JP2012152037A - Charging system, electrical appliance having power reception device of charging system, and charge completion discrimination method for charging system - Google Patents

Charging system, electrical appliance having power reception device of charging system, and charge completion discrimination method for charging system Download PDF

Info

Publication number
JP2012152037A
JP2012152037A JP2011009229A JP2011009229A JP2012152037A JP 2012152037 A JP2012152037 A JP 2012152037A JP 2011009229 A JP2011009229 A JP 2011009229A JP 2011009229 A JP2011009229 A JP 2011009229A JP 2012152037 A JP2012152037 A JP 2012152037A
Authority
JP
Japan
Prior art keywords
charging
battery
current
power receiving
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011009229A
Other languages
Japanese (ja)
Other versions
JP5802879B2 (en
Inventor
Keiichi Tanii
恵一 谷井
Yasushi Senda
泰史 千田
Akira Hosokawa
亮 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUNWIZZ CO Ltd
Yokogawa Electric Corp
Hitachi Maxell Energy Ltd
Original Assignee
SUNWIZZ CO Ltd
Hokushin Electric Works Ltd
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUNWIZZ CO Ltd, Hokushin Electric Works Ltd, Hitachi Maxell Energy Ltd filed Critical SUNWIZZ CO Ltd
Priority to JP2011009229A priority Critical patent/JP5802879B2/en
Publication of JP2012152037A publication Critical patent/JP2012152037A/en
Application granted granted Critical
Publication of JP5802879B2 publication Critical patent/JP5802879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charging system in which the completion of battery charge in a power reception device can be detected on a power supply device side by a simple and inexpensive structure capable of preventing noise generation.SOLUTION: A charging system (1) includes: a charger (2) (power supply device) having a power supply coil (21); and a charging unit (10) (power reception device) having a power reception coil (13) in which electric current flows by the magnetic field generated in the power supply coil (21). The charging unit (10) includes: a charging control part (16) (charging part); and an electric current magnification part (17) for magnifying the electric current flowing in the power reception coil (13) more than the case of the completion of change to a battery (12) when the charging of the battery (12) is completed. The charger (2) includes a CPU (26) (charge completion discrimination part) for discriminating the completion of charging the battery (12) by detecting the increase of the electric current flowing in the power reception coil (13) by the electric current magnification part (17) by means of the electric current flowing in the power supply coil (21).

Description

本発明は、コイルを介して電力の授受が可能な給電装置及び受電装置を備えた充電システム、該充電システムの受電装置を備えた電気機器、及び、該充電システムにおける充電完了判別方法に関する。   The present invention relates to a power supply device capable of transmitting and receiving electric power via a coil, a charging system including the power receiving device, an electric device including the power receiving device of the charging system, and a charging completion determination method in the charging system.

従来より、コイルを介して電力の授受が可能な給電装置及び受電装置を備えた充電システムが知られている。このような充電システムとしては、例えば特許文献1に開示されるように、携帯電話機(受電装置)及び非接触充電器(給電装置)に、それぞれ、コイルを有している。この構成では、非接触充電器側のコイルに電流を流した際に生じた磁場を利用して携帯電話機側のコイルに電流を流す、いわゆる電磁誘導を利用して、電池の充電を行う。   2. Description of the Related Art Conventionally, a power feeding device that can exchange power via a coil and a charging system including the power receiving device are known. As such a charging system, for example, as disclosed in Patent Document 1, a mobile phone (power receiving device) and a non-contact charger (power feeding device) each have a coil. In this configuration, the battery is charged using so-called electromagnetic induction in which a current is passed through the coil on the mobile phone side using a magnetic field generated when a current is passed through the coil on the non-contact charger side.

また、前記特許文献1には、携帯電話機側の満充電等の状態を、信号によって非接触充電器側に伝送する構成が開示されている。そのため、携帯電話機側には、信号を生成する制御部や、該信号を搬送波に重畳するための変調部等が設けられている。   Patent Document 1 discloses a configuration in which a state such as a full charge on the mobile phone side is transmitted to the non-contact charger side by a signal. Therefore, a control unit that generates a signal, a modulation unit that superimposes the signal on a carrier wave, and the like are provided on the mobile phone side.

特許4480048号公報Japanese Patent No. 4480048

ところで、上述のように、受電装置の電池の充電完了等を信号として給電装置側に送る機能を有する構成の場合、該受電装置に制御部や変調部等を設けると、その分、回路構成が複雑になるとともに実装面積の増大を招き、受電装置の小型化を阻害することになる。また、制御部や変調部等の回路を構成する部品が必要になるため、その分、製造コストの増大に繋がるとともに、これらの回路によって消費電力も増大する。さらに、送受信される信号が機器のノイズになる可能性もある。   By the way, as described above, in the case of a configuration having a function of sending the battery charging completion of the power receiving device as a signal to the power feeding device side, if a control unit, a modulation unit, etc. are provided in the power receiving device, the circuit configuration is correspondingly increased. This increases the complexity and increases the mounting area, and hinders downsizing of the power receiving apparatus. Further, since components that constitute the circuit such as the control unit and the modulation unit are necessary, the manufacturing cost is increased correspondingly, and the power consumption is also increased by these circuits. Furthermore, there is a possibility that a signal transmitted / received becomes noise of the device.

そのため、本発明では、コイルを介して電力の授受が可能な受電装置及び給電装置を備えた充電システムにおいて、受電装置における電池の充電完了を給電装置側で検出可能な構成を、ノイズの発生を防止可能で簡単且つ安価な構成によって実現することを目的とする。   For this reason, in the present invention, in a charging system including a power receiving device and a power feeding device capable of transmitting and receiving power via a coil, a configuration in which charging completion of the battery in the power receiving device can be detected on the power feeding device side is generated. It is intended to be realized by a simple and inexpensive configuration that can be prevented.

本発明の一実施形態にかかる充電システムは、給電コイルを有する給電装置と、該給電コイルへの通電により発生した磁場によって電流が流れる受電コイルを有する受電装置とを備え、該受電装置は、前記受電コイルに流れた電流によって電池を充電する充電部と、前記電池の充電が完了した場合に、前記受電コイルに流れる電流を該電池の充電完了時よりも増大させる電流増大部とを有していて、前記給電装置は、前記電流増大部によって前記受電コイルに流れる電流が増大したことを、前記給電コイルに流れる電流によって検出した場合に、前記電池の充電完了と判定する充電完了判定部を有する(第1の構成)。   A charging system according to an embodiment of the present invention includes a power feeding device having a power feeding coil, and a power receiving device having a power receiving coil through which a current flows due to a magnetic field generated by energization of the power feeding coil. A charging unit that charges the battery with a current flowing through the power receiving coil; and a current increasing unit that increases the current flowing through the power receiving coil when the charging of the battery is completed, compared to when the charging of the battery is completed. The power supply device has a charge completion determination unit that determines that the battery has been fully charged when the current increase unit detects that the current flowing through the power receiving coil has increased by the current flowing through the power supply coil. (First configuration).

以上の構成により、受電装置で電池への充電が完了したことを、給電装置側では、給電コイルに流れる電流によって検出することができる。すなわち、給電装置の給電コイルに流れる電流は、コイル間の相互誘導作用によって、受電装置の受電コイルに流れる電流に応じて変化するため、該受電装置側で電池の充電が完了した場合に受電コイルに流れる電流を増大させることによって、給電装置の給電コイルに流れる電流も増大させることができる。したがって、給電装置側では、給電コイルに流れる電流を検出することによって、受電装置で電池への充電が完了したかどうかを容易に検出することができる。   With the above configuration, it is possible to detect that the charging of the battery in the power receiving device is completed by the current flowing through the power feeding coil on the power feeding device side. That is, since the current flowing through the power supply coil of the power supply device changes according to the current flowing through the power reception coil of the power reception device due to the mutual induction between the coils, the power reception coil when the battery is completely charged on the power reception device side By increasing the current flowing through the power supply, the current flowing through the power supply coil of the power supply apparatus can also be increased. Therefore, on the power feeding device side, it is possible to easily detect whether or not charging of the battery is completed by the power receiving device by detecting the current flowing through the power feeding coil.

