それに対し、本発明では、ミキサ部材が主流表層をV形状に分断するだけであり、主流の流れ場の規模はほとんど縮小しなくなり、その結果、エンジンの推力損失は従来技術に比べると格段に小さくなると共に、高周波数騒音についても従来技術に比べると格段に抑制することができる。
また、本発明に係るミキサ部材は、長手中心軸に直交する断面形状が突形状であり且つ断面形状が長手中心軸に沿って連続的に減少する簡素な機構である。従って、航空機および高速車両の様々な主流と副流とのせん断層において、上記ミキサ部材を副流側から主流に対し斜めから所定の形態で侵入させることによって、主流と副流との混合を促進し、主流と副流とのせん断に起因する騒音を好適に抑制することが可能となる。
更に、本発明に係るミキサ部材は、上流において流体供給源に連通し且つ下流において主流に連通する内部流路を備える場合、その流路を流れる流体の流量を変えることにより主流と副流との混合度合いを制御することが可能となる。これにより、本発明の空力騒音低減装置は、主流と副流とのせん断層における音響特性(周波数特性、指向性)を所望の特性に変えることができるようになる。
また、ジェット騒音低減について従来技術に比べ以下の効果を期待することができる。
(1)タブ等のノズル端部で数%の流れを遮蔽する構造に比べて、流体の混合促進効果および騒音低減効果が大きい。
(2)シェブロン等のノズルに切り込みを設ける構造に比べて、エンジンの推力損失が小さく、エンジンの重量増加が小さい。
According to the aerodynamic noise reduction device of the present invention, the mixer member divides a plurality of small flow fields from the main flow as in the prior art such as a lobe mixer, and mixes the plurality of small flow fields with the surrounding side flow. Rather than reducing the noise level associated with the shear between the main flow and the side flow, the mixer member divides the main flow surface into a V shape in the shear layer between the main flow and the surrounding side flow (cutting into the main flow surface layer). The feature is that the mixing of the main flow and the surrounding substream is promoted based on the divided part, and the noise level related to the shearing of the main flow and the subflow is reduced. That is, in the prior art, the size of the main flow field is reduced because the mixer member divides a plurality of small flow fields from the main flow, and when the main flow is a jet flow, the thrust loss of the engine is caused and the flow field is divided. As a result, high frequency noise is increased. On the other hand, in the present invention, the mixer member only divides the mainstream surface layer into a V shape, and the scale of the mainstream flow field is hardly reduced. As a result, the thrust loss of the engine is much smaller than that of the prior art. At the same time, high-frequency noise can be significantly suppressed as compared with the prior art.
Further, the mixer member according to the present invention is a simple mechanism in which the cross-sectional shape perpendicular to the longitudinal central axis is a projecting shape and the cross-sectional shape continuously decreases along the longitudinal central axis. Therefore, in the shear layers of various mainstreams and sidestreams of aircraft and high-speed vehicles, the mixing of the mainstream and sidestreams is promoted by allowing the mixer member to enter the mainstream from the sidestream side obliquely in a predetermined form. And it becomes possible to suppress suitably the noise resulting from the shear of a mainstream and a substream.
Furthermore, when the mixer member according to the present invention includes an internal flow path that communicates with the fluid supply source at the upstream and communicates with the main flow at the downstream, by changing the flow rate of the fluid flowing through the flow path, It becomes possible to control the degree of mixing. As a result, the aerodynamic noise reduction device of the present invention can change the acoustic characteristics (frequency characteristics, directivity) in the shear layer of the main flow and the subflow to desired characteristics.
In addition, the following effects can be expected for jet noise reduction as compared to the prior art.
(1) Compared to a structure in which a flow of several percent is shielded at the nozzle end such as a tab, the fluid mixing promoting effect and the noise reducing effect are large.
(2) Compared to a structure in which a nozzle such as a chevron is provided with a cut, the thrust loss of the engine is small and the increase in the weight of the engine is small.

本発明の流体混合促進装置を示す説明図である。It is explanatory drawing which shows the fluid mixing promotion apparatus of this invention. 図1のA−A断面図およびB−B断面図である。It is AA sectional drawing and BB sectional drawing of FIG. 本発明に係る流体混合部材の断面形状の変形例を示す説明図である。It is explanatory drawing which shows the modification of the cross-sectional shape of the fluid mixing member which concerns on this invention. 本発明に係る流体混合部材の断面形状の変形例を示す説明図である。It is explanatory drawing which shows the modification of the cross-sectional shape of the fluid mixing member which concerns on this invention. 本発明に係る流体混合部材の断面形状の変形例を示す説明図である。It is explanatory drawing which shows the modification of the cross-sectional shape of the fluid mixing member which concerns on this invention. 本発明の騒音低減効果を確認する実証試験用に試作された実証試験用ノズルを示す説明図である。It is explanatory drawing which shows the nozzle for a demonstration test produced for the demonstration test which confirms the noise reduction effect of this invention. 実証試験に用いた試験設備を示す説明図である。It is explanatory drawing which shows the test equipment used for the verification test. ジェット流中心から30°方向における本発明の騒音低減効果(騒音周波数特性)を示す各説明図である。It is each explanatory drawing which shows the noise reduction effect (noise frequency characteristic) of this invention in a 30 degree direction from a jet flow center. ジェット流中心から60°方向における本発明の騒音低減効果(騒音周波数特性)を示す各説明図である。It is each explanatory drawing which shows the noise reduction effect (noise frequency characteristic) of this invention in a 60 degree direction from the jet flow center. ジェット流中心から20°〜90°方向における本発明の騒音低減効果(騒音の指向特性)を示す説明図である。It is explanatory drawing which shows the noise reduction effect (directivity characteristic of a noise) of this invention in a 20 degree-90 degree direction from a jet flow center. 各ノズルから噴出されるジェット流の排気圧力場の計測結果を示す説明図である。It is explanatory drawing which shows the measurement result of the exhaust pressure field of the jet flow ejected from each nozzle. 本発明に係るネイルミキサを航空機のファンノズル及びパイロンに適用した実施例を示す説明図である。It is explanatory drawing which shows the Example which applied the nail mixer which concerns on this invention to the fan nozzle and pylon of an aircraft. 本発明に係るネイルミキサを航空機用脚に適用した実施例を示す説明図である。It is explanatory drawing which shows the Example which applied the nail mixer which concerns on this invention to the leg for aircrafts. 本発明に係るネイルミキサを航空機胴体の脚格納部に適用した実施例を示す説明図である。It is explanatory drawing which shows the Example which applied the nail mixer which concerns on this invention to the leg storage part of the aircraft fuselage. 本発明に係るネイルミキサを航空機の翼前縁および翼後縁に適用した実施例を示す説明図である。It is explanatory drawing which shows the Example which applied the nail mixer which concerns on this invention to the wing leading edge and wing trailing edge of an aircraft. 従来技術のローブミキサを示す説明図である。It is explanatory drawing which shows the lobe mixer of a prior art. ジェット流中心から30°方向における従来技術の騒音低減効果(騒音周波数特性)を示す各説明図である。It is each explanatory drawing which shows the noise reduction effect (noise frequency characteristic) of the prior art in a 30 degree direction from the jet flow center. ジェット流中心から60°方向における従来技術の騒音低減効果(騒音周波数特性)を示す各説明図である。It is each explanatory drawing which shows the noise reduction effect (noise frequency characteristic) of the prior art in a 60 degree direction from a jet flow center. ジェット流中心から20°〜90°方向における従来技術の騒音低減効果(騒音の指向特性)を示す説明図である。It is explanatory drawing which shows the noise reduction effect (directivity characteristic of a noise) of the prior art in a 20 degree-90 degree direction from a jet flow center.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1−2は、本発明の流体混合促進装置100を示す説明図である。なお、図2(a)は図1のA−A断面図であり、図2(b)は図1のB−B断面図である。
この流体混合促進装置100は、速度、温度、圧力、方向等の流れ場特性が互いに異なる主流(ジェット流)と副流(周囲空気流)との混合を促進することにより、高速高温のジェット流と低速低温の周囲空気流とのせん断に起因する空力騒音を低減する空力騒音低減装置である。その構成は、本発明に係る流体混合部材10(先鋭ミキサ部材)が、高速高温のジェット流を噴出するコアノズル開口部に沿って所定の侵入形態で複数個設けられている。
1-2 is explanatory drawing which shows the fluid mixing promotion apparatus 100 of this invention. 2A is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line BB in FIG.
This fluid mixing promoting device 100 promotes mixing of a main flow (jet flow) and a substream (ambient air flow) having different flow field characteristics such as speed, temperature, pressure, direction, etc., so that a high-speed and high-temperature jet flow is achieved. Is an aerodynamic noise reduction device that reduces aerodynamic noise caused by shearing between a low-speed and low-temperature ambient air stream. In the configuration, a plurality of fluid mixing members 10 (sharp mixer members) according to the present invention are provided in a predetermined intrusion form along a core nozzle opening that ejects a high-speed and high-temperature jet flow.

