JP2012154048A - Joint structure for steel pipe - Google Patents

Joint structure for steel pipe Download PDF

Info

Publication number
JP2012154048A
JP2012154048A JP2011012216A JP2011012216A JP2012154048A JP 2012154048 A JP2012154048 A JP 2012154048A JP 2011012216 A JP2011012216 A JP 2011012216A JP 2011012216 A JP2011012216 A JP 2011012216A JP 2012154048 A JP2012154048 A JP 2012154048A
Authority
JP
Japan
Prior art keywords
shaft
joint
cylinder
key groove
joint surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011012216A
Other languages
Japanese (ja)
Other versions
JP5623923B2 (en
Inventor
Akio Sowa
明男 相和
一樹 ▲高▼橋
Kazuki Takahashi
Atsushi Shibata
厚志 柴田
Takashi Watanabe
崇志 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011012216A priority Critical patent/JP5623923B2/en
Publication of JP2012154048A publication Critical patent/JP2012154048A/en
Application granted granted Critical
Publication of JP5623923B2 publication Critical patent/JP5623923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a joint structure capable of shortening its joint part while securing its reference strength.SOLUTION: A distance BL4 from a cylinder side joint surface 23 to a cylinder side key groove 26 nearest to the cylinder side joint surface 23 is set so that tensile strain which is generated in the cylinder side key groove 26 farthest from the cylinder side joint surface 23 when external force operates on an axial joint part 10 and a cylindrical joint part 20 is greater than tensile strain which is generated in an axial side key groove 16 nearest to an axial side joint surface 13 when external force operates on the axial joint part 10 and the cylindrical joint part 20.

Description

本発明は、鋼管杭や鋼管矢板等に用いられる二つの鋼管を長手方向に互いに抜き差し不能に接合する鋼管の継手構造に関する。   The present invention relates to a steel pipe joint structure in which two steel pipes used for steel pipe piles, steel pipe sheet piles, and the like are joined in the longitudinal direction so as not to be inserted and removed.

従来、このような鋼管の継手構造として、特許文献1に記載のようなものがあった。特許文献1に記載の鋼管の継手構造は、二つの鋼管のうちの一方の鋼管の先端部に固着された軸状継手部(文献では「ピン継手材」)と、二つの鋼管のうちの他方の鋼管の先端部に固着され、軸状継手部が挿入嵌合される筒状継手部(文献では「ボックス継手材」)と、を備えている。軸状継手部には、一方の鋼管に固着される軸側基部(文献では「基筒部」)、軸側基部から延設されると共に外径が軸側基部よりも小さい嵌挿部、軸側基部と嵌挿部との段差部である軸側接合面(文献では「係合端面」)、軸側接合面に周設された軸側凹部(文献では「係合凹部」)、及び、嵌挿部の先端部に周設された軸側凸部(文献では「係合突部」)が備えられている。   Conventionally, there has been such a steel pipe joint structure as described in Patent Document 1. The joint structure of the steel pipe described in Patent Document 1 includes a shaft-like joint portion (“pin joint material” in the literature) fixed to the tip of one of the two steel pipes and the other of the two steel pipes. A tubular joint portion (“box joint material” in the literature) that is fixed to the tip of the steel pipe and into which the shaft-like joint portion is inserted and fitted. The shaft-like joint portion includes a shaft-side base portion (“base tube portion” in the literature) that is fixed to one steel pipe, an insertion portion that extends from the shaft-side base portion and has an outer diameter smaller than that of the shaft-side base portion, shaft A shaft-side joint surface (“engagement end surface” in the literature) that is a step portion between the side base portion and the fitting insertion portion, a shaft-side recess (“engagement recess” in the literature) circumferentially provided on the shaft-side joint surface, and A shaft-side convex portion (“engagement protrusion” in the literature) is provided around the tip of the insertion portion.

また、筒状継手部には、他方の鋼管に固着される筒側基部、筒側基部から延設されると共に内径が筒側基部よりも大きく、嵌挿部を受け入れる嵌受部、嵌受部の先端部に設けられ、軸側接合面と接する筒側接合面(文献では「端面」)、筒側接合面に周設され、軸側凹部と係合する筒側凸部(文献では「突部」)、及び、筒側基部と嵌受部との段差部に周設され、軸側凸部と係合する筒側凹部(文献では「凹部」)が備えられている。   Further, the cylindrical joint portion includes a cylindrical base fixed to the other steel pipe, a fitting receiving portion that extends from the cylindrical base and has an inner diameter larger than that of the cylindrical base, and receives the fitting insertion portion. A cylinder-side joint surface (in the literature, “end face”) that is provided at the tip of the cylinder, and a cylinder-side convex portion that is provided around the cylinder-side joint surface and engages the shaft-side recess (in the literature, “protrusion”). Part "), and a cylinder-side recess (" recess "in the literature) that is provided around the step portion between the cylinder-side base and the fitting receiving part and engages with the shaft-side protrusion.

さらに、嵌挿部の外周部に、一以上の軸側キー溝(文献では「外溝条」)を周設し、かつ、嵌受部の内周部に、軸状継手部を筒状継手部に挿入したときに軸側キー溝と対応する一以上の筒側キー溝(文献では「内溝条」)を周設してある。そして、少なくとも長手方向における軸状継手部と筒状継手部との相対移動を拘束する手段として、互いに対応する軸側キー溝と筒側キー溝とに跨って係合するように配設される一以上のキー部材(文献では「荷重伝達キー」)が備えられている。キー部材は筒側キー溝内に配設されており、筒状継手部の外側からの操作で径方向内側に螺進するボルトによって、軸側キー溝と筒側キー溝とに跨って係合する。   Further, one or more shaft-side key grooves (“outer groove strip” in the literature) are provided around the outer peripheral portion of the fitting insertion portion, and the shaft-like joint portion is connected to the inner peripheral portion of the fitting receiving portion. One or more cylinder-side key grooves (in the literature, “inner groove strips”) corresponding to the shaft-side key grooves when inserted into the portion are provided. And as a means for restraining relative movement between at least the longitudinal joint portion and the tubular joint portion in the longitudinal direction, it is disposed so as to be engaged across the mutually corresponding shaft side key groove and tubular side key groove. One or more key members (“load transmission key” in the literature) are provided. The key member is disposed in the cylinder-side key groove, and is engaged across the shaft-side key groove and the cylinder-side key groove by a bolt that is screwed inward in the radial direction by an operation from the outside of the cylindrical joint. To do.

特開2000−234333号公報JP 2000-234333 A

ところで、このような鋼管の継手構造については、二つの鋼管や鋼管の接合箇所(軸状継手部及び筒状継手部)に地震力のような外力が作用したとき、先ずは鋼管自体で破壊か生じるが、さらに外力が相当大きい場合は、鋼管の接合箇所のうち肉厚の薄い箇所(軸側キー溝及び筒側キー溝)で破壊が生じる。鋼管の継手構造は鉄を主材質とするため、特に、引張による破壊が起こる。また、地震時等において構造物が損壊した場合等、鋼管杭等を引き抜いて破壊状況を検証することがあるが、この場合、特定の箇所が破壊されていると検証が行い易い。そこで、目視が行い易い等の理由により、外側に露出する筒状継手部の筒側キー溝が、軸側キー溝に先立って破壊されるように各部寸法を設計する手法が採用されていた。   By the way, with regard to such a steel pipe joint structure, when an external force such as seismic force is applied to two steel pipes or a joint between the steel pipes (shaft joint part and cylindrical joint part), the steel pipe itself is first destroyed. However, if the external force is considerably large, the steel pipes are broken at the thin portions (shaft side keyway and tube side keyway). Since the joint structure of steel pipes is mainly made of iron, it is particularly broken by tension. In addition, when a structure is damaged during an earthquake or the like, a steel pipe pile or the like may be pulled out to verify the destruction status. In this case, it is easy to verify if a specific part is destroyed. Therefore, for reasons such as easy visual observation, a method has been adopted in which the dimensions of each part are designed so that the cylinder side keyway of the cylindrical joint part exposed to the outside is broken prior to the shaft side keyway.

この設計手法では、以下の二つのステップにより各部寸法を決定していた。
(1)ステップ1
所定の外力の作用によって筒側キー溝に発生する引張応力を求め、筒側キー溝の基準強度を確保しつつ筒側キー溝が最も弱くなるように筒側キー溝の肉厚を決定する。
(2)ステップ2
他の部分の肉厚については、筒側キー溝よりも高強度となるように、その寸法を決定する。
In this design method, the dimensions of each part are determined by the following two steps.
(1) Step 1
The tensile stress generated in the cylinder side key groove by the action of a predetermined external force is obtained, and the thickness of the cylinder side key groove is determined so that the cylinder side key groove becomes the weakest while ensuring the reference strength of the cylinder side key groove.
(2) Step 2
About the thickness of another part, the dimension is determined so that it may become higher intensity | strength than a cylinder side keyway.

なお、軸側キー溝、筒側キー溝、及びキー部材が複数組設けられているときは、各継手部の先端部から離れれば離れるほど内部応力が高くなることから、筒側接合面から最も離れた筒側キー溝と、軸側接合面に最も近い軸側キー溝とに着目し、少なくとも筒側接合面から最も離れた筒側キー溝が軸側接合面に最も近い軸側キー溝に先立って破壊するように設計していた。   When multiple sets of shaft-side key grooves, cylinder-side key grooves, and key members are provided, internal stress increases as the distance from the tip of each joint increases. Paying attention to the separated cylinder side key groove and the axis side key groove closest to the axis side joint surface, at least the cylinder side key groove farthest from the cylinder side joint surface is the axis side key groove closest to the axis side joint surface. It was designed to be destroyed in advance.