このように、受電装置側で受電コイルに流れる電流を増大させるだけで、給電装置側で電池の充電完了を検出することが可能になる。よって、簡単且つ安価な構成によって、受電装置側の電池の充電状態を、給電装置側に伝えることが可能になる。しかも、従来のように搬送波に信号を重畳させた状態で信号の授受を行う必要がないため、ノイズの発生も抑制することができる。   In this way, it is possible to detect the completion of charging of the battery on the power feeding device side only by increasing the current flowing through the power receiving coil on the power receiving device side. Therefore, the state of charge of the battery on the power receiving device side can be transmitted to the power feeding device side with a simple and inexpensive configuration. In addition, since it is not necessary to transmit and receive signals in a state where signals are superimposed on a carrier wave as in the prior art, the generation of noise can be suppressed.

前記第1の構成において、前記受電装置の電流増大部は、前記充電部をバイパスするとともに、該充電部よりも抵抗の小さいバイパス回路を有していて、該バイパス回路は、前記電池の充電が完了した場合にオン状態になるスイッチ部を有するのが好ましい(第2の構成)。   In the first configuration, the current increasing unit of the power receiving device bypasses the charging unit and includes a bypass circuit having a smaller resistance than the charging unit, and the bypass circuit charges the battery. It is preferable to have a switch unit that is turned on when completed (second configuration).

これにより、簡単且つ安価な構成によって、上述の第1の構成を実現することができる。すなわち、充電部をバイパスするバイパス回路を設けて、該バイパス回路に、電池の充電が完了した場合に該バイパス回路を導通させるようなスイッチ部を設けることにより、電池の充電完了時には受電コイルにより大きな電流を流すことができる。これにより、給電装置の給電コイルにも大きな電流を流すことができるため、該給電装置側で電池の充電完了を容易に検出することができる。   Thereby, the first configuration described above can be realized with a simple and inexpensive configuration. That is, a bypass circuit that bypasses the charging unit is provided, and a switch unit is provided in the bypass circuit that conducts the bypass circuit when the battery is completely charged. Current can flow. As a result, a large current can also flow through the power supply coil of the power supply apparatus, so that the completion of charging of the battery can be easily detected on the power supply apparatus side.

前記第1または第2の構成において、前記受電装置の電流増大部は、前記電池の充電が完了した場合に、該電池の充電中に前記受電コイルに流れる電流の最大値よりも大きな値の電流を該受電コイルに流すように構成されているのが好ましい(第3の構成)。   In the first or second configuration, the current increasing unit of the power receiving device has a current value larger than a maximum value of a current flowing through the power receiving coil during charging of the battery when charging of the battery is completed. Is preferably configured to flow through the power receiving coil (third configuration).

これにより、電池の充電完了後には、該電池の充電中に受電コイルに流れる電流の最大値よりも大きな値の電流が該受電コイルに流れる。そのため、受電コイルに流れる電流に対応して給電コイルに流れる電流を検出することによって、給電装置側で電池の充電完了をより確実に検出することができる。   As a result, after the charging of the battery is completed, a current having a value larger than the maximum value of the current flowing through the power receiving coil during charging of the battery flows through the power receiving coil. Therefore, by detecting the current flowing through the power feeding coil corresponding to the current flowing through the power receiving coil, it is possible to more reliably detect the completion of battery charging on the power feeding device side.

前記第1または第2の構成において、前記給電装置の充電完了判定部は、前記電池の充電中に、前記給電コイルに流れる電流値が該電池の充電完了時の電流値よりも大きい閾値を下回った後、再度、該閾値に達したことを検出した場合に、充電完了と判定するように構成されているのが好ましい(第4の構成)。   In the first or second configuration, the charging completion determination unit of the power feeding device has a current value flowing through the power feeding coil that is lower than a threshold value larger than a current value at the completion of charging of the battery during charging of the battery. After that, it is preferable to determine that charging is completed when it is detected that the threshold value has been reached again (fourth configuration).

こうすることで、受電コイルに、電池充電中の最大電流よりも大きな電流を流すことなく、給電装置側で電池の充電完了を検出することが可能になる。すなわち、受電装置で電池を充電すると、満充電に近づくほど、受電コイルに流れる電流が低下する。そして、上述の構成のように、電池の充電完了後に受電コイルに流れる電流を大きくすることによって、給電コイルに流れる電流は、閾値を下回った後、再度、閾値に到達する。このような電流変化を検出することによって、電池の充電が完了していることを容易に検出することができる。   By doing so, it is possible to detect the completion of charging of the battery on the power feeding device side without flowing a current larger than the maximum current during charging of the battery through the power receiving coil. That is, when the battery is charged by the power receiving device, the current flowing through the power receiving coil decreases as the battery is fully charged. Then, by increasing the current flowing through the power receiving coil after the battery is completely charged as in the above-described configuration, the current flowing through the power feeding coil falls below the threshold and then reaches the threshold again. By detecting such a change in current, it is possible to easily detect that the battery has been fully charged.

本発明の一実施形態にかかる電気機器において、前記第1から第4の構成のいずれか一つに記載の充電システムにおける受電装置を備えている(第5の構成)。   An electrical apparatus according to an embodiment of the present invention includes the power receiving device in the charging system according to any one of the first to fourth configurations (fifth configuration).

本発明の一実施形態にかかる充電システムにおける充電完了判別方法において、給電装置の給電コイルで発生する磁場によって受電装置の受電コイルに電流を流すことにより、該受電装置に接続された電池を充電する充電工程と、該電池の充電が完了したことを、前記受電装置側で検出する充電完了検出工程と、該充電完了検出工程によって前記電池の充電完了が検出された場合に、該電池の充電完了時に流れる電流よりも大きい電流を前記受電コイルに流す電流増大工程と、該受電コイルに流れる電流の増大を、前記給電装置の給電コイルに流れる電流に基づいて検出した場合に、該給電装置側で前記電池の充電完了と判定する充電完了判定工程とを有する(第6の方法)。   In the charging completion determination method in the charging system according to the embodiment of the present invention, the battery connected to the power receiving device is charged by causing a current to flow through the power receiving coil of the power receiving device by the magnetic field generated in the power feeding coil of the power feeding device. A charging process, a charging completion detecting process for detecting on the power receiving device side that the charging of the battery is completed, and a charging completion of the battery when the charging completion of the battery is detected by the charging completion detecting process. A current increasing step for flowing a current larger than the current flowing through the power receiving coil and an increase in the current flowing through the power receiving coil based on the current flowing through the power feeding coil of the power feeding device; A charge completion determination step for determining that the battery has been fully charged (sixth method).

以上の方法により、受電装置における電池の充電完了を、給電装置側で容易に検出することができる。すなわち、受電装置で電池の充電が完了すると、該受電装置内の受電コイルに流れる電流が増大するため、給電装置内の給電コイルに流れる電流も増大する。この電流を検出することによって、給電装置側で電池の充電完了を容易に検出することができる。   With the above method, the completion of charging of the battery in the power receiving device can be easily detected on the power feeding device side. That is, when charging of the battery is completed in the power receiving device, the current flowing in the power receiving coil in the power receiving device increases, so the current flowing in the power feeding coil in the power feeding device also increases. By detecting this current, it is possible to easily detect completion of charging of the battery on the power feeding device side.

したがって、以上の方法では、従来のように信号を授受する必要がないため、ノイズの発生を防止可能で簡単且つ安価な構成によって、給電装置側で電池の充電完了を検出することが可能になる。   Therefore, in the above method, since it is not necessary to send and receive a signal as in the prior art, it is possible to prevent the occurrence of noise and to detect the completion of charging of the battery on the power feeding device side with a simple and inexpensive configuration. .

前記第6の方法において、前記充電完了判定工程は、前記受電装置の受電コイルに流れる電流が、前記電池の充電完了時の電流値よりも大きい閾値を下回った後、再度、該閾値に到達したことを前記給電装置側で検出した場合に、前記電池の充電完了と判定するのが好ましい(第7の方法)。   In the sixth method, the charging completion determination step reaches the threshold again after the current flowing through the power receiving coil of the power receiving apparatus falls below a threshold value larger than the current value at the time of completion of charging the battery. When this is detected on the power feeding device side, it is preferable to determine that charging of the battery is completed (seventh method).

このような方法によっても、給電装置側で、受電装置での電池の充電完了を容易に検出することができる。   Also by such a method, it is possible to easily detect completion of charging of the battery in the power receiving device on the power feeding device side.