流体混合部材10は、ジェット流と周囲空気流との合流地点から下流へ一定距離d隔てた地点においてジェット流に対し侵入角度δおよび侵入量Lで斜めから侵入する。なお、流体混合部材10は、公知の伸縮機構、回転機構、リンク機構ならびに油圧機構等(図示せず)によって、その配設位置、侵入位置(距離d)、侵入角度δおよび/または侵入量Lが、主流と副流の各流れ特性に応じて、好適に変えることができるように構成されている。   The fluid mixing member 10 enters obliquely at an entry angle δ and an entry amount L with respect to the jet stream at a point separated by a fixed distance d from the junction point of the jet stream and the ambient air stream downstream. In addition, the fluid mixing member 10 is disposed by a known expansion / contraction mechanism, rotation mechanism, link mechanism, hydraulic mechanism, and the like (not shown), an intrusion position (distance d), an intrusion angle δ, and / or an intrusion amount L. However, according to each flow characteristic of the main flow and the substream, it is comprised so that it can change suitably.

流体混合部材10は、高速高温のジェット流と低速低温の周囲空気流を混合する所謂ミキサ部材であるが、従来技術のローブミキサのようなジェット流の流れをコア主流とコア主流から完全に分断された幾つかの小流れに分割するミキサ部材ではなく、ジェット流の表層のみを部分的に分断する(ジェット流の表層に切り込みを形成する)ミキサ部材である。その詳細については図11を参照しながら後述する。従って、流体混合部材10を備えた流体混合促進装置100は、ローブミキサのようなエンジンの推力損失、並びに高周波数騒音の発生を引き起こさないという大きな利点を有している。   The fluid mixing member 10 is a so-called mixer member that mixes a high-speed and high-temperature jet flow and a low-speed and low-temperature ambient air flow. However, the flow of the jet flow like a conventional lobe mixer is completely separated from the core main flow and the core main flow. It is not a mixer member that divides into several small flows, but a mixer member that partially divides only the surface layer of the jet stream (forms a cut in the surface layer of the jet stream). Details thereof will be described later with reference to FIG. Therefore, the fluid mixing promoting device 100 including the fluid mixing member 10 has a great advantage that it does not cause the thrust loss of an engine such as a lobe mixer and the generation of high frequency noise.

図2に示すように、流体混合部材10は、ジェット流の表層のみを部分的に分断するために、部材中心軸に直交した断面形状が以下の特徴を有している。
イ)主流に面する側(ジェット流中心に面する側)の断面形状が、突形状を成し、それが挿入されるジェット流の表層部分を二つ以上に分断する形状となっており、
ロ)断面積が、部材の先端、つまりジェット流の下流に向かって漸減(減少)する。
図2の実施例では、ジェット流中心に面する側および面しない側の断面形状がともにV形状をなしており、ジェット流中心に面しない側の外周面は、周囲空気流が流れる開流路を成している。なお、この開流路はジェット流の侵入地点で終了していてもよい。また、ジェット流に侵入した部分の断面積が部材中心軸またはジェット流の下流に向かって開き角度φを一定に保持した状態で漸減する。流体混合部材10は、図2(b)に示すように、最終的には完全にジェット流に侵入する。
As shown in FIG. 2, the fluid mixing member 10 has the following characteristics in a cross-sectional shape perpendicular to the member central axis in order to partially divide only the surface layer of the jet flow.
B) The cross-sectional shape on the side facing the main flow (side facing the jet flow center) forms a protruding shape, and the surface layer portion of the jet flow into which it is inserted is divided into two or more,
B) The cross-sectional area gradually decreases (decreases) toward the tip of the member, that is, downstream of the jet flow.
In the embodiment of FIG. 2, the cross-sectional shape of the side facing the jet flow center and the side facing the jet flow center are both V-shaped, and the outer peripheral surface on the side not facing the jet flow center is an open flow path through which the ambient air flow flows. Is made. In addition, this open flow path may be complete | finished at the penetration | invasion point of jet flow. Further, the cross-sectional area of the portion that has entered the jet flow gradually decreases in a state where the opening angle φ is kept constant toward the member central axis or downstream of the jet flow. As shown in FIG. 2B, the fluid mixing member 10 finally completely enters the jet stream.

また、図3に示すように、流体混合部材10の断面形状は、部材中心軸またはジェット流の下流に向かって、断面積と共に開き角度φが減少するような形状とすることも可能である。   Moreover, as shown in FIG. 3, the cross-sectional shape of the fluid mixing member 10 may be such that the opening angle φ decreases with the cross-sectional area toward the member central axis or downstream of the jet flow.

図4は、本発明に係る流体混合部材の断面形状の変形例を示す説明図である。
図4(a)の流体混合部材の断面形状は、開き角度φを一定に保持した状態で部材中心軸(長手中心軸)に沿ってV形状の部材断面の高さhが線形的(リニア)に減少する。なお、ジェット流に対する侵入角度δは一定値をとる。図2の流体混合部材に相当する。
FIG. 4 is an explanatory view showing a modification of the cross-sectional shape of the fluid mixing member according to the present invention.
The cross-sectional shape of the fluid mixing member in FIG. 4A is such that the height h of the V-shaped member cross section is linear along the member central axis (longitudinal central axis) with the opening angle φ kept constant. To decrease. The penetration angle δ with respect to the jet flow takes a constant value. It corresponds to the fluid mixing member of FIG.

図4(b)の流体混合部材の断面形状は、開き角度φが部材中心軸に沿って減少するために、V形状の部材断面の高さhが部材中心軸に沿って非線形的(ノンリニア)に減少する。なお、ジェット流に対する侵入角度δは一定値をとる。図3の流体混合部材に相当する。   In the cross-sectional shape of the fluid mixing member in FIG. 4B, since the opening angle φ decreases along the member central axis, the height h of the V-shaped member cross-section is nonlinear along the member central axis. To decrease. The penetration angle δ with respect to the jet flow takes a constant value. This corresponds to the fluid mixing member in FIG.