しかしながら、このように設計された継手構造では、継手長をどのように設定するかについての基準がなく、不要に軸状継手部や筒状継手部が長くせざるを得ず、経済性が良くない継手構造となっていた。単純に嵌挿部と嵌受部との重なりを短くすると、継手部分の強度が落ちてしまうため、何の指針もなく継手部分の長さを短くすることには限界がある。   However, in the joint structure designed in this way, there is no standard as to how to set the joint length, and the shaft joint part and the cylindrical joint part have to be lengthened unnecessarily, resulting in good economic efficiency. There was no joint structure. If the overlap between the fitting insertion portion and the fitting receiving portion is simply shortened, the strength of the joint portion decreases, so there is a limit to shortening the length of the joint portion without any guideline.

本発明の目的は、このような実情に鑑み、基準強度を確保しつつ、継手部分の長さを短く出来る継手構造を提供することにある。   In view of such circumstances, an object of the present invention is to provide a joint structure that can shorten the length of the joint portion while ensuring the reference strength.

本発明に係る鋼管の継手構造の特徴構成は、二つの鋼管を長手方向に互いに抜き差し不能に接合する鋼管の継手構造であって、前記二つの鋼管のうちの一方の鋼管の先端部に固着された軸状継手部と、前記二つの鋼管のうちの他方の鋼管の先端部に固着され、前記軸状継手部が挿入嵌合される筒状継手部と、を備え、前記軸状継手部に、前記一方の鋼管に固着される軸側基部、前記軸側基部から延設されると共に外径が前記軸側基部よりも小さい嵌挿部、前記軸側基部と前記嵌挿部との段差部である軸側接合面、前記軸側接合面に周設された軸側凹部、及び、前記嵌挿部の先端部に周設された軸側凸部を備え、前記筒状継手部に、前記他方の鋼管に固着される筒側基部、前記筒側基部から延設されると共に内径が前記筒側基部よりも大きく、前記嵌挿部を受け入れる嵌受部、前記嵌受部の先端部に設けられ、前記軸側接合面と接する筒側接合面、前記筒側接合面に周設され、前記軸側凹部と係合する筒側凸部、及び、前記筒側基部と前記嵌受部との段差部に周設され、前記軸側凸部と係合する筒側凹部を備え、前記嵌挿部の外周部に、一以上の軸側キー溝を周設し、かつ、前記嵌受部の内周部に、前記軸状継手部を前記筒状継手部に挿入したときに前記軸側キー溝と対応する一以上の筒側キー溝を周設すると共に、互いに対応する前記軸側キー溝と前記筒側キー溝とに跨って係合するように配設されて、少なくとも前記長手方向における前記軸状継手部と前記筒状継手部との相対移動を拘束する一以上のキー部材をさらに備え、前記軸状継手部及び前記筒状継手部に外力が作用したときに前記筒側接合面から最も離れた前記筒側キー溝に発生する引張ひずみが、前記軸状継手部及び前記筒状継手部に前記外力が作用したときに前記軸側接合面に最も近い前記軸側キー溝に発生する引張ひずみよりも大きくなるように、前記筒側接合面から、前記筒側接合面に最も近い前記筒側キー溝までの距離を設定した点にある。   The characteristic structure of the steel pipe joint structure according to the present invention is a steel pipe joint structure in which two steel pipes are joined together in the longitudinal direction so that they cannot be inserted and removed, and is fixed to the tip of one of the two steel pipes. A shaft-like joint portion, and a cylindrical joint portion that is fixedly attached to the tip of the other steel pipe of the two steel pipes and into which the shaft-like joint portion is inserted and fitted. A shaft-side base fixed to the one steel pipe, a fitting insertion portion extending from the shaft-side base and having an outer diameter smaller than that of the shaft-side base, and a stepped portion between the shaft-side base and the fitting insertion portion A shaft-side joint surface, a shaft-side concave portion provided around the shaft-side joint surface, and a shaft-side convex portion provided around the distal end portion of the fitting insertion portion. The cylinder side base fixed to the other steel pipe, and extending from the cylinder side base and having an inner diameter larger than the cylinder side base, A fitting receiving portion that receives the fitting insertion portion; a cylinder-side joining surface that is in contact with the shaft-side joining surface; and is provided around the tube-side joining surface and is engaged with the shaft-side recess. A cylinder-side convex part, and a cylinder-side concave part that is provided around a step part between the cylinder-side base part and the fitting receiving part, and that engages with the shaft-side convex part, and on the outer peripheral part of the fitting insertion part, One or more shaft-side key grooves are provided around the shaft-side key groove when the shaft-like joint portion is inserted into the cylindrical joint portion on the inner peripheral portion of the fitting receiving portion. A cylinder-side key groove, and disposed so as to straddle across the corresponding shaft-side key groove and the cylinder-side key groove, and at least the shaft-shaped joint portion in the longitudinal direction; One or more key members that restrain relative movement with the cylindrical joint portion are further provided, and an external force is applied to the shaft joint portion and the cylindrical joint portion. The tensile strain generated in the cylinder side keyway furthest away from the cylinder side joint surface is closest to the shaft side joint surface when the external force is applied to the shaft joint part and the cylindrical joint part. The distance from the cylinder side joint surface to the cylinder side key groove closest to the cylinder side joint surface is set so as to be larger than the tensile strain generated in the shaft side key groove.

上述したように、鋼管の継手構造においては、従来は、各キー溝に発生する引張応力に着目していたが、試験、研究を重ねるうちに、発明者は、各キー溝には引張応力に基づいて曲げモーメント(二次曲げ)が発生し、キー溝の破壊にはその曲げモーメントによる影響が大きいのではないかと考えた。そして、発明者の鋭意研究により、本特徴構成のように、筒側接合面から、筒側接合面に最も近い筒側キー溝までの距離を管理することにより、軸状継手部及び筒状継手部に外力が作用したときに筒側接合面から最も離れた筒側キー溝に発生する引張ひずみを、軸側接合面に最も近い軸側キー溝に発生する引張ひずみよりも大きくすることができることが分かった。即ち、軸側接合面に最も近い軸側キー溝に先立って筒側接合面から最も離れた筒側キー溝が破壊するような継手長に関する設計基準が明確となったので、継手部分の長さを従来よりも短くすることができ、経済性の良い鋼管の継手構造を提供できる。   As described above, in the joint structure of steel pipes, conventionally, attention has been paid to the tensile stress generated in each key groove. However, as the test and research are repeated, the inventor has increased the tensile stress in each key groove. Based on this, a bending moment (secondary bending) was generated, and it was thought that the bending moment had a great influence on the fracture of the keyway. And by the inventor's earnest research, like this characteristic configuration, by managing the distance from the cylinder side joint surface to the cylinder side key groove closest to the cylinder side joint surface, the shaft joint part and the cylindrical joint The tensile strain generated in the cylinder-side keyway that is farthest from the cylinder-side joint surface when an external force is applied to the part can be greater than the tensile strain generated in the shaft-side keyway that is closest to the shaft-side joint surface. I understood. In other words, the design criteria regarding the joint length that would destroy the cylinder-side keyway furthest away from the cylinder-side joint surface prior to the shaft-side keyway closest to the axis-side joint surface became clear. Therefore, it is possible to provide a steel pipe joint structure with good economic efficiency.

本発明に係る鋼管の継手構造においては、前記筒側接合面から、前記筒側接合面に最も近い前記筒側キー溝の先端側端面までの距離を、33mm以下に設定すると好適である。   In the steel pipe joint structure according to the present invention, it is preferable that the distance from the tube side joint surface to the tip end surface of the tube side key groove closest to the tube side joint surface is set to 33 mm or less.

発明者のさらなる鋭意研究により、本特徴構成のように、筒側接合面から筒側接合面に最も近い筒側キー溝の先端側端面までの距離を33mm以下にする、という具体的な設計基準が明確となって、より設計のし易い鋼管の継手構造とすることができる。   Based on further earnest research by the inventor, a specific design standard that the distance from the cylinder side joint surface to the tip side end surface of the cylinder side key groove closest to the cylinder side joint surface is 33 mm or less as in this feature configuration. Becomes clear, and it can be set as the joint structure of the steel pipe which is easier to design.

本発明に係る鋼管の継手構造を示す斜視図である。It is a perspective view which shows the joint structure of the steel pipe which concerns on this invention. 本発明に係る鋼管の継手構造を示す長手方向断面図である。It is a longitudinal direction sectional view showing the joint structure of a steel pipe concerning the present invention. BL4と基準ひずみに対するキー溝におけるひずみの比率との関係を示す図である。It is a figure which shows the relationship between BL4 and the ratio of the distortion | strain in a keyway with respect to a reference | standard distortion. 一段型の継手構造における筒側キー溝の長手方向の断面図である。It is sectional drawing of the longitudinal direction of the cylinder side keyway in a one-stage type joint structure. 一段型の継手構造における軸側キー溝の長手方向の断面図である。It is sectional drawing of the longitudinal direction of the shaft side keyway in a one-stage type joint structure. 二段型の継手構造における筒側キー溝の長手方向の断面図である。It is sectional drawing of the longitudinal direction of the cylinder side keyway in a two-stage type joint structure. 二段型の継手構造における軸側キー溝の長手方向の断面図である。It is sectional drawing of the longitudinal direction of the shaft side keyway in a two-stage type joint structure. 鋼管SKK490に対して好適な継手の一例(直径400〜800)である。It is an example (diameter 400-800) of a suitable joint with respect to steel pipe SKK490. 鋼管SKK490に対して好適な継手の一例(直径900〜1200)である。It is an example (diameter 900-1200) of a suitable joint with respect to steel pipe SKK490. 鋼管SKK400に対して好適な継手の一例(直径400〜800)である。It is an example (diameter 400-800) of a suitable joint with respect to steel pipe SKK400. 鋼管SKK400に対して好適な継手の一例(直径400〜800)である。It is an example (diameter 400-800) of a suitable joint with respect to steel pipe SKK400. 別実施形態に係る鋼管の継手構造を示す斜視図である。It is a perspective view which shows the joint structure of the steel pipe which concerns on another embodiment. 別実施形態に係る鋼管の継手構造の継手要領を示す径方向断面図である。It is radial direction sectional drawing which shows the joint point of the joint structure of the steel pipe which concerns on another embodiment.