本発明の一実施形態にかかる充電システムによれば、受電装置に、電池の充電が完了した場合に、該電池の充電完了時に流れる電流よりも大きな電流を流す電流増大部を設けたため、給電装置側で電池の充電完了を容易に検出することができる。したがって、給電装置側で電池の充電完了を検出可能な構成を、ノイズの発生を防止可能で簡単且つ安価な構成によって実現できる。   According to the charging system of one embodiment of the present invention, since the power receiving device is provided with the current increasing unit that flows a current larger than the current that flows when the charging of the battery is completed when the charging of the battery is completed, the power feeding device The battery charging can be easily detected on the side. Therefore, a configuration that can detect the completion of charging of the battery on the power feeding device side can be realized with a simple and inexpensive configuration that can prevent noise generation.

図1は、実施形態1にかかる充電システムの概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a charging system according to the first embodiment. 図2は、電流増大部の概略構成を示す回路図である。FIG. 2 is a circuit diagram showing a schematic configuration of the current increasing section. 図3は、受電コイルに流れる受電側負荷電流と給電コイルに流れる給電側駆動電流との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a power receiving side load current flowing through the power receiving coil and a power feeding side driving current flowing through the power feeding coil. 図4は、電池の充電の際に、充電回路に流れる受電側負荷電流の変化を示す図である。FIG. 4 is a diagram illustrating a change in the power receiving side load current flowing through the charging circuit when the battery is charged. 図5は、実施形態2にかかる充電システムにおける図4相当図である。FIG. 5 is a diagram corresponding to FIG. 4 in the charging system according to the second embodiment. 図6は、実施形態2にかかる充電システムにおける図3相当図である。FIG. 6 is a diagram corresponding to FIG. 3 in the charging system according to the second embodiment. 図7は、充電器側における電池の充電完了判定のフローを示す図である。FIG. 7 is a diagram illustrating a flow of determining whether the battery is completely charged on the charger side.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals and description thereof will not be repeated.

[実施形態1]
(全体構成)
図1は、本発明の実施形態1にかかる充電システム1の概略構成を示す図である。この充電システム1は、充電器2(給電装置)と、機器3(電気機器)側に設けられた充電ユニット10(受電装置)とを含む。充電システム1は、例えば、自動車のキーレスエントリーシステムやPDA(Personal Digital Assistant)などの携帯端末やカメラ等の小型機器(機器3)の電源システムとして用いられる。
[Embodiment 1]
(overall structure)
FIG. 1 is a diagram showing a schematic configuration of a charging system 1 according to Embodiment 1 of the present invention. The charging system 1 includes a charger 2 (power feeding device) and a charging unit 10 (power receiving device) provided on the device 3 (electric device) side. The charging system 1 is used, for example, as a power supply system for a portable terminal such as a keyless entry system of an automobile or a PDA (Personal Digital Assistant), or a small device (device 3) such as a camera.

充電システム1は、充電器2と機器3側の充電ユニット10との間で、非接触で電力の送受電を行うように構成されている。すなわち、充電器2は、図示しない電源に接続された給電コイル21を有している一方、充電ユニット10は、電池12に接続される充電回路11の一部を構成する受電コイル13を有している。つまり、充電システム1は、電磁誘導を利用して、充電器2から充電ユニット10に電力を供給するように構成されている。ここで、非接触で電力の送受電を行うとは、2つの装置間で端子を介すことなく、電力の授受を行うことを意味する。   The charging system 1 is configured to transmit and receive electric power in a contactless manner between the charger 2 and the charging unit 10 on the device 3 side. That is, the charger 2 has a power feeding coil 21 connected to a power source (not shown), while the charging unit 10 has a power receiving coil 13 constituting a part of the charging circuit 11 connected to the battery 12. ing. That is, the charging system 1 is configured to supply power from the charger 2 to the charging unit 10 using electromagnetic induction. Here, non-contact power transmission / reception means power transmission / reception between two devices without a terminal.

充電器2は、図示しない電源に電気的に接続された給電コイル21と、該給電コイル21に所定の磁場を発生させるために該給電コイル21に流す電流を制御する駆動回路22と、給電コイル21に流れる電流を検出する電流検出回路23とを備えている。この電流検出回路23は、電流を検出する電流アンプ24と、該電流アンプ24によって検出された電流をデジタル信号に変換するA/Dコンバータ25と、該デジタル信号を処理するためのCPU26(充電完了判定部)とを有している。これにより、電流検出回路23は、後述するように、機器3の充電ユニット10における受電コイル13の電流変化に応じて給電コイル21に流れる電流が変化した場合に、該電流を検出することができる。なお、駆動回路22及びCPU26には、それぞれ、発振器27,28の出力が入力される。   The charger 2 includes a power supply coil 21 that is electrically connected to a power source (not shown), a drive circuit 22 that controls a current that flows through the power supply coil 21 to generate a predetermined magnetic field, and a power supply coil. And a current detection circuit 23 for detecting a current flowing through the circuit 21. The current detection circuit 23 includes a current amplifier 24 that detects a current, an A / D converter 25 that converts the current detected by the current amplifier 24 into a digital signal, and a CPU 26 (charge completion) that processes the digital signal. Determination unit). Thereby, the electric current detection circuit 23 can detect this electric current, when the electric current which flows into the electric power feeding coil 21 changes according to the electric current change of the receiving coil 13 in the charging unit 10 of the apparatus 3 so that it may mention later. . The outputs of the oscillators 27 and 28 are input to the drive circuit 22 and the CPU 26, respectively.

充電ユニット10は、電池12を充電するための充電回路11を有している。この充電回路11は、受電コイル13と、整流回路14と、電圧調整部15と、充電制御部16(充電部)と、電流増大部17とを有している。この充電回路11は、受電側コイル13を流れる電流が整流回路14を介して電圧調整部15及び充電制御部16に流れるように構成されている。これにより、充電回路11では、受電側コイル13において電磁誘導によって生じる交流の電力を、整流回路14によって直流の電力に変換し、電圧調整部15によって所定の電圧に調整した後、充電制御部16を介して電池12に充電する。ここで、整流回路14は、例えばブリッジ整流回路など、交流の電力を直流に変換可能な構成であればどのような構成であってもよい。また、電圧調整部15は、電池12に供給する電圧を調整可能な構成であれば、どのような構成であってもよい。   The charging unit 10 has a charging circuit 11 for charging the battery 12. The charging circuit 11 includes a power receiving coil 13, a rectifying circuit 14, a voltage adjusting unit 15, a charging control unit 16 (charging unit), and a current increasing unit 17. The charging circuit 11 is configured such that a current flowing through the power receiving side coil 13 flows to the voltage adjusting unit 15 and the charging control unit 16 via the rectifying circuit 14. As a result, in the charging circuit 11, AC power generated by electromagnetic induction in the power receiving coil 13 is converted into DC power by the rectifier circuit 14, adjusted to a predetermined voltage by the voltage adjusting unit 15, and then the charging control unit 16. The battery 12 is charged via Here, the rectifier circuit 14 may have any configuration as long as it can convert AC power into DC, such as a bridge rectifier circuit. The voltage adjustment unit 15 may have any configuration as long as the voltage supplied to the battery 12 can be adjusted.

充電制御部16は、電池12の充電を制御するためのものであり、電池12の電圧及び電流を該電池12の充電状態に応じて制御するように構成されている。また、詳しくは後述するように、充電制御部16は、電池12の充電を完了した場合に、充電回路11に流れる電流を増大させるように、電流増大部17に充電完了信号を出力する。   The charging control unit 16 is for controlling the charging of the battery 12, and is configured to control the voltage and current of the battery 12 according to the charging state of the battery 12. Further, as will be described in detail later, the charging control unit 16 outputs a charging completion signal to the current increasing unit 17 so as to increase the current flowing through the charging circuit 11 when the charging of the battery 12 is completed.