図4(c)の流体混合部材の断面形状は、部材中心軸が直線ではなく、部材中心軸とジェット流中心とのなす角がジェット流の下流に沿って減少する、いわゆる湾曲した曲線である。従って、この場合、部材末端におけるジェット流中心に対する侵入角度δ2は、部材のジェット流との最初の侵入地点におけるジェット流中心に対する侵入角度δ1よりも小さくなる。また、開き角度φは、部材中心軸に沿って一定する形態あるいは部材中心軸に沿って減少する形態をとることが可能である。   The cross-sectional shape of the fluid mixing member in FIG. 4C is a so-called curved curve in which the member central axis is not a straight line, and the angle formed by the member central axis and the jet flow center decreases along the downstream of the jet flow. . Accordingly, in this case, the penetration angle δ2 with respect to the jet flow center at the end of the member is smaller than the penetration angle δ1 with respect to the jet flow center at the first penetration point with the jet flow of the member. Further, the opening angle φ can take a form that is constant along the member central axis or a form that decreases along the member central axis.

図4(d)の流体混合部材の断面形状は、図4(c)とは逆に、部材中心軸とジェット流中心とのなす角がジェット流の下流に沿って増加する、部材中心軸が湾曲した曲線である。従って、この場合、部材末端におけるジェット流中心に対する侵入角度δ2は、部材のジェット流との最初の侵入地点におけるジェット流中心に対する侵入角度δ1よりも大きくなる。   The cross-sectional shape of the fluid mixing member in FIG. 4 (d) is opposite to that in FIG. 4 (c), and the member central axis is such that the angle formed by the member central axis and the jet flow center increases along the downstream of the jet flow. It is a curved curve. Accordingly, in this case, the penetration angle δ2 with respect to the jet flow center at the end of the member is larger than the penetration angle δ1 with respect to the jet flow center at the first penetration point with the jet flow of the member.

なお、ジェット流の表層のみを部分的に分断する流体混合部材の断面形状としては、本実施例であるV形状以外に、図5に示す断面形状が考えられる。特に、図5(c)に示す断面形状の流体混合部材は、ジェット流の表層部分を好適に分断するために、ジェット流中心に面する側に溝(窪み、凹部)が形成されている。溝の大きさは、断面形状C1-C2-C3-C4-C5の代表寸法をDとする時に、溝の断面形状C1-C2-C3の代表寸法D’は1/10×D以下となるように設定する。なお、ここでの代表寸法は、各断面積を対応する円で近似した時のその円の直径とする。その他の代表寸法として、断面の高さ或いは幅とすることも可能である。   In addition, as a cross-sectional shape of the fluid mixing member that partially divides only the surface layer of the jet flow, the cross-sectional shape shown in FIG. In particular, the fluid mixing member having a cross-sectional shape shown in FIG. 5 (c) has grooves (depressions and recesses) formed on the side facing the jet flow center in order to suitably divide the surface layer portion of the jet flow. The size of the groove is such that the representative dimension D ′ of the sectional shape C1-C2-C3 of the groove is 1/10 × D or less, where D is the representative dimension of the sectional shape C1-C2-C3-C4-C5. Set to. Here, the representative dimension is the diameter of the circle when each cross-sectional area is approximated by a corresponding circle. Other representative dimensions can be the height or width of the cross section.

また、図5(d)に示す断面形状の流体混合部材は、部材内部に空気または他の流体(二次流体)を流す流路が形成されている。これは、二次流体を流すことによってジェット流と周囲空気流との混合度合いを調整するためである。なお、部材先端以外、例えば側面にジェット流に連通する連通孔を設ける場合は、混合度合いの調整範囲がより広くなる。いずれの断面形状も主流であるジェット流に対し突出した形状(V、Y、U、T)であることが分かる。   Further, in the fluid mixing member having a cross-sectional shape shown in FIG. 5 (d), a flow path through which air or other fluid (secondary fluid) flows is formed inside the member. This is to adjust the mixing degree of the jet flow and the ambient air flow by flowing the secondary fluid. In addition, when a communicating hole communicating with the jet flow is provided on the side surface other than the end of the member, the adjustment range of the mixing degree becomes wider. It can be seen that any cross-sectional shape is a shape (V, Y, U, T) protruding from the mainstream jet flow.

また、本発明に係る流体混合部材10は、コアノズルの外側かつジェット流の上流側で公知の固定装置(図示せず)によって支持される。更に、巡航飛行時などジェット流と周囲空気流との積極的な混合促進が必要とされない場合には、流体混合部材10は公知のリンク機構および油圧機構等(図示せず)によってジェット流から引き抜かれ格納室(図示せず)に収納されるように構成することも可能である。この場合、流体混合部材10は、航空機の空気抵抗とならなくなる。   The fluid mixing member 10 according to the present invention is supported by a known fixing device (not shown) outside the core nozzle and upstream of the jet flow. Further, when it is not necessary to actively mix the jet flow and the ambient air flow during cruise flight, the fluid mixing member 10 is pulled from the jet flow by a known link mechanism and hydraulic mechanism (not shown). It can also be configured to be pulled out and stored in a storage chamber (not shown). In this case, the fluid mixing member 10 does not become the air resistance of the aircraft.

図6は、本発明の騒音低減効果を確認する実証試験用に試作された実証試験用ノズルを示す説明図である。なお、本発明に係る流体混合部材10は、その先端に至る断面積が漸減し、主流に接する側の断面形状が主流の表層のみを分断する形状であり、場合によっては主流と反対側に溝若しくは凹みを有する。そのため、曲率の小さい長い爪を想起させることも可能なことから、以下では、便宜上、本発明に係る流体混合部材をネイルミキサ(Nail-shaped Mixer)と表記することとする。   FIG. 6 is an explanatory view showing a verification test nozzle manufactured for a verification test for confirming the noise reduction effect of the present invention. In the fluid mixing member 10 according to the present invention, the cross-sectional area reaching the tip of the fluid mixing member 10 is gradually reduced, and the cross-sectional shape on the side in contact with the main flow is a shape that divides only the surface layer of the main flow. Or it has a dent. Therefore, since it is possible to recall a long nail having a small curvature, the fluid mixing member according to the present invention will be referred to as a nail-shaped mixer for convenience.

図6(b)に示すように、ネイルミキサ10は、直径40mmのノズルの開口外周に沿って等間隔に8個設けられている。なお、ネイルミキサ10の断面形状は、図5(b)のV形状とし、ジェット流中心に対する侵入角度δは35°とした。また、ジェット流に対する侵入量Lを、ノズル直径の0.19倍と0.40倍に設定し、各侵入量Lに対応するネイルミキサを各々ネイルミキサ11、ネイルミキサ12と表記することとする。   As shown in FIG. 6B, eight nail mixers 10 are provided at equal intervals along the outer periphery of the opening of a nozzle having a diameter of 40 mm. The cross-sectional shape of the nail mixer 10 was V-shaped in FIG. 5B, and the penetration angle δ with respect to the jet flow center was 35 °. Further, the penetration amount L with respect to the jet flow is set to 0.19 times and 0.40 times the nozzle diameter, and the nail mixers corresponding to the penetration amounts L are denoted as a nail mixer 11 and a nail mixer 12, respectively. .

図7は、実証試験に用いた試験設備を示す説明図である。
ノズルから噴出される空気は、空気圧縮機から供給され貯気槽を経由して垂直上方へ噴射される。ジェット速度は高亜音速のマッハ数M=0.9とした。なお、空気加熱はしておらず、ノズルから噴出される空気は、所謂コールドジェット(Cold Jet)である。
FIG. 7 is an explanatory diagram showing test equipment used in the verification test.
The air ejected from the nozzle is supplied from an air compressor and ejected vertically upward via an air storage tank. The jet velocity was set to a high subsonic Mach number M = 0.9. The air is not heated, and the air ejected from the nozzle is a so-called cold jet.

