JP2012153898A - Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board - Google Patents

Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board Download PDF

Info

Publication number
JP2012153898A
JP2012153898A JP2012083808A JP2012083808A JP2012153898A JP 2012153898 A JP2012153898 A JP 2012153898A JP 2012083808 A JP2012083808 A JP 2012083808A JP 2012083808 A JP2012083808 A JP 2012083808A JP 2012153898 A JP2012153898 A JP 2012153898A
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
clad laminate
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012083808A
Other languages
Japanese (ja)
Inventor
Masato Miyatake
正人 宮武
Akira Murai
曜 村井
Ryoichi Uchimura
亮一 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012083808A priority Critical patent/JP2012153898A/en
Publication of JP2012153898A publication Critical patent/JP2012153898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition which has a black external appearance, does not cause the lowering of the glass transition point (Tg) as a printed wiring board and does not decrease electrical insulating properties and reliability, and is suitable in producing a laminate enabling the examination of external appearance by the system of detecting fluorescence, a prepreg, a metal-clad laminate and a printed wiring board.SOLUTION: The black thermosetting resin composition including a dye comprises 0.05-5 mass% of an anthraquinone-based compound as the dye, and the prepreg, the metal-clad laminate and the printed wiring board are disclosed.

Description

本発明は、熱硬化性樹脂組成物、および該組成物を用いて得られた電気・電子機器等に用いられる、プリプレグ、金属張り積層板及びプリント配線板に関する。   The present invention relates to a thermosetting resin composition, and a prepreg, a metal-clad laminate, and a printed wiring board, which are used in electrical / electronic devices obtained using the composition.

近年、半導体搭載用パッケージなどの用途に用いられるプリント配線板の基板は、黒色を基調とするものが主流となっている。
それは、ワイヤボンディング等の接続の良否識別が容易になること、及び露光工程において、紫外線が反対面に透過して反対面にあるレジストが感光して、いわゆる裏ぼけを起こすのを防ぐためである。
基板を黒色とする手法としては、積層板を製造するためのプリプレグに黒色の繊維基材を用いる方法や、熱硬化性樹脂組成物にカーボンブラック、スピリットブラックなどのカーボン系顔料を配合する手法が知られている。
In recent years, a substrate of a printed wiring board used for applications such as a package for mounting a semiconductor is mainly based on black.
This is because it makes it easy to identify the quality of connections such as wire bonding, and prevents exposure of the resist on the opposite surface through exposure of ultraviolet rays to the opposite surface in the exposure process, so-called blurring. .
As a method of making the substrate black, there are a method of using a black fiber base material for a prepreg for manufacturing a laminate, and a method of blending a carbon-based pigment such as carbon black or spirit black into a thermosetting resin composition. Are known.

ところが、黒色の繊維基材を用いて基板を黒色とする方法では、繊維基材が十分な黒さを有していない場合があり、外観上の問題があった。
また、熱硬化性樹脂組成物にカーボンブラック、スピリットブラック等のカーボン系顔料を配合する手法では、カーボン自体が導電性を有するために、基板の絶縁性低下、及び電食による回路間の絶縁低下を生じやすかった。
このため、プリント配線板としての信頼性(以下、単に信頼性とする。)が低下するという問題があった。
また、有機系黒色染料としては、金属錯塩アゾ系染料(例えば、特許文献1参照)などがある。
しかしながら、金属錯塩アゾ系染料は樹脂の硬化反応を阻害するため、樹脂硬化物のガラス転移点(Tg)が低下するといった問題が発生する。
また、金属錯体中の金属イオンが必ずしも安定ではなく、電食による回路間の絶縁低下を発生しやすく、このためプリント配線板としての信頼性が低下するという問題があった。
However, in the method of making the substrate black using a black fiber base material, the fiber base material may not have sufficient blackness, and there is a problem in appearance.
In addition, in the method of blending carbon pigments such as carbon black and spirit black into the thermosetting resin composition, since the carbon itself is conductive, the insulation of the substrate is lowered, and the insulation between the circuits is reduced due to electrolytic corrosion. It was easy to produce.
For this reason, there has been a problem that reliability as a printed wiring board (hereinafter simply referred to as reliability) is lowered.
Examples of organic black dyes include metal complex azo dyes (see, for example, Patent Document 1).
However, since the metal complex salt azo dye inhibits the curing reaction of the resin, there arises a problem that the glass transition point (Tg) of the cured resin is lowered.
Further, the metal ions in the metal complex are not always stable, and the insulation between circuits due to electrolytic corrosion is likely to occur, which causes a problem that the reliability as a printed wiring board is lowered.

特公平7−45581号公報Japanese Examined Patent Publication No. 7-45581

本発明は上記従来技術の問題点を解消し、外観が黒色であり、プリント配線板としてガラス転移点(Tg)の低下を起こさず、かつ絶縁性及び信頼性の低下がなく、蛍光を検知する方式による外観検査が可能な積層板を製造するために好適な熱硬化性樹脂組成物、該組成物を用いて得られたプリプレグ、金属張り積層板およびプリント配線板を提供することを目的とするものである。   The present invention solves the above-mentioned problems of the prior art, has a black appearance, does not cause a decrease in the glass transition point (Tg) as a printed wiring board, and does not cause a decrease in insulation and reliability, and detects fluorescence. It is an object to provide a thermosetting resin composition suitable for producing a laminate capable of visual inspection by a method, a prepreg obtained by using the composition, a metal-clad laminate, and a printed wiring board. Is.