電流増大部17は、充電制御部16のバイパス回路を形成するように設けられている。すなわち、電流増大部17は、電圧調整部15と充電制御部16との間に、該充電制御部16をバイパスするように設けられている。詳しくは後述するが、電流増大部17は、オン状態でバイパス回路を形成するスイッチング素子31(スイッチ部)と、該スイッチング素子31に対して直列に接続された抵抗32とを備えている。   The current increasing unit 17 is provided so as to form a bypass circuit of the charging control unit 16. In other words, the current increasing unit 17 is provided between the voltage adjusting unit 15 and the charging control unit 16 so as to bypass the charging control unit 16. As will be described in detail later, the current increasing unit 17 includes a switching element 31 (switch unit) that forms a bypass circuit in the ON state, and a resistor 32 connected in series to the switching element 31.

電池12は、特に図示しないが、例えば、有底円筒状の2つの部材を組み合わせることによって円柱状に形成されるケースを有している。このケース内には、平板状の正極及び負極が交互に複数積層されてなる電極体が収納されている。   Although not particularly illustrated, the battery 12 has a case formed in a columnar shape by combining two members having a bottomed cylindrical shape, for example. In this case, an electrode body in which a plurality of flat positive electrodes and negative electrodes are alternately stacked is housed.

正極は、正極活物質を含有する正極活物質層を、アルミニウム等の金属箔製の正極集電体の両面にそれぞれ設けたものである。詳しくは、正極は、リチウムイオンを吸蔵・放出可能なリチウム含有酸化物である正極活物質、導電助剤及びバインダなどを含む正極合剤を、アルミニウム箔などからなる正極集電体上に塗布して乾燥させることによって形成される。正極活物質であるリチウム含有酸化物としては、例えば、LiCoOなどのリチウムコバルト酸化物やLiMnなどのリチウムマンガン酸化物、LiNiOなどのリチウムニッケル酸化物等のリチウム複合酸化物を用いるのが好ましい。なお、正極活物質として、1種類の物質のみを用いてもよいし、2種類以上の物質を用いてもよい。また、正極活物質は、上述の物質のものに限られない。 In the positive electrode, positive electrode active material layers containing a positive electrode active material are provided on both surfaces of a positive electrode current collector made of a metal foil such as aluminum. Specifically, the positive electrode is formed by applying a positive electrode mixture containing a positive electrode active material, a conductive auxiliary agent, a binder, and the like, which is a lithium-containing oxide capable of inserting and extracting lithium ions, onto a positive electrode current collector made of aluminum foil or the like. And dried. As the lithium-containing oxide as the positive electrode active material, for example, a lithium composite oxide such as lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMn 2 O 4 , lithium nickel oxide such as LiNiO 2 is used. Is preferred. Note that only one type of material may be used as the positive electrode active material, or two or more types of materials may be used. Further, the positive electrode active material is not limited to those described above.

負極は、負極活物質を含有する負極活物質層を、銅等の金属箔製の負極集電体の両面にそれぞれ設けたものである。詳しくは、負極は、リチウムイオンを吸蔵・放出可能な負極活物質、導電助剤及びバインダなどを含む負極合剤を、銅箔などからなる負極集電体上に塗布して乾燥させることによって形成される。負極活物質としては、例えば、リチウムイオンを吸蔵・放出可能な炭素材料(黒鉛類、熱分解炭素類、コークス類、ガラス状炭素類など)を用いるのが好ましい。負極活物質は、上述の物質のものに限られない。   In the negative electrode, negative electrode active material layers containing a negative electrode active material are provided on both surfaces of a negative electrode current collector made of a metal foil such as copper. Specifically, the negative electrode is formed by applying and drying a negative electrode mixture containing a negative electrode active material capable of occluding and releasing lithium ions, a conductive additive and a binder on a negative electrode current collector made of copper foil or the like. Is done. As the negative electrode active material, for example, it is preferable to use a carbon material (such as graphite, pyrolytic carbon, coke, or glassy carbon) that can occlude and release lithium ions. The negative electrode active material is not limited to those described above.

したがって、本実施形態における電池12は、リチウムイオンによって電子を正極と負極との間で移動させることにより充放電を行う、いわゆるリチウムイオン電池である。   Therefore, the battery 12 in the present embodiment is a so-called lithium ion battery that performs charging and discharging by moving electrons between the positive electrode and the negative electrode by lithium ions.

なお、各正極は、電池12のケースを構成する一方の部材に電気的に接続されている。一方、各負極は、電池12のケースを構成する他方の部材に電気的に接続されている。これにより、電池12の内部の電極体は、電池12のケースに対して電気的に接続されている。   Each positive electrode is electrically connected to one member constituting the case of the battery 12. On the other hand, each negative electrode is electrically connected to the other member constituting the case of the battery 12. Thereby, the electrode body inside the battery 12 is electrically connected to the case of the battery 12.

(電流増大部)
次に、電流増大部17の構成を、図2を用いて詳細に説明する。
(Current increasing part)
Next, the configuration of the current increasing unit 17 will be described in detail with reference to FIG.

電流増大部17は、既述のとおり、オン状態で充電制御部16のバイパス回路を形成するスイッチング素子31と、該スイッチング素子31に対して直列に接続される抵抗32とを備えている。このスイッチング素子31は、例えばNPN型のバイポーラトランジスタによって構成されていて、ベースには充電制御部16の出力が入力されるように構成されている。また、スイッチング素子31は、スイッチング素子31のコレクタ側には上述の抵抗32が接続されているとともに、エミッタ側は充電回路11の配線に接続されている。なお、スイッチング素子31は、スイッチ動作可能な構成であれば、NPN型のバイポーラトランジスタ以外であってもよい。   As described above, the current increasing unit 17 includes the switching element 31 that forms the bypass circuit of the charging control unit 16 in the ON state, and the resistor 32 that is connected in series to the switching element 31. The switching element 31 is composed of, for example, an NPN-type bipolar transistor, and is configured such that the output of the charge control unit 16 is input to the base. The switching element 31 has the above-described resistor 32 connected to the collector side of the switching element 31 and the emitter side connected to the wiring of the charging circuit 11. Note that the switching element 31 may be other than an NPN-type bipolar transistor as long as it can be switched.

ここで、充電制御部16は、充電制御を行う充電制御デバイス41と、該充電制御デバイス41の端子と充電回路11の配線との間に設けられた抵抗42とを備えている。この充電制御デバイス41は、内部に、前記端子に接続されるスイッチング素子43を有している。このスイッチング素子43は、電池12の充電中にはオン状態である一方、該電池12の充電が完了した場合にはオフ状態になるように制御される。   Here, the charge control unit 16 includes a charge control device 41 that performs charge control, and a resistor 42 provided between a terminal of the charge control device 41 and the wiring of the charging circuit 11. The charging control device 41 includes a switching element 43 connected to the terminal. The switching element 43 is controlled to be in an on state while the battery 12 is being charged, and to be in an off state when the battery 12 is completely charged.

これにより、充電制御デバイス41内のスイッチング素子43がオンの状態、すなわち電池12の充電中には、該スイッチング素子43が導通しているため、充電制御部16から信号出力されない。一方、充電制御デバイス41内のスイッチング素子43がオフの状態、すなわち電池12の充電が完了した場合には、充電制御部16から信号が出力される。したがって、電池12の充電が完了した場合には、電流増大部17のスイッチング素子31のベースに、充電制御部16から信号が入力される。この信号が、既述の充電完了信号に相当する。   Accordingly, when the switching element 43 in the charge control device 41 is in an on state, that is, while the battery 12 is being charged, the switching element 43 is conductive, so that no signal is output from the charge control unit 16. On the other hand, when the switching element 43 in the charging control device 41 is in an off state, that is, when the charging of the battery 12 is completed, a signal is output from the charging control unit 16. Therefore, when charging of the battery 12 is completed, a signal is input from the charging control unit 16 to the base of the switching element 31 of the current increasing unit 17. This signal corresponds to the above-described charging completion signal.

充電制御部16内の抵抗42は、電流増大部17の抵抗32よりも大きな抵抗値を有している。これにより、電池12の充電が完了して電流増大部17のスイッチング素子31がオン状態になったときには、該電流増大部17に、充電制御部16に流れる電流よりも大きな電流が流れる。   The resistor 42 in the charging control unit 16 has a larger resistance value than the resistor 32 of the current increasing unit 17. Thereby, when the charging of the battery 12 is completed and the switching element 31 of the current increasing unit 17 is turned on, a current larger than the current flowing through the charging control unit 16 flows through the current increasing unit 17.