騒音計測はノズル中心から半径1.5m(ノズル直径40mmの37.5倍)の円弧上にノズル排気軸(ジェット流中心)から反時計方向の20°方向を基準方向として10°おきに90°方向までの8点にて1/4インチコンデンサマイクロフォンを使って行った。各マイクロフォンで受信した時系列騒音信号について1/3オクターブバンド解析を実施した。   Noise measurement is performed on a circular arc with a radius of 1.5m from the nozzle center (37.5 times the nozzle diameter of 40mm) and 90 ° from the nozzle exhaust axis (jet flow center) in the counterclockwise direction of 20 ° every 10 °. Using a 1/4 inch condenser microphone at 8 points to the direction. A 1/3 octave band analysis was performed on the time-series noise signals received by each microphone.

図8及び図9は、ジェット流中心から30°及び60°方向における本発明の騒音低減効果(騒音周波数特性)を示す各説明図である。
比較例として、本発明のベース形状である円形ノズルの騒音周波数特性を併記した。
8 and 9 are explanatory diagrams showing the noise reduction effect (noise frequency characteristics) of the present invention in directions of 30 ° and 60 ° from the jet flow center.
As a comparative example, the noise frequency characteristics of a circular nozzle which is the base shape of the present invention are also shown.

図8に示すように、ジェット流中心から反時計方向に30°方向では、ネイルミキサ11を備えたノズルは、低周波数から高周波数に及ぶ広帯域の騒音の発生を好適に抑制することがわかる。一方、ネイルミキサ12を備えたノズルは、ネイルミキサ11を備えたノズルに比べ低周波数騒音の発生を好適に抑制するが、高周波数騒音の発生をあまり抑制していないことがわかる。
しかし、この結果は、別の見方をすれば、ネイルミキサのジェット流中心に対する侵入角度δ=35°の時、ジェット流に対する侵入量をL=0.40×Dに設定することにより、本発明の流体混合促進装置100は、低周波数域に特化して騒音の発生を好適に抑制するようになり、一方、ジェット流に対する侵入量をL=0.19×Dに設定することにより、本発明の流体混合促進装置100は、低周波数から高周波数の広帯域の騒音の発生を好適に抑制するようになる。つまり、ネイルミキサのジェット流に対する侵入量Lを制御量(操作量または調整量)として、ジェット流と周囲空気流とのせん断に起因する騒音の音響特性(周波数特性)を制御できることを示している。
As shown in FIG. 8, it can be seen that the nozzle provided with the nail mixer 11 appropriately suppresses the generation of broadband noise ranging from a low frequency to a high frequency in a 30 ° direction counterclockwise from the jet flow center. On the other hand, although the nozzle provided with the nail mixer 12 suppresses generation | occurrence | production of low frequency noise suitably compared with the nozzle provided with the nail mixer 11, it turns out that generation | occurrence | production of high frequency noise is not suppressed so much.
However, from another viewpoint, when the penetration angle δ = 35 ° with respect to the center of the jet flow of the nail mixer is set, the penetration amount with respect to the jet flow is set to L = 0.40 × D. The fluid mixing promoting device 100 of the present invention is adapted to suitably suppress the generation of noise by specializing in the low frequency range, while the intrusion amount with respect to the jet flow is set to L = 0.19 × D. This fluid mixing promoting device 100 suitably suppresses the generation of broadband noise from low to high frequencies. That is, it is shown that the acoustic characteristic (frequency characteristic) of noise caused by shearing between the jet flow and the ambient air flow can be controlled using the amount of penetration L with respect to the jet flow of the nail mixer as the control amount (operation amount or adjustment amount). .

また、図9に示すように、ジェット流中心から反時計方向に60°方向でも同様に、ネイルミキサ11を備えたノズルは、低周波数から高周波数に及ぶ広帯域の騒音の発生を好適に抑制することがわかる。一方、ネイルミキサ12を備えたノズルは、ネイルミキサ11を備えたノズルに比べ低周波数騒音の発生を好適に抑制するが、高周波数数騒音の発生をあまり抑制していないことがわかる。   Similarly, as shown in FIG. 9, the nozzle provided with the nail mixer 11 similarly suppresses the generation of broadband noise ranging from a low frequency to a high frequency even in a 60 ° counterclockwise direction from the jet flow center. I understand that. On the other hand, although the nozzle provided with the nail mixer 12 suppresses generation | occurrence | production of low frequency noise suitably compared with the nozzle provided with the nail mixer 11, it turns out that generation | occurrence | production of high frequency number noise is not suppressed so much.

図10は、ジェット流中心から20°〜90°方向における本発明の騒音低減効果(騒音の指向特性)を示す説明図である。
この図は、20°から90°の各方向について、全ての周波数の音圧レベルを積分したオーバーオールの音圧レベルを示している。
ネイルミキサ11及びネイルミキサ12を備えた各ノズルはともに各方向の騒音を好適に低減することが分かる。なお、約50°方向を境にネイルミキサ11を備えたノズルとネイルミキサ12を備えたノズルの各騒音低減効果が逆転している。つまり、20°〜50°の範囲ではネイルミキサ12を備えたノズルがネイルミキサ11を備えたノズルより騒音を好適に低減しているが、50°〜90°の範囲ではネイルミキサ11を備えたノズルがネイルミキサ12を備えたノズルより騒音を好適に低減している。なお、参考として、ローブミキサを備えたノズルでは、20°〜40°の範囲では顕著に騒音を低減する反面、40°〜90°の範囲ではあまり低減していない(図19を参照。)。
FIG. 10 is an explanatory diagram showing the noise reduction effect (noise directivity) of the present invention in the direction of 20 ° to 90 ° from the jet flow center.
This figure shows the overall sound pressure level obtained by integrating the sound pressure levels of all frequencies in each direction from 20 ° to 90 °.
It can be seen that each nozzle provided with the nail mixer 11 and the nail mixer 12 suitably reduces noise in each direction. In addition, the noise reduction effect of the nozzle provided with the nail mixer 11 and the nozzle provided with the nail mixer 12 is reversed at a boundary of about 50 °. That is, in the range of 20 ° to 50 °, the nozzle provided with the nail mixer 12 reduces noise more suitably than the nozzle provided with the nail mixer 11, but in the range of 50 ° to 90 °, the nozzle provided with the nail mixer 11 is provided. The nozzle reduces noise more suitably than the nozzle provided with the nail mixer 12. For reference, in the nozzle provided with the lobe mixer, the noise is remarkably reduced in the range of 20 ° to 40 °, but not so much in the range of 40 ° to 90 ° (see FIG. 19).

上記の結果について、別の見方をすれば、ネイルミキサのジェット流に対する侵入量Lを制御量(操作量または調整量)として、ジェット流と周囲空気流とのせん断に起因する騒音の指向特性を制御できることを示している。   From another point of view, the noise directivity characteristic due to the shear between the jet flow and the ambient air flow is defined as a control amount (operation amount or adjustment amount). It shows that it can be controlled.