以下、本発明に係る鋼管の継手構造を地中に埋設される鋼管杭(杭基礎)に適用した例を図面に基づいて説明する。   Hereinafter, an example in which a steel pipe joint structure according to the present invention is applied to a steel pipe pile (pile foundation) buried in the ground will be described with reference to the drawings.

〔鋼管杭の概要〕
鋼管杭は、複数の鋼管をほぼ同一の軸芯X上に位置させて、長手方向に互いに抜き差し不能に接合して構成する。鋼管杭の設計長さは、長いものであると数十メートルにも至るため、工場で接合してから施工現場に搬送するというのは不可能であり、通常は施工現場で打設を行いながら順次接合を行う。
[Outline of steel pipe pile]
The steel pipe pile is configured by positioning a plurality of steel pipes on substantially the same axis X and joining them in the longitudinal direction so that they cannot be inserted and removed. Since the design length of steel pipe piles can be as long as several tens of meters, it is impossible to transport them to the construction site after joining them at the factory. Join.

〔鋼管の継手構造の概要〕
鋼管杭が何本の鋼管から構成されていようとも、各鋼管同士の接合は全ての箇所において同一である。したがって、図1に示すごとく、上下関係にある特定の上杭2と下杭1とに着目して、鋼管の継手構造を説明する。形式的に上杭2と下杭1とに呼び分けるが、これらは実質的には同じ鋼管である。即ち、上杭2及び下杭1が、本発明に係る「二つの鋼管」に相当する。下杭1のうち上杭2の側の先端部には、工場において雄形のピン継手10が溶接により固着されている。上杭2のうち下杭1の側の先端部には、工場においてピン継手10に外嵌されるボックス継手20が溶接により固着されている。即ち、ピン継手10が本発明に係る「軸状継手部」に相当し、ボックス継手20が本発明に係る「筒状継手部」に相当する。
[Outline of steel pipe joint structure]
No matter how many steel pipes the steel pipe pile is composed of, the joints between the steel pipes are the same at all points. Therefore, as shown in FIG. 1, the joint structure of a steel pipe will be described by paying attention to a specific upper pile 2 and lower pile 1 that are in a vertical relationship. Formally called the upper pile 2 and the lower pile 1, but these are substantially the same steel pipe. That is, the upper pile 2 and the lower pile 1 correspond to “two steel pipes” according to the present invention. A male pin joint 10 is fixed to the tip of the upper pile 2 of the lower pile 1 by welding at the factory. A box joint 20 that is externally fitted to the pin joint 10 in the factory is fixed to the tip of the upper pile 2 on the lower pile 1 side by welding. That is, the pin joint 10 corresponds to the “shaft joint portion” according to the present invention, and the box joint 20 corresponds to the “tubular joint portion” according to the present invention.

ピン継手10は、図1,図2に示すごとく、下杭1と同様に筒状に形成されている。ピン継手10は、下杭1に固着される軸側基部11と、軸側基部11から延設されると共に外径が軸側基部11よりも小さい嵌挿部12と、軸側基部11と嵌挿部12との段差部である軸側接合面13と、軸側接合面13に周設された軸側凹部14と、嵌挿部12の先端部に周設された軸側凸部15と、を備えている。   As shown in FIG. 1 and FIG. 2, the pin joint 10 is formed in a cylindrical shape like the lower pile 1. The pin joint 10 includes a shaft base 11 fixed to the lower pile 1, a fitting insertion portion 12 extending from the shaft base 11 and having an outer diameter smaller than that of the shaft base 11, and the shaft base 11 fitted. A shaft side joint surface 13 which is a stepped portion with the insertion portion 12, a shaft side concave portion 14 provided around the shaft side joint surface 13, and a shaft side convex portion 15 provided around the distal end portion of the fitting insertion portion 12. It is equipped with.

軸側基部11は、下杭1側では、下杭1と同じ内径・外径・肉厚であり、中途部分から、内径を小さくしつつ外径を大きくして肉厚を厚くしてある。嵌挿部12は、軸側基部11の内周面を同径のまま延長した内周面と、軸側基部11の外周面を段差的に縮径した外周面と、を有している。軸側凹部14は、軸側接合面13のうち内径側の部分を、軸芯X方向に沿って下杭1の側に環状に凹入して形成してある。軸側凸部15は、嵌挿部12の先端部のうち外径側の部分を、軸芯X方向に沿って先端側に環状に突出させて形成してある。   The shaft-side base 11 has the same inner diameter, outer diameter, and thickness as the lower pile 1 on the lower pile 1 side, and the outer diameter is increased and the wall thickness is increased while decreasing the inner diameter from the middle portion. The fitting insertion portion 12 has an inner peripheral surface obtained by extending the inner peripheral surface of the shaft-side base 11 with the same diameter, and an outer peripheral surface obtained by reducing the diameter of the outer peripheral surface of the shaft-side base 11 stepwise. The shaft-side recess 14 is formed by recessing an inner diameter side portion of the shaft-side joining surface 13 in an annular shape on the lower pile 1 side along the axis X direction. The shaft-side convex portion 15 is formed by projecting an outer diameter side portion of the distal end portion of the fitting insertion portion 12 in an annular shape toward the distal end side along the axis X direction.

ボックス継手20は、図1,図2に示すごとく、下杭1と同様に筒状に形成されている。ボックス継手20は、上杭2に固着される筒側基部21と、筒側基部21から延設されると共に内径が筒側基部21よりも大きく、嵌挿部12を受け入れる嵌受部22と、嵌受部22の先端部に設けられ、軸側接合面13と接する筒側接合面23と、筒側接合面23に周設され、軸側凹部14と係合する筒側凸部24と、筒側基部21と嵌受部22との段差部に周設され、軸側凸部15と係合する筒側凹部25と、を備えている。   As shown in FIGS. 1 and 2, the box joint 20 is formed in a cylindrical shape like the lower pile 1. The box joint 20 includes a cylinder side base 21 fixed to the upper pile 2, a fitting receiving part 22 that extends from the cylinder side base 21 and has an inner diameter larger than that of the cylinder side base 21, and receives the fitting insertion part 12. A cylinder-side joint surface 23 that is provided at the distal end of the fitting receiving portion 22 and is in contact with the shaft-side joint surface 13; a cylinder-side convex portion 24 that is provided around the cylinder-side joint surface 23 and that engages with the shaft-side recess 14; A cylinder-side concave portion 25 is provided around the step portion between the cylinder-side base portion 21 and the fitting receiving portion 22 and engages with the shaft-side convex portion 15.

筒側基部21は、上杭2の側では、上杭2と同じ内径・外径・肉厚であり、中途部分から、内径を小さくしつつ外径を大きくして肉厚を厚くしてある。嵌受部22は、筒側基部21の内周面を段差的に拡径した内周面と、筒側基部21の外周面を同径のまま延長した外周面と、を有している。筒側凸部24は、筒側接合面23のうち内径側の部分を、軸芯X方向に沿って先端側に環状に突出させて形成してある。筒側凹部25は、筒側基部21と嵌受部22との段差部のうち外径側の部分を、軸芯X方向に沿って先端側に環状に凹入して形成してある。   The cylinder-side base 21 has the same inner diameter, outer diameter, and thickness as the upper pile 2 on the side of the upper pile 2, and from the middle part, the outer diameter is increased while increasing the outer diameter while increasing the thickness. . The fitting receiving portion 22 has an inner peripheral surface obtained by expanding the inner peripheral surface of the cylinder side base portion 21 stepwise, and an outer peripheral surface obtained by extending the outer peripheral surface of the tube side base portion 21 with the same diameter. The tube-side convex portion 24 is formed by projecting an inner diameter side portion of the tube-side joint surface 23 in an annular shape toward the tip side along the axial center X direction. The cylinder-side recess 25 is formed by recessing a portion on the outer diameter side of the stepped portion between the cylinder-side base 21 and the fitting receiving portion 22 in an annular shape on the tip side along the axis X direction.

図2に示すごとく、嵌挿部12の外径と嵌受部22の内径とはほぼ同一に設定してあり、ピン継手10をボックス継手20に挿入すると、嵌挿部12の外周面と嵌受部22の内周面とは密接し、軸側接合面13と筒側接合面23とも密接する。軸側凹部14の軸芯X方向の断面形状は、筒側凸部24と係合可能なよう設定してある。筒側凹部25の軸芯X方向の断面形状は、軸側凸部15と係合可能なよう設定してある。また、嵌挿部12の内周面と筒側基部21の内周面とは面一となるように設定してある。   As shown in FIG. 2, the outer diameter of the fitting portion 12 and the inner diameter of the fitting portion 22 are set to be substantially the same, and when the pin joint 10 is inserted into the box joint 20, it fits with the outer peripheral surface of the fitting portion 12. The inner surface of the receiving portion 22 is in close contact with the shaft side joint surface 13 and the tube side joint surface 23. The cross-sectional shape of the shaft-side recess 14 in the direction of the axis X is set so as to be engageable with the tube-side protrusion 24. The cross-sectional shape of the cylinder side recess 25 in the axis X direction is set so as to be engageable with the axis side protrusion 15. Further, the inner peripheral surface of the insertion portion 12 and the inner peripheral surface of the tube side base portion 21 are set to be flush with each other.