上述のような構成により、電池12の充電が完了すると、充電回路11では、充電制御部16をバイパスする回路が電流増大部17によって形成されるとともに、電池12の充電時よりも大きな電流が流れる。   With the configuration as described above, when charging of the battery 12 is completed, in the charging circuit 11, a circuit that bypasses the charging control unit 16 is formed by the current increasing unit 17, and a larger current flows than when the battery 12 is charged. .

ところで、上述の図1及び図2に示すような構成の場合、受電側である充電回路11に電流が流れると、該充電回路11の受電コイル13と給電側である充電器2の給電コイル21との間の相互誘導作用によって、該給電コイル21に、受電コイル13に流れる電流に対応する電流が流れる。すなわち、受電側の受電コイル13に流れる受電側負荷電流と、給電側の給電コイル21に流れる給電側駆動電流との間には、例えば図3に示すような相関関係がある。例えば、図3において、点Aの状態のときには、受電側負荷電流がA2であれば、給電側駆動電流はA1となる。   In the case of the configuration shown in FIGS. 1 and 2 described above, when a current flows through the charging circuit 11 on the power receiving side, the power receiving coil 13 of the charging circuit 11 and the power feeding coil 21 of the charger 2 on the power feeding side. A current corresponding to the current flowing through the power receiving coil 13 flows through the feeding coil 21 due to the mutual induction action between the power receiving coil 13 and the power receiving coil 21. That is, there is a correlation as shown in FIG. 3, for example, between the power receiving side load current flowing in the power receiving coil 13 and the power feeding driving current flowing in the power feeding coil 21. For example, in FIG. 3, in the state of point A, if the power receiving side load current is A2, the power feeding side driving current is A1.

このような関係を利用することによって、受電側の受電コイル13に流れる電流の変化を、給電側の給電コイル21に流れる電流の変化として検出することが可能となる。そこで、本実施形態では、受電側である機器3の充電制御部16によって充電完了が検出された場合に、受電側の充電回路11の電流を増加させることによって、給電側である充電器2でも充電完了を検知できるようにした。これにより、充電システム1に信号を送受信するための制御部や変調部等を設けることなく、受電側で充電完了を検出したことを、給電側である充電器2に伝達することが可能になる。   By utilizing such a relationship, it is possible to detect a change in the current flowing in the power receiving coil 13 on the power receiving side as a change in the current flowing in the power feeding coil 21 on the power feeding side. Therefore, in the present embodiment, when charging completion is detected by the charging control unit 16 of the device 3 on the power receiving side, by increasing the current of the charging circuit 11 on the power receiving side, the charger 2 on the power feeding side also increases. Enabled to detect the completion of charging. Accordingly, it is possible to transmit the fact that the charging completion is detected on the power receiving side to the charger 2 on the power feeding side without providing a control unit, a modulation unit, or the like for transmitting / receiving a signal to / from the charging system 1. .

詳しくは、図4に示すように、電池12の充電を完了すると、受電側に流れる電流は小さくなる(受電側負荷電流C2)ため、その受電側負荷電流に対応する電流を充電器2側で検出すれば、該充電器2側で電池12の充電完了を検知することができる。しかしながら、充電器2で受電側負荷電流に対応する給電側駆動電流を検出する場合、コイルの配置、長さ及び形状等によって生じる電流値のバラツキ(例えば図3におけるC1’〜C1’’)が存在するため、受電側負荷電流のわずかな違いを検出するのは難しい。特に、本実施形態の場合、図4に示すように、充電完了前後に各回路を駆動するために流れる受電側負荷電流(充電前後の低電流)と充電完了時の受電側負荷電流C2との差が小さいことから、充電器2側で受電側負荷電流に対応する電流を検出しても、電池12の充電が完了したかどうかを精度良く判定することは困難であった。   Specifically, as shown in FIG. 4, when the charging of the battery 12 is completed, the current flowing to the power receiving side becomes small (power receiving side load current C2), so that the current corresponding to the power receiving side load current is generated on the charger 2 side. If detected, the charging completion of the battery 12 can be detected on the charger 2 side. However, when the charger 2 detects the power feeding side drive current corresponding to the power receiving side load current, there are variations in the current value (for example, C1 ′ to C1 ″ in FIG. 3) caused by the arrangement, length, shape, and the like of the coil. Because it exists, it is difficult to detect a slight difference in the receiving side load current. In particular, in the case of the present embodiment, as shown in FIG. 4, the power receiving side load current (low current before and after charging) flowing to drive each circuit before and after the completion of charging and the power receiving side load current C2 at the time of completion of charging. Since the difference is small, it is difficult to accurately determine whether or not the charging of the battery 12 is completed even if the current corresponding to the power receiving side load current is detected on the charger 2 side.

そこで、本実施形態では、図4に示すように、電池12の充電が完了した場合には、所定時間経過後に、上述の電流増大部17によってバイパス回路を形成して、受電側負荷電流を充電時の最大電流であるA2よりも大きいB2まで増大させる。これにより、給電側において、受電側負荷電流B2に対応する電流B1を容易に検出することができ、電池12の充電完了を容易に判定することができる。なお、図4中における受電側負荷電流A2,B2,C2は、図3のグラフの横軸に示す受電側負荷電流A2,B2,C2に、それぞれ対応している。また、図3において、点Aは電池12の充電中の受電側負荷電流が最大の場合を、点Bは充電完了後に電流増大部17を作動させた場合を、点Cは充電完了時を、それぞれ示している。   Therefore, in the present embodiment, as shown in FIG. 4, when charging of the battery 12 is completed, a bypass circuit is formed by the above-described current increasing unit 17 after a predetermined time has elapsed, and the power receiving side load current is charged. It is increased to B2, which is larger than A2, which is the maximum current at the time. Thereby, on the power feeding side, the current B1 corresponding to the power receiving side load current B2 can be easily detected, and the charging completion of the battery 12 can be easily determined. Note that the power receiving side load currents A2, B2, and C2 in FIG. 4 correspond to the power receiving side load currents A2, B2, and C2 shown on the horizontal axis of the graph of FIG. Further, in FIG. 3, point A is when the power-receiving-side load current during charging of the battery 12 is maximum, point B is when the current increasing unit 17 is operated after completion of charging, point C is when charging is completed, Each is shown.

本実施形態における電池12の充電完了判定動作をまとめると、以下のとおりである。充電完了判定動作を、図4を用いて説明する。   The charging completion determination operation of the battery 12 in this embodiment is summarized as follows. The charging completion determination operation will be described with reference to FIG.

まず、受電側である充電回路11では、電池12の充電が完了すると、充電制御部16が電池12の充電完了を検出する。それから所定時間経過後に、充電制御部16は、内部のスイッチング素子43をオフ状態にして、充電完了信号を電流増大部17に出力する。これにより、電流増大部17のスイッチング素子31はオン状態になって、充電回路11の受電コイル13には、受電側負荷電流B2が流れる。なお、本実施形態では、充電制御部16は、充電完了から所定時間経過後に充電完了信号を出力しているが、この限りではなく、充電完了と同時に充電完了信号を出力してもよい。   First, in the charging circuit 11 on the power receiving side, when charging of the battery 12 is completed, the charging control unit 16 detects completion of charging of the battery 12. After a predetermined time has elapsed, the charging control unit 16 turns off the internal switching element 43 and outputs a charging completion signal to the current increasing unit 17. Thereby, the switching element 31 of the current increasing unit 17 is turned on, and the power receiving side load current B <b> 2 flows through the power receiving coil 13 of the charging circuit 11. In the present embodiment, the charging control unit 16 outputs the charging completion signal after a predetermined time has elapsed from the completion of charging. However, the present invention is not limited to this, and the charging completion signal may be output simultaneously with the completion of charging.

ここで、充電制御部16は、受電側負荷電流が、充電中における受電側負荷電流の最大値(図4におけるA2)の1/10以下になったことを検出した場合に、充電完了と判定するように構成されている。また、充電制御部16は、ノイズ等の影響を避けるために、受電側負荷電流がA2の1/10以下になったことを約1秒以上、継続して検出した場合に、充電完了と判定するように構成されている。   Here, when the charging control unit 16 detects that the power receiving side load current is 1/10 or less of the maximum value of the power receiving side load current during charging (A2 in FIG. 4), it determines that charging is complete. Is configured to do. In addition, the charging control unit 16 determines that the charging is completed when it continuously detects that the power-receiving-side load current has become 1/10 or less of A2 for about 1 second or more in order to avoid the influence of noise or the like. Is configured to do.