図11は、各ノズルから噴出されるジェット流の排気圧力場の計測結果を示す説明図である。計測では、ノズル下流に複数の圧力孔からなる圧力計測レークを配置して、各孔位置における時系列の圧力信号を時間平均することで、ノズル下流の流れ場の圧力分布を求めた。なお、各ノズルから噴出されるジェット流はいずれもマッハ数0.9の高亜音速流とし、円形ノズルに対する各ノズル下流の流れ場の圧力分布(ジェット流と周囲空気流との混合状態)を比較した。また、本発明に係るネイルミキサとしてネイルミキサ12を使用した。   FIG. 11 is an explanatory diagram showing the measurement result of the exhaust pressure field of the jet flow ejected from each nozzle. In the measurement, a pressure measurement rake composed of a plurality of pressure holes was arranged downstream of the nozzle, and a time series pressure signal at each hole position was time-averaged to obtain the pressure distribution of the flow field downstream of the nozzle. The jet flow ejected from each nozzle is a high subsonic flow having a Mach number of 0.9, and the pressure distribution of the flow field downstream of each nozzle with respect to the circular nozzle (mixed state of jet flow and ambient air flow) Compared. The nail mixer 12 was used as the nail mixer according to the present invention.

図はマトリックス形式で表され、第1列に代表直径22mmの円形ノズルと、第2列に代表直径が22mmのローブミキサを備えたノズルの各々の排気圧場の計測結果を示し、第3列に代表直径40mmの円形ノズルと、第4列に代表直径40mmのネイルミキサ12を備えたノズルの各々の排気圧力場の計測結果を示している。なお、図の各行は、各ノズル出口端からの各距離を各代表直径によって無次元化して示している。   The figure is shown in matrix form. The measurement results of the exhaust pressure field of each nozzle having a circular nozzle with a representative diameter of 22 mm in the first row and a lobe mixer with a representative diameter of 22 mm in the second row are shown in the third row. The measurement result of the exhaust pressure field of each of the circular nozzle having a representative diameter of 40 mm and the nozzle provided with the nail mixer 12 having a representative diameter of 40 mm in the fourth row is shown. Each row in the figure shows each distance from each nozzle outlet end as non-dimensionalized by each representative diameter.

排気圧力場の計測結果から、本発明に係るネイルミキサ12は従来のローブミキサと異なり、コアの流れ場を完全に分割するものでないことがわかる。例えば、ノズル下流x/D=1.0の地点で比較すると、そのローブミキサは、8個のローブによってコア流れを中心の1個と周囲の8個の流れに分割する傾向が明らかである。周囲の8個の流れはコア流れの外側に展開し、周囲空気との混合の結果、急速に減衰する。つまり、コア流れの運動量が減少し、エンジンの推力損失に繋がる。他方、個々の小さな流れに完全分割されることは、大きなせん断を伴うことを意味し、図17及び図18に示される高周波数音源の発生原因になるものと推定される。   From the measurement result of the exhaust pressure field, it can be seen that the nail mixer 12 according to the present invention does not completely divide the flow field of the core, unlike the conventional lobe mixer. For example, when compared at the point downstream of the nozzle x / D = 1.0, it is apparent that the lobe mixer tends to split the core flow into one in the center and eight in the surrounding by eight lobes. The surrounding eight streams develop outside the core flow and rapidly decay as a result of mixing with ambient air. That is, the momentum of the core flow is reduced, which leads to engine thrust loss. On the other hand, being completely divided into individual small flows means that there is a large shear, and it is estimated that the high frequency sound source shown in FIGS. 17 and 18 is generated.

対する本発明に係るネイルミキサ12は、コア流れに切り込みを入れるだけで、流れを分割するに至らず、コア流れと周囲空気とのせん断層に変形を生じさせるに止まる傾向が、例えばx/D=1.0からその下流の全圧分布から明らかである。切り込みを入れられた部分は本来のコア流れの範囲内に止まっている点もローブミキサと決定的に異なる点である。
以上の通り、本発明に係るネイルミキサ12がもたらす流れ場は、騒音発生に起因するせん断に関して、ローブミキサがもたらす流れ場とは決定的な相違点を有しており、このことが両者の騒音低減効果の差異にも表れているものと推定される。
On the other hand, the nail mixer 12 according to the present invention does not divide the flow only by cutting the core flow, but tends to cause deformation in the shear layer between the core flow and the ambient air, for example, x / D. = 1.0 is clear from the total pressure distribution downstream. The point where the notched portion stays within the range of the original core flow is also a point different from the lobe mixer.
As described above, the flow field provided by the nail mixer 12 according to the present invention has a crucial difference from the flow field provided by the lobe mixer in terms of shear caused by noise generation. It is presumed that this is also reflected in the difference in effect.

図12は、本発明に係るネイルミキサ10を航空機のファンノズル及びパイロンに適用した実施例を示す説明図である。
本発明のネイルミキサ10をエンジンを包むナセルと呼ばれる装置の下流端であるファンノズル、並びにエンジン全体を主翼又は胴体と連結するパイロンにそれぞれ適用した。
ファン流(主流)は、ファンダクトを経由して下流端にあるファンノズルから排出されて、ナセル周囲の空気(副流)と混合する。従って、本発明のネイルミキサ10をファンノズル出口端部から内側に傾斜させつつ(ファン流に侵入する形態で)下流方向に突出させる。これにより、本発明のネイルミキサ10は、ノズル下流の一定範囲でファン流れの表層を分断しつつ、低速の周囲空気を取り込んでファン流れと周囲空気との大きな局所的なせん断を抑制しながら両流れを混合し、ファン流と周囲空気流とのせん断に起因する高周波数騒音の発生を抑制する。なお、ネイルミキサ10をファンノズル又はナセルの外側に設置した状態で巡航すると、ネイルミキサ10自体が空気抵抗となりうるため、エンジンには巡航時にネイルミキサ10をナセル内部に収納する収納機構を備えていることが好ましい。
FIG. 12 is an explanatory view showing an embodiment in which the nail mixer 10 according to the present invention is applied to a fan nozzle and a pylon of an aircraft.
The nail mixer 10 of the present invention was applied to a fan nozzle that is a downstream end of a device called a nacelle that encloses an engine, and a pylon that connects the entire engine to a main wing or a fuselage.
The fan flow (main flow) is discharged from the fan nozzle at the downstream end via the fan duct and mixed with the air around the nacelle (secondary flow). Therefore, the nail mixer 10 of the present invention is protruded in the downstream direction while being inclined inward from the fan nozzle outlet end (in a form of entering the fan flow). As a result, the nail mixer 10 of the present invention divides the surface layer of the fan flow in a certain range downstream of the nozzle, takes in the low-speed ambient air, and suppresses both large local shears between the fan flow and the ambient air. Mixes the flow and suppresses the generation of high-frequency noise due to the shear between the fan flow and the ambient air flow. If the nail mixer 10 is cruised with the fan nozzle or the nacelle installed outside, the nail mixer 10 itself can become air resistance. Therefore, the engine has a storage mechanism for storing the nail mixer 10 in the nacelle during the cruise. Preferably it is.

また、本発明のネイルミキサ10を、パイロンの後流側にファン流側に傾斜して侵入するように設置することで、ファン流れの表層を分断しつつ、低速のパイロン後流を取り込んでファン流れとパイロン後流との局所的なせん断を抑制しながら両流れを混合・促進し、高周波数騒音の発生を抑制することも可能である。なお、機体には不使用時にネイルミキサ10をパイロンに沿って折り畳む又はパイロン内部に差し込むなどの収納機構を備えていることが好ましい。   Further, by installing the nail mixer 10 of the present invention so as to incline and invade into the fan flow side on the wake side of the pylon, the low-speed pylon wake is taken in while dividing the surface layer of the fan flow. It is also possible to suppress the generation of high-frequency noise by mixing and promoting both flows while suppressing local shearing between the flow and the wake behind the pylon. The airframe is preferably provided with a storage mechanism such as folding the nail mixer 10 along the pylon or inserting it into the pylon when not in use.