嵌挿部12の外周部に、軸芯Xの周方向に沿って一つの軸側キー溝16を周設してある。同様に、嵌受部22の内周部に、ボックス継手20にピン継手10を挿入したときに軸側キー溝16と対応する一つの筒側キー溝26を周設してある。軸側キー溝16及び筒側キー溝26の軸芯X方向の断面形状は、軸芯X方向の長さが同じである長方形にしてある。ボックス継手20にピン継手10を挿入したとき、軸側キー溝16と筒側キー溝26とは対向し、協働して長方形断面の一つの溝を構成する。   One shaft side keyway 16 is provided around the outer peripheral portion of the insertion portion 12 along the circumferential direction of the shaft core X. Similarly, one cylinder side key groove 26 corresponding to the shaft side key groove 16 when the pin joint 10 is inserted into the box joint 20 is provided around the inner periphery of the fitting receiving portion 22. The cross-sectional shape of the shaft side keyway 16 and the cylinder side keyway 26 in the axis X direction is a rectangle having the same length in the axis X direction. When the pin joint 10 is inserted into the box joint 20, the shaft-side key groove 16 and the cylinder-side key groove 26 face each other and cooperate to form one groove having a rectangular cross section.

嵌受部22のうち筒側キー溝26が設けられた箇所には、嵌受部22の外周部から筒側キー溝26に連通するネジ孔が、周方向に沿って間隔をおいて複数穿孔されている。そして、ネジ孔には、セットボルト30を螺合させてあり、セットボルト30はボックス継手20の外側からの締め込み操作によって、径方向内側に螺進可能である。筒側キー溝26には、「キー部材」としての荷重伝達キー31が収容されている。荷重伝達キー31にはセットボルト30の先端部が固定されており、セットボルト30の締め込み操作によって、荷重伝達キー31は筒側キー溝26内から径方向内側に突出可能である。   A plurality of screw holes communicating from the outer peripheral portion of the fitting receiving portion 22 to the cylinder side key groove 26 are provided at intervals in the circumferential direction at a portion of the fitting receiving portion 22 where the cylinder side key groove 26 is provided. Has been. A set bolt 30 is screwed into the screw hole, and the set bolt 30 can be screwed inward in the radial direction by a tightening operation from the outside of the box joint 20. The cylinder side keyway 26 accommodates a load transmission key 31 as a “key member”. The tip of the set bolt 30 is fixed to the load transmission key 31, and the load transmission key 31 can project radially inward from the cylinder side key groove 26 by tightening the set bolt 30.

筒側キー溝26の溝深さは、荷重伝達キー31の径方向の長さよりも大きくしてあり、かつ、軸側キー溝16の溝深さは、荷重伝達キー31の径方向の長さの約1/2程度にしてある。また、荷重伝達キー31の形状は、筒側キー溝26に最も引退された状態で筒側キー溝26にほぼ隙間なく収容される円弧状にしてある。よって、荷重伝達キー31を筒側キー溝26に最も引退させると、荷重伝達キー31が嵌受部22の内周面から突出しない。即ち、荷重伝達キー31を筒側キー溝26に最も引退させておけば、ピン継手10をボックス継手20に円滑に挿入できる。また、ピン継手10をボックス継手20に挿入したときに、荷重伝達キー31を筒側キー溝26から最も突出させると、荷重伝達キー31は筒側キー溝26と軸側キー溝16とにほぼ均等に跨って係止する。これにより、ピン継手10とボックス継手20との軸芯X方向の相対移動が拘束される。   The groove depth of the cylinder side key groove 26 is larger than the length of the load transmission key 31 in the radial direction, and the groove depth of the shaft side key groove 16 is the length of the load transmission key 31 in the radial direction. About 1/2. The shape of the load transmission key 31 is an arc shape that is accommodated in the cylinder-side key groove 26 with almost no gap in the state of being most retracted in the cylinder-side key groove 26. Therefore, when the load transmission key 31 is most retracted into the cylinder side key groove 26, the load transmission key 31 does not protrude from the inner peripheral surface of the fitting receiving portion 22. That is, the pin joint 10 can be smoothly inserted into the box joint 20 by retracting the load transmission key 31 most into the cylinder side key groove 26. Further, when the pin joint 10 is inserted into the box joint 20, when the load transmission key 31 is protruded most from the cylinder side key groove 26, the load transmission key 31 is substantially inserted into the cylinder side key groove 26 and the shaft side key groove 16. Lock evenly. Thereby, the relative movement of the pin joint 10 and the box joint 20 in the axial center X direction is restrained.

なお、このように一組の軸側キー溝16、筒側キー溝26、及び、荷重伝達キー31によって、ピン継手10とボックス継手20との軸芯X方向の相対移動を拘束する継手構造を、以下、「一段型の継手構造」と称することにする。本実施形態に係る鋼管の継手構造は一段型であるので、筒側キー溝26が「筒側接合面23に最も近い筒側キー溝」及び「筒側接合面23から最も離れた筒側キー溝」に相当し、軸側キー溝16が「軸側接合面13に最も近い軸側キー溝」に相当する。   In addition, the joint structure that restrains the relative movement of the pin joint 10 and the box joint 20 in the axial center X direction by the pair of the shaft side key groove 16, the cylinder side key groove 26, and the load transmission key 31 in this way. Hereinafter, it will be referred to as “one-stage joint structure”. Since the joint structure of the steel pipe according to the present embodiment is a one-stage type, the cylinder side key groove 26 is “the cylinder side key groove closest to the cylinder side bonding surface 23” and “the cylinder side key furthest away from the cylinder side bonding surface 23”. The shaft-side key groove 16 corresponds to “the shaft-side key groove closest to the shaft-side joining surface 13”.

ピン継手10とボックス継手20との周方向の相対移動の拘束は、回転止めキー32によって行う。具体的には、軸側基部11の外周部のうち軸側接合面13付近を切り欠いて第一溝17を形成し、嵌受部22の外周部のうち筒側接合面23付近を切り欠いて第二溝27を形成する。第一溝17の周方向の長さと、第二溝27の周方向の長さとは一致させてある。また、第一溝17の軸芯X方向の長さと、第二溝27の軸芯X方向の長さとも一致させてある。ピン継手10をボックス継手20に挿入した状態において、第一溝17と第二溝27とを位置合わせし、第一溝17と第二溝27とに跨るように回転止めキー32を合致させ、ボルトを回転止めキー32と第一溝17に設けたネジ孔に締め込んで固定する。これにより、ピン継手10とボックス継手20との周方向の相対移動が拘束される。   The rotation of the circumferential direction relative to the pin joint 10 and the box joint 20 is restricted by the rotation stop key 32. Specifically, the first groove 17 is formed by cutting out the vicinity of the shaft-side joint surface 13 in the outer peripheral portion of the shaft-side base portion 11, and the vicinity of the tube-side joint surface 23 is cut out in the outer peripheral portion of the fitting receiving portion 22. The second groove 27 is formed. The circumferential length of the first groove 17 and the circumferential length of the second groove 27 are matched. Further, the length of the first groove 17 in the axis X direction and the length of the second groove 27 in the axis X direction are also matched. In a state where the pin joint 10 is inserted into the box joint 20, the first groove 17 and the second groove 27 are aligned, and the rotation key 32 is matched so as to straddle the first groove 17 and the second groove 27. The bolt is tightened and fixed in the screw hole provided in the rotation stop key 32 and the first groove 17. Thereby, the relative movement in the circumferential direction between the pin joint 10 and the box joint 20 is restricted.

以上のようにして、ピン継手10とボックス継手20とは挿入嵌合される。なお、軸側凹部14と筒側凸部24との係合、軸側凸部15と筒側凹部25との係合によって、ピン継手10とボックス継手20との嵌合が強化され、特に曲げに対する剛性が高まる。荷重伝達キー31の数や回転止めキー32の数は、上杭2及び下杭1の菅径等によって適宜設定すれば良い。   As described above, the pin joint 10 and the box joint 20 are inserted and fitted. Note that the engagement between the pin joint 10 and the box joint 20 is enhanced by the engagement between the shaft-side concave portion 14 and the cylinder-side convex portion 24, and the engagement between the shaft-side convex portion 15 and the cylinder-side concave portion 25, and in particular bending. The rigidity against is increased. What is necessary is just to set suitably the number of the load transmission keys 31 and the number of the rotation stop keys 32 with the diameter of the upper pile 2, the lower pile 1, etc. FIG.

〔キー溝の位置について〕
上述のような荷重伝達キー31を介しての接合において、上杭2及び下杭1に作用する引張外力は軸側キー溝16の側面又は筒側キー溝26の側面と荷重伝達キー31の側面との接触によって一方の継手から荷重伝達キー31に伝達される。即ち、軸側キー溝16、筒側キー溝26には内部せん断応力が発生する。軸側キー溝16及び筒側キー溝26には、この内部せん断応力に基づいて、継手部分を外側に開くように曲げモーメント(二次曲げ)が発生する。
[Keyway position]
In the joining through the load transmission key 31 as described above, the tensile external force acting on the upper pile 2 and the lower pile 1 is the side surface of the shaft side key groove 16 or the side surface of the cylinder side key groove 26 and the side surface of the load transmission key 31. Is transmitted to the load transmission key 31 from one joint. That is, internal shear stress is generated in the shaft side keyway 16 and the cylinder side keyway 26. Based on this internal shear stress, a bending moment (secondary bending) is generated in the shaft side key groove 16 and the cylinder side key groove 26 so as to open the joint portion outward.

発明者は、引張応力だけでなく、この曲げモーメントにも着目して試験・研究を重ね、「筒側接合面23から筒側キー溝26までの距離」を管理することにより、「筒側キー溝26に発生する引張ひずみ」を「軸側キー溝16に発生する引張ひずみ」よりも大きく設定できることを見出した。これにより、継手部分の破壊に際して、確実に筒側キー溝26を軸側キー溝16に先立って破壊させることができる。具体的には、「筒側接合面23から筒側キー溝26の先端側端面までの距離」を33mm以下にすれば、鋼管(上杭2・下杭1)の径や肉厚等に関係なく、「筒側キー溝26に発生する引張ひずみ」は「軸側キー溝16に発生する引張ひずみ」よりも大きくなった。   The inventor conducted not only the tensile stress but also this bending moment for repeated testing and research, and by managing the “distance from the cylinder side joint surface 23 to the cylinder side key groove 26”, the “cylinder side key It has been found that the “tensile strain generated in the groove 26” can be set larger than the “tensile strain generated in the shaft-side key groove 16”. Thereby, when the joint portion is broken, the cylinder side key groove 26 can be surely broken prior to the shaft side key groove 16. Specifically, if the "distance from the cylinder-side joint surface 23 to the end-side end surface of the cylinder-side keyway 26" is 33 mm or less, it relates to the diameter and thickness of the steel pipe (upper pile 2 and lower pile 1). In other words, the “tensile strain generated in the cylinder-side keyway 26” was larger than the “tensile strain generated in the shaft-side keyway 16”.

その実証結果の一例を図3に示す。この実証結果は、鋼管の径が1000mm、肉厚が10mmのときの実証結果である。図3において、縦軸は、基準としたひずみに対する軸側キー溝16におけるひずみ、又は、基準としたひずみに対する筒側キー溝26におけるひずみの比率を示し、横軸は、「筒側接合面23から筒側キー溝26の先端側端面までの距離BL4」を示す。基準ひずみは、各継手の破壊に対する安全基準であって適宜設定すれば良い。以下、便宜上、基準ひずみの値を「S」とする。即ち、図3には、「筒側接合面23から筒側キー溝26の先端側端面までの距離BL4」を変化させたときの「筒側キー溝26に発生する引張ひずみ」/Sと、同「軸側キー溝16に発生する引張ひずみ」/Sと、をプロットしている。図3から、「筒側接合面23から筒側キー溝26の先端側端面までの距離BL4」が33mm以下であれば、「筒側キー溝26に発生する引張ひずみ」は、「軸側キー溝16に発生する引張ひずみ」よりも大きいことが分かる。この結果は、他の菅径、肉厚の鋼管についても同じであった。なお、図2乃至図4から明らかなように、「筒側接合面23から筒側キー溝26の先端側端面までの距離BL4」は、「軸側接合面13から軸側キー溝16のした下杭側端面までの距離PL4」に等しい。   An example of the verification result is shown in FIG. This verification result is a verification result when the diameter of the steel pipe is 1000 mm and the wall thickness is 10 mm. In FIG. 3, the vertical axis indicates the strain in the axial keyway 16 relative to the reference strain, or the ratio of the strain in the cylindrical keyway 26 to the reference strain, and the horizontal axis indicates “cylinder-side joint surface 23. The distance BL4 "from the tip side end surface of the cylinder side keyway 26" is shown. The reference strain is a safety standard for destruction of each joint and may be set as appropriate. Hereinafter, for the sake of convenience, the reference strain value is “S”. That is, FIG. 3 shows “tensile strain generated in the cylinder side key groove 26” / S when “the distance BL4 from the cylinder side joint surface 23 to the end surface on the tip side of the cylinder side key groove 26” is changed. The “tensile strain generated in the shaft side keyway 16” / S is plotted. From FIG. 3, if “the distance BL4 from the cylinder-side joint surface 23 to the tip end face of the cylinder-side key groove 26” is 33 mm or less, “the tensile strain generated in the cylinder-side key groove 26” is “the shaft-side key It can be seen that it is larger than the “tensile strain generated in the groove 16”. This result was the same also about the other steel pipe of the diameter and thickness. As is clear from FIGS. 2 to 4, “the distance BL4 from the cylinder-side joining surface 23 to the tip-side end face of the cylinder-side key groove 26” is “the distance from the axis-side joining surface 13 to the axis-side key groove 16”. It is equal to the distance PL4 "to the lower pile side end face.

〔キー溝の位置を決定する手順〕
この結果を受けてキー溝の位置を決定する手順を策定したので、以下にその手順を説明する。
(1)ステップ1
所定の外力の作用によって筒側キー溝26に発生する引張応力を求め、筒側キー溝26の基準強度を確保しつつ筒側キー溝26が最も弱くなるように筒側キー溝の肉厚を決定する。
(2)ステップ2
他の部分の肉厚については、筒側キー溝26よりも高強度となるように、その寸法を決定する。
(3)ステップ3
「筒側接合面23から筒側キー溝26の先端側端面までの距離BL4(図4参照)」(軸側接合面13から軸側キー溝16の下杭側端面までの距離PL4(図5参照)」)を33mm以下に設定する。なお、本実施形態においては、図3に示すごとく、「筒側接合面23から筒側キー溝26の先端側端面までの距離BL4」が33mm以下の範囲において、「筒側接合面23から最も離れた筒側キー溝26に発生する引張ひずみ」は基準ひずみを超えない(比率が1.0以下)が、基準ひずみの値によっては、「筒側接合面23から最も離れた筒側キー溝26に発生する引張ひずみ」が基準ひずみを超える場合もある。この場合は、「筒側接合面23から最も離れた筒側キー溝26に発生する引張ひずみ」が基準ひずみを超えない範囲で下限値を設定する。
(4)ステップ4
その他の寸法は、以下の考え方により、ほぼ一義的に決まる。筒側キー溝26及び軸側キー溝16の軸芯X方向の幅は、荷重伝達キー31の軸芯X方向の幅によって一義的に決まる。即ち、荷重伝達キー31の軸芯X方向の幅を、荷重伝達キー31に作用する軸芯X方向のせん断応力によって荷重伝達キー31がせん断破壊しない範囲で安全率を勘案して最小の値とする。これにより、「筒側接合面23から筒側キー溝26の上杭側端面までの距離BL3(図4参照)」及び「軸側接合面13から軸側キー溝16の先端側端面までの距離PL3(図5参照)」が決まる。また、「筒側キー溝26の上杭側端面から筒側基部21と嵌受部22との段差部までの距離」は、荷重伝達キー31に対する「筒側キー溝26の上杭側端面から筒側基部21と嵌受部22との段差部までの部分」の強度を確保できる範囲で安全率を勘案して最小の値とする。これにより、「嵌受部22の全長BL2(図4参照)」及び「軸側基部11の全長(PL2)」が決まる。そして、「筒側基部21の全長BL1(図4参照)」及び「軸側基部11の全長PL1」が、上杭2及び下杭1の肉厚等との関係から一義的に決まり、また、「筒側凸部24の軸芯X方向の突出長」、「筒側凹部25の軸芯X方向の凹入長」、「軸側凹部14の軸芯X方向の凹入長」、及び、「軸側凸部15の軸芯X方向の突出長」は一定の値であるので、これにより、「ボックス継手20の全長BL」及び「ピン継手10の全長PL」も決まる。
[Procedure for determining the keyway position]
Based on this result, a procedure for determining the position of the keyway has been formulated. The procedure will be described below.
(1) Step 1
The tensile stress generated in the cylinder-side key groove 26 by the action of a predetermined external force is obtained, and the thickness of the cylinder-side key groove is set so that the cylinder-side key groove 26 becomes the weakest while ensuring the reference strength of the cylinder-side key groove 26. decide.
(2) Step 2
About the thickness of another part, the dimension is determined so that it may become higher intensity | strength than the cylinder side keyway 26. FIG.
(3) Step 3
“Distance BL4 from the cylinder-side joining surface 23 to the tip-side end face of the cylinder-side key groove 26 (see FIG. 4)” (Distance PL4 from the shaft-side joining face 13 to the lower pile-side end face of the shaft-side key groove 16 (FIG. 5) See))) is set to 33 mm or less. In the present embodiment, as shown in FIG. 3, “the distance BL4 from the cylinder-side joining surface 23 to the tip-side end face of the cylinder-side keyway 26” is within the range of 33 mm or less. The “tensile strain generated in the separated cylinder-side key groove 26” does not exceed the reference strain (the ratio is 1.0 or less), but depending on the value of the reference strain, “the cylinder-side key groove furthest away from the cylinder-side joint surface 23”. In some cases, the tensile strain generated at 26 exceeds the reference strain. In this case, the lower limit is set in a range in which “the tensile strain generated in the cylinder-side key groove 26 farthest from the cylinder-side joint surface 23” does not exceed the reference strain.
(4) Step 4
Other dimensions are determined almost uniquely by the following concept. The width in the axis X direction of the cylinder side key groove 26 and the shaft side key groove 16 is uniquely determined by the width of the load transmission key 31 in the axis X direction. That is, the width of the load transmission key 31 in the direction of the axis X is set to a minimum value in consideration of the safety factor in a range in which the load transmission key 31 is not sheared by shear stress in the direction of the axis X acting on the load transmission key 31. To do. Thereby, “distance BL3 (see FIG. 4) from the cylinder-side joining surface 23 to the upper pile-side end face of the cylinder-side key groove 26” and “distance from the shaft-side joining face 13 to the tip-side end face of the shaft-side key groove 16”. PL3 (see FIG. 5) ”is determined. In addition, “the distance from the upper pile side end surface of the cylinder side key groove 26 to the step portion between the cylinder side base portion 21 and the fitting receiving portion 22” is “from the upper pile side end surface of the cylinder side key groove 26. The minimum value is set in consideration of the safety factor within a range in which the strength of the “portion up to the step portion between the tube side base portion 21 and the fitting receiving portion 22” can be secured. Thereby, “the full length BL2 of the fitting receiving portion 22 (see FIG. 4)” and “the full length of the shaft side base portion 11 (PL2)” are determined. And "the full length BL1 of the cylinder side base 21 (see FIG. 4)" and "the full length PL1 of the shaft side base 11" are uniquely determined from the relationship with the thickness of the upper pile 2 and the lower pile 1, etc. “Projection length of the cylinder-side convex portion 24 in the axis X direction”, “depression length of the cylinder-side recess 25 in the axis X direction”, “depression length of the axis-side recess 14 in the axis X direction”, and Since the “projection length in the axis X direction of the shaft-side convex portion 15” is a constant value, this also determines “the total length BL of the box joint 20” and “the total length PL of the pin joint 10”.

この手順で設計した鋼管の継手構造は、基準強度が確保されつつ、継手部分の長さが従来よりも短くなっており、非常に経済性が良いものとなっている。   The joint structure of the steel pipe designed by this procedure is very economical because the reference strength is ensured and the length of the joint portion is shorter than the conventional one.

上述のステップ1乃至ステップ4の手順によってキー溝の位置を決定したピン継手10及びボックス継手20の一例を図8乃至図11に示す。図8,9は、引張強さが490Mpa以上の鋼管杭に対するピン継手10及びボックス継手20を示す。このような鋼管は、一般に「SKK490」と呼ばれている。図10,11は、引張強さが400Mpa以上の鋼管杭に対するピン継手10及びボックス継手20を示す。このような鋼管は、一般に「SKK400」と呼ばれている。   An example of the pin joint 10 and the box joint 20 in which the position of the key groove is determined by the above-described steps 1 to 4 is shown in FIGS. 8 and 9 show the pin joint 10 and the box joint 20 for a steel pipe pile having a tensile strength of 490 Mpa or more. Such a steel pipe is generally called “SKK490”. 10 and 11 show the pin joint 10 and the box joint 20 for a steel pipe pile having a tensile strength of 400 Mpa or more. Such a steel pipe is generally called “SKK400”.

一段型の継手構造の各部の寸法の称呼については以下のように定義した。
1.ボックス継手(図4参照)について
D :筒側基部21の上杭側の外径(上杭2及び下杭1の外径に等しい)
BD1:筒側基部21の上杭側の内径
BD2:筒側基部21の先端側の内径
BD3:嵌受部22の内径
BD4:嵌受部22の第二溝27における外径
BD5:嵌受部22の外径
BL :ボックス継手20の全長
BL1:筒側基部21の全長
BL2:嵌受部22の全長
BL3:筒側接合面23から筒側キー溝26の上杭側端面までの距離
BL4:筒側接合面23から筒側キー溝26の先端側端面までの距離
2.ピン継手(図5参照)について
D :軸側基部11の下杭側の外径(上杭2及び下杭1の外径に等しい)
PD1:軸側基部11の下杭側の内径
PD2:軸側基部11の先端側の内径
PD3:嵌挿部12の軸側凸部15における内径
PD4:嵌挿部12の外径
PD5:軸側基部11の先端側の外径
PL :ピン継手10の全長
PL1:嵌挿部12の全長
PL2:軸側基部11の全長
PL3:軸側接合面13から軸側キー溝16の先端側端面までの距離
PL4:軸側接合面13から軸側キー溝16の下杭側端面までの距離
The designation of the dimensions of each part of the one-stage joint structure was defined as follows.
1. About box joint (see FIG. 4) D: Outer diameter of upper side of cylinder side base 21 (equal to outer diameter of upper pile 2 and lower pile 1)
BD1: Inner diameter on the upper pile side of the cylinder side base 21 BD2: Inner diameter on the tip side of the cylinder side base 21 BD3: Inner diameter of the fitting receiving part BD4: Outer diameter in the second groove 27 of the fitting receiving part BD5: Fitting receiving part 22: outer diameter BL: full length of box joint 20 BL1: full length of tube side base 21 BL2: full length of fitting receiving portion BL3: distance from tube side joint surface 23 to upper pile side end surface of tube side keyway 26 BL4: 1. Distance from the tube-side joining surface 23 to the tip-side end surface of the tube-side keyway 26 About the pin joint (see FIG. 5) D: The outer diameter of the lower pile side of the shaft-side base 11 (equal to the outer diameter of the upper pile 2 and the lower pile 1)
PD1: Inner diameter on the lower pile side of the shaft-side base 11 PD2: Inner diameter on the tip side of the shaft-side base 11 PD3: Inner diameter of the shaft-side convex portion 15 of the fitting insertion portion 12 PD4: Outer diameter of the fitting insertion portion 12 PD5: Shaft side Outer diameter on the distal end side of the base portion PL: Full length of the pin joint 10 PL1: Total length of the insertion portion 12 PL2: Total length of the shaft side base portion 11 PL3: From the shaft side joining surface 13 to the distal end side end surface of the shaft side keyway 16 Distance PL4: Distance from the shaft side joint surface 13 to the lower pile side end surface of the shaft side keyway 16

なお、図6,図7に示すごとく、嵌挿部12の外周部に、軸芯Xの周方向に沿って二つの軸側キー溝16を周設すると共に、嵌受部22の内周部に、ボックス継手20にピン継手10を挿入したときに軸側キー溝16と対応する二つの筒側キー溝26を周設し、それぞれの軸側キー溝16と筒側キー溝26とが協働して長方形断面の二つの溝を構成する「二段型の継手構造」においては、さらに以下のように定義する。二つの軸側キー溝16とは、軸側接合面13に近い筒側キー溝16aと、軸側接合面13から離れた軸側キー溝16bとを示す(図7参照)。また、二つの筒側キー溝26とは、筒側接合面23に近い筒側キー溝26aと、筒側接合面23から離れた26bとを示す(図6参照)。二段型の継手構造においては、筒側キー溝26aが「筒側接合面23に最も近い筒側キー溝」に相当し、筒側キー溝26bが「筒側接合面23から最も離れた筒側キー溝」に相当し、軸側キー溝16aが「軸側接合面13に最も近い軸側キー溝」に相当する。   As shown in FIGS. 6 and 7, two shaft-side key grooves 16 are provided in the outer peripheral portion of the fitting insertion portion 12 along the circumferential direction of the shaft core X, and the inner peripheral portion of the fitting receiving portion 22. In addition, when the pin joint 10 is inserted into the box joint 20, two cylinder side key grooves 26 corresponding to the shaft side key groove 16 are provided around the shaft side key groove 16 and the cylinder side key groove 26. In the "two-stage joint structure" that works to form two grooves having a rectangular cross section, it is further defined as follows. The two shaft side key grooves 16 indicate a cylinder side key groove 16a close to the shaft side joint surface 13 and a shaft side key groove 16b separated from the shaft side joint surface 13 (see FIG. 7). The two cylinder-side key grooves 26 indicate a cylinder-side key groove 26a close to the cylinder-side joining surface 23 and 26b separated from the cylinder-side joining surface 23 (see FIG. 6). In the two-stage joint structure, the cylinder-side key groove 26a corresponds to “a cylinder-side key groove closest to the cylinder-side joining surface 23”, and the cylinder-side key groove 26b “a cylinder farthest from the cylinder-side joining surface 23”. The side keyway 16a corresponds to the “side keyway” and the shaft side keyway 16a corresponds to the “side keyway closest to the shaft side joint surface 13”.

1.ボックス継手(図6参照)について
BL3:筒側接合面23から、筒側接合面23に近い筒側キー溝26aの上杭側端面までの距離
BL4:筒側接合面23から、筒側接合面23に近い筒側キー溝26aの先端側端面までの距離
BL5:筒側接合面23から、筒側接合面23から離れた筒側キー溝26bの上杭側端面までの距離
BL6:筒側接合面23から、筒側接合面23から離れた筒側キー溝26bの先端側端面までの距離
2.ピン継手(図7参照)について
PL3:軸側接合面13から、軸側接合面13に近い軸側キー溝16aの上杭側端面までの距離
PL4:軸側接合面13から、軸側接合面13に近い軸側キー溝16aの先端側端面までの距離
PL5:軸側接合面13から、軸側接合面13から離れた軸側キー溝16bの上杭側端面までの距離
PL6:軸側接合面13から、軸側接合面13から離れた軸側キー溝16bの先端側端面までの距離
1. Box joint (see FIG. 6) BL3: Distance from the cylinder side joint surface 23 to the upper pile side end face of the cylinder side keyway 26a close to the cylinder side joint surface 23 BL4: Tube side joint surface from the cylinder side joint surface 23 BL5: Distance from the cylinder-side joining surface 23 to the upper pile-side end face of the cylinder-side key groove 26b away from the cylinder-side joining surface 23 BL6: Tube-side joining 1. Distance from the surface 23 to the end surface on the front end side of the cylinder side key groove 26b away from the cylinder side joint surface 23 About the pin joint (see FIG. 7) PL3: Distance from the shaft-side joint surface 13 to the upper pile-side end surface of the shaft-side keyway 16a close to the shaft-side joint surface PL4: The shaft-side joint surface 13 to the shaft-side joint surface PL5: Distance from the shaft-side joint surface 13 to the upper pile-side end surface of the shaft-side keyway 16b away from the shaft-side joint surface 13 PL6: Shaft-side joint The distance from the surface 13 to the end surface on the front end side of the shaft-side keyway 16b away from the shaft-side joint surface 13

図8乃至図11において、BL5、BL6、PL5、及び、PL6の記載があるものが二段型の継手構造であり、それ以外は一段型の継手構造である。これらに開示する一段型の継手構造及び二段型の継手構造は全て、「筒側接合面23から最も離れた筒側キー溝26に発生する引張ひずみ」が、「軸側接合面13に最も近い軸側キー溝16に発生する引張ひずみ」よりも大きくなる。   In FIG. 8 to FIG. 11, the description of BL5, BL6, PL5, and PL6 is a two-stage joint structure, and the others are single-stage joint structures. In all of the one-stage joint structure and the two-stage joint structure disclosed in these figures, the “tensile strain generated in the cylinder-side key groove 26 farthest from the cylinder-side joint surface 23” It becomes larger than the “tensile strain generated in the near shaft side keyway 16”.

なお、本実施形態においては、一段型の継手構造の実証結果と、一段型の継手構造及び二段型の継手構造の一例と、を示したが、軸側キー溝16及び筒側キー溝26を三組以上備えていても、同様に、筒側接合面23から、筒側接合面23に最も近い筒側キー溝26までの距離を33mm以下とすれば、「筒側接合面23から最も離れた筒側キー溝26に発生する引張ひずみ」が、「軸側接合面13に最も近い軸側キー溝16に発生する引張ひずみ」よりも大きくなることが力学的に実証されている。これにより、継手部分の破壊に際して、確実に「筒側接合面23から最も離れた筒側キー溝26」を、「軸側接合面13に最も近い軸側キー溝16」に先立って破壊させることができる。   In addition, in this embodiment, although the verification result of the one-stage type joint structure and an example of the one-stage type joint structure and the two-stage type joint structure are shown, the shaft side key groove 16 and the cylinder side key groove 26 are shown. If the distance from the cylinder side joint surface 23 to the cylinder side key groove 26 closest to the cylinder side joint surface 23 is 33 mm or less, “the most from the cylinder side joint surface 23” It has been mechanically demonstrated that the “tensile strain generated in the separated cylinder-side key groove 26” is larger than the “tensile strain generated in the shaft-side key groove 16 closest to the shaft-side joint surface 13”. Thus, when the joint portion is broken, the “cylinder side key groove 26 farthest from the cylinder side joint surface 23” is surely broken prior to the “shaft side key groove 16 closest to the shaft side joint surface 13”. Can do.

〔別実施形態〕
上述の実施形態においては、筒側キー溝26に配設された荷重伝達キー31が、セットボルト30の操作により軸側キー溝16と筒側キー溝26とに跨って係合し、ピン継手10とボックス継手20との相対移動が拘束される例を示したが、これに限られるものではない。ピン継手10とボックス継手20との相対移動を拘束する構成の別実施形態を、図12,図13に基づいて説明する。キー部材の構成以外は、上述の実施形態と同じ構成であるので説明はしない。また、上述の実施形態と同じ構成の箇所には同じ符号を付す。
[Another embodiment]
In the above-described embodiment, the load transmission key 31 disposed in the cylinder-side key groove 26 is engaged across the shaft-side key groove 16 and the cylinder-side key groove 26 by the operation of the set bolt 30, and the pin joint Although the example which restrains the relative movement of 10 and the box joint 20 was shown, it is not restricted to this. Another embodiment of a configuration that restrains relative movement between the pin joint 10 and the box joint 20 will be described with reference to FIGS. 12 and 13. Except for the configuration of the key member, the configuration is the same as that of the above-described embodiment, and will not be described. In addition, the same reference numerals are given to the same components as those in the above-described embodiment.

図12に示すごとく、ボックス継手20の外側面に、筒側キー溝26に連通するキー挿入口132を複数開口してある。左右一対の円弧状の荷重伝達キー131を軸芯Xの周方向に沿って、キー挿入口132から夫々軸芯X周りの左右方向に差し込む。荷重伝達キー131の軸芯X方向の断面形状は、軸側キー溝16と筒側キー溝26とを合わせた溝の軸芯X方向の断面形状に合わせてある。したがって、図13に示すごとく、荷重伝達キー131が軸側キー溝16と筒側キー溝26とに跨って係合する。そして、特に図示はしないが、左右一対の荷重伝達キー131同士を突っ張る等して、荷重伝達キー131が軸側キー溝16及び筒側キー溝26から抜け出さないようにする。この結果、ピン継手10とボックス継手20との相対移動が拘束される。   As shown in FIG. 12, a plurality of key insertion ports 132 communicating with the cylinder side key groove 26 are opened on the outer surface of the box joint 20. A pair of left and right arc-shaped load transmission keys 131 are inserted in the left and right directions around the axis X from the key insertion port 132 along the circumferential direction of the axis X. The cross-sectional shape in the axis X direction of the load transmission key 131 is matched to the cross-sectional shape in the axis X direction of the groove formed by combining the shaft side key groove 16 and the cylinder side key groove 26. Therefore, as shown in FIG. 13, the load transmission key 131 is engaged across the shaft side key groove 16 and the cylinder side key groove 26. Although not particularly illustrated, the load transmission key 131 is prevented from coming out of the shaft side key groove 16 and the cylinder side key groove 26 by stretching the pair of left and right load transmission keys 131. As a result, the relative movement between the pin joint 10 and the box joint 20 is restricted.

本発明に係る鋼管の継手構造は、鋼管杭だけでなく、鋼管矢板等、二つの鋼管を長手方向に互いに抜き差し自在に接合する継手構造に適用可能である。   The steel pipe joint structure according to the present invention is applicable not only to steel pipe piles but also to a joint structure in which two steel pipes such as a steel pipe sheet pile are joined in a longitudinal direction so as to be freely inserted and removed.

1 下杭(二つの鋼管)
2 上杭(二つの鋼管)
10 ピン継手(軸状継手部)
11 軸側基部
12 嵌挿部
13 軸側接合面
14 軸側凹部
15 軸側凸部
16 軸側キー溝
16a 軸側キー溝
16b 軸側キー溝
20 ボックス継手(筒状継手部)
21 筒側基部
22 嵌受部
23 筒側接合面
24 筒側凸部
25 筒側凹部
26 筒側キー溝
26a 筒側キー溝
26b 筒側キー溝
31 荷重伝達キー(キー部材)
131 荷重伝達キー(キー部材)
1 Lower pile (two steel pipes)
2 Upper pile (two steel pipes)
10 pin joint (shaft joint)
DESCRIPTION OF SYMBOLS 11 Shaft side base part 12 Insertion part 13 Shaft side joint surface 14 Shaft side recessed part 15 Shaft side convex part 16 Shaft side keyway 16a Shaft side keyway 16b Shaft side keyway 20 Box joint (tubular joint part)
DESCRIPTION OF SYMBOLS 21 Cylinder side base part 22 Fitting part 23 Cylinder side joint surface 24 Cylinder side convex part 25 Cylinder side recessed part 26 Cylinder side keyway 26a Cylinder side keyway 26b Cylinder side keyway 31 Load transmission key (key member)
131 Load transmission key (key member)

Claims (2)

二つの鋼管を長手方向に互いに抜き差し不能に接合する鋼管の継手構造であって、
前記二つの鋼管のうちの一方の鋼管の先端部に固着された軸状継手部と、
前記二つの鋼管のうちの他方の鋼管の先端部に固着され、前記軸状継手部が挿入嵌合される筒状継手部と、を備え、
前記軸状継手部に、前記一方の鋼管に固着される軸側基部、前記軸側基部から延設されると共に外径が前記軸側基部よりも小さい嵌挿部、前記軸側基部と前記嵌挿部との段差部である軸側接合面、前記軸側接合面に周設された軸側凹部、及び、前記嵌挿部の先端部に周設された軸側凸部を備え、
前記筒状継手部に、前記他方の鋼管に固着される筒側基部、前記筒側基部から延設されると共に内径が前記筒側基部よりも大きく、前記嵌挿部を受け入れる嵌受部、前記嵌受部の先端部に設けられ、前記軸側接合面と接する筒側接合面、前記筒側接合面に周設され、前記軸側凹部と係合する筒側凸部、及び、前記筒側基部と前記嵌受部との段差部に周設され、前記軸側凸部と係合する筒側凹部を備え、
前記嵌挿部の外周部に、一以上の軸側キー溝を周設し、かつ、前記嵌受部の内周部に、前記軸状継手部を前記筒状継手部に挿入したときに前記軸側キー溝と対応する一以上の筒側キー溝を周設すると共に、
互いに対応する前記軸側キー溝と前記筒側キー溝とに跨って係合するように配設されて、少なくとも前記長手方向における前記軸状継手部と前記筒状継手部との相対移動を拘束する一以上のキー部材をさらに備え、
前記軸状継手部及び前記筒状継手部に外力が作用したときに前記筒側接合面から最も離れた前記筒側キー溝に発生する引張ひずみが、前記軸状継手部及び前記筒状継手部に前記外力が作用したときに前記軸側接合面に最も近い前記軸側キー溝に発生する引張ひずみよりも大きくなるように、前記筒側接合面から、前記筒側接合面に最も近い前記筒側キー溝までの距離を設定してある鋼管の継手構造。
A steel pipe joint structure in which two steel pipes are joined together in the longitudinal direction so that they cannot be inserted and removed,
A shaft-like joint fixed to the tip of one of the two steel pipes;
A tubular joint part fixed to the tip of the other steel pipe of the two steel pipes, and the shaft-like joint part being inserted and fitted therewith,
A shaft-side base fixed to the one steel pipe, an insertion portion extending from the shaft-side base and having an outer diameter smaller than the shaft-side base, the shaft-side base and the fitting A shaft-side joint surface which is a stepped portion with the insertion portion, a shaft-side concave portion provided around the shaft-side joint surface, and a shaft-side convex portion provided around the distal end portion of the fitting insertion portion,
A tube-side base fixed to the other steel pipe in the tubular joint, a fitting receiving portion that extends from the tube-side base and has an inner diameter larger than the tube-side base, and receives the fitting insertion portion; A cylinder side joint surface that is provided at a distal end portion of the fitting receiving portion and is in contact with the shaft side joint surface; a cylinder side convex portion that is provided around the cylinder side joint surface and engages with the shaft side concave portion; and the cylinder side A cylinder-side concave portion that is provided around a step portion between the base portion and the fitting receiving portion and engages with the shaft-side convex portion,
One or more shaft-side key grooves are provided around the outer peripheral portion of the fitting insertion portion, and the shaft-like joint portion is inserted into the cylindrical joint portion on the inner peripheral portion of the fitting receiving portion. Around one or more cylinder side key grooves corresponding to the shaft side key groove,
The shaft-side keyway and the cylinder-side keyway are arranged to engage with each other and restrain relative movement between at least the shaft-like joint portion and the tubular joint portion in the longitudinal direction. One or more key members that
When an external force is applied to the shaft-like joint portion and the cylindrical joint portion, tensile strain generated in the cylinder-side keyway that is farthest from the tube-side joint surface is caused by the shaft-like joint portion and the cylindrical joint portion. The cylinder closest to the cylinder side joint surface from the cylinder side joint surface is larger than the tensile strain generated in the shaft side key groove closest to the shaft side joint surface when the external force is applied to the cylinder side joint surface. Steel pipe joint structure with a set distance to the side keyway.
前記筒側接合面から、前記筒側接合面に最も近い前記筒側キー溝の先端側端面までの距離を、33mm以下に設定してある請求項1に記載の鋼管の継手構造。   The steel pipe joint structure according to claim 1, wherein a distance from the tube side joint surface to a tip side end surface of the tube side key groove closest to the tube side joint surface is set to 33 mm or less.
JP2011012216A 2011-01-24 2011-01-24 Steel pipe joint structure Active JP5623923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012216A JP5623923B2 (en) 2011-01-24 2011-01-24 Steel pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012216A JP5623923B2 (en) 2011-01-24 2011-01-24 Steel pipe joint structure

Publications (2)

Publication Number Publication Date
JP2012154048A true JP2012154048A (en) 2012-08-16
JP5623923B2 JP5623923B2 (en) 2014-11-12

Family

ID=46836070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012216A Active JP5623923B2 (en) 2011-01-24 2011-01-24 Steel pipe joint structure

Country Status (1)

Country Link
JP (1) JP5623923B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183388A (en) * 2014-03-20 2015-10-22 株式会社クボタ Steel pipe connection structure and steel pipe connection method
JP2016014317A (en) * 2015-10-27 2016-01-28 株式会社クボタ Steel pipe connection structure and steel pipe connection method
JP2016065392A (en) * 2014-09-25 2016-04-28 新日鐵住金株式会社 Rotation suppression structure of pile joint
JP2017172329A (en) * 2017-07-10 2017-09-28 株式会社クボタ Steel pipe connection structure
JP2018003431A (en) * 2016-07-01 2018-01-11 Jfeスチール株式会社 Screw joint having inverse rotation prevention mechanism
JP2018123506A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Screw joint with mechanism to prevent inverse rotation
JP2018178697A (en) * 2017-04-18 2018-11-15 株式会社クボタ Steel pipe connection mechanism
JP2019085866A (en) * 2017-11-01 2019-06-06 株式会社クボタ Steel pipe connection structure
JP2019090233A (en) * 2017-11-14 2019-06-13 日本製鉄株式会社 Joint structure of steel pipe pile
JP2020020113A (en) * 2018-07-30 2020-02-06 株式会社クボタ Protection cap detachable on steel pipe pile and steel pile sheet plate
JP2022097654A (en) * 2018-07-30 2022-06-30 株式会社クボタ Protective cap attachable/detachable to/from steel pipe pile and steel pipe sheet pile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234333A (en) * 1998-12-15 2000-08-29 Kubota Corp Vertically connecting device for steel pipe sheet pile
JP2000319874A (en) * 1999-03-05 2000-11-21 Kubota Corp Columnar body
JP2004211548A (en) * 1999-03-05 2004-07-29 Kubota Corp Columnar body
JP2010059789A (en) * 1999-03-05 2010-03-18 Kubota Corp Columnar body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234333A (en) * 1998-12-15 2000-08-29 Kubota Corp Vertically connecting device for steel pipe sheet pile
JP2000319874A (en) * 1999-03-05 2000-11-21 Kubota Corp Columnar body
JP2004211548A (en) * 1999-03-05 2004-07-29 Kubota Corp Columnar body
JP2010059789A (en) * 1999-03-05 2010-03-18 Kubota Corp Columnar body

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183388A (en) * 2014-03-20 2015-10-22 株式会社クボタ Steel pipe connection structure and steel pipe connection method
JP2016065392A (en) * 2014-09-25 2016-04-28 新日鐵住金株式会社 Rotation suppression structure of pile joint
JP2016014317A (en) * 2015-10-27 2016-01-28 株式会社クボタ Steel pipe connection structure and steel pipe connection method
JP2018003431A (en) * 2016-07-01 2018-01-11 Jfeスチール株式会社 Screw joint having inverse rotation prevention mechanism
JP2018123506A (en) * 2017-01-31 2018-08-09 Jfeスチール株式会社 Screw joint with mechanism to prevent inverse rotation
JP7199152B2 (en) 2017-04-18 2023-01-05 株式会社クボタ Steel pipe connecting mechanism
JP2018178697A (en) * 2017-04-18 2018-11-15 株式会社クボタ Steel pipe connection mechanism
JP2017172329A (en) * 2017-07-10 2017-09-28 株式会社クボタ Steel pipe connection structure
JP7138536B2 (en) 2017-11-01 2022-09-16 株式会社クボタ Steel pipe connection structure
JP2019085866A (en) * 2017-11-01 2019-06-06 株式会社クボタ Steel pipe connection structure
JP2019090233A (en) * 2017-11-14 2019-06-13 日本製鉄株式会社 Joint structure of steel pipe pile
JP2020020113A (en) * 2018-07-30 2020-02-06 株式会社クボタ Protection cap detachable on steel pipe pile and steel pile sheet plate
JP2022097654A (en) * 2018-07-30 2022-06-30 株式会社クボタ Protective cap attachable/detachable to/from steel pipe pile and steel pipe sheet pile
JP7145677B2 (en) 2018-07-30 2022-10-03 株式会社クボタ Detachable protective cap for steel pipe piles and steel pipe sheet piles
JP7301197B2 (en) 2018-07-30 2023-06-30 株式会社クボタ Detachable protective cap for steel pipe piles and steel pipe sheet piles

Also Published As

Publication number Publication date
JP5623923B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5623923B2 (en) Steel pipe joint structure
JP6374250B2 (en) Joining reinforcement jig
KR102065742B1 (en) Connector of steel piles
JP2009138382A (en) Steel pipe pile connecting structure
JP5762853B2 (en) Steel pipe joint structure
JP5619975B2 (en) Pile joint structure
JP6370284B2 (en) Steel pipe connection structure and steel pipe connection method
US20180119380A1 (en) Joint mechanism and connection method for steel pipe
JP5916780B2 (en) Steel pipe connection structure and steel pipe connection method
JP4943379B2 (en) Steel pipe joint structure
JP6112918B2 (en) Pipe connection structure for civil works
JP2019090301A (en) Shield segment joint member
JP2004270204A (en) Joint structure of steel pipe and joining method of steel pipe
JP7427197B2 (en) Pipe connection structure
JP2016050606A (en) Steel pipe pile joint structure
KR20220128266A (en) Connection structure of helical pile and extension pile and construction method using the same
JP2013209857A (en) Joint structure of steel pipe pile and pile head as well as method for constructing concrete foundation using the joint structure
JP2007056587A (en) Pile connecting structure
JP2010090570A (en) Pile head joining structure
JP6210538B2 (en) Coupling device
JP6641907B2 (en) Steel pipe coupler structure
JP5892439B2 (en) Pile-free welded joint
JP6547775B2 (en) Screw joint with reverse rotation prevention mechanism
KR101562167B1 (en) Stepped expansion device and PHC pile with the device
JP2004293035A (en) Joint structure of steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5623923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150