給電側である充電器2では、受電コイル13と給電コイル21との相互誘導作用によって、該給電コイル21に受電側負荷電流B2に対応する給電側駆動電流B1が流れる(図3参照)。このB1を電流検出回路23で検出すると、該電流検出回路23内のCPU26によって、電池12の充電が完了したと判定する。   In the charger 2 on the power feeding side, a power feeding side drive current B1 corresponding to the power receiving side load current B2 flows through the power feeding coil 21 due to the mutual induction action of the power receiving coil 13 and the power feeding coil 21 (see FIG. 3). When this B1 is detected by the current detection circuit 23, the CPU 26 in the current detection circuit 23 determines that the charging of the battery 12 has been completed.

なお、電池12の充電が完了したと判定された場合には、充電器2は、給電コイル21への通電を停止する。これにより、充電器2で無駄な電力を使ったり、該充電器2で無駄な発熱が生じたりするのを防止できる。   When it is determined that charging of the battery 12 is completed, the charger 2 stops energization of the power feeding coil 21. Thereby, it is possible to prevent useless power from being used in the charger 2 and useless heat generation in the charger 2.

ここで、図1の受電システム1を用いて電池12の充電を行う工程が充電工程に、機器3の充電制御部16で、電池12の充電完了を検出する工程が充電完了検出工程に、それぞれ対応している。また、電池12の充電完了を検出した場合に、電流増大部17を作動させて受電コイル13に流れる受電側負荷電流をB2まで増大させる工程が電流増大工程に、該受電側負荷電流B2に対応して給電コイル21に流れる給電側駆動電流を検出して、電池12の充電を完了したと判定する工程が充電完了判定工程に、それぞれ対応している。   Here, the process of charging the battery 12 using the power receiving system 1 in FIG. 1 is the charging process, and the charging control unit 16 of the device 3 is the process of detecting the charging completion of the battery 12 is the charging completion detecting process. It corresponds. Further, when the charging completion of the battery 12 is detected, the step of operating the current increasing unit 17 to increase the power receiving side load current flowing through the power receiving coil 13 to B2 corresponds to the current increasing step, and corresponds to the power receiving side load current B2. Then, the process of detecting the power supply side drive current flowing through the power supply coil 21 and determining that the charging of the battery 12 has been completed corresponds to the charge completion determination process.

(実施形態1の効果)
以上より、この実施形態では、受電側の充電回路11に、充電制御部16をバイパスするように電流増大部17を設けた。そして、電池12の充電が完了した場合に、該電流増大部17を作動させて、充電回路11の受電コイル13に流れる電流を、電池12の充電時の最大電流よりも大きくした。このとき、給電側である充電器2内の給電コイル21には、受電コイル13に流れる受電側負荷電流B2に対応した電流B1が流れるため、その電流B1を電流検出回路23によって検出することで、充電器2側で電池12の充電完了を判定することができる。
(Effect of Embodiment 1)
As described above, in this embodiment, the current increasing unit 17 is provided in the charging circuit 11 on the power receiving side so as to bypass the charging control unit 16. When the charging of the battery 12 is completed, the current increasing unit 17 is operated so that the current flowing through the power receiving coil 13 of the charging circuit 11 is larger than the maximum current when the battery 12 is charged. At this time, since the current B1 corresponding to the power receiving side load current B2 flowing in the power receiving coil 13 flows in the power feeding coil 21 in the charger 2 on the power feeding side, the current detection circuit 23 detects the current B1. The charging completion of the battery 12 can be determined on the charger 2 side.

したがって、上述の構成により、充電システム1に信号を送受信するための制御部や変調部等を設けることなく、受電側が検出した電池12の充電完了を、給電側である充電器2に伝達することができる。よって、ノイズの発生を防止可能で簡単且つ安価な構成によって、電池12の充電完了を充電器2側で容易に検知することができる。   Therefore, with the above-described configuration, the charging completion of the battery 12 detected on the power receiving side is transmitted to the charger 2 on the power feeding side without providing a control unit, a modulation unit, or the like for transmitting and receiving signals to the charging system 1. Can do. Therefore, the completion of charging of the battery 12 can be easily detected on the side of the charger 2 with a simple and inexpensive configuration that can prevent the generation of noise.

[実施形態2]
次に、実施形態2にかかる充電システムの充電完了判定動作について説明する。この実施形態での充電完了判定動作では、電池12の充電完了後に、受電コイル13に流れる受電側負荷電流を、充電完了時の電流よりも大きく且つ充電時の最大電流よりも小さい値とする。以下、本実施形態の充電完了動作を、図5〜図7に基づいて説明する。なお、本実施形態では、充電システムの各構成は、上述の実施形態1の構成と同様であるため、説明及び図示を省略する。
[Embodiment 2]
Next, the charging completion determination operation of the charging system according to the second embodiment will be described. In the charging completion determination operation in this embodiment, after the charging of the battery 12 is completed, the power receiving side load current flowing through the power receiving coil 13 is set to a value that is larger than the current at the time of charging and smaller than the maximum current at the time of charging. Hereinafter, the charging completion operation of the present embodiment will be described with reference to FIGS. In the present embodiment, each configuration of the charging system is the same as the configuration of the first embodiment described above, and thus description and illustration are omitted.

本実施形態では、図5に示すように、電池12の充電完了後に、受電側である充電回路11に流れる受電側負荷電流をD2とする。すなわち、充電制御部16は、電池12の充電が完了してから所定時間が経過した後、電流増大部17を作動させて受電側負荷電流をD2にする。なお、このD2は、電池12の充電完了時の受電側負荷電流C2よりも大きく且つ該電池12の充電時の受電側負荷電流の最大値A2よりも小さい値である。   In the present embodiment, as shown in FIG. 5, the power receiving side load current flowing through the charging circuit 11 on the power receiving side after the charging of the battery 12 is completed is D2. That is, after a predetermined time has elapsed after the charging of the battery 12 is completed, the charging control unit 16 operates the current increasing unit 17 to set the power receiving side load current to D2. This D2 is larger than the power receiving side load current C2 when the battery 12 is fully charged and smaller than the maximum value A2 of the power receiving side load current when the battery 12 is charged.

そうすると、給電側である充電器2の給電コイル21には、図6に示すように、給電側駆動電流D1が流れる。なお、この図6において、点Dは、充電回路11に受電側負荷電流D2が流れている場合を示している。   Then, as shown in FIG. 6, a power supply side drive current D1 flows through the power supply coil 21 of the charger 2 on the power supply side. In FIG. 6, a point D indicates a case where the power receiving side load current D <b> 2 flows in the charging circuit 11.

本実施形態の場合、図5に示すように、電池12の充電中にも受電側負荷電流がD2となる場合(図中のT1等)があるため、単純に受電側負荷電流がD2に対応する給電側駆動電流を充電器2側で検出する構成では、充電完了を誤検知してしまう可能性がある。   In the case of the present embodiment, as shown in FIG. 5, there is a case where the power receiving side load current becomes D2 even during charging of the battery 12 (such as T1 in the figure), so the power receiving side load current simply corresponds to D2. In the configuration in which the power supply side drive current to be detected is detected on the charger 2 side, there is a possibility that the charge completion is erroneously detected.

そこで、本実施形態では、充電器2が図7に示すようなフローに基づいて電池12の充電完了を判定する。図7のフローについて以下で説明する。   Therefore, in this embodiment, the charger 2 determines the completion of charging of the battery 12 based on a flow as shown in FIG. The flow of FIG. 7 will be described below.

図7のフローは、電池12の充電開始によってスタートする。この図7に示すフローがスタートする(スタート)と、ステップS1では、給電側駆動電流が受電側負荷電流D2に対応するD1(閾値)になったかどうかを判定する。このステップS1において、給電側駆動電流がD1になったと判定された場合(YESの場合)には、続くステップS2で給電側駆動電流がD1よりもα分、小さくなったかどうかを判定する。一方、上述のステップS1において、給電側駆動電流がD1になっていないと判定された場合(NOの場合)には、給電側駆動電流がD1になるまで上記ステップS1の判定を繰り返す。   The flow in FIG. 7 starts when the battery 12 starts to be charged. When the flow shown in FIG. 7 starts (start), in step S1, it is determined whether or not the power supply side drive current has reached D1 (threshold value) corresponding to the power reception side load current D2. If it is determined in step S1 that the power supply side drive current has become D1 (in the case of YES), it is determined in subsequent step S2 whether the power supply side drive current has become smaller than D1 by α. On the other hand, when it is determined in step S1 that the power supply side drive current is not D1 (in the case of NO), the determination in step S1 is repeated until the power supply side drive current becomes D1.