図13は、本発明に係るネイルミキサ10を航空機用脚に適用した実施例を示す説明図である。なお、図13(a)は正面図であり、同(b)はA−A断面図である。
航空機降着時には、脚柱(断面形状は円柱、楕円柱など)が主流中に展開する。また、脚を支えるサイドブレースと呼ばれる棒状の構造物も主流中に置かれる。これらの構造物は、その側面から後方にかけて渦発生源となり、空力騒音を発生する。そこで、本発明のネイルミキサ10を、脚柱であればその側面から後縁にかけて、サイドブレースであればその後縁において、その先端が主流側に傾斜して侵入するように一つ又は複数設置する。これにより、周囲空気流(主流)の表層を分断しつつ、低速の渦流(副流)を取り込んで周囲空気流と渦流との局所的なせん断を抑制しながら両流れを混合・促進し、高周波数騒音の発生を抑制するようになる。
FIG. 13 is an explanatory view showing an embodiment in which the nail mixer 10 according to the present invention is applied to an aircraft leg. FIG. 13 (a) is a front view, and FIG. 13 (b) is an AA sectional view.
When landing on an aircraft, the pedestal (cross-sectional shape is a cylinder, elliptical column, etc.) is deployed in the mainstream. A rod-like structure called a side brace that supports the legs is also placed in the mainstream. These structures become vortex generation sources from the side to the rear, and generate aerodynamic noise. Therefore, one or a plurality of nail mixers 10 according to the present invention are installed so that the front ends of the nail mixer 10 are inclined from the side surface to the rear edge of the pedestal, and the rear edge of the side brace is inclined to the mainstream side. . This separates the surface layer of the surrounding air flow (main flow) and mixes and promotes both flows while taking in low-speed vortex flow (side flow) and suppressing local shear between the surrounding air flow and vortex flow. Generation of frequency noise is suppressed.

図14は、本発明に係るネイルミキサ10を航空機胴体の脚格納部に適用した実施例を示す説明図である。
図14(b)に示されるように、脚扉が開いて脚が出た状態では、脚格納室前縁にせん断が生じて渦が励起されうる。そこで、図14(c),(d)に示されるように、本発明のネイルミキサ10を脚格納室前縁に一つ又は複数箇所、その先端が主流側に傾斜して侵入するように取り付ける。これにより、主流との速度差によるせん断を弱めることが期待される。その結果、脚格納室前縁での渦励起を抑制又は遅延させて、渦と脚格納室後縁または他の構造物との干渉を弱めて騒音発生を抑制することができる。本発明のネイルミキサ10の収納については、例えば、脚扉の開閉と連動して展開し、巡航中は脚格納室の内部に収納される機構を備えるのが好ましい。
FIG. 14 is an explanatory view showing an embodiment in which the nail mixer 10 according to the present invention is applied to a leg storage section of an aircraft fuselage.
As shown in FIG. 14B, in the state where the leg door is opened and the leg comes out, shear is generated in the front edge of the leg storage chamber, and the vortex can be excited. Therefore, as shown in FIGS. 14 (c) and 14 (d), the nail mixer 10 of the present invention is attached to the front edge of the leg storage chamber at one or a plurality of locations, and the tip thereof is inclined to enter the mainstream side. . This is expected to weaken the shear due to the speed difference from the mainstream. As a result, vortex excitation at the front edge of the leg storage chamber can be suppressed or delayed, and interference between the vortex and the rear edge of the leg storage chamber or other structures can be weakened to suppress noise generation. For storing the nail mixer 10 of the present invention, for example, it is preferable to provide a mechanism that expands in conjunction with opening and closing of the leg door and is stored inside the leg storage chamber during cruising.

また、降着時に脚が展開した脚格納室は主流中に置かれるのでその後縁が渦発生源となる。そこで、脚格納室後縁にも本発明のネイルミキサ10を一つ又は複数取り付けておけば、渦発生を抑制または遅延することが期待される。
脚格納部への適用は、胴体や車体の凹凸部への適用も含む。高速車両の車体表面に凹凸があると先の脚収納部と同様に空力騒音発生源となる。これを抑制するために図14と同じ発想で、窪みの前縁に本発明のミキサを設置して渦放出を抑制または遅延させることも可能である。
Moreover, since the leg storage chamber in which the legs are deployed at the time of landing is placed in the mainstream, the rear edge becomes a vortex generating source. Therefore, if one or a plurality of nail mixers 10 of the present invention are attached to the rear edge of the leg storage chamber, it is expected to suppress or delay the generation of vortices.
The application to the leg storage part includes application to the uneven part of the trunk and the vehicle body. If the surface of the vehicle body of the high-speed vehicle is uneven, it becomes a source of aerodynamic noise as in the case of the leg storage unit. In order to suppress this, it is possible to suppress or delay the vortex shedding by installing the mixer of the present invention at the leading edge of the recess with the same idea as FIG.

図15は、本発明に係るネイルミキサ10を航空機の翼前縁および翼後縁に適用した実施例を示す説明図である。
航空機の着陸侵入時には翼前縁でスラットと呼ばれる高揚力発生装置が作動するが、図15(a)に示すように、スラットは主翼との間に隙間流を生じる。この隙間流と主流とのせん断は、高周波数騒音の発生源となり得る。従って、図15(b)に示すように、本発明のネイルミキサ10を主流に対し斜めから侵入する形態で翼前縁に配設することにより、この隙間流と主流との混合を促進し、スラット近傍に発生する高周波数騒音を好適に抑制することができるようになる。
FIG. 15 is an explanatory diagram showing an embodiment in which the nail mixer 10 according to the present invention is applied to a wing leading edge and a wing trailing edge of an aircraft.
At the time of landing invasion of an aircraft, a high lift generator called a slat operates at the leading edge of the wing, but as shown in FIG. 15 (a), the slat generates a gap flow between the main wing. This shear flow between the gap flow and the main flow can be a source of high-frequency noise. Accordingly, as shown in FIG. 15 (b), by arranging the nail mixer 10 of the present invention at the blade leading edge in a form that invades from the oblique direction with respect to the main flow, the mixing of the gap flow and the main flow is promoted, High frequency noise generated in the vicinity of the slat can be suitably suppressed.

また、翼後縁についても、フラップと呼ばれる高揚力発生装置が作動すると、翼後縁において渦が励起される。従って、図15(b),(c)に示すように、本発明のネイルミキサ10を主流に対し斜めから侵入する形態で後縁フラップ近傍に配設することにより、この隙間流と主流との混合を促進し、翼後縁近傍に発生する渦の励起を好適に抑制し、その結果、高周波数騒音を好適に抑制することができるようになる。   As for the blade trailing edge, when a high lift generating device called a flap is activated, a vortex is excited at the blade trailing edge. Accordingly, as shown in FIGS. 15B and 15C, the nail mixer 10 of the present invention is disposed in the vicinity of the trailing edge flap so as to incline obliquely with respect to the main flow, whereby the gap flow and the main flow are reduced. Mixing is promoted, and excitation of vortices generated in the vicinity of the trailing edge of the blade is suitably suppressed. As a result, high frequency noise can be suitably suppressed.