本発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、熱硬化性樹脂組成物にアントラキノン系染料を配合した時に、プリント配線板としてガラス転移点(Tg)の低下を起こさず、かつ絶縁性及び信頼性の低下がなく、蛍光を検知する方式による外観検査が可能な黒色の積層板とすることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have caused a decrease in the glass transition point (Tg) as a printed wiring board when an anthraquinone dye is added to the thermosetting resin composition. In addition, the present inventors have found that a black laminate can be obtained that does not deteriorate in insulation and reliability and can be visually inspected by a method of detecting fluorescence. The present invention has been completed.

本発明は、以下に関する。
1.染料を含有してなる黒色の熱硬化性樹脂組成物において、染料としてアントラキノン系化合物を0.05〜5質量%含むことを特徴とする熱硬化性樹脂組成物、
2.樹脂組成物中の樹脂成分全量に対して、無機充填剤を20〜70質量%含む、上記1に記載の熱硬化性樹脂組成物、
3.上記1または2に記載の熱硬化性樹脂組成物を有機溶媒に溶解又は分散したワニスを基材に含浸し、乾燥してなるプリプレグ、
4.上記3に記載のプリプレグを積層し、硬化させて得られた金属張り積層板、
5.上記4に記載の金属張り積層板を使用して作製されたプリント配線板
The present invention relates to the following.
1. A black thermosetting resin composition containing a dye, the thermosetting resin composition comprising 0.05 to 5% by mass of an anthraquinone compound as a dye,
2. The thermosetting resin composition according to 1 above, containing 20 to 70% by mass of an inorganic filler with respect to the total amount of the resin component in the resin composition,
3. A prepreg formed by impregnating a base material with a varnish obtained by dissolving or dispersing the thermosetting resin composition according to 1 or 2 above in an organic solvent,
4). A metal-clad laminate obtained by laminating and curing the prepreg described in 3 above,
5. Printed wiring board produced using the metal-clad laminate as described in 4 above

外観が黒色であり、プリント配線板としてガラス転移点(Tg)の低下を起こさず、かつ絶縁性及び信頼性の低下がなく、蛍光を検知する方式による外観検査が可能な積層板を製造するために好適な熱硬化性樹脂組成物、該組成物を用いて得られたプリプレグ、金属張り積層板およびプリント配線板を提供することが可能となった。   To produce a laminated board that has a black appearance, does not cause a decrease in glass transition point (Tg) as a printed wiring board, does not deteriorate in insulation and reliability, and can be inspected by a fluorescence detection method. It is possible to provide a thermosetting resin composition suitable for the above, a prepreg obtained using the composition, a metal-clad laminate, and a printed wiring board.

本発明の熱硬化性樹脂組成物は、染料を含有してなり、かつ該染料としてアントラキノン系化合物を0.05〜5質量%含むことを特徴とする。
以下、本発明の熱硬化性樹脂組成物について詳述する。
The thermosetting resin composition of the present invention contains a dye and contains 0.05 to 5% by mass of an anthraquinone compound as the dye.
Hereinafter, the thermosetting resin composition of the present invention will be described in detail.

本発明の熱硬化性樹脂組成物のベースとなる熱硬化性樹脂としては、積層板製造において汎用されている熱硬化性樹脂を用いることができ、特に制限はない。
例えば、エポキシ樹脂、ビスマレイミド樹脂、ポリイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂などが挙げられる。
なかでも、エポキシ樹脂が好ましく用いられる。
エポキシ樹脂としては、分子内に2個以上のエポキシ基を有する化合物であればよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能フェノール類のグリシジルエーテル化合物、二官能アルコール類のグリシジルエーテル化合物、およびそれらの水素添加物等が挙げられる。
これらのエポキシ樹脂を単独で用いても、2種以上を併用してもよい。
また、硬化後の樹脂組成物のガラス転移点(Tg)や耐熱性を向上するためには、分子内に3個以上のエポキシ基を有するエポキシ樹脂を用いることが好ましい。
このような樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等が挙げられる。
As a thermosetting resin used as the base of the thermosetting resin composition of this invention, the thermosetting resin currently used widely in laminated board manufacture can be used, and there is no restriction | limiting in particular.
For example, an epoxy resin, a bismaleimide resin, a polyimide resin, a phenol resin, an unsaturated polyester resin, and the like can be given.
Among these, an epoxy resin is preferably used.
The epoxy resin may be a compound having two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolak type Epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, dicyclopentadiene type epoxy resin, glycidyl ether compound of polyfunctional phenols, glycidyl ether compound of bifunctional alcohols, and hydrogenated products thereof Can be mentioned.
These epoxy resins may be used alone or in combination of two or more.
Moreover, in order to improve the glass transition point (Tg) and heat resistance of the cured resin composition, it is preferable to use an epoxy resin having three or more epoxy groups in the molecule.
Examples of such resins include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, bisphenol F novolak type epoxy resins, and the like.