上記ステップS2において、給電側駆動電流がD1よりもα分、小さくなったと判定される(ステップS2においてYESの場合)と、ステップS3に進んで、給電側駆動電流がD1になったかどうかを判定する。一方、上記ステップS2において、給電側駆動電流がD1よりもα分、小さくなったと判定されていない場合(NOの場合)には、ステップS2の判定を繰り返す。   If it is determined in step S2 that the power supply side drive current has become smaller than D1 by α (in the case of YES in step S2), the process proceeds to step S3 to determine whether or not the power supply side drive current has become D1. To do. On the other hand, if it is not determined in step S2 that the power feeding side drive current has become smaller than D1 by α (NO), the determination in step S2 is repeated.

上記ステップS3において、給電側駆動電流が再びD1になったと判定された場合(YESの場合)には、ステップS4に進んで電池12の充電が終了したと判定し、図7のフローを終了する(エンド)。一方、上記ステップS3において、給電側駆動電流がD1になったと判定されない場合(NOの場合)には、このステップS3の判定を繰り返す。   When it is determined in step S3 that the power supply side drive current has again become D1 (in the case of YES), the process proceeds to step S4, where it is determined that charging of the battery 12 is completed, and the flow of FIG. (End). On the other hand, if it is not determined in step S3 that the power supply side drive current has reached D1 (NO), the determination in step S3 is repeated.

すなわち、上記ステップS3では、受電側負荷電流に対応して給電側駆動電流が、D1から減少した後、再びD1になる場合(図5における点T2)を検出している。   That is, in step S3, the case where the power supply side drive current decreases from D1 corresponding to the power reception side load current and then becomes D1 again (point T2 in FIG. 5) is detected.

ここで、上記ステップS1からS4が、充電器2側で電池12の充電完了を判定する充電完了判定工程に対応する。   Here, the steps S1 to S4 correspond to a charging completion determination step for determining completion of charging of the battery 12 on the charger 2 side.

(実施形態2の効果)
以上より、この実施形態によれば、電池12の充電完了後に、受電側の充電回路11に流れる受電側負荷電流を、充電完了時の受電負荷電流C2よりも大きく且つ充電時の受電負荷電流の最大値A2よりも小さくした。このような構成によっても、上述の実施形態1と同様、給電側である充電器2において、電池12の充電完了を検知することが可能になる。
(Effect of Embodiment 2)
As described above, according to this embodiment, after the charging of the battery 12 is completed, the power receiving side load current flowing through the power receiving side charging circuit 11 is larger than the power receiving load current C2 at the time of charging completion and the power receiving load current at the time of charging. It was smaller than the maximum value A2. Even with such a configuration, it is possible to detect the completion of charging of the battery 12 in the charger 2 on the power supply side, as in the first embodiment.

(その他の実施形態)
以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
(Other embodiments)
While the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the invention.

前記各実施形態では、充電回路11に設けられたスイッチング素子31及び抵抗32からなる電流増大部17によって、電池12の充電完了後に受電コイル13に流れる受電側負荷電流を増大させている。しかしながら、電流増大部の構成は、前記各実施形態に示す構成に限らず、充電回路11内の受電側負荷電流を増大させることができる構成であれば、どのような構成であってもよい。   In each of the embodiments described above, the power receiving side load current flowing through the power receiving coil 13 after the battery 12 is completely charged is increased by the current increasing unit 17 including the switching element 31 and the resistor 32 provided in the charging circuit 11. However, the configuration of the current increasing unit is not limited to the configuration shown in each of the above embodiments, and any configuration may be used as long as it can increase the power receiving side load current in the charging circuit 11.

前記各実施形態では、各電池をリチウムイオン電池として構成している。しかしながら、各電池は、充電制御を行う構成の電池であれば、リチウムイオン電池以外の電池であってもよい。また、各電池の形状もコイン状に限らず、円柱状や直方体状など、どのような形状であってもよい。   In the above embodiments, each battery is configured as a lithium ion battery. However, each battery may be a battery other than a lithium ion battery as long as the battery is configured to perform charge control. Further, the shape of each battery is not limited to a coin shape, and may be any shape such as a cylindrical shape or a rectangular parallelepiped shape.

本発明による充電システムは、給電コイルを有する給電装置と、受電コイルを有する受電装置とを備え、非接触で充電を行う構成に利用可能である。   The charging system according to the present invention includes a power feeding device having a power feeding coil and a power receiving device having a power receiving coil, and can be used in a configuration in which charging is performed in a non-contact manner.

1 充電システム、2 充電器(給電装置)、3 機器(電気機器)、10 充電ユニット(受電装置)、11 充電回路、12 電池、13 受電コイル、16 充電制御部(充電部)、17 電流増大部、21 給電コイル、26 CPU(充電完了判定部)、31 スイッチング素子(スイッチ部) DESCRIPTION OF SYMBOLS 1 Charging system, 2 Charger (power supply device), 3 Device (electrical device), 10 Charging unit (power receiving device), 11 Charging circuit, 12 Battery, 13 Power receiving coil, 16 Charging control unit (charging unit), 17 Current increase Part, 21 feeding coil, 26 CPU (charge completion determination part), 31 switching element (switch part)

Claims (7)

給電コイルを有する給電装置と、
前記給電コイルへの通電により発生した磁場によって電流が流れる受電コイルを有する受電装置とを備え、
前記受電装置は、
前記受電コイルに流れた電流によって電池を充電する充電部と、
前記電池の充電が完了した場合に、前記受電コイルに流れる電流を該電池の充電完了時よりも増大させる電流増大部とを有していて、
前記給電装置は、前記電流増大部によって前記受電コイルに流れる電流が増大したことを、前記給電コイルに流れる電流によって検出した場合に、前記電池の充電完了と判定する充電完了判定部を有する、充電システム。
A power supply device having a power supply coil;
A power receiving device having a power receiving coil through which a current flows by a magnetic field generated by energizing the power feeding coil;
The power receiving device is:
A charging unit that charges the battery with a current flowing through the power receiving coil; and
A current increasing portion that increases the current flowing through the power receiving coil when the battery is fully charged compared to when the battery is fully charged;
The power supply device includes a charge completion determination unit that determines that charging of the battery is completed when the current increase unit detects that the current flowing through the power receiving coil has increased due to the current flowing through the power supply coil. system.
請求項1に記載の充電システムにおいて、
前記受電装置の電流増大部は、前記充電部をバイパスするとともに、該充電部よりも抵抗の小さいバイパス回路を有していて、
前記バイパス回路は、前記電池の充電が完了した場合にオン状態になるスイッチ部を有する、充電システム。
The charging system according to claim 1,
The current increasing unit of the power receiving device bypasses the charging unit and includes a bypass circuit having a smaller resistance than the charging unit,
The bypass circuit includes a switch unit that is turned on when charging of the battery is completed.
請求項1または2に記載の充電システムにおいて、
前記受電装置の電流増大部は、前記電池の充電が完了した場合に、該電池の充電中に前記受電コイルに流れる電流の最大値よりも大きな値の電流を該受電コイルに流すように構成されている、充電システム。
The charging system according to claim 1 or 2,
The current increasing unit of the power receiving device is configured to flow a current having a value larger than a maximum value of a current flowing through the power receiving coil during charging of the battery when the battery is completely charged. The charging system.
請求項1または2に記載の充電システムにおいて、
前記給電装置の充電完了判定部は、前記電池の充電中に、前記給電コイルに流れる電流値が該電池の充電完了時の電流値よりも大きい閾値を下回った後、再度、該閾値に達したことを検出した場合に、充電完了と判定するように構成されている、充電システム。
The charging system according to claim 1 or 2,
The charging completion determination unit of the power supply apparatus reaches the threshold again after the current value flowing through the power supply coil falls below a threshold value larger than the current value at the completion of charging of the battery during charging of the battery. A charging system configured to determine that charging is complete when it is detected.
請求項1から4のいずれか一つに記載の充電システムにおける受電装置を備えた電気機器。   The electric equipment provided with the power receiving apparatus in the charging system as described in any one of Claim 1 to 4. 給電装置の給電コイルで発生する磁場によって受電装置の受電コイルに電流を流すことにより、該受電装置に接続された電池を充電する充電工程と、
前記電池の充電が完了したことを、前記受電装置側で検出する充電完了検出工程と、
前記充電完了検出工程によって前記電池の充電完了が検出された場合に、該電池の充電完了時に流れる電流よりも大きい電流を前記受電コイルに流す電流増大工程と、
前記受電コイルに流れる電流の増大を、前記給電装置の給電コイルに流れる電流に基づいて検出した場合に、該給電装置側で前記電池の充電完了と判定する充電完了判定工程とを有する、充電システムにおける充電完了判別方法。
A charging step of charging a battery connected to the power receiving device by passing a current through the power receiving coil of the power receiving device by a magnetic field generated in the power feeding coil of the power feeding device;
A charging completion detection step for detecting on the power receiving device side that the charging of the battery is completed;
A current increasing step of flowing a current larger than a current flowing at the completion of charging of the battery to the power receiving coil when the charging completion of the battery is detected by the charging completion detecting step;
A charging completion determination step of determining that the battery is completely charged on the power supply device side when an increase in current flowing in the power reception coil is detected based on a current flowing in the power supply coil of the power supply device. Charging completion determination method.
請求項6に記載の充電完了判別方法において、
前記充電完了判定工程は、前記受電装置の受電コイルに流れる電流が、前記電池の充電完了時の電流値よりも大きい閾値を下回った後、再度、該閾値に到達したことを前記給電装置側で検出した場合に、前記電池の充電完了と判定する、充電システムにおける充電完了判別方法。
In the charging completion determination method according to claim 6,
In the charging completion determination step, after the current flowing in the power receiving coil of the power receiving device falls below a threshold value larger than the current value at the time of completion of charging of the battery, the power supply device side indicates that the threshold value is reached again. A charging completion determination method in a charging system, which, when detected, determines that charging of the battery is completed.
JP2011009229A 2011-01-19 2011-01-19 CHARGE SYSTEM, ELECTRIC DEVICE HAVING CHARGING SYSTEM POWER RECEIVER, AND CHARGING COMPLETION DETERMINATION METHOD Active JP5802879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009229A JP5802879B2 (en) 2011-01-19 2011-01-19 CHARGE SYSTEM, ELECTRIC DEVICE HAVING CHARGING SYSTEM POWER RECEIVER, AND CHARGING COMPLETION DETERMINATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009229A JP5802879B2 (en) 2011-01-19 2011-01-19 CHARGE SYSTEM, ELECTRIC DEVICE HAVING CHARGING SYSTEM POWER RECEIVER, AND CHARGING COMPLETION DETERMINATION METHOD

Publications (2)

Publication Number Publication Date
JP2012152037A true JP2012152037A (en) 2012-08-09
JP5802879B2 JP5802879B2 (en) 2015-11-04

Family

ID=46793757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009229A Active JP5802879B2 (en) 2011-01-19 2011-01-19 CHARGE SYSTEM, ELECTRIC DEVICE HAVING CHARGING SYSTEM POWER RECEIVER, AND CHARGING COMPLETION DETERMINATION METHOD

Country Status (1)

Country Link
JP (1) JP5802879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595147A (en) * 2013-11-22 2014-02-19 深圳市航盛电子股份有限公司 Wireless power supply system and method based on keyless entry system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339232A (en) * 1993-05-26 1994-12-06 Matsushita Electric Works Ltd Charger
JPH11341711A (en) * 1998-05-21 1999-12-10 Sony Corp Noncontact power supply circuit
JP2000197275A (en) * 1998-12-24 2000-07-14 Sanyo Electric Co Ltd Controller of non-contacting charger
JP2000287369A (en) * 1999-03-31 2000-10-13 Matsushita Electric Works Ltd Charger
JP2002034169A (en) * 2000-07-14 2002-01-31 Sanyo Electric Co Ltd Noncontact charger and portable telephone
JP2003204637A (en) * 2002-01-08 2003-07-18 Hitachi Ltd Noncontact feeding device
US20090108805A1 (en) * 2007-10-30 2009-04-30 City University Of Hong Kong Localized charging, load identification and bi-directional communication methods for a planar inductive battery charging system
US20100001684A1 (en) * 2008-07-04 2010-01-07 Jeffrey Raymond Eastlack Limitation of vampiric power consumption with decoupling of an inductive power apparatus and an alternating current power source
JP2010016985A (en) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd Method of data transmission in electric power transmission, and charging stand and battery built-in device using the method
JP2010178473A (en) * 2009-01-28 2010-08-12 Panasonic Corp Electronic-device charging system, charger, and electronic device
JP2010207074A (en) * 2009-02-09 2010-09-16 Nec Corp System, device and method for control of non-contact charge

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339232A (en) * 1993-05-26 1994-12-06 Matsushita Electric Works Ltd Charger
JPH11341711A (en) * 1998-05-21 1999-12-10 Sony Corp Noncontact power supply circuit
JP2000197275A (en) * 1998-12-24 2000-07-14 Sanyo Electric Co Ltd Controller of non-contacting charger
JP2000287369A (en) * 1999-03-31 2000-10-13 Matsushita Electric Works Ltd Charger
JP2002034169A (en) * 2000-07-14 2002-01-31 Sanyo Electric Co Ltd Noncontact charger and portable telephone
JP2003204637A (en) * 2002-01-08 2003-07-18 Hitachi Ltd Noncontact feeding device
US20090108805A1 (en) * 2007-10-30 2009-04-30 City University Of Hong Kong Localized charging, load identification and bi-directional communication methods for a planar inductive battery charging system
JP2010016985A (en) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd Method of data transmission in electric power transmission, and charging stand and battery built-in device using the method
US20100001684A1 (en) * 2008-07-04 2010-01-07 Jeffrey Raymond Eastlack Limitation of vampiric power consumption with decoupling of an inductive power apparatus and an alternating current power source
JP2010178473A (en) * 2009-01-28 2010-08-12 Panasonic Corp Electronic-device charging system, charger, and electronic device
JP2010207074A (en) * 2009-02-09 2010-09-16 Nec Corp System, device and method for control of non-contact charge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595147A (en) * 2013-11-22 2014-02-19 深圳市航盛电子股份有限公司 Wireless power supply system and method based on keyless entry system

Also Published As

Publication number Publication date
JP5802879B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US10020670B2 (en) Power receiving device and wireless power supply system
US8692508B2 (en) Battery voltage monitoring device
US8164305B2 (en) Battery management system with energy balance among multiple battery cells
US9130380B2 (en) Contactless power transmitting system having overheat protection function and method thereof
US7061207B2 (en) Cell equalizing circuit
AU2015101232B4 (en) Hybrid power pack
KR20130025448A (en) Charging unit and electrical device provided with same
WO2011135722A1 (en) Power receiving device and power receiving method
TWI804503B (en) Power storage system and electric equipment
EP4096053B1 (en) Battery control circuit, battery and electronic device
US10181741B2 (en) Storage battery device
JP2011083094A (en) Non-contact charger
JP2013017323A (en) Cell equalization control system
WO2013114757A1 (en) Battery equalization device and method
JP5802879B2 (en) CHARGE SYSTEM, ELECTRIC DEVICE HAVING CHARGING SYSTEM POWER RECEIVER, AND CHARGING COMPLETION DETERMINATION METHOD
JP2010284066A (en) Communication device, communication terminal and communication system
JP6593648B2 (en) Power receiving apparatus and wireless power transmission system
JP2012191764A (en) Charging system and charging method using the same
JP2013233002A (en) Power storage system and method of controlling charge/discharge thereof
JP2017175703A (en) Wireless power reception device and wireless power transmission system
WO2014177109A2 (en) Terminal battery activation method, device and terminal
JP2013021887A (en) Electric power transmission system
CN109716149A (en) Method for running battery unit
JP2018038133A (en) Charging system
TW201332254A (en) Charging method and charging circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5802879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250