また、本発明のネイルミキサ10の内部に導管(流路)を設け、当該導管に外部から二次流体を供給し、ミキサの先端部または先端以外の他の部位から主流に放出するようにしてもよい。供給方式については、二次流体が空気ならば、エンジン(圧縮機)抽気または高圧貯気槽から調圧弁を介して上記導管に二次流体を供給する。なお、調圧弁にはコントローラが備わり、コントローラは圧力センサからの検知信号を取り込んで、供給圧力が目標値となるように調圧弁を制御する。供給圧力の目標値としては、例えば、本発明のネイルミキサ10の主流に対する侵入角δ、侵入量L、主流速度、主流せん断層、又はこれらの組み合わせに基づいて、主流のポテンシャルエネルギーと同じ或いはそれ以上の圧力に設定する。   Further, a conduit (flow path) is provided inside the nail mixer 10 of the present invention, a secondary fluid is supplied to the conduit from the outside, and is discharged into the main stream from the tip portion of the mixer or other portions other than the tip. Also good. As for the supply method, if the secondary fluid is air, the secondary fluid is supplied to the conduit from the engine (compressor) bleed air or the high-pressure reservoir through the pressure regulating valve. The pressure regulating valve is provided with a controller, and the controller takes in a detection signal from the pressure sensor and controls the pressure regulating valve so that the supply pressure becomes a target value. The target value of the supply pressure is, for example, the same as or equal to the mainstream potential energy based on the penetration angle δ, the penetration amount L, the mainstream velocity, the mainstream shear layer, or a combination thereof with respect to the mainstream of the nail mixer 10 of the present invention. Set the pressure above.

一方、二次流体が水の場合は、供給方式については、貯留タンクからポンプ等の外部動力装置または高圧ガス等のポテンシャルエネルギーの何れかの圧送手段によって流量調整弁を介して上記導管に二次流体を供給する。なお、流量調整弁にはコントローラが備わり、コントローラは流量センサからの検知信号を取り込んで、流量が目標値となるように流量調整弁を制御する。流量の目標値としては、例えば、本発明のネイルミキサ10の主流に対する侵入角δ、侵入量L、主流速度、主流せん断層、又はこれらの組み合わせに基づいて、主流の質量流量の5%以下に設定する。   On the other hand, when the secondary fluid is water, the supply method is such that the secondary fluid is supplied to the conduit from the storage tank via a flow rate adjusting valve by a pumping means such as an external power device such as a pump or potential energy such as high-pressure gas. Supply fluid. The flow rate adjusting valve includes a controller, and the controller takes in a detection signal from the flow rate sensor and controls the flow rate adjusting valve so that the flow rate becomes a target value. As a target value of the flow rate, for example, based on the penetration angle δ, the penetration amount L, the main flow velocity, the main flow shear layer, or a combination thereof with respect to the main flow of the nail mixer 10 of the present invention, it is 5% or less of the main flow mass flow rate. Set.

なお、何れの場合も、二次流体を内部流路に流すのは、騒音低減が必要となる時(航空機の場合は、離陸の一定時間)のみである。また、上記以外の二次流体としては、例えば、水蒸気、二酸化炭素、窒素、油等の主流及び副流とは物性の異なる気体、混合気体、液体、或いは気液混合流体が考えられる。   In either case, the secondary fluid is allowed to flow through the internal flow path only when noise reduction is necessary (in the case of an aircraft, a fixed time for takeoff). Further, as the secondary fluid other than the above, for example, a gas, a mixed gas, a liquid, or a gas-liquid mixed fluid having physical properties different from those of the main flow and the side flow such as water vapor, carbon dioxide, nitrogen, and oil can be considered.

本発明の空力騒音低減装置は、航空エンジンのコアノズル、ファンダクト又はパイロン、或いは航空機の翼前縁、翼後縁もしくは翼面上または胴体の脚収納部もしくは脚柱、或いは高速車両の車体表面における凹凸面に対し、好適に適用することが可能である。   The aerodynamic noise reduction device of the present invention is applied to an aircraft engine core nozzle, fan duct or pylon, or aircraft wing leading edge, wing trailing edge or wing surface, fuselage leg housing or pedestal, or high-speed vehicle body surface. It can be suitably applied to the uneven surface.

10 流体混合部材(ネイルミキサ)
11 L=7.6mmのネイルミキサ
12 L=16mmのネイルミキサ
100 流体混合促進装置
10 Fluid mixing member (nail mixer)
11 L = 7.6 mm Nail Mixer 12 L = 16 mm Nail Mixer 100 Fluid Mixing Promoter

Claims (11)

主流に対し流れ特性の異なる副流を混合させ該主流と該副流のせん断に起因する空力騒音を低減させる空力騒音低減装置であって、
前記空力騒音低減装置は、長手中心軸に直交する断面形状が突形状であり且つ該断面形状が長手中心軸に沿って連続的に減少する先鋭ミキサ部材を複数備え、前記主流と前記副流の合流位置を含む下流の位置において前記突形状が該主流の中心側に向かう形態で該主流に斜めから侵入し、該主流の表層を部分的に分断することを特徴とする空力騒音低減装置。
An aerodynamic noise reduction device that mixes substreams having different flow characteristics with a mainstream to reduce aerodynamic noise caused by shearing of the mainstream and the substream,
The aerodynamic noise reduction device includes a plurality of sharp mixer members whose cross-sectional shape perpendicular to the longitudinal central axis is a projecting shape and whose cross-sectional shape continuously decreases along the longitudinal central axis. An aerodynamic noise reduction device characterized in that, at a downstream position including a merging position, the protruding shape enters the main flow obliquely in a form toward the center of the main flow, and partially divides the surface layer of the main flow.
前記先鋭ミキサ部材は、前記主流の表層を部分的に分断する面上に、該部材断面の代表寸法の1/10以下の代表寸法を有する一又は複数の溝、窪みまたは突起を備える請求項1に記載の空力騒音低減装置。   2. The sharp mixer member includes one or more grooves, depressions, or protrusions having a representative dimension of 1/10 or less of a representative dimension of a cross section of the member on a surface that partially divides the mainstream surface layer. The aerodynamic noise reduction device described in 1. 前記先鋭ミキサ部材は、該部材の長手中心軸と前記主流の中心方向との成す角度が該主流の下流に沿って減少または増加する形状である請求項1又は2に記載の空力騒音低減装置。   The aerodynamic noise reduction device according to claim 1 or 2, wherein the sharp mixer member has a shape in which an angle formed between a longitudinal central axis of the member and a central direction of the main flow decreases or increases along the downstream of the main flow. 前記先鋭ミキサ部材は、前記主流と前記副流の合流位置において複数配設され、その配設位置ならびに前記主流に対する侵入角度および/または侵入量の何れかは可変である請求項1から3の何れかに記載の空力騒音低減装置。   4. The sharp mixer member is provided in plural at the merging position of the main flow and the substream, and any of the arrangement position and the invasion angle and / or the amount of invasion with respect to the main flow is variable. The aerodynamic noise reduction device according to crab. 前記先鋭ミキサ部材は、内部に閉流路または前記主流の中心とは反対側の面に開流路が設けられ、該流路の上流は空気供給手段または前記副流に連通し、下流は前記主流に連通する請求項1から4の何れかに記載の空力騒音低減装置。   The sharp mixer member has a closed flow path or an open flow path on the surface opposite to the center of the main flow inside, the upstream of the flow path communicates with the air supply means or the substream, and the downstream is the The aerodynamic noise reduction device according to any one of claims 1 to 4, which communicates with a mainstream. 前記先鋭ミキサ部材は、前記部材の先端以外に前記流路と前記主流を連通する連通孔を備える請求項1から5の何れかに記載の空力騒音低減装置。   6. The aerodynamic noise reduction device according to claim 1, wherein the sharp mixer member includes a communication hole that communicates the flow path and the main flow in addition to a tip of the member. 前記流路に前記主流および前記副流とは物性の異なる二次流体を流す請求項5又は6に記載の空力騒音低減装置。   The aerodynamic noise reduction device according to claim 5 or 6, wherein a secondary fluid having physical properties different from those of the main flow and the sub-flow are supplied to the flow path. 前記二次流体の圧力または流量を変える圧力または流量調整機構を備える請求項7に記載の空力騒音低減装置。   The aerodynamic noise reduction device according to claim 7, further comprising a pressure or flow rate adjusting mechanism that changes a pressure or flow rate of the secondary fluid. 前記先鋭ミキサ部材を収納する収納機構を備える請求項1から8の何れかに記載の空力騒音低減装置。   The aerodynamic noise reduction device according to claim 1, further comprising a storage mechanism that stores the sharp mixer member. 前記先鋭ミキサ部材は、航空エンジンのコアノズル、ファンダクト又はパイロンの何れかに対して適用される請求項1から9の何れかに記載の空力騒音低減装置。   The aerodynamic noise reduction device according to claim 1, wherein the sharp mixer member is applied to any one of a core nozzle, a fan duct, and a pylon of an aircraft engine. 前記先鋭ミキサ部材は、航空機の翼前縁、翼後縁もしくは翼面上または胴体の脚収納部もしくは脚柱、或いは車両の車体表面における凹凸面に対して適用される請求項1から9の何れかに記載の空力騒音低減装置。   10. The sharp mixer member is applied to a wing leading edge, a wing trailing edge or a wing surface of an aircraft, or a leg storage portion or a pillar of a fuselage, or an uneven surface on a vehicle body surface of a vehicle. The aerodynamic noise reduction device according to crab.
JP2011011067A 2011-01-21 2011-01-21 Aerodynamic noise reduction device Expired - Fee Related JP5842211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011067A JP5842211B2 (en) 2011-01-21 2011-01-21 Aerodynamic noise reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011067A JP5842211B2 (en) 2011-01-21 2011-01-21 Aerodynamic noise reduction device