熱硬化性樹脂としてエポキシ樹脂を用いた時には、エポキシ樹脂を硬化させるために、硬化剤及び硬化促進剤を配合することができる。
硬化剤としては、従来公知の種々のものを使用することができ、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、無水フタル酸、無水ピロメリット酸、フェノールノボラック樹脂やクレゾールノボラック樹脂等の多官能性フェノール樹脂等を挙げることができる。
これら硬化剤は、何種類か併用することも可能である。
また、硬化剤は、用いられるエポキシ樹脂の量に応じて必要とされる範囲で配合される。
硬化剤は、エポキシ樹脂のエポキシ基1当量に対して、硬化剤の官能基が、通常、0.8〜1.2当量の範囲、好ましくは0.9〜1.1当量の範囲、より好ましくは0.95〜1.05当量の範囲となるように配合される。
硬化剤の官能基の当量が上記範囲内であると、ガラス転移点(Tg)が上昇し、吸湿性がないため、はんだ耐熱性が向上する。
すなわち、硬化剤の官能基が0.8当量未満の場合、及び1.2当量を超えるいずれの場合も、ガラス転移点(Tg)が低くなり、吸湿しやすくなるため、はんだ耐熱性が低下する傾向にある。
When an epoxy resin is used as the thermosetting resin, a curing agent and a curing accelerator can be blended in order to cure the epoxy resin.
As the curing agent, various conventionally known ones can be used, and polyfunctional phenol resins such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, phenol novolac resin and cresol novolac resin. Etc.
Several kinds of these curing agents can be used in combination.
Moreover, a hardening | curing agent is mix | blended in the required range according to the quantity of the epoxy resin used.
In the curing agent, the functional group of the curing agent is usually in the range of 0.8 to 1.2 equivalents, preferably in the range of 0.9 to 1.1 equivalents, more preferably to 1 equivalent of the epoxy group of the epoxy resin. Is blended in a range of 0.95 to 1.05 equivalents.
When the equivalent of the functional group of the curing agent is within the above range, the glass transition point (Tg) is increased, and there is no hygroscopicity, so that the solder heat resistance is improved.
That is, in the case where the functional group of the curing agent is less than 0.8 equivalent and in excess of 1.2 equivalent, the glass transition point (Tg) is lowered and moisture absorption is facilitated, so that the solder heat resistance is lowered. There is a tendency.

また、硬化促進剤としては、従来公知のものを種々使用することができ、特に制限はない。
例えば、熱硬化性樹脂としてエポキシ樹脂を用いる場合には、硬化促進剤としてはイミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩などが挙げられる。
これら硬化促進剤は、単独で使用してもよく、2種類以上を併用してもよい。
この硬化剤は、用いられるエポキシ樹脂の量に応じて必要とされる範囲で配合される。
該硬化促進剤は、エポキシ樹脂のエポキシ基100質量部に対して、通常、0.01〜5質量部程度、好ましくは0.01〜2質量部、より好ましくは0.05〜1質量部の範囲で配合される。
Moreover, as a hardening accelerator, a conventionally well-known thing can be used variously, and there is no restriction | limiting in particular.
For example, when an epoxy resin is used as the thermosetting resin, examples of the curing accelerator include imidazole compounds, organic phosphorus compounds, tertiary amines, and quaternary ammonium salts.
These curing accelerators may be used alone or in combination of two or more.
This hardening | curing agent is mix | blended in the required range according to the quantity of the epoxy resin used.
The curing accelerator is usually about 0.01 to 5 parts by mass, preferably 0.01 to 2 parts by mass, more preferably 0.05 to 1 part by mass with respect to 100 parts by mass of the epoxy group of the epoxy resin. Formulated in a range.

本発明では、熱硬化性樹脂に、アントラキノン系の染料を配合する。
アントラキノン系染料が熱硬化性樹脂に均一に配合されるためには、有機溶媒可溶性のアントラキノン系染料であることが好ましい。
アントラキノン系染料は、官能基の種類や構造により、黄、オレンジ、赤、バイオレット、青、緑、茶、黒の様々な色彩を発現可能である。
これらのアントラキノン系染料を単独で用いてもよいし、2種類以上を併用して黒色化してもよい。
また、必要に応じて、アントラキノン系以外の染料を併用することもできる。
アントラキノン系以外の染料としては、例えば、アゾ(モノアゾ、ジスアゾ等)染料、アゾ−メチン染料、キノリン染料、ケトンイミン染料、フルオロン染料、ニトロ染料、キサンテン染料、アセナフテン染料、キノフタロン染料、アミノケトン染料、メチン染料、ペリレン染料、クマリン染料、ペリノン染料、トリフェニル染料、トリアリルメタン染料、フタロシアニン染料、インクロフェノール染料、アジン染料等が挙げられる。
In the present invention, an anthraquinone dye is added to the thermosetting resin.
In order for the anthraquinone dye to be uniformly mixed in the thermosetting resin, an anthraquinone dye that is soluble in an organic solvent is preferable.
Anthraquinone dyes can develop various colors of yellow, orange, red, violet, blue, green, brown, and black depending on the type and structure of the functional group.
These anthraquinone dyes may be used alone, or two or more of them may be used in black.
Further, if necessary, a dye other than anthraquinone can be used in combination.
Examples of dyes other than anthraquinone include, for example, azo (monoazo, disazo, etc.) dyes, azo-methine dyes, quinoline dyes, ketone imine dyes, fluorone dyes, nitro dyes, xanthene dyes, acenaphthene dyes, quinophthalone dyes, aminoketone dyes, methine dyes Perylene dye, coumarin dye, perinone dye, triphenyl dye, triallylmethane dye, phthalocyanine dye, incrophenol dye, azine dye and the like.

本発明のアントラキノン系染料は、熱硬化性樹脂組成物中に、0.05〜5質量%、好ましくは0.1〜2質量%、より好ましくは0.3〜1質量%配合される。
配合量が上記範囲内であると、十分な着色の効果が得られると共に、樹脂硬化物の特性が低下することがない。
すなわち、配合量が0.05質量%未満であると十分な着色の効果が得られず、5質量%を超えて多量に配合しても着色の効果は変わらず、樹脂硬化物の特性が低下する。
The anthraquinone dye of the present invention is blended in the thermosetting resin composition in an amount of 0.05 to 5% by mass, preferably 0.1 to 2% by mass, more preferably 0.3 to 1% by mass.
When the blending amount is within the above range, a sufficient coloring effect is obtained and the properties of the cured resin product are not deteriorated.
That is, if the blending amount is less than 0.05% by mass, a sufficient coloring effect cannot be obtained, and even if it is blended in a large amount exceeding 5% by mass, the coloring effect does not change and the properties of the cured resin are deteriorated. To do.

本発明の樹脂組成物では、樹脂硬化物の熱膨張率の低減や高弾性率化、機械特性の改善、耐熱特性の改善等を目的として、無機充填剤を配合することができる。
無機充填剤の種類は、特に制約はなく、例えば、炭酸カルシウム、アルミナ、酸化チタン、マイカ、炭酸アルミニウム、水酸化アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、シリカ、ガラス短繊維、ホウ酸アルミニウムウィスカや炭化ケイ素ウィスカ等が用いられる。
さらに、これらを数種類用いてもよい。
In the resin composition of the present invention, an inorganic filler can be blended for the purpose of reducing the thermal expansion coefficient, increasing the elastic modulus, improving the mechanical properties, improving the heat resistance properties, and the like of the cured resin.
There are no particular restrictions on the type of inorganic filler, such as calcium carbonate, alumina, titanium oxide, mica, aluminum carbonate, aluminum hydroxide, magnesium silicate, aluminum silicate, silica, short glass fiber, aluminum borate whisker, A silicon carbide whisker or the like is used.
Further, several kinds of these may be used.

無機充填剤の配合量は、樹脂組成物中の樹脂成分全量に対して、通常、20〜70質量%、好ましくは30〜60質量%、より好ましくは40〜60質量%である。
配合量が上記範囲内であると、無機充填剤を用いることによる低熱膨張率や高弾性率等の効果が得られるとともに、樹脂の流動性が悪化することがなく、加熱加圧成形時の成形性が良好であって、かすれが発生し難い。
すなわち、配合量が20質量%未満では、充填剤を充填することによる低熱膨張率や高弾性率等の効果が得られない。
一方、70質量%を超えると、樹脂の流動性が悪くなり、加熱加圧成形時の成形性が悪化し、かすれが発生する。
The compounding quantity of an inorganic filler is 20-70 mass% normally with respect to the resin component whole quantity in a resin composition, Preferably it is 30-60 mass%, More preferably, it is 40-60 mass%.
When the blending amount is within the above range, effects such as a low thermal expansion coefficient and a high elastic modulus can be obtained by using an inorganic filler, and the fluidity of the resin is not deteriorated, and molding at the time of heat and pressure molding It has good properties and hardly causes blur.
That is, when the blending amount is less than 20% by mass, effects such as a low thermal expansion coefficient and a high elastic modulus due to filling with the filler cannot be obtained.
On the other hand, when it exceeds 70 mass%, the fluidity | liquidity of resin will worsen, the moldability at the time of heat press molding will deteriorate, and a blur will generate | occur | produce.

上記無機充填剤を配合する場合、樹脂と無機充填剤の界面接着性や無機充填剤の分散性を向上させるために、各種カップリング剤やシリコーン重合体等を用いて無機充填剤の表面処理をすることが好ましい。
カップリング剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤等が用いられる。
シラン系カップリング剤としては、炭素官能性シランが用いられ、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、2−(2、3−エポキシシクロヘキシル)エチルトリメトキシシランのようなエポキシ基含有シラン;3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピル(メチル)ジメトキシシランのようなアミノ基含有シラン;3−(トリメトキシリル)プロピルテトラメチルアンモニウムクロリドのようなカチオン性シラン;ビニルトリエトキシシランのようなビニル基含有シラン;3−メタクリロキシプロピルトリメトキシシランのようなアクリル基含有シラン;および3−メルカプトプロピルトリメトキシシランのようなメルカプト基含有シランなどが例示される。
一方、チタネート系カップリング剤としては、チタンプロポキシド、チタンブトキシドのようなチタン酸アルキルエステルが例示される。
カップリング剤やシリコーン重合体は、2種以上併用してもよく、その配合量は、特に制限はない。
When blending the above inorganic fillers, surface treatment of the inorganic fillers using various coupling agents, silicone polymers, etc. to improve the interfacial adhesion between the resin and the inorganic fillers and the dispersibility of the inorganic fillers. It is preferable to do.
As the coupling agent, for example, a silane coupling agent, a titanate coupling agent, or the like is used.
As the silane coupling agent, carbon-functional silane is used, and 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl (methyl) dimethoxysilane, 2- (2,3-epoxycyclohexyl) ethyltri Epoxy group-containing silane such as methoxysilane; 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl (methyl) ) Amino group-containing silane such as dimethoxysilane; Cationic silane such as 3- (trimethoxylyl) propyltetramethylammonium chloride; Vinyl group-containing silane such as vinyltriethoxysilane; 3-Methacryloxypropyltrimethoxysilane Acrylic group-containing silane such as Mercapto group-containing silane such as beauty 3-mercaptopropyltrimethoxysilane and the like.
On the other hand, examples of titanate coupling agents include alkyl titanates such as titanium propoxide and titanium butoxide.
Two or more types of coupling agents and silicone polymers may be used in combination, and the blending amount is not particularly limited.

本発明の樹脂組成物には、必要に応じて、更に着色剤、酸化防止剤、還元剤、紫外線
遮蔽剤などを適宜配合することができる。
If necessary, the resin composition of the present invention can further contain a colorant, an antioxidant, a reducing agent, an ultraviolet shielding agent, and the like.

上記樹脂材料及び無機充填剤を希釈してワニス化するために溶媒が用いられる。
この溶媒には特に限定はなく、例えば、アセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、N、N−ジメチルホルムアミド、メタノール、エタノール等があり、これらは何種類かを混合してもよい。
また、ワニスの固形分濃度は、特に制限はなく、樹脂組成や無機充填剤の種類及び配合量等により適宜変更できるが、通常、50〜80質量%の範囲、好ましくは60〜75質量%である。
ワニスの固形分濃度が上記範囲内であると、ワニス粘度が良好で、かつプリプレグの樹脂分が低下せず、プリプレグの外観等が優れている。
ワニスの固形分濃度が50質量%より低いと、ワニス粘度が低いためプリプレグの樹脂分が低くなりすぎ、80質量%より高いとワニスの増粘等によりプリプレグの外観等が著しく悪化(低下)しやすい。
A solvent is used to dilute the resin material and the inorganic filler to form a varnish.
There are no particular limitations on this solvent, and examples include acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, N, N-dimethylformamide, methanol, ethanol, etc. May be mixed.
Moreover, the solid content concentration of the varnish is not particularly limited and can be appropriately changed depending on the resin composition, the type and blending amount of the inorganic filler, and is usually in the range of 50 to 80% by mass, preferably 60 to 75% by mass. is there.
When the solid content concentration of the varnish is within the above range, the varnish viscosity is good, the resin content of the prepreg is not lowered, and the appearance of the prepreg is excellent.
When the solid content concentration of the varnish is lower than 50% by mass, the resin content of the prepreg becomes too low because the varnish viscosity is low, and when it is higher than 80% by mass, the appearance of the prepreg is significantly deteriorated (decreased) due to the thickening of the varnish. Cheap.

次に、本発明のプリプレグは、前述した本発明の熱硬化性樹脂組成物を、有機溶媒に溶解又は分散したワニスを基材に含浸し、乾燥してなるものであって、印刷配線板用として好適に用いられる。
具体的には、上記各成分を配合して得たワニスを、基材に含浸させ、例えば、乾燥炉中で、通常、80〜200℃の範囲、好ましくは100〜180℃の範囲で乾燥させることにより、印刷配線板用プリプレグを得る。
基材としては、金属箔張り積層板や多層印刷配線板を製造する際に用いられるものであれば、特に制限されないが、通常織布や不織布等の繊維基材が用いられる。
繊維基材としては、例えば、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維等及びこれらの混抄系があり、特にガラス繊維の織布が好ましく用いられる。
Next, the prepreg of the present invention is obtained by impregnating a base material with a varnish dissolved or dispersed in an organic solvent and drying the above-described thermosetting resin composition of the present invention. Is preferably used.
Specifically, the base material is impregnated with the varnish obtained by blending each of the above components, and is usually dried in the range of 80 to 200 ° C., preferably in the range of 100 to 180 ° C. in a drying furnace. Thus, a printed wiring board prepreg is obtained.
The substrate is not particularly limited as long as it is used when producing a metal foil-clad laminate or a multilayer printed wiring board, but a fiber substrate such as a woven fabric or a nonwoven fabric is usually used.
Examples of the fiber substrate include inorganic fibers such as glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, and zirconia, aramid, polyether ether ketone, polyether imide, and polyether. There are organic fibers such as sulfone, carbon, cellulose and the like and mixed papers thereof, and glass fiber woven fabrics are particularly preferably used.

次に、本発明の金属張り積層板は、前述した本発明のプリプレグを積層し、硬化させて得られるものであ。
本発明のプリプレグを、1枚だけで又は適宜任意枚数を積層してその片面若しくは両面に金属箔を重ねて、150〜200℃程度、好ましくは170〜190℃、1.0〜8.0MPa程度、好ましくは1.5〜6.0MPa程度の範囲で加熱加圧して金属張り積層板とすることができる。
上記金属箔としては銅箔、アルミ箔等が使用される。
金属箔の厚さは用途にもよるが、通常、10〜100μm、好ましくは10〜80μmのものが好適に用いられる。
この金属張り積層板をサブトラクト法や穴開け加工などの種々の通常用いられる方法により加工することで、プリント配線板を得ることができる。
Next, the metal-clad laminate of the present invention is obtained by laminating and curing the above-described prepreg of the present invention.
The prepreg of the present invention is a single sheet or a suitable number of sheets laminated and a metal foil is laminated on one or both sides thereof, about 150 to 200 ° C., preferably about 170 to 190 ° C., about 1.0 to 8.0 MPa. The metal-clad laminate can be obtained by heating and pressing preferably in the range of about 1.5 to 6.0 MPa.
As the metal foil, copper foil, aluminum foil or the like is used.
The thickness of the metal foil depends on the application, but usually 10 to 100 μm, preferably 10 to 80 μm is suitably used.
A printed wiring board can be obtained by processing this metal-clad laminate by various commonly used methods such as a subtracting method and drilling.

本発明の熱硬化性樹脂組成物を用いた積層板は、黒色であり、電食による絶縁信頼性に優れている。
本発明はまた、前記本発明の金属張り積層板を使用して作製されたプリント配線板をも提供する。
The laminated board using the thermosetting resin composition of the present invention is black and has excellent insulation reliability due to electrolytic corrosion.
The present invention also provides a printed wiring board produced using the metal-clad laminate of the present invention.

以下、本発明の実施例について説明する。
本発明は、これらの実施例によって限定されるものではない。
Examples of the present invention will be described below.
The present invention is not limited by these examples.

実施例1
ビスフェノールAノボラック型エポキシ樹脂69質量部(大日本インキ化学工業株式会社製エピクロンN−865)、テトラブロモビスフェノールA型エポキシ樹脂31質量部(大日本インキ化学工業株式会社製エピクロン153)、フェノールノボラック樹脂40質量部(明和化成社製HF−4)、2−エチル−4−メチルイミダゾール0.15質量部、アントラキノン系染料(中央合成化学(株)製試作品A)0.5質量部をメチルエチルケトンに溶解し、固形分70質量%のワニスを調製した。
このワニスを、厚さ約0.1mmのガラス布(日東紡績株式会社製 商品名:GA−7010S136、#2116、E−ガラス)に含浸後、加熱乾燥して樹脂分50質量%のプリプレグを得た。
これらプリプレグ2枚または4枚を重ね、その両側に厚みが12μmの銅箔を重ね、175℃、60分、3.0MPaのプレス条件で両面銅張り積層板を作製した。
Example 1
69 parts by mass of bisphenol A novolac type epoxy resin (Epicron N-865 manufactured by Dainippon Ink and Chemicals), 31 parts by mass of tetrabromobisphenol A type epoxy resin (Epicron 153 manufactured by Dainippon Ink and Chemicals), phenol novolac resin 40 parts by mass (HF-4 manufactured by Meiwa Kasei Co., Ltd.), 0.15 parts by mass of 2-ethyl-4-methylimidazole, 0.5 parts by mass of anthraquinone dye (Prototype A manufactured by Chuo Synthetic Chemical Co., Ltd.) in methyl ethyl ketone It melt | dissolved and the varnish with a solid content of 70 mass% was prepared.
This varnish was impregnated into a glass cloth (trade name: GA-7010S136, # 2116, E-glass, manufactured by Nitto Boseki Co., Ltd.) having a thickness of about 0.1 mm, and then dried by heating to obtain a prepreg having a resin content of 50% by mass. It was.
Two or four of these prepregs were stacked, and a copper foil having a thickness of 12 μm was stacked on both sides thereof to prepare a double-sided copper-clad laminate under press conditions of 175 ° C., 60 minutes, 3.0 MPa.

実施例2
染料として、アントラキノン系染料(中央合成化学(株)製、試作品A)0.4質量部及びジスアゾ系染料(中央合成化学(株)製、商品名:Chuo Sudan Black141)0.1質量部を用いた他は、実施例1と同様にして両面銅張り積層板を作製した。
Example 2
As dye, 0.4 part by mass of anthraquinone dye (manufactured by Chuo Synthetic Chemical Co., Ltd., prototype A) and 0.1 part by mass of disazo dye (manufactured by Chuo Synthetic Chemical Co., Ltd., trade name: Chuo Sudan Black141) A double-sided copper-clad laminate was produced in the same manner as in Example 1 except that it was used.

実施例3
無機充填剤として、シリカ80質量部(アドマテックス社製SO−25H)を用いた他は、実施例1と同様にして両面銅張り積層板を作製した。
Example 3
A double-sided copper-clad laminate was prepared in the same manner as in Example 1 except that 80 parts by mass of silica (SO-25H manufactured by Admatechs) was used as the inorganic filler.

比較例1
染料を使用しない他は、実施例1と同様にしてワニスを調製した。
このワニスを、厚さ約0.1mmの黒色ガラス布(日東紡績株式会社製 商品名:GA−7010XB07、#2116、E−ガラス)に含浸後、加熱乾燥した他は、実施例1と同様にして両面銅張り積層板を作製した。
Comparative Example 1
A varnish was prepared in the same manner as in Example 1 except that no dye was used.
This varnish was impregnated into a black glass cloth (trade name: GA-7010XB07, # 2116, E-glass, manufactured by Nitto Boseki Co., Ltd.) having a thickness of about 0.1 mm, followed by heating and drying in the same manner as in Example 1. Thus, a double-sided copper-clad laminate was produced.

比較例2
染料として、カーボンブラック0.5質量部を用いた他は、実施例1と同様にして両面銅張り積層板を作製した。
Comparative Example 2
A double-sided copper-clad laminate was prepared in the same manner as in Example 1 except that 0.5 parts by mass of carbon black was used as the dye.

比較例3
染料として、金属錯塩アゾ系染料(中央合成化学(株)製、商品名:Neo Super Black C−832)0.5質量部を用いた他は、実施例1と同様にして両面銅張り積層板を作製した。
Comparative Example 3
Double-sided copper-clad laminate in the same manner as in Example 1 except that 0.5 parts by mass of metal complex salt azo dye (manufactured by Chuo Synthetic Chemical Co., Ltd., trade name: Neo Super Black C-832) was used as the dye. Was made.

得られた両面銅張り積層板の外観(エッチング後)、紫外線透過率、ガラス転移温度、耐電食性の評価を行った。
それらの結果を表1に示す。
The appearance (after etching), ultraviolet transmittance, glass transition temperature, and electric corrosion resistance of the obtained double-sided copper-clad laminate were evaluated.
The results are shown in Table 1.

Figure 2012153898
Figure 2012153898

試験方法は以下の通りである。
外観:両面銅張り積層板をエッチング方法により銅箔を全面除去した後、目視により評価した。
紫外線透過率:プリプレグ2枚を重ねて作製した両面銅張り積層板をエッチング後、紫外線を照射して透過率を評価した。
紫外線は350nmおよび420nmとした。
ガラス転移温度:プリプレグ4枚を重ねて作製した両面銅張り積層板をエッチング後、熱機械分析装置(Thermo Mechanical Analyzer)により測定した。
耐電食性:プリプレグ4枚を重ねて作製した両面銅張り積層板に壁間距離(穴の側壁間の最短距離)300μm、穴径0.4mmで表裏の回路を電気的に接続した回路パターンを作製し、温度85℃、相対湿度85%の恒温恒湿槽中にて、この回路間に直流100Vの電圧を1000時間印加した。その後の回路間の絶縁抵抗(単位Ω)を測定することにより、耐電食性を評価した。
The test method is as follows.
Appearance: After removing the entire surface of the copper foil from the double-sided copper-clad laminate by an etching method, it was visually evaluated.
Ultraviolet transmittance: After etching a double-sided copper-clad laminate produced by stacking two prepregs, the transmittance was evaluated by irradiating with ultraviolet rays.
The ultraviolet rays were 350 nm and 420 nm.
Glass transition temperature: After etching a double-sided copper-clad laminate produced by laminating four prepregs, it was measured by a thermomechanical analyzer (Thermo Mechanical Analyzer).
Electric corrosion resistance: A circuit pattern is created by electrically connecting front and back circuits with a distance between walls (the shortest distance between the side walls of a hole) of 300 μm and a hole diameter of 0.4 mm on a double-sided copper-clad laminate made by stacking four prepregs. Then, a DC voltage of 100 V was applied for 1000 hours between the circuits in a constant temperature and humidity chamber having a temperature of 85 ° C. and a relative humidity of 85%. The electrical corrosion resistance was evaluated by measuring the insulation resistance (unit Ω) between subsequent circuits.

表1の結果より、アントラキノン系染料を配合した実施例1〜3は、積層板の外観が黒色で、紫外線透過率が小さく、ガラス転移点(Tg)が低下せず、電食による絶縁低下がないことから、絶縁信頼性が良好である。
これに対して、黒色系ガラス織布を用いた比較例1においては、紫外線透過率が大きく、両面同時露光による裏かぶり現象が発生する恐れがある。
また、染料としてカーボンブラックを配合した比較例2は、電食による絶縁低下が大きいことから、絶縁信頼性が良好ではない。
また、金属錯塩アゾ染料を用いた比較例3では、硬化物のガラス転移点(Tg)が大幅に低下しており、絶縁信頼性もやや劣る。
From the result of Table 1, Examples 1-3 which mix | blended the anthraquinone type dye are the external appearance of a laminated board being black, ultraviolet-ray transmittance is small, a glass transition point (Tg) does not fall, and the insulation fall by electrolytic corrosion does not fall. Therefore, the insulation reliability is good.
On the other hand, in Comparative Example 1 using a black glass woven fabric, the ultraviolet transmittance is large, and there is a possibility that a back fog phenomenon occurs due to simultaneous exposure on both sides.
Further, Comparative Example 2 in which carbon black is blended as a dye does not have good insulation reliability because of a large decrease in insulation due to electrolytic corrosion.
Moreover, in the comparative example 3 using a metal complex salt azo dye, the glass transition point (Tg) of hardened | cured material is falling significantly, and insulation reliability is also somewhat inferior.

本発明によれば、紫外線を十分に遮蔽することができ、且つ黒色を基調とする積層板を得ることができる。
そして、この積層板は紫外線遮蔽性が良好であることから、両面同時露光によりプリント配線板とすることができ、またワイヤボンディングの良否識別も容易で、電食による絶縁低下がないことから信頼性に優れたプリント配線板を提供することができる。
According to the present invention, it is possible to obtain a laminated board that can sufficiently block ultraviolet rays and is based on black.
And since this laminated board has a good ultraviolet shielding property, it can be made into a printed wiring board by double-sided simultaneous exposure, and it is easy to identify the quality of wire bonding, and there is no insulation deterioration due to electrolytic corrosion, so it is reliable. An excellent printed wiring board can be provided.

Claims (5)

染料を含有してなる黒色の熱硬化性樹脂組成物において、染料としてアントラキノン系化合物を0.05〜5質量%含むことを特徴とする熱硬化性樹脂組成物。   A black thermosetting resin composition comprising a dye, the thermosetting resin composition comprising 0.05 to 5% by mass of an anthraquinone compound as a dye. 樹脂組成物中の樹脂成分全量に対して、無機充填剤を20〜70質量%含む、請求項1に記載の熱硬化性樹脂組成物。   The thermosetting resin composition of Claim 1 which contains 20-70 mass% of inorganic fillers with respect to the resin component whole quantity in a resin composition. 請求項1または2に記載の熱硬化性樹脂組成物を有機溶媒に溶解又は分散したワニスを基材に含浸し、乾燥してなるプリプレグ。   A prepreg formed by impregnating a base material with a varnish obtained by dissolving or dispersing the thermosetting resin composition according to claim 1 or 2 in an organic solvent. 請求項3に記載のプリプレグを積層し、硬化させて得られた金属張り積層板。   A metal-clad laminate obtained by laminating and curing the prepreg according to claim 3. 請求項4に記載の金属張り積層板を使用して作製されたプリント配線板。   A printed wiring board produced using the metal-clad laminate according to claim 4.
JP2012083808A 2006-10-26 2012-04-02 Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board Pending JP2012153898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083808A JP2012153898A (en) 2006-10-26 2012-04-02 Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006291178 2006-10-26
JP2006291178 2006-10-26
JP2012083808A JP2012153898A (en) 2006-10-26 2012-04-02 Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007039288A Division JP2008133412A (en) 2006-10-26 2007-02-20 Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board

Publications (1)

Publication Number Publication Date
JP2012153898A true JP2012153898A (en) 2012-08-16

Family

ID=46835947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083808A Pending JP2012153898A (en) 2006-10-26 2012-04-02 Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board

Country Status (1)

Country Link
JP (1) JP2012153898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161607A (en) * 2019-03-26 2020-10-01 Tdk株式会社 Electronic component built-in circuit board and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079033A (en) * 1983-10-07 1985-05-04 Sumitomo Bakelite Co Ltd Epoxy resin composition suitable for element sealing
JPS61188412A (en) * 1985-02-15 1986-08-22 Matsushita Electric Ind Co Ltd Epoxy resin containing black dye
JP2000336249A (en) * 1999-05-27 2000-12-05 Hitachi Chem Co Ltd Epoxy resin composition and high-voltage electricai and electronic part
JP2001123064A (en) * 1999-10-28 2001-05-08 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg, laminated sheet and printed-wiring board
JP2002100843A (en) * 2000-09-26 2002-04-05 Victor Co Of Japan Ltd Insulation material for printing wiring board, the printed wiring board and its manufacturing method
JP2004269649A (en) * 2003-03-07 2004-09-30 Kyocera Chemical Corp Sealing resin composition and resin-sealed electronic component device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079033A (en) * 1983-10-07 1985-05-04 Sumitomo Bakelite Co Ltd Epoxy resin composition suitable for element sealing
JPS61188412A (en) * 1985-02-15 1986-08-22 Matsushita Electric Ind Co Ltd Epoxy resin containing black dye
JP2000336249A (en) * 1999-05-27 2000-12-05 Hitachi Chem Co Ltd Epoxy resin composition and high-voltage electricai and electronic part
JP2001123064A (en) * 1999-10-28 2001-05-08 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg, laminated sheet and printed-wiring board
JP2002100843A (en) * 2000-09-26 2002-04-05 Victor Co Of Japan Ltd Insulation material for printing wiring board, the printed wiring board and its manufacturing method
JP2004269649A (en) * 2003-03-07 2004-09-30 Kyocera Chemical Corp Sealing resin composition and resin-sealed electronic component device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161607A (en) * 2019-03-26 2020-10-01 Tdk株式会社 Electronic component built-in circuit board and manufacturing method thereof
JP7302224B2 (en) 2019-03-26 2023-07-04 Tdk株式会社 Circuit board with built-in electronic components

Similar Documents

Publication Publication Date Title
KR101429839B1 (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
JP5758463B2 (en) Epoxy resin composition, hole filling composition, and printed wiring board using the same
EP2933293B1 (en) Halogen-free flame-retardant resin composition and use thereof
JPWO2006059363A1 (en) Epoxy resin composition for prepreg, prepreg, multilayer printed wiring board
JP2011233883A (en) Dry film for coverlay, coverlay, flexible printed wiring board and method for manufacturing flexible printed wiring board
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
KR101477757B1 (en) Composite material
US6524717B1 (en) Prepreg, metal-clad laminate, and printed circuit board obtained from these
JP4867642B2 (en) Solder resist resin composition, solder resist resin sheet, circuit board, circuit board manufacturing method, and semiconductor package using the circuit board.
DE60100652T2 (en) Incombustible resin composition, prepreg, multilayer board, metal covered multilayer board, printed circuit board and multilayer printed circuit board
JP2012041386A (en) Thermosetting resin composition for circuit board
JP2008133412A (en) Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board
JP2010260955A (en) Resin composition, production method of resin composition, and prepreg and laminate each using the same
JP2012153898A (en) Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board
JP4171952B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board
JP4961903B2 (en) Epoxy resin composition, epoxy resin prepreg, metal-clad laminate and printed wiring board
JP2002040663A (en) Solder resist composition and its hardened product
JP5157045B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP4639439B2 (en) Epoxy resin composition, prepreg, and copper-clad laminate using the same
JP2006328233A (en) Resin composition, prepreg, laminate and printed circuit board using the same
JP2004250674A (en) Resin film and multilayer printed wiring board using the same
JP2000072969A (en) Thermosetting resin composition, prepreg, laminated board, and printed circuit board
JP5178308B2 (en) Thermosetting solder resist composition, solder resist layer comprising the cured product, and printed wiring board
JP2007146095A (en) Resin composition, prepreg, and laminated board and printed circuit board produced by using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415