Publications (2)

Publication Number Publication Date
JP2012154176A true JP2012154176A (en) 2012-08-16
JP5842211B2 JP5842211B2 (en) 2016-01-13

Family

ID=46836185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011067A Expired - Fee Related JP5842211B2 (en) 2011-01-21 2011-01-21 Aerodynamic noise reduction device

Country Status (1)

Country Link
JP (1) JP5842211B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB766985A (en) * 1952-07-25 1957-01-30 Geoffrey Michael Lilley Improvements in or relating to jet noise suppression means
JPH04176795A (en) * 1990-11-13 1992-06-24 Mitsubishi Heavy Ind Ltd Helicopter rotating blade
JPH08239095A (en) * 1995-03-02 1996-09-17 Mitsubishi Heavy Ind Ltd Wing end vortex reducing device
US20010035004A1 (en) * 2000-05-05 2001-11-01 Balzer Ronald L. Segmented mixing device for jet engines
US20020178711A1 (en) * 2001-05-31 2002-12-05 Steven Martens Truncated chevron exhaust nozzle
JP2003108144A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Fluid dynamic noise reducing device
JP2003172205A (en) * 2001-12-07 2003-06-20 Ishikawajima Harima Heavy Ind Co Ltd Mixer for jet blast
US20050229585A1 (en) * 2001-03-03 2005-10-20 Webster John R Gas turbine engine exhaust nozzle
JP2007187161A (en) * 2006-01-13 2007-07-26 Snecma Core exhaust gas mixer having variable are for turbofan jet engine of supersonic aircraft
JP2008286187A (en) * 2007-05-21 2008-11-27 General Electric Co <Ge> Fluted chevron exhaust nozzle
WO2009138597A1 (en) * 2008-05-07 2009-11-19 Airbus France Dual-flow turbine engine for aircraft with low noise emission
JP2010518323A (en) * 2007-02-14 2010-05-27 ザ・ボーイング・カンパニー System and method for reducing exhaust noise of a jet engine
JP2010535985A (en) * 2007-08-14 2010-11-25 エアバス オペレーションズ (エスアーエス) Noise control chevron for nozzle and nozzle and turboshaft engine equipped with this chevron

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB766985A (en) * 1952-07-25 1957-01-30 Geoffrey Michael Lilley Improvements in or relating to jet noise suppression means
JPH04176795A (en) * 1990-11-13 1992-06-24 Mitsubishi Heavy Ind Ltd Helicopter rotating blade
JPH08239095A (en) * 1995-03-02 1996-09-17 Mitsubishi Heavy Ind Ltd Wing end vortex reducing device
US20010035004A1 (en) * 2000-05-05 2001-11-01 Balzer Ronald L. Segmented mixing device for jet engines
US20050229585A1 (en) * 2001-03-03 2005-10-20 Webster John R Gas turbine engine exhaust nozzle
US20020178711A1 (en) * 2001-05-31 2002-12-05 Steven Martens Truncated chevron exhaust nozzle
JP2003108144A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Fluid dynamic noise reducing device
JP2003172205A (en) * 2001-12-07 2003-06-20 Ishikawajima Harima Heavy Ind Co Ltd Mixer for jet blast
JP2007187161A (en) * 2006-01-13 2007-07-26 Snecma Core exhaust gas mixer having variable are for turbofan jet engine of supersonic aircraft
JP2010518323A (en) * 2007-02-14 2010-05-27 ザ・ボーイング・カンパニー System and method for reducing exhaust noise of a jet engine
JP2008286187A (en) * 2007-05-21 2008-11-27 General Electric Co <Ge> Fluted chevron exhaust nozzle
JP2010535985A (en) * 2007-08-14 2010-11-25 エアバス オペレーションズ (エスアーエス) Noise control chevron for nozzle and nozzle and turboshaft engine equipped with this chevron
WO2009138597A1 (en) * 2008-05-07 2009-11-19 Airbus France Dual-flow turbine engine for aircraft with low noise emission

Also Published As

Publication number Publication date
JP5842211B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US7966824B2 (en) Jet engine nozzle exit configurations and associated systems and methods
US8746613B2 (en) Jet engine exhaust nozzle and associated system and method of use
EP2118475B1 (en) Systems and methods for reducing noise from jet engine exhaust
JP5241215B2 (en) Passive guidance system and method for aircraft engine nozzle fluids
RU2607715C2 (en) Gas turbine engine pylon
EP3036422B1 (en) High performance convergent divergent nozzle
US8443931B2 (en) Noise reduction of supersonic jet engines
EP3112650B1 (en) Inlet flow restrictor
JP2018526559A (en) Aircraft with rear fairing propulsion system having inflow stator with blowout function
US8544278B2 (en) Turboshaft engine with reduced noise emission for aircraft
US8870530B2 (en) Gas turbine engine
US20120211599A1 (en) Flow-modifying formation for aircraft wing
JP6126095B2 (en) Nozzle structure and manufacturing method of nozzle structure
US10408165B2 (en) Device with gratings for ejecting microjets in order to reduce the jet noise of a turbine engine
JP5842211B2 (en) Aerodynamic noise reduction device
EP2818637B1 (en) Gas turbine component for releasing a coolant flow into an environment subject to periodic fluctuations in pressure
JP6180005B2 (en) Nozzle structure and manufacturing method of nozzle structure
US20240059396A1 (en) Improved acoustic attenuation device for an aircraft propulsion unit
RU2454354C2 (en) Supersonic aircraft jet engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5842211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees