JP2012151752A - Coherent light receiving device, and optical communication system - Google Patents

Coherent light receiving device, and optical communication system Download PDF

Info

Publication number
JP2012151752A
JP2012151752A JP2011009985A JP2011009985A JP2012151752A JP 2012151752 A JP2012151752 A JP 2012151752A JP 2011009985 A JP2011009985 A JP 2011009985A JP 2011009985 A JP2011009985 A JP 2011009985A JP 2012151752 A JP2012151752 A JP 2012151752A
Authority
JP
Japan
Prior art keywords
signal
light
phase
optical
intermediate frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011009985A
Other languages
Japanese (ja)
Other versions
JP2012151752A5 (en
JP5710989B2 (en
Inventor
Manabu Yoshino
學 吉野
Junki Miki
準基 三鬼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011009985A priority Critical patent/JP5710989B2/en
Publication of JP2012151752A publication Critical patent/JP2012151752A/en
Publication of JP2012151752A5 publication Critical patent/JP2012151752A5/ja
Application granted granted Critical
Publication of JP5710989B2 publication Critical patent/JP5710989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a coherent light receiving device demanding a low setting accuracy of optical components, and being configured by simple optical components.SOLUTION: A coherent light receiving device uses a plurality of local oscillation lights having initial phases and phase fluctuations in accordance with each other. The coherent light receiving device multiplies respective intermediate frequency signals of the plurality of local oscillation lights and signal light by sinusoidal signals having the same frequencies as the respective intermediate frequency signals and having phase fluctuations in accordance with each other and having a predetermined relation of the initial phases at multiplication, or alternatively, samples the intermediate frequency signals in a cycle at a fraction of the natural number of a frequency difference of the intermediate frequency signals. In the case of a diversity system equivalent to an optical multi-terminal coupling circuit having the number of terminals of K, by adjusting an output of an intermediate frequency signal corresponding to each terminal so as to have a phase of 2πq/K (q is 0 to K-1), coherent light detection is realized without using an optical 90-degree phase hybrid circuit and without causing problems by phase modulation in a cycle equal to or less than half of one symbol time.

Description

本発明は、光信号を位相ダイバーシティ受信方式で受信するコヒーレント光受信装置及びこれを備える光通信システムに関する。   The present invention relates to a coherent optical receiver that receives an optical signal by a phase diversity reception method, and an optical communication system including the same.

コヒーレント光通信の同期検波は、信号光と信号光に位相を追尾した局発光を混合することで光検波を行う。ここで、信号光と局発光の位相が整合していない場合、検波効率が劣化して信号が出力されなくなる。光位相同期ループを用いて位相を追尾しないでコヒーレント光検波を実現する方法として位相ダイバーシティ受信方式がある。   Synchronous detection of coherent optical communication performs optical detection by mixing signal light and local light whose phase is tracked with signal light. Here, when the phases of the signal light and the local light are not matched, the detection efficiency is deteriorated and the signal is not output. There is a phase diversity reception method as a method for realizing coherent optical detection without tracking a phase using an optical phase locked loop.

位相ダイバーシティ受信方式は、光多端子結合回路を用いた光信号の位相と振幅との同時測定の発想に基づくものである。2相(同相と直角位相)ダイバーシティ受信方式を例に挙げると、光多端子結合回路として例えば、2入力4出力の光90度位相ハイブリッド回路を備える。この光90度位相ハイブリッド回路は、4端子の光多端子結合回路に相当し、局発光源部からの局発光と受信した信号光をそれぞれ異なる入力端に入力されると、π/2位相差が異なる4系列の混合光を出力する。ここで、4系列の混合光としたが、4系列の混合光で互いに、π位相差の異なる混合光を差動光検波せずに、互いにπ/2位相差が異なる混合光をそれぞれ光検波する場合は、4端子の光多端子結合回路として扱うが4出力の内の2出力を用いない2入力2出力の光90度位相ハイブリッド回路を用いて、互いにπ/2位相差が異なる2系列の出力でよい。   The phase diversity reception system is based on the idea of simultaneous measurement of the phase and amplitude of an optical signal using an optical multi-terminal coupling circuit. Taking a two-phase (in-phase and quadrature) diversity reception system as an example, an optical 90-degree phase hybrid circuit with two inputs and four outputs is provided as an optical multi-terminal coupling circuit. This optical 90-degree phase hybrid circuit corresponds to a four-terminal optical multi-terminal coupling circuit. When local light from the local light source and received signal light are input to different input terminals, a π / 2 phase difference is obtained. Outputs four series of mixed lights. Here, four series of mixed lights are used, but mixed lights having different π / 2 phase differences are detected without differential detection of mixed lights having different π phase differences from each other. In this case, a two-input two-output optical 90 degree phase hybrid circuit that treats as a four-terminal optical multi-terminal coupling circuit but does not use two of the four outputs, and has two series with different π / 2 phase differences. Can be output.

2系列の差動光検波器2はそれぞれ、光90度位相ハイブリッド回路からの2組のπ位相差が異なる系列の混合光をそれぞれ差動光検波して電気信号に変換し、それぞれの位相差関係における中間周波信号を出力する。この2つの中間周波信号はそれぞれ復調回路で復調される。加算器はこの復調された信号をそれぞれ適当に加算して信号成分を出力する。これにより、信号光の位相状態に関らず、受信装置において一定以上の信号出力を得ることが可能となる(例えば、特許文献1を参照。)。   Each of the two series of differential optical detectors 2 performs differential optical detection on each of the two sets of mixed light having different π phase differences from the optical 90-degree phase hybrid circuit and converts them into electrical signals. Output intermediate frequency signal in relation. Each of these two intermediate frequency signals is demodulated by a demodulation circuit. The adder appropriately adds the demodulated signals to output a signal component. This makes it possible to obtain a signal output of a certain level or more in the receiving device regardless of the phase state of the signal light (see, for example, Patent Document 1).

特開2009−192746号公報JP 2009-192746 A

Dany−Sebastien Ly−Gagnon et al., “Unrepeated 210−km transmission with coherent detection and digital signal processing of 20−Gb/s QPSK Signal”,OFC2005, OTuL4.Dany-Sebastian Ly-Gagnon et al. , “Unrepeated 210-km transmission with coherent detection and digital signal processing of 20-Gb / s QPSK Signal”, OFC 2005, OTuL4.

しかしながら、光90度位相ハイブリッド回路等の光多端子結合回路を用いた位相ダイバーシティ方式によるコヒーレント光受信装置の構成は高価かつ複雑である。例えば、光90度位相ハイブリッド回路を空間光学系やPLC等の光部品で構成した場合、それら光回路で発生する相対的な光路差が温度や振動等の環境変化の影響を受けないように頑強に光路長差を保持するか又は光路差を補正する必要がある。例えば、1550nm帯の信号光の位相差を波長の1/100程度で調整するためには、15nmのオーダーで光路長差を保持又は補正する必要がある。このため、環境温度変動や振動等の外乱の影響を受けても、頑強に光路長差を保持し十分な精度を保てる高精度かつ変動耐性の高いコヒーレント受信器や、外乱の影響による位相誤差を軽減するように、光回路にフィードバックして補正を行うコヒーレント光受信装置がある。いずれのコヒーレント光受信装置も、光90度位相ハイブリッド回路の構成が高価になるか、又はフィードバック等の処理が複雑になるという課題をもつ。   However, the configuration of a coherent optical receiver using a phase diversity system using an optical multi-terminal coupling circuit such as an optical 90-degree phase hybrid circuit is expensive and complicated. For example, when an optical 90-degree phase hybrid circuit is composed of optical components such as a spatial optical system and PLC, it is robust so that the relative optical path difference generated by these optical circuits is not affected by environmental changes such as temperature and vibration. It is necessary to maintain the optical path length difference or to correct the optical path difference. For example, in order to adjust the phase difference of signal light in the 1550 nm band by about 1/100 of the wavelength, it is necessary to maintain or correct the optical path length difference on the order of 15 nm. For this reason, even if affected by disturbances such as environmental temperature fluctuations and vibrations, a highly accurate and highly resistant coherent receiver that can maintain a sufficient accuracy by maintaining the optical path length difference and phase errors due to the effects of disturbances. There is a coherent optical receiver that performs correction by feeding back to an optical circuit so as to reduce this. Each of the coherent optical receivers has a problem that the configuration of the optical 90-degree phase hybrid circuit becomes expensive or processing such as feedback becomes complicated.

そこで、本発明は、上記課題を解決するためになされたもので、光部品の設定の要求精度が低く、簡素な光部品で構成できるコヒーレント光受信装置及びこれを備える光通信システムを提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and provides a coherent optical receiver that can be configured with simple optical components with low required accuracy for setting optical components, and an optical communication system including the same. With the goal.

上記課題を解決するために、本発明に係わるコヒーレント光受信装置は、初期位相と位相揺らぎが揃った複数の局発光を用い、信号光と局発光を光検波することでそれぞれ生成される中間周波数信号の周波数差の自然数分の1の周期で中間周波数信号をサンプリングするか、それぞれの中間周波数信号と同じ周波数でかつ互いの位相揺らぎが揃い乗ずる際の初期位相が所定の関係である正弦波信号を中間周波数信号にそれぞれ乗じて復調し、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が2πq/K、(q:0〜K−1)の出力となるように調整することで、従来の光90度位相ハイブリッド回路を用いずにコヒーレント光検波を実現することとした。   In order to solve the above-described problem, the coherent optical receiver according to the present invention uses a plurality of local lights having the same initial phase and phase fluctuation, and each of the intermediate frequencies generated by optically detecting the signal light and the local light. A sine wave signal in which the intermediate frequency signal is sampled at a period that is a natural fraction of the frequency difference of the signal, or the same phase as each of the intermediate frequency signals and the initial phase when the phase fluctuations are aligned together has a predetermined relationship Is multiplied by the intermediate frequency signal and demodulated, and the output of the intermediate frequency signal corresponding to each terminal is 2πq / K in the case of a diversity system that is equivalent to an optical multi-terminal coupling circuit having K terminals (q: 0 to 0). By adjusting the output to be K-1), coherent optical detection is realized without using the conventional optical 90-degree phase hybrid circuit.

具体的には、本発明に係るコヒーレント光受信装置は、初期位相と位相揺らぎが揃った複数の局発光を出力する局発光源部と、前記局発光源部が出力する前記局発光及び入力される信号光を混合し、混合信号光を出力する混合部と、前記混合信号光を光検波し、複数の前記局発光と前記信号光との間の中間周波数信号を出力する光検波部と、前記光検波部の出力する前記中間周波数信号をそれぞれ分離処理して前記信号光の信号成分を復調する処理部と、前記光検波部が出力する前記中間周波数信号の互いの位相が所定の関係となるように調整する調整部と、を備える。   Specifically, the coherent light receiving device according to the present invention includes a local light source unit that outputs a plurality of local light sources having the same initial phase and phase fluctuation, and the local light source that is output from the local light source unit. A mixing unit that mixes signal light and outputs mixed signal light; and an optical detection unit that optically detects the mixed signal light and outputs intermediate frequency signals between the local light and the signal light; A processing unit that separates the intermediate frequency signals output from the optical detection unit to demodulate signal components of the signal light, and a phase relationship between the intermediate frequency signals output from the optical detection unit is a predetermined relationship. And an adjusting unit that adjusts to become.

本コヒーレント光受信装置は、初期位相と位相揺らぎが揃った複数の局発光を用い、光検波部が出力する中間周波数信号の互いの位相が所定の関係となるように調整する。本コヒーレント光受信装置は、初期位相と位相揺らぎが揃った複数の局発光を用い、信号光と局発光を光検波することでそれぞれ生成される中間周波数信号の周波数差の自然数分の1の周期で中間周波数信号をサンプリングし、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号のサンプリングの際の位相が2πq/K、(q:0〜K−1)となるように調整する。光4端子結合回路に対応する2相ダイバーシティ方式であれば、中間周波数信号における位相差が4分の1周期となるように調整することで、信号光の直交する位相成分のそれぞれに対応する2つの中間周波数信号を周波数多重で同時に出力することができる。調整部での調整は、局発光間の周波数差をサンプリング周期の自然数倍とし、サンプリングの位相をサンプリングの際の中間周波数信号の位相が所定の位相、2相ダイバーシティ方式であればπ/2となるようにサンプリングの周期を調整する。このため、本コヒーレント光受信装置は、光90度位相ハイブリッド回路を用いずに、1つの光検波器で位相ダイバーシティ構成を実現できる。   This coherent light receiving apparatus uses a plurality of local lights having the same initial phase and phase fluctuation, and adjusts the phases of the intermediate frequency signals output from the optical detection unit to have a predetermined relationship. This coherent light receiving apparatus uses a plurality of local lights having the same initial phase and phase fluctuation, and a period of a natural fraction of the frequency difference between the intermediate frequency signals generated by optically detecting the signal light and the local light. In the case of a diversity system in which the intermediate frequency signal is sampled at the same time and the number of terminals is equivalent to that of an optical multi-terminal coupling circuit with K, the phase at the time of sampling the intermediate frequency signal corresponding to each terminal is 2πq / K, To K-1). In the case of the two-phase diversity system corresponding to the optical four-terminal coupling circuit, 2 corresponding to each of the orthogonal phase components of the signal light is adjusted by adjusting the phase difference in the intermediate frequency signal to be a quarter cycle. Two intermediate frequency signals can be simultaneously output by frequency multiplexing. In the adjustment by the adjustment unit, the frequency difference between the local lights is set to a natural number multiple of the sampling period, and the phase of the sampling is π / 2 if the phase of the intermediate frequency signal at the time of sampling is a predetermined phase or a two-phase diversity system. Adjust the sampling cycle so that For this reason, this coherent optical receiver can implement | achieve a phase diversity structure with one optical detector, without using an optical 90 degree phase hybrid circuit.

光90度位相ハイブリッド回路を不要としたことで、外乱の影響による位相誤差が従来の構成と比べて無視でき、波長オーダーでの光部品の調整が不要となる。したがって、本発明は、光部品の設定の要求精度が低く、簡素な光部品で構成できるコヒーレント光受信装置を提供することができる。   By eliminating the need for the optical 90-degree phase hybrid circuit, the phase error due to the influence of disturbance can be ignored as compared with the conventional configuration, and adjustment of optical components in the wavelength order becomes unnecessary. Therefore, the present invention can provide a coherent optical receiver that has a low required accuracy for setting optical components and can be configured with simple optical components.

本発明に係るコヒーレント光受信装置の前記局発光源部は、1つの光を出力する光源と、正弦波信号を発振する発振器と、前記光源からの光を前記発振器からの正弦波信号で変調して複数の前記局発光を生成する変調器と、を有することを特徴とする。   The local light source unit of the coherent optical receiver according to the present invention includes a light source that outputs one light, an oscillator that oscillates a sine wave signal, and modulates light from the light source with a sine wave signal from the oscillator. And a plurality of modulators for generating the local light.

本局発光源部は、初期位相と位相揺らぎが揃った複数の局発光を出力することができる。   The local light source unit can output a plurality of local lights having the same initial phase and phase fluctuation.

本発明に係るコヒーレント光受信装置の前記局発光源部は、複数の前記中間周波信号の周波数差の絶対値が前記信号光の変調帯域の半分より大きくなる前記局発光を出力し、前記処理部は、複数の前記中間周波信号とそれぞれの中間周波数信号と同じ周波数でかつ互いの位相揺らぎが揃い乗ずる際の初期位相が所定の関係である正弦波信号をそれぞれ乗じ、前記調整部は、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が2πq/K、(q:0〜K−1)の位相の出力となるように正弦波信号の位相となるように調整することを特徴とする。   The local light source unit of the coherent optical receiver according to the present invention outputs the local light in which an absolute value of a frequency difference between the plurality of intermediate frequency signals is larger than half of a modulation band of the signal light, and the processing unit Is multiplied by a plurality of intermediate frequency signals and a sine wave signal having the same frequency as each of the intermediate frequency signals and the initial phase when the phase fluctuations are multiplied together, and the adjustment unit has a number of terminals. In the case of a diversity system that is equivalent to an optical multi-terminal coupling circuit of K, it is sine so that the output of the intermediate frequency signal corresponding to each terminal is an output of 2πq / K, (q: 0 to K−1) phase. It adjusts so that it may become the phase of a wave signal.

中間周波信号、即ち局発光の周波数差を変調帯域の半分より大きく取ることで、信号のマークの中に中間周波信号が最大となる点が少なくとも1つ以上存在するため光信号を最も効率的に検波でき、位相揺らぎが揃い互いの初期位相が所定の関係にある局発光と信号光から生成される中間周波数信号に位相揺らぎが揃い互いの初期位相が所定の関係にある電気の正弦波信号を乗ずる際の電気の正弦波信号の位相を所定の関係に調整することで、光部品の設定の要求精度が低く、波長オーダーでの光部品の調整が不要であり、簡素な光部品で構成できるコヒーレント光受信装置を提供することができる。   By taking the frequency difference of the intermediate frequency signal, that is, the local light, to be larger than half of the modulation band, there is at least one point in the signal mark where the intermediate frequency signal is maximum, so that the optical signal is most efficiently transmitted. An electric sine wave signal that can be detected and phase fluctuations are aligned and the initial phase of each other is in a predetermined relationship with the local frequency signal generated from the local light and the signal light. By adjusting the phase of the electrical sine wave signal when multiplying to a predetermined relationship, the required accuracy of optical component setting is low, adjustment of the optical component in the wavelength order is unnecessary, and it can be configured with a simple optical component A coherent optical receiver can be provided.

また、復調の際に、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が2πq/K、(q:0〜K−1)の位相の出力となるように正弦波信号の位相となるように位相揺らぎが揃い互いの初期位相が所定の関係にある電気の正弦波信号の位相を設定することで、中間周波数同士の位相差と、正弦波信号同士の位相差は信号光の位相と無相関にそれぞれの位相差の関係のみ一定に管理してコヒーレント光検波することができる。   Further, when demodulating, in the case of a diversity system that is equivalent to an optical multi-terminal coupling circuit having K terminals, the output of the intermediate frequency signal corresponding to each terminal is 2πq / K, (q: 0 to K−1). The phase difference between the intermediate frequencies is set by setting the phase of the electrical sine wave signal with the phase fluctuations aligned so that the phase of the sine wave signal becomes the output of The phase difference between the sine wave signals can be coherently detected by managing only the relationship between the phase differences in a non-correlated manner with the phase of the signal light.

本発明に係るコヒーレント光受信装置の前記局発光源部は、光周波数の差が、前記信号光の帯域幅の2倍よりも小さく、かつ、前記信号光の光源スペクトル線幅及び前記局発光の光源スペクトル線幅よりも大きい局発光を出力し、
前記処理部は、位相が直交する前記中間周波数信号をデジタル信号に変換するAD変換器と、
前記AD変換器から出力されるデジタル信号を(C1)式で演算し、前記信号光に含まれるデータ情報を推定するための信号ベクトルs(t)を出力するデジタル演算器と、前記デジタル演算部が出力する前記信号ベクトルs(t)を識別処理し、前記信号光の信号成分を受信データとして出力する識別器と、を有し、
前記調整部は、複数の前記中間周波数信号の位相差が、前記デジタル演算器で前記中間周波数信号に乗ずる複数の正弦波信号の位相差と4分の1周期異なる位相差となるように調整することを特徴とする。
(式C1)
s(t)=[I’+jQ’]/[X+Y exp(−jw0t)]
ただし、前記中間周波数信号の振幅をX及びY、前記局発光の角周波数差をw0、虚数単位をjとする。
The local light source unit of the coherent optical receiver according to the present invention has an optical frequency difference smaller than twice the bandwidth of the signal light, and the light source spectral line width of the signal light and the local light Outputs local light larger than the light source spectral line width,
The processing unit includes an AD converter that converts the intermediate frequency signal having orthogonal phases into a digital signal;
A digital arithmetic unit that calculates a digital signal output from the AD converter using equation (C1) and outputs a signal vector s (t) for estimating data information included in the signal light; and the digital arithmetic unit Discriminating the signal vector s (t) output from the discriminator, and outputting the signal component of the signal light as received data,
The adjusting unit adjusts the phase difference of the plurality of intermediate frequency signals so that the phase difference differs from the phase difference of the plurality of sine wave signals multiplied by the intermediate frequency signal by a quarter cycle by the digital calculator. It is characterized by that.
(Formula C1)
s (t) = [I ′ + jQ ′] / [X + Y exp (−jw0t)]
Here, the amplitude of the intermediate frequency signal is X and Y, the angular frequency difference of the local light is w0, and the imaginary unit is j.

光検波部の出力をAD変換し、デジタル信号処理することと、局発光間の位相差と角周波数差の設定を最適化したことで、差動光検波に要求される帯域幅を低減できる。   The bandwidth required for differential optical detection can be reduced by AD conversion of the output of the optical detection unit, digital signal processing, and optimization of the phase difference and the angular frequency difference between the local light emissions.

本発明に係るコヒーレント光受信装置は、前記局発光の強度の比を変化させる強度比制御回路を更に備えることを特徴とする。強度比制御回路が局発光間の光強度を調整することでデジタル演算器が信号ベクトルの演算不能となることを回避することができる。   The coherent optical receiver according to the present invention further includes an intensity ratio control circuit that changes a ratio of the intensity of the local light. When the intensity ratio control circuit adjusts the light intensity between the local lights, it is possible to prevent the digital calculator from being unable to calculate the signal vector.

本発明に係る光通信システムは、波長多重信号を伝送する光ファイバと、複数の前記コヒーレント光受信装置と、前記光ファイバを伝送する波長多重信号を分岐し、それぞれ前記コヒーレント光受信装置へ結合する光分岐器と、を備え、それぞれの前記コヒーレント光受信装置が1つの前記局発光源部を共用することを特徴とする。   An optical communication system according to the present invention branches an optical fiber that transmits a wavelength-multiplexed signal, a plurality of the coherent optical receivers, and a wavelength-multiplexed signal that transmits the optical fiber, and couples them to the coherent optical receivers, respectively. An optical branching unit, and each of the coherent optical receivers shares one local light source unit.

複数のコヒーレント光受信装置が1つの局発光源部を共有することで、部品点数を大幅に削減することが可能であり、機器製造コストや機器管理コストを大幅に低減することが可能となる。   Since a plurality of coherent optical receivers share one local light source unit, it is possible to greatly reduce the number of parts, and it is possible to greatly reduce device manufacturing costs and device management costs.

本発明は、光部品の設定の要求精度が低く、簡素な光部品で構成できるコヒーレント光受信装置及びこれを備える光通信システムを提供することができる。   The present invention can provide a coherent optical receiver that can be configured with simple optical components with low required accuracy for setting optical components, and an optical communication system including the same.

本発明に係るコヒーレント光受信装置を含む光通信システムを説明する図である。It is a figure explaining the optical communication system containing the coherent optical receiver which concerns on this invention. 本発明に係るコヒーレント光受信装置の局発光を説明する図である。It is a figure explaining local light emission of the coherent optical receiver concerning the present invention. 本発明に係るコヒーレント光受信装置の局発光を説明する図である。It is a figure explaining local light emission of the coherent optical receiver concerning the present invention. 本発明に係るコヒーレント光受信装置を含む光通信システムを説明する図である。It is a figure explaining the optical communication system containing the coherent optical receiver which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and drawing, the component with the same code | symbol shall show the mutually same thing.

(実施形態1)
図1は、実施形態1のコヒーレント光受信装置301を含む光通信システム401を説明する図である。光通信システム401は、光送信装置351とコヒーレント光受信装置301とが光ネットワーク352を介して接続されたものである。光送信装置351は、例えば強度変調やBPSK(Binary Phase Shift Keying)、QPSKなどのM相PSK(M−ary Phase Shift Keying)やM相DPSK(M−ary Differential Phase Shift Keying)、M相APSK(M−ary Amplitude and Phase Shift Keying)、M相QAM(M−ary Quadrature Amplitude Modulation)等の変調方式により光変調し、光信号として出力する。
(Embodiment 1)
FIG. 1 is a diagram illustrating an optical communication system 401 including a coherent optical receiver 301 according to the first embodiment. The optical communication system 401 includes an optical transmission device 351 and a coherent optical reception device 301 connected via an optical network 352. The optical transmission device 351 includes, for example, intensity modulation, BPSK (Binary Phase Shift Keying), M-phase PSK (M-ary Phase Shift Keying) such as QPSK, and M-phase DPSK (M-ary Differential Phase Shifting, APSK). Optical modulation is performed by a modulation scheme such as M-ary Amplitude and Phase Shift Keying, M-phase QAM (M-ary Quadrature Amplitude Modulation), and the optical signal is output.

コヒーレント光受信装置301は、位相ダイバーシティ構成を採用せずに、実質的に位相ダイバーシティと等価の信号処理を行うことによってデータの取り出し処理(復調処理)を行う。即ち、光90度位相ハイブリッド回路を不要とすると共に、光検波器を1系列としている。具体的には、初期位相と位相揺らぎが揃った複数の局発光を用い、局発光及び入力される信号光を混合し、混合信号光を光検波し、局発光と信号光との間の中間周波数信号をそれぞれ分離処理して中間周波数信号の互いの位相が所定の関係となるように調整することで、光90度位相ハイブリッド回路を用いず、かつ1シンボル時間の半分以下の周期での位相変調による課題も引き起こすことなく、コヒーレント光検波を実現することとした。   The coherent optical receiver 301 performs data extraction processing (demodulation processing) by performing signal processing substantially equivalent to phase diversity without adopting the phase diversity configuration. In other words, the optical 90-degree phase hybrid circuit is not required, and the optical detector is one line. Specifically, a plurality of local lights with the same initial phase and phase fluctuation are used, the local light and the input signal light are mixed, the mixed signal light is detected, and the intermediate between the local light and the signal light is detected. The frequency signal is separated and adjusted so that the phases of the intermediate frequency signals have a predetermined relationship, so that the phase with a period of half or less of one symbol time is not used without using the optical 90-degree phase hybrid circuit. We decided to realize coherent optical detection without causing problems due to modulation.

コヒーレント光受信装置301は、初期位相と位相揺らぎが揃った複数の局発光を用い、信号光と局発光を光検波することでそれぞれ生成される中間周波数信号とそれぞれの中間周波数信号と同じ周波数でかつ互いの位相揺らぎが揃い乗ずる際の初期位相が所定の関係である正弦波信号をそれぞれ乗じ、前記調整部は、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が2πq/K、(q:0〜K−1)の位相の出力となるように正弦波信号の位相となるように調整する。又は、コヒーレント光受信装置301は、初期位相と位相揺らぎが揃った複数の局発光を用い、信号光と局発光を光検波することでそれぞれ生成される中間周波数信号の周波数差の自然数分の1の周期で中間周波数信号をサンプリングし、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号のサンプリングの際の位相が2πq/K、(q:0〜K−1)となるように調整する。   The coherent light receiving device 301 uses a plurality of local lights having the same initial phase and phase fluctuation, and each of the intermediate frequency signals generated by optical detection of the signal light and the local light and the same frequency as each of the intermediate frequency signals. In addition, each of the adjustment units is multiplied by a sine wave signal whose initial phase has a predetermined relationship when the phase fluctuations are multiplied together. The phase of the sine wave signal is adjusted so that the output of the intermediate frequency signal corresponding to the terminal becomes an output of 2πq / K, (q: 0 to K−1). Alternatively, the coherent light receiving apparatus 301 uses a plurality of local lights with the same initial phase and phase fluctuation, and optical detection of the signal light and the local light is a natural number of a frequency difference between the intermediate frequency signals respectively generated. In the case of a diversity method in which an intermediate frequency signal is sampled at a period of and the number of terminals is equivalent to that of an optical multi-terminal coupling circuit with K, the phase at the time of sampling of the intermediate frequency signal corresponding to each terminal is 2πq / K, (q : 0 to K-1).

以下、コヒーレント光受信装置301の詳細について2相ダイバーシティ受信に即して、説明する。コヒーレント光受信装置301は、局発光源部10、調整部11、2入力2出力合波器の混合部12、差動光検波器13、処理部14を備える。   Hereinafter, details of the coherent optical receiver 301 will be described in accordance with the two-phase diversity reception. The coherent light receiving apparatus 301 includes a local light source section 10, an adjustment section 11, a mixing section 12 of an input / two-output multiplexer, a differential optical detector 13, and a processing section 14.

局発光源部10は、コヒーレント光受信のための初期位相と位相揺らぎが揃った複数の局発光からなる局発光ELを発生する。局発光源部10は単一の光源101からの光に、発振器102の周波数fmの正弦波信号で強度変調する変調器103を用いて変調をかける。これにより、光源101が出力した光に対して周波数fmの差分をもつサイドバンドを生じる。光源101から送出された光と、変調器103により生成されたサイドバンドにより、1つの光源101から3つの光を生成することが可能である。これら3つの光のうち、光分波器(不図示)を用いて任意の2つの光を選択してもよいし、光源101の出力光を抑圧することで、周波数間隔2fmの両方のサイドバンドのみ選択することも可能である。   The local light source unit 10 generates a local light EL composed of a plurality of local lights having the same initial phase and phase fluctuation for receiving coherent light. The local light source unit 10 modulates light from a single light source 101 using a modulator 103 that modulates the intensity of the light with a sine wave signal having a frequency fm of the oscillator 102. As a result, a sideband having a difference in frequency fm with respect to the light output from the light source 101 is generated. Three lights can be generated from one light source 101 by the light transmitted from the light source 101 and the sideband generated by the modulator 103. Of these three lights, any two lights may be selected using an optical demultiplexer (not shown), and both sidebands having a frequency interval of 2fm are suppressed by suppressing the output light of the light source 101. It is also possible to select only.

例えば、変調器103としてマッハツェンダ型光変調器を用い、発振器102によりfmの正弦波信号を印加し変調する。このとき、バイアス電圧を適当に選ぶと入力光の光周波数成分は抑圧され、入力光の光周波数に対し変調周波数fmだけの差分をもつサイドバンドを生じる(DSB−SC方式)。DSB−SC方式では、3つの光から局発光として二つの光を選択する必要がないことから、光源101の出力光パワーを有効に活用することができる。   For example, a Mach-Zehnder type optical modulator is used as the modulator 103, and an sine wave signal of fm is applied and modulated by the oscillator 102. At this time, if an appropriate bias voltage is selected, the optical frequency component of the input light is suppressed, and a sideband having a difference of the modulation frequency fm with respect to the optical frequency of the input light is generated (DSB-SC system). In the DSB-SC system, it is not necessary to select two lights as local lights from the three lights, so that the output light power of the light source 101 can be used effectively.

また、光源101から出力される角周波数wLの光の一部を音響光学変調器(Acousto−Optic Modulator:AOM)を用いて角周波数がw0(=2πf0)だけシフトし、その角周波数wL+w0の光と角周波数wLの光の混合した局発光ELを出力するとしてもよい。また、角周波数をw0だけシフトさせる周波数シフタや、FM変調器や、単側波帯(Single Side−Band:SSB)変調器等を用いて角周波数wL+w0の光と角周波数wLの光の混合した局発光ELを出力するとしてもよい。K相ダイバーシティ方式の場合は、それぞれ各周波数がw0の自然数倍離れたKの局発光ELを出力してもよい。   Further, a part of the light with the angular frequency wL output from the light source 101 is shifted by an angular frequency w0 (= 2πf0) by using an acousto-optic modulator (AOM), and the light with the angular frequency wL + w0. And local light EL in which light having an angular frequency wL is mixed may be output. Further, the light of the angular frequency wL + w0 and the light of the angular frequency wL are mixed using a frequency shifter that shifts the angular frequency by w0, an FM modulator, a single sideband (SSB) modulator, or the like. Local light emission EL may be output. In the case of the K-phase diversity system, K local light-emitting ELs each having a frequency that is a natural number multiple of w0 may be output.

いずれの場合も、局発光の光周波数間隔は、電気信号による発振器102の周波数精度で制御されているため、信号光の光周波数制御も容易になる。   In either case, the optical frequency interval of the local light is controlled with the frequency accuracy of the oscillator 102 by the electric signal, so that the optical frequency control of the signal light is facilitated.

また、光源101として外部クロックで動作するモードロック光源を用いてもよいし、上記の条件を満たせばその他の光源を用いてよい。   Further, a mode-locked light source that operates with an external clock may be used as the light source 101, and other light sources may be used as long as the above conditions are satisfied.

変調サイドバンドを用いるか、光の一部分を周波数シフトした光を出力する局発光源部10からの複数の局発光は、単一の光から生成しているので、各瞬間では、同一の初期位相と同一位相揺らぎを有する。なお、局発光毎の伝搬行路が異なる時は、局発光同士の位相関係の相関を保持するために、局発光を伝播する行路長差はコヒーレント長と比べて無視できる程度、例えばその1/10以下とする。   Since a plurality of local lights from the local light source unit 10 that uses a modulated sideband or outputs a light whose frequency is shifted from a part of the light is generated from a single light, the same initial phase is generated at each moment. Have the same phase fluctuation. When the propagation path for each local light is different, the difference in the path length for propagating the local light is negligible compared to the coherent length in order to maintain the correlation of the phase relationship between the local lights, for example, 1/10 of that. The following.

ここで、局発光ELは、受信する信号光Esに対しfIF1及びfIF2だけ光周波数が離れた光とする。局発光源部10は、図2に示すように信号光とそれぞれ光周波数がfIF1、+fIF2離れ、かつ局発光間の光周波数がf0=fIF1+fIF2だけ離れた光を出力する。又は、局発光源部10は、図3に示すように2つの局発光の光周波数差がf0=fIF2−fIF1となるように配置し、信号光に対しそれぞれの局発光がfIF1、fIF2だけ光周波数が離れた光とすることでも、同様に2つの中間周波信号を得ることが可能である。いずれの場合も、fIF1≠fIF2である。   Here, it is assumed that the local light EL is light whose optical frequencies are separated from the received signal light Es by fIF1 and fIF2. As shown in FIG. 2, the local light source unit 10 outputs the signal light and the light whose optical frequencies are separated by fIF1 and + fIF2, respectively, and the optical frequency between the local lights is f0 = fIF1 + fIF2. Alternatively, as shown in FIG. 3, the local light source unit 10 is arranged so that the optical frequency difference between the two local lights is f0 = fIF2−fIF1, and the local light for the signal light is light by fIF1 and fIF2. Similarly, it is possible to obtain two intermediate frequency signals by using light with different frequencies. In either case, fIF1 ≠ fIF2.

また、出力信号を最も効率的に検波するためには、信号のマークの中に中間周波信号が最大となる点が少なくとも1つ以上存在すればよい。これは、中間周波信号の周波数差となる|fIF1−fIF2|を変調帯域の半分より大きく取ることで可能である。なお、ここで、局発光の光強度は等しく、後述する光受信装置301でのそれぞれに対応する光検波器の受信感度や中間周波数信号の利得と減衰を考慮した透過特性は等しいとする。異なる場合も、その光強度、受信感度、透過特性が同等となるように、光信号強度又は中間周波数信号強度を調整すればよい。   In order to detect the output signal most efficiently, it is sufficient that at least one point where the intermediate frequency signal is maximized exists in the mark of the signal. This is possible by setting | fIF1-fIF2 |, which is the frequency difference of the intermediate frequency signal, to be larger than half of the modulation band. Here, it is assumed that the light intensity of the local light is equal, and the transmission characteristics in consideration of the reception sensitivity of the optical detector corresponding to each of the optical receivers 301 described later and the gain and attenuation of the intermediate frequency signal are equal. Even if they are different, the optical signal intensity or the intermediate frequency signal intensity may be adjusted so that the light intensity, reception sensitivity, and transmission characteristics are equal.

混合部12の2×2合波器は、局発光EL及び受信した信号光Esを混合する。即ち、2×2合波器においては、調整部11からの局発光ELと受信した信号光Esとを混合させて、差動光検波器13へ出力する。   The 2 × 2 multiplexer of the mixing unit 12 mixes the local light EL and the received signal light Es. That is, in the 2 × 2 multiplexer, the local light EL from the adjustment unit 11 and the received signal light Es are mixed and output to the differential optical detector 13.

差動光検波器13は、混合部12にて混合された混合信号の光について光検波する。即ち、差動光検波器13は混合部12からの混合光について差動光検波して、電気信号に変換する。   The differential optical detector 13 optically detects the mixed signal light mixed in the mixing unit 12. That is, the differential optical detector 13 performs differential optical detection on the mixed light from the mixing unit 12 and converts it into an electrical signal.

処理部14は、差動光検波器13の出力した電気信号の内の、局発光ELに含まれる角周波数wLの光及び受信した信号光Esのビートによるwi (=2πfIF1)を搬送波とした中間周波数信号Xと、局発光ELに含まれる角周波数wL+w0の光及び受信した信号光Esのビートによるwi+w0(=2πfIF2)を搬送波とした中間周波数信号Yと、を送信側装置351での光変調方式に応じて処理する。中間周波信号Xは、周波数wiを中心に信号帯域幅の約2倍のスペクトル幅をもつとし、中間周波信号Yは、周波数wi+w0を中心に信号帯域幅の約2倍のスペクトル幅をもつとする。また、各中間周波信号X、Yのパワーの差分は、受信した信号光の位相状態等に依存して変動する。このとき、受信電子回路の帯域幅は、図1の例では信号帯域幅の4倍以上とすることが必要となる。なお、中間周波数wiが0Hzとなるように局発光の角周波数wLを設定した場合には、受信に用いる電気回路の帯域幅は信号帯域幅の3倍に近づく。   The processing unit 14 includes an intermediate signal using, as a carrier wave, the light of the angular frequency wL included in the local light EL and the wi (= 2πfIF1) due to the beat of the received signal light Es in the electric signal output from the differential optical detector 13. Optical modulation method in transmission-side apparatus 351 using frequency signal X and intermediate frequency signal Y using wi + w0 (= 2πfIF2) based on the light of angular frequency wL + w0 included in local light EL and the beat of received signal light Es as a carrier wave Process according to. The intermediate frequency signal X is assumed to have a spectrum width about twice the signal bandwidth centered on the frequency wi, and the intermediate frequency signal Y is assumed to have a spectrum width about twice the signal bandwidth centered on the frequency wi + w0. . Further, the difference in power between the intermediate frequency signals X and Y varies depending on the phase state of the received signal light. At this time, the bandwidth of the receiving electronic circuit needs to be four times or more the signal bandwidth in the example of FIG. When the local light angular frequency wL is set so that the intermediate frequency wi becomes 0 Hz, the bandwidth of the electric circuit used for reception approaches three times the signal bandwidth.

処理部14で、中間周波数信号X、Yは、例えば、それぞれ同じ周波数の正弦波信号と乗ずることで復調される。それぞれの中間周波数信号と乗ずる正弦波信号は局発光源部の発振器102からの正弦波信号をそれぞれの中間周波数信号となるように周波数シフトしてもよい。また、図1に示すように局発光源部の発振器102とは異なる発振器を備え、一方の中間周波数信号を出力し、その出力の一部を他方の中間周波数信号となるように周波数シフトしてもよい。また、それぞれの中間周波数信号を出力する発振器を個別に備えてもよい。ただし、用いる発振器間の初期位相と位相揺らぎを揃えるように同調動作をしている。調整部(不図示)は、発振器からのそれぞれの中間周波数信号と同じ周波数でかつ互いの初期位相と位相揺らぎが揃った正弦波信号を中間周波数信号に乗ずる際に、正弦波信号の位相を位相調整器によって調整することで、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が2πq/K、(q:0〜K−1)の位相の出力となるように正弦波信号の位相となるように調整する。2相ダイバーシティ方式の場合は、π/2位相が異なる出力となるように設定する。2相ダイバーシティ方式の場合で、中間周波数信号XとYの位相揺らぎをΘx(t)とΘy(t)、それぞれ対応する正弦波信号の位相揺らぎをφx(t)とφy(t)とすると次式の関係となる。
(式1)
Θx(t)−Θy(t)=φx(t)−φy(t)±kπ/2
(k=1,3,5,・・・) (1)
このとき復調後の中間周波数信号は、位相に依存しない定数項を1とすると次式で示される。
(式2)
cos(Θx(t)−φx(t))
cos(Θy(t)−φy(t)±kπ/2)=sin(Θx(t)−φx(t))
(2)
(2)式で示されるように、中間周波数同士の位相差と、正弦波信号同士の位相差は信号光と局発光の位相差と無相関にそれぞれの位相差の関係のみ一定であればよい。
In the processing unit 14, the intermediate frequency signals X and Y are demodulated by, for example, multiplying them by a sine wave signal having the same frequency. The sine wave signal multiplied by each intermediate frequency signal may be frequency shifted so that the sine wave signal from the oscillator 102 of the local light source unit becomes the respective intermediate frequency signal. Further, as shown in FIG. 1, an oscillator different from the oscillator 102 of the local light source unit is provided, one intermediate frequency signal is output, and a part of the output is frequency-shifted to become the other intermediate frequency signal. Also good. Moreover, you may provide individually the oscillator which outputs each intermediate frequency signal. However, the tuning operation is performed so as to align the initial phase and the phase fluctuation between the oscillators to be used. The adjustment unit (not shown) phase shifts the phase of the sine wave signal when multiplying the intermediate frequency signal by a sine wave signal having the same frequency as each intermediate frequency signal from the oscillator and having the same initial phase and phase fluctuation. By adjusting with the adjuster, the output of the intermediate frequency signal corresponding to each terminal is 2πq / K, (q: 0 to K−1) in the case of the diversity system equivalent to the optical multi-terminal coupling circuit having K terminals. ) To adjust the phase of the sine wave signal so that the phase is output. In the case of the two-phase diversity method, the output is set so that the π / 2 phase is different. In the case of the two-phase diversity method, if the phase fluctuations of the intermediate frequency signals X and Y are Θx (t) and Θy (t), and the phase fluctuations of the corresponding sine wave signals are φx (t) and φy (t), It becomes relation of expression.
(Formula 1)
Θx (t) −Θy (t) = φx (t) −φy (t) ± kπ / 2
(K = 1, 3, 5,...) (1)
At this time, the demodulated intermediate frequency signal is expressed by the following equation when the constant term independent of the phase is 1.
(Formula 2)
cos (Θx (t) −φx (t))
cos (Θy (t) −φy (t) ± kπ / 2) = sin (Θx (t) −φx (t))
(2)
As shown in the equation (2), the phase difference between the intermediate frequencies and the phase difference between the sine wave signals only need to be constant only in the relationship between the phase differences of the signal light and the local light. .

なお、調整部による位相の調整は明示的な位相調整器によって中間周波数信号との位相を(1)式に示す関係に保つように調整したが、中間周波数信号に乗ずる正弦波信号の乗ずるためのミキサまでの伝搬路長を予め(1)式が成立するようにすることで用いずともよい。逆に、中間周波数信号間の位相を(1)式に示す関係に保つように調整することに加えて、中間周波数信号と正弦波信号を乗じた後の出力の位相がそれぞれの中間周波数信号に対する出力で一定となるように調整するとしてもよい。更に、中間周波数信号に乗ずる正弦波信号間の位相の調整によって説明したが、局発光の伝搬距離を調整することで局発光間の位相を調整してもよい。局発光間の位相を調整する場合は中間周波数信号に乗ずる正弦波信号の位相を調整しなくともよい。また、中間周波数信号に乗ずる正弦波信号と局発光の両方を調整し、(1)式に示される関係としてもよい。局発光は混合部12を経由して差動光検波器13に入力される。この際の局発光の伝搬距離を、局発光間の位相を調整する場合は、差動光検波器13にて生成される中間周波数信号の位相が所定の関係、例えばπ/2異なるように調整する。   Note that the phase adjustment by the adjustment unit has been adjusted by the explicit phase adjuster so as to maintain the phase with the intermediate frequency signal in the relationship shown in the equation (1), but for the multiplication of the sine wave signal multiplied by the intermediate frequency signal. It is not necessary to use the propagation path length to the mixer by previously satisfying equation (1). Conversely, in addition to adjusting the phase between the intermediate frequency signals so as to maintain the relationship shown in equation (1), the phase of the output after multiplying the intermediate frequency signal and the sine wave signal is relative to each intermediate frequency signal. The output may be adjusted so as to be constant. Furthermore, although the description has been given by adjusting the phase between the sine wave signals multiplied by the intermediate frequency signal, the phase between the local lights may be adjusted by adjusting the propagation distance of the local light. When adjusting the phase between the local lights, the phase of the sine wave signal multiplied by the intermediate frequency signal need not be adjusted. Further, both the sine wave signal multiplied by the intermediate frequency signal and the local light may be adjusted so as to have a relationship represented by the equation (1). The local light is input to the differential optical detector 13 via the mixing unit 12. When adjusting the propagation distance of local light at this time, the phase between the local lights is adjusted so that the phase of the intermediate frequency signal generated by the differential optical detector 13 differs by a predetermined relationship, for example, π / 2. To do.

例えば、光周波数差が2GHzで伝搬路の屈折率が1.5、光速が3×10m/sとすれば、2.5cm伝搬すれば位相が1回転する。このため、1/4位相調整する場合は、その1/4である0.625cmの単位で設定すればよい。なお、温度等の経時変化による、光源101からの伝搬路の長さおよび屈折率の変動が無視できれば、伝搬路の設定は一定であってもよい。例えば、位相がπ/40までずれてよいのであれば、屈折率を考慮した実効的な伝搬路長の変動が0.6mm以下であればよい。 For example, assuming that the optical frequency difference is 2 GHz, the refractive index of the propagation path is 1.5, and the speed of light is 3 × 10 8 m / s, the phase rotates once when 2.5 cm is propagated. For this reason, in the case of 1/4 phase adjustment, it may be set in units of 0.625 cm, which is 1/4 of the phase adjustment. Note that the setting of the propagation path may be constant as long as the variation in the length of the propagation path and the refractive index from the light source 101 due to changes over time such as temperature can be ignored. For example, if the phase may be shifted up to π / 40, the effective propagation path length variation considering the refractive index may be 0.6 mm or less.

また、処理部14では、差動光検波器13の出力を予め電気濾波器(Band Pass Filter:BPF)で、各中間周波信号X,Yに分離した後に処理してもよい。電気濾波器(Band Pass Filter:BPF)で、各中間周波信号X,Yに分離した後で処理する場合、同じ周波数の正弦波信号を乗ずる代わりに、それぞれを2条検波等の包絡線検波で処理してもよい。   Further, in the processing unit 14, the output of the differential optical detector 13 may be processed after being separated into the intermediate frequency signals X and Y by an electric filter (Band Pass Filter: BPF) in advance. In the case of processing after separating each of the intermediate frequency signals X and Y with an electric filter (Band Pass Filter: BPF), instead of multiplying the sine wave signal of the same frequency, each is detected by envelope detection such as double detection. It may be processed.

また、コヒーレント光受信装置301は、(1)式を満たすように、信号光と局発光を光検波することでそれぞれ生成される中間周波数信号の周波数差の自然数分の1の周期で中間周波数信号をサンプリングし、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号のサンプリングの際の位相が2πq/K、(q:0〜K−1)となるように調整してもよい。即ちそれぞれの局発光に対応する位相差を一定のまま処理するようにサンプリングするためのサンプリング周期τと、中間周波数信号の周波数の差Δf(=w0/2π)との間には、全サンプリングで同一の符号の値のままサンプリングする場合はΔfτ=m(mは0以外の任意の整数)が、サンプリングの度に反対の符号の値としてサンプリングする場合はΔfτ=m/2(mは0以外の任意の整数)が、成立するようにしてもよい。サンプリングは、例えば、中間周波数信号に乗ずる正弦波信号を、サンプリングするタイミングでのみ乗ずることで行ってもよいし、サンプリングするタイミングでのみ中間周波数信号をミキサに入力するとしてもよいし、ミキサの出力をサンプリングするとしてもよい。一般に端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合もそれぞれの局発光に対応する中間周波数信号の周波数の差も同様である。なお、それぞれの中間周波数信号の周波数同士は異なる。   Further, the coherent light receiving device 301 has an intermediate frequency signal with a period of a natural number of a frequency difference between the intermediate frequency signals generated by optically detecting the signal light and the local light so as to satisfy the expression (1). In the case of the diversity system in which the number of terminals is equal to that of an optical multi-terminal coupling circuit having K terminals, the phase at the time of sampling of the intermediate frequency signal corresponding to each terminal is 2πq / K, (q: 0 to K−1). You may adjust so that it may become. That is, between all samplings between the sampling period τ for sampling so as to process the phase difference corresponding to each local light, and the frequency difference Δf (= w0 / 2π) of the intermediate frequency signal. When sampling with the same sign value, Δfτ = m (m is an arbitrary integer other than 0), but when sampling with the opposite sign value every sampling, Δfτ = m / 2 (m is other than 0) Any integer) may be established. Sampling may be performed, for example, by multiplying a sine wave signal multiplied by the intermediate frequency signal only at the sampling timing, or the intermediate frequency signal may be input to the mixer only at the sampling timing, or the output of the mixer May be sampled. In general, in the case of the diversity system in which the number of terminals is equivalent to that of an optical multi-terminal coupling circuit having K terminals, the difference in frequency of the intermediate frequency signal corresponding to each local light is the same. Note that the frequency of each intermediate frequency signal is different.

更に、望ましくは、中間周波数信号を復調した際の位相が、サンプリングの機会によらず0とπ/2、0と−π/2、πとπ/2、πと−π/2のいずれか一つで固定的な関係となるように、位相を整合してサンプリングすることが望ましい。この場合、サンプリング毎に、中間周波数信号の復調した位相成分がサンプリング機会によらず一定となるので位相変調成分の処理が簡易となる。   Further, desirably, the phase when demodulating the intermediate frequency signal is one of 0 and π / 2, 0 and −π / 2, π and π / 2, and π and −π / 2 regardless of the sampling opportunity. It is desirable to perform sampling by matching the phases so that one is a fixed relationship. In this case, since the demodulated phase component of the intermediate frequency signal is constant at every sampling, regardless of the sampling opportunity, the processing of the phase modulation component is simplified.

又、処理部での処理に際し、特許文献1と同様の処理を、光90度位相ハイブリッド回路の各出力の代わりに、それぞれの中間周波数信号に対して処理してもよい。   Further, in the processing in the processing unit, the same processing as in Patent Document 1 may be processed for each intermediate frequency signal instead of each output of the optical 90-degree phase hybrid circuit.

なお、図1のコヒーレント光受信装置301は、2×2合波器のそれぞれでπ位相差が異なる出力を差動光検波するため2×2合波器の混合部12と差動光検波器13で構成されているが、混合部12を2×1合波器とし、差動光検波器13の代替として差動ではない単一入力の光検波器としてもよいし、合波器と差動検波器の一方を変更してもよい。また、コヒーレント光受信装置301は、複数の局発光を用いる代わりに、単一の局発光を用い、信号光の一部を周波数シフト又は強度変調し、その複数のサイドバンドと単一の局発光との中間周波数信号の位相差と正弦波信号の位相差が4分の1周期異なるように信号光を変調し、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が2πq/K、(q:0〜K−1)の位相の出力となるように正弦波信号の位相となるように調整してもよい。   Note that the coherent optical receiver 301 in FIG. 1 uses a 2 × 2 multiplexer mixing unit 12 and a differential optical detector to differentially detect outputs having different π phase differences in each of the 2 × 2 multiplexers. 13, the mixing unit 12 may be a 2 × 1 multiplexer, and may be a non-differential single-input optical detector instead of the differential optical detector 13, or a difference from the multiplexer. One of the dynamic detectors may be changed. Further, the coherent light receiving apparatus 301 uses a single local light instead of using a plurality of local lights, frequency-shifts or intensity-modulates a part of the signal light, and the multiple sidebands and a single local light. In the diversity system, the signal light is modulated so that the phase difference of the intermediate frequency signal and the phase difference of the sine wave signal differ by a quarter period, and the number of terminals is equivalent to that of an optical multi-terminal coupling circuit having K terminals. You may adjust so that the output of the intermediate frequency signal corresponding to a terminal may become the phase of a sine wave signal so that it may become the output of 2 (pi) q / K and the phase of (q: 0-K-1).

なお、偏波制御器15は、混合部15に入力される信号光の偏波状態を局発光の偏波状態に整合させるものである。例えば、偏波制御器15は、前述の無限追従自動偏波制御器により構成することができるし、直交する偏波で信号光と混合する2組の本願の受信機を備えた偏波ダイバーシティ構成としてもよいし、直交する偏波の複数の局発光の組、合計4つの局発光を用いて位相ダイバーシティに加えて偏波ダイバーシティを行う構成としてもよい。   The polarization controller 15 matches the polarization state of the signal light input to the mixing unit 15 with the polarization state of the local light. For example, the polarization controller 15 can be configured by the above-described infinite tracking automatic polarization controller, or a polarization diversity configuration including two sets of receivers of the present application that are mixed with signal light with orthogonal polarizations. Alternatively, a configuration in which polarization diversity is performed in addition to phase diversity using a group of a plurality of orthogonally polarized local light sources and a total of four local light sources may be used.

次に、コヒーレント光通信装置301を複数備える光通信システム(不図示)について説明する。本実施形を適用する光通信システムは、例えば、複数の光送信装置351と複数のコヒーレント光通信装置301を、光結合器と光ファイバ伝送路と光分岐器を介して接続する、マルチポイント−マルチポイント光通信システムである。   Next, an optical communication system (not shown) provided with a plurality of coherent optical communication devices 301 will be described. The optical communication system to which the present embodiment is applied is, for example, a multi-point connection in which a plurality of optical transmission devices 351 and a plurality of coherent optical communication devices 301 are connected via an optical coupler, an optical fiber transmission line, and an optical branching unit. It is a multipoint optical communication system.

光送信装置351側から送出された信号光は、光結合器を用いて全信号光を結合して波長多重信号とした後、光ファイバ伝送路へ伝送する。このとき、各信号光の波長は異なるよう設定する。例えば、光送信装置351から送信される信号光は、光周波数にしてfs1とし、fs2とし、以下同様に、nからの信号光はfsnとなるように送信する。なお、時分割多重も行う場合は、時分割多重を行う光送信器351同士で単一の光周波数を共用してもよい。光送信器351から送信される光は、更に光ファイバ伝送路中の光合分岐器によって合波され、コヒーレント光通信装置301に伝送される。各コヒーレント光通信装置301は、同様に信号光を復調して信号出力を得る。   The signal light transmitted from the optical transmission device 351 side is combined with all signal lights using an optical coupler to form a wavelength multiplexed signal, and then transmitted to the optical fiber transmission line. At this time, the wavelength of each signal light is set to be different. For example, the signal light transmitted from the optical transmission device 351 is set to fs1 and fs2 as the optical frequency, and similarly, the signal light from n is transmitted to be fsn. When time division multiplexing is also performed, a single optical frequency may be shared between the optical transmitters 351 that perform time division multiplexing. The light transmitted from the optical transmitter 351 is further multiplexed by the optical multiplexer / demultiplexer in the optical fiber transmission line and transmitted to the coherent optical communication device 301. Each coherent optical communication device 301 similarly demodulates signal light to obtain a signal output.

本実施形態の場合、複数の光送信装置351から送出された信号光をそれぞれコヒーレント光通信装置301によって受信するために、各コヒーレント光通信装置301に光位相同期受信器を配置する場合と比べ、光送信器351からの信号光の異なる位相に応じて位相同期を行う必要がないので局発光源部10を一つに集約することができる。本実施例では、局発光源部10が単一であるので、各コヒーレント光通信装置301に精緻な調整が必要又は高精度な光90度位相ハイブリッド回路をそれぞれ用いた位相ダイバーシティ受信器を送信機毎に配置する場合と比べ、簡易な構成となる。更に、局発光源部10は複数のマルチポイント−マルチポイントの光通信システム又は複数のポイント−マルチポイントの光通信システムで共用することも可能である。そのため、光位相同期受信器と比べて部品点数を大幅に削減することが可能であり、光90度位相ハイブリッド回路を用いた位相ダイバーシティ受信器と比べて光部品点数を大幅に削減することが可能である。このため、機器製造コストや機器管理コストを大幅に低減することが可能となる。なお、複数のコヒーレント光通信装置301で局発光源部10を共用する場合、更に中間周波数信号に乗ずる正弦波を出力する発振器を共用する場合はそれらの伝搬距離をコヒーレント光通信装置301間で揃えるか、個別に調整する。   In the case of the present embodiment, in order to receive the signal light transmitted from the plurality of optical transmission devices 351 by the coherent optical communication device 301, compared to the case where the optical phase synchronization receiver is arranged in each coherent optical communication device 301, Since it is not necessary to perform phase synchronization according to different phases of the signal light from the optical transmitter 351, the local light source units 10 can be integrated into one. In this embodiment, since the local light source unit 10 is single, each coherent optical communication device 301 needs to be finely adjusted or a phase diversity receiver using a high-precision 90-degree optical phase hybrid circuit is used as a transmitter. Compared with the case where it arranges for every, it becomes a simple structure. Further, the local light source unit 10 can be shared by a plurality of multipoint-multipoint optical communication systems or a plurality of point-multipoint optical communication systems. Therefore, the number of parts can be greatly reduced compared to the optical phase-synchronized receiver, and the number of optical parts can be significantly reduced compared to the phase diversity receiver using the optical 90-degree phase hybrid circuit. It is. For this reason, it becomes possible to significantly reduce device manufacturing costs and device management costs. When the local light source unit 10 is shared by a plurality of coherent optical communication devices 301, and when an oscillator that outputs a sine wave multiplied by the intermediate frequency signal is also shared, their propagation distances are made uniform among the coherent optical communication devices 301. Or adjust individually.

このように、本実施形態の場合、光90度位相ハイブリッド回路を用いた構成と異なり、一組の局発光を複数の受信装置で共用することができるので、光90度位相ハイブリッド回路を用いた構成よりもスケーラビリティに優れる利点もある。   As described above, in the case of the present embodiment, unlike the configuration using the optical 90-degree phase hybrid circuit, a set of local light can be shared by a plurality of receiving apparatuses, so the optical 90-degree phase hybrid circuit is used. There is also an advantage of better scalability than configuration.

以上の説明で、2相ダイバーシティ方式に即して説明を加えたが、一般に端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合は位相差が2π/K、2π2/K、・・・、2π(K-1)/Kとなるようにすれば同様である。なお、本実施形態の、局発光の偏波を直交偏波として、2×2分波器を光90度位相ハイブリッド回路とすれば偏波ダイバーシティに適用することもできる。   In the above description, a description was added in accordance with the two-phase diversity method. However, in the case of the diversity method that is generally equivalent to an optical multi-terminal coupling circuit having K terminals, the phase difference is 2π / K, 2π2 / K, ... the same if 2π (K-1) / K. In addition, if the polarization of local light of this embodiment is an orthogonal polarization and the 2 × 2 demultiplexer is an optical 90-degree phase hybrid circuit, it can be applied to polarization diversity.

従来のコヒーレント光受信装置では光90度位相ハイブリッド回路において、受信した信号光と局発光との2系列の混合光として、信号光と局発光の位相差がπ/2ずつ異なる複数の混合光を生成していた。そして、これら4出力の混合光それぞれを異なる2つの光検波器で光検波していた。これに対し、本実施形態のコヒーレント光受信装置301は、初期位相と位相揺らぎが揃った複数の局発光を局発光源部10が出力し、その複数の局発光を用いるので、所定のサンプリング周期で、位相関係が直交する2つの中間周波数信号(第1系列と第2系列)を周波数多重で同時に出力する。このため、複雑な光位相ループや、光90度位相ハイブリッド回路や高速の位相変調器を用いず、1つの差動光検波器で位相ダイバーシティ構成を実現できる。このため、受信した信号光を簡単な光部品を用いた構成により、電気信号に変換することができるので高速化に対応しつつ、小型化、構成の簡素化を図ることができる。   In a conventional coherent optical receiver, in a 90-degree optical phase hybrid circuit, a plurality of mixed lights having a phase difference between the signal light and the local light that differ by π / 2 are used as two series of mixed light of the received signal light and the local light. It was generated. Then, each of these four output mixed lights is optically detected by two different optical detectors. On the other hand, in the coherent light receiving apparatus 301 of the present embodiment, the local light source unit 10 outputs a plurality of local lights having the same initial phase and phase fluctuation, and uses the local lights, so that a predetermined sampling period is used. Thus, two intermediate frequency signals (first sequence and second sequence) having orthogonal phase relationships are simultaneously output by frequency multiplexing. Therefore, a phase diversity configuration can be realized with one differential optical detector without using a complicated optical phase loop, an optical 90-degree phase hybrid circuit, or a high-speed phase modulator. For this reason, since the received signal light can be converted into an electrical signal by a configuration using simple optical components, it is possible to reduce the size and simplify the configuration while supporting high speed.

(実施形態2)
図4は実施形態2のコヒーレント光受信装置302を含む光通信システム402を2相ダイバーシティの場合で説明する図である。コヒーレント光受信装置302は、図1のコヒーレント光受信装置301とは異なる局発光源部20と処理部24を備える。
(Embodiment 2)
FIG. 4 is a diagram illustrating an optical communication system 402 including the coherent optical receiver 302 according to the second embodiment in the case of two-phase diversity. The coherent light receiving apparatus 302 includes a local light source unit 20 and a processing unit 24 which are different from the coherent light receiving apparatus 301 of FIG.

コヒーレント光受信装置302は、局発光源部20、2×2合波器の混合部12、差動光検波器13、処理部24を備える。処理部24は、アナログ/デジタル変換器121(AD変換器:Analog to Digital変換器)、デジタル演算器122、識別部123、正弦波信号源をなす発振器124、分周器125及びパターン発生部126を備える。   The coherent light receiving apparatus 302 includes a local light source unit 20, a 2 × 2 multiplexer mixing unit 12, a differential optical detector 13, and a processing unit 24. The processing unit 24 includes an analog / digital converter 121 (A / D converter: Analog to Digital converter), a digital arithmetic unit 122, an identification unit 123, an oscillator 124 serving as a sine wave signal source, a frequency divider 125, and a pattern generation unit 126. Is provided.

局発光源部20は、発振器102からの出力を受けた変調器103により、後述する処理部24の発振器124で発生する正弦波信号の整数分の1の周波数で互いに異なる周波数の2つの局発光を出力する。具体的には、角周波数wL及び角周波数wL+w0の局発光を多重した局発光ELを生成する。この局発光ELの複数の局発光間の周波数差Δf(=w0/2π)は、受信する信号光Esの帯域幅の2倍よりも小さく、かつ、信号光Esを発生する光源のスペクトル線幅(半値全幅)及び上記局発光ELを発生する光源のスペクトル線幅(半値全幅)よりも大きい周波数である。ここで変調器103に発振器102から出力する正弦波信号は、処理部24の発振器124で発生する正弦波信号と位相が整合したものであることが処理部24での処理の簡易化の観点から望ましい。   The local light source unit 20 receives two outputs of the local light having different frequencies from each other at a frequency of 1 / integer of a sine wave signal generated by the oscillator 124 of the processing unit 24 described later by the modulator 103 that has received the output from the oscillator 102. Is output. Specifically, a local light EL that multiplexes local light having an angular frequency wL and an angular frequency wL + w0 is generated. The frequency difference Δf (= w0 / 2π) between the plurality of local lights of the local light EL is smaller than twice the bandwidth of the received signal light Es and the spectral line width of the light source that generates the signal light Es. (Full width at half maximum) and a spectrum line width (full width at half maximum) of the light source that generates the local light emission EL. Here, the sine wave signal output from the oscillator 102 to the modulator 103 is in phase with the sine wave signal generated by the oscillator 124 of the processing unit 24 from the viewpoint of simplifying the processing in the processing unit 24. desirable.

局発光源部20は、例えば、光源101、変調器103、光周波数依存の可変光減衰器105(Variable Optical Attenuator:VOA)、光分岐器106、モニタ回路107及び強度比制御回路108を組み合わせて構成される。   The local light source unit 20 includes, for example, a combination of a light source 101, a modulator 103, an optical frequency-dependent variable optical attenuator 105 (VOA), an optical splitter 106, a monitor circuit 107, and an intensity ratio control circuit 108. Composed.

光源101は、角周波数wLを有する光を出力する。光源101のスペクトル線幅(半値全幅)は、例えば100kHz〜10MHz程度とすることができる。   The light source 101 outputs light having an angular frequency wL. The spectral line width (full width at half maximum) of the light source 101 can be, for example, about 100 kHz to 10 MHz.

変調器103は、光源101からの光の一部の角周波数を、分周器104から供給される周波数信号の角周波数w0だけシフトさせる周波数シフタである。変調器103は、例えば、一般的なFM変調器や音響光学変調器、強度変調器、SSB変調器である。変調器103が強度変調器である場合、キャリアを抑圧し、上下のサイドバンドを用いれば、光源101の出力する光の角周波数はwL0の代わりにwL0+w0/2とし、分周器104から供給される周波数信号の角周波数はw0/2とする。また、光源101からの光の一部の光周波数を変更することができない場合は、光源101からの光を分岐し分岐した一方の光の光周波数を変更し、他方の光周波数をそのままとし、両者の偏波状態を揃えて合波する構成としてもよい。   The modulator 103 is a frequency shifter that shifts the angular frequency of a part of the light from the light source 101 by the angular frequency w 0 of the frequency signal supplied from the frequency divider 104. The modulator 103 is, for example, a general FM modulator, acousto-optic modulator, intensity modulator, or SSB modulator. When the modulator 103 is an intensity modulator, if the carrier is suppressed and the upper and lower sidebands are used, the angular frequency of the light output from the light source 101 is wL0 + w0 / 2 instead of wL0 and is supplied from the frequency divider 104. The angular frequency of the frequency signal is w0 / 2. Further, when the optical frequency of a part of the light from the light source 101 cannot be changed, the optical frequency of one of the lights branched and branched from the light source 101 is changed, and the other optical frequency is left as it is. It is good also as a structure which aligns both polarization states and multiplexes.

周波数w0(=2πf0)は例えば、信号光が40Gbit/sのQPSK又はDQPSK信号光の場合、信号帯域幅は約20GHzとなるので、その2倍の約40GHzより小さく、かつ、局発光源部20内の光源101及び信号光の光源のスペクトル幅100kHz〜10MHzよりも大きくなるようにすればよいので、この場合の周波数f0は、例えば100MHz〜1GHzの範囲に設定する。   For example, when the signal light is 40 Gbit / s QPSK or DQPSK signal light, the frequency w0 (= 2πf0) is about 20 GHz, so that the frequency w0 is smaller than about 40 GHz, and the local light source 20 Since the spectral width of the light source 101 and the signal light source may be larger than 100 kHz to 10 MHz, the frequency f0 in this case is set in the range of 100 MHz to 1 GHz, for example.

VOA105は、その減衰量が光周波数で異なる減衰器であり、局発光が入力され、複数の局発光間の強度比を変更する。その変更する強度比は、後述する強度比制御回路108からの出力信号に従って可変制御される。また、VOA105は減衰器である代わりにその増幅量が光周波数で異なる増幅器であってもよい。また、VOA105は変調器103で生成する各局発光の強度比を調整することに替えてもよい。また、複数の局発光を分岐して一方あるいは両方に減衰器を経由して再び両者の偏波状態を揃えて合波する構成としてもよい。複数の局発光の分岐再合波は上述の変調器103とVOA105で共用してもよい。   The VOA 105 is an attenuator whose attenuation is different depending on the optical frequency, and receives local light and changes the intensity ratio between the multiple local lights. The intensity ratio to be changed is variably controlled according to an output signal from an intensity ratio control circuit 108 described later. Further, the VOA 105 may be an amplifier whose amplification amount differs at the optical frequency instead of being an attenuator. The VOA 105 may be replaced with adjusting the intensity ratio of each local light generated by the modulator 103. Alternatively, a configuration may be adopted in which a plurality of local lights are branched, and one or both of them are combined with the polarization states of the two again through an attenuator. A plurality of local light branching recombinations may be shared by the modulator 103 and the VOA 105 described above.

なお、光源101、変調器103、及びVOA105のそれぞれの間は、例えば、偏波保持ファイバ、光導波路又は空間光学系などを用いて光結合され、各々の間を伝搬する光の偏波状態が保持されている。   The light source 101, the modulator 103, and the VOA 105 are optically coupled using, for example, a polarization maintaining fiber, an optical waveguide, or a spatial optical system, and the polarization state of light propagating therebetween is determined. Is retained.

光分岐器106は、局発光ELの一部をモニタ光として分岐してモニタ回路107に出力する。モニタ回路107は、光分岐器106からのモニタ光を用いて、局発光ELに含まれる角周波数wL及びwL+w0それぞれの局発光の強度(振幅)を検出し、その比をモニタする。強度比制御回路108は、モニタ回路107のモニタ結果及び後述するデジタル演算器122の演算結果に応じて、VOA105の減衰量を変化させるための制御信号を生成し、その制御信号をVOA105に出力する。   The optical branching device 106 branches a part of the local light EL as monitor light and outputs it to the monitor circuit 107. The monitor circuit 107 detects the intensity (amplitude) of local light at each of the angular frequencies wL and wL + w0 included in the local light EL using the monitor light from the optical branching device 106, and monitors the ratio. The intensity ratio control circuit 108 generates a control signal for changing the attenuation amount of the VOA 105 according to the monitoring result of the monitor circuit 107 and the calculation result of the digital arithmetic unit 122 described later, and outputs the control signal to the VOA 105. .

混合部12は、局発光源部10からの局発光と受信した信号光とを混合させる2×2合波器である。2×2合波器の一方の入力ポートには、光伝送路等を介してコヒーレント光受信装置302に入力される角周波数wsの信号光Esが局発光と偏波が揃った状態入力され、他方の入力ポートには、局発光源部10から出力される局発光ELが入力される。2×2合波器は、入力される信号光及び局発光を合成し、光位相が概ね互いにπ異なる2組の光を出力する。   The mixing unit 12 is a 2 × 2 multiplexer that mixes the local light from the local light source 10 and the received signal light. The signal light Es having the angular frequency ws input to the coherent light receiving device 302 via an optical transmission line or the like is input to one input port of the 2 × 2 multiplexer in a state where local light and polarization are aligned. The local light EL output from the local light source 10 is input to the other input port. The 2 × 2 multiplexer combines the input signal light and the local light, and outputs two sets of light whose optical phases are substantially different from each other by π.

差動光検波器13は、混合部12で混合された混合信号の光について光検波する。具体的には、差動光検波器13は、2×2合波器から出力される光位相がπ異なる各光を受光して差動光検波を行う。ここで、2×2合波器のそれぞれのπ位相差が異なる出力を差動光検波するため2×2合波器と差動光検波器13で構成されているが、2×2合波器を2×1合波器とし、差動光検波器の代わりに差動ではない単一入力の光検波器としてもよいし、合波器と差動検波器の一方を変更してもよい。   The differential optical detector 13 optically detects the mixed signal light mixed by the mixing unit 12. Specifically, the differential optical detector 13 receives each light output from the 2 × 2 multiplexer with a phase difference of π and performs differential optical detection. Here, in order to perform differential optical detection of outputs having different π phase differences of the 2 × 2 multiplexer, the 2 × 2 multiplexer and the differential optical detector 13 are configured. The detector may be a 2 × 1 multiplexer, and instead of the differential optical detector, a non-differential single-input optical detector may be used, or one of the multiplexer and the differential detector may be changed. .

AD変換器121は、差動光検波器13から入力されるアナログ電気信号を、正弦波信号源を発生する発振器124からの正弦波信号をサンプリングタイミングとしてデジタル信号に変換してデジタル演算器122に出力する。   The AD converter 121 converts the analog electrical signal input from the differential optical detector 13 into a digital signal using the sine wave signal from the oscillator 124 that generates the sine wave signal source as a sampling timing, and converts the signal to the digital calculator 122. Output.

デジタル演算器122は、AD変換器121からのデジタル信号を用い、デジタル演算処理を行うことを通じ、受信した信号光の電界の振幅情報及び位相情報について、実部と虚部とからなる情報を得ることにより推定を行う。ここで、デジタル演算器122は、受信した信号光の1シンボルあたり位相状態「0」に対応する局発光と受信した信号光との混合光に由来する第1系列のデジタル信号(I)と、位相状態「π/2」に対応する局発光と受信した信号光との混合光に由来する第2系列のデジタル信号(Q)と、を取り込むことができる。これにより、デジタル演算器122においては、演算処理により、受信した信号光の光電界の振幅情報及び位相情報について、実部と虚部とからなる情報を得ることができる。   The digital calculator 122 uses the digital signal from the AD converter 121 and performs digital calculation processing to obtain information consisting of a real part and an imaginary part for the amplitude information and phase information of the electric field of the received signal light. To make an estimate. Here, the digital computing unit 122 has a first series of digital signals (I) derived from the mixed light of the local light corresponding to the phase state “0” per symbol of the received signal light and the received signal light, The second series of digital signals (Q) derived from the mixed light of the local light corresponding to the phase state “π / 2” and the received signal light can be captured. Thereby, in the digital calculator 122, the information which consists of a real part and an imaginary part can be obtained about the amplitude information and phase information of the optical electric field of the received signal light by arithmetic processing.

識別部123は、デジタル演算器からの演算結果に基づいて受信データの識別処理を行うデータ識別部である。識別部123は、デジタル演算器122にて振幅及び位相情報が推定された結果としてのデジタル信号を用い、送信側装置351での光変調方式に応じて受信データの識別処理を行う。識別部123がこのように識別することでコヒーレント光受信装置は、信号光のデータの再生を行うことができる。   The identification unit 123 is a data identification unit that performs reception data identification processing based on a calculation result from the digital arithmetic unit. The identification unit 123 uses the digital signal as a result of estimating the amplitude and phase information by the digital computing unit 122 and performs identification processing of received data according to the light modulation scheme in the transmission side device 351. By the identification unit 123 identifying in this way, the coherent light receiving apparatus can reproduce the signal light data.

なお、デジタル演算器122は、通常は受信した信号光に含まれる受信データのビットレートよりも低い動作正弦波信号周波数で動作する。   The digital computing unit 122 normally operates at an operating sine wave signal frequency lower than the bit rate of received data included in the received signal light.

発振器124は、AD変換器121へのサンプリングタイミングを規定する正弦波信号を発生する発振回路である。デジタル演算器122は、上述の受信データの取り出しのための演算処理の結果に基づいて、発振器124で発生する正弦波信号の位相と周波数等を位相状態「0」に対応する局発光が位相状態「0」に対応し、位相状態「π/2」に対応する局発光が位相状態「π/2」に相当するように制御する。これにより、デジタル演算器122は、AD変換器121からのデジタル信号について、例えば分周器125が行う正弦波信号の分周数に応じた並列処理によって上述のデジタル演算処理を行う。   The oscillator 124 is an oscillation circuit that generates a sine wave signal that defines the sampling timing to the AD converter 121. Based on the result of the arithmetic processing for extracting the received data described above, the digital calculator 122 sets the phase and frequency of the sine wave signal generated by the oscillator 124 to the phase state “0”. Control is performed so that the local light emission corresponding to “0” and the phase state “π / 2” corresponds to the phase state “π / 2”. Thereby, the digital calculator 122 performs the above-described digital calculation process on the digital signal from the AD converter 121 by parallel processing according to the frequency division number of the sine wave signal performed by the frequency divider 125, for example.

分周器125は、発振器124からの正弦波信号を分周して、デジタル演算器122への動作正弦波信号として出力する。これにより、デジタル演算器122は、AD変換器121からのデジタル信号について、分周数に応じた並列処理によって上述のデジタル演算処理を行うことができる。デジタル演算器122が1シンボル当たりの1組の第1系列及び第2系列のデジタル信号を単位にして演算処理できるように、分周器125は、AD変換器121のサンプリング周波数が、デジタル演算器122の動作正弦波信号よりも少なくとも2倍となるように分周比を設定する。   The frequency divider 125 divides the sine wave signal from the oscillator 124 and outputs it as an operating sine wave signal to the digital calculator 122. Thereby, the digital arithmetic unit 122 can perform the above-described digital arithmetic processing on the digital signal from the AD converter 121 by parallel processing according to the frequency division number. The frequency divider 125 is configured so that the sampling frequency of the AD converter 121 is a digital arithmetic unit so that the digital arithmetic unit 122 can perform arithmetic processing in units of one set of first and second series digital signals per symbol. The frequency division ratio is set so as to be at least twice the operating sine wave signal 122.

更に、分周器125の分周数を2の整数N倍の分周数(2×N分周)とすることで、上述の第1系列(I)のデジタル信号についての演算と、第2系列(Q)のデジタル信号についての演算を一組とした場合、デジタル演算器122はN並列の並列演算処理を実行することができる。   Further, the frequency division number of the frequency divider 125 is set to a frequency division number (2 × N frequency division) that is an integer N times 2 to calculate the first series (I) digital signal, When the calculation for the digital signal of the series (Q) is set as one set, the digital calculator 122 can execute N parallel processing.

なお、AD変換器121及びデジタル演算器122は、予め単一モジュールとして一体化して構成することができる。このようにすれば、AD変換器121及びデジタル演算器122としての接続のための配線等を予めモジュール内で配線設計することができるので、装置の小型化や配線負荷の軽減の観点から有利である。AD変換器121及びデジタル演算器122は、差動光検波器13で電気信号に変換された中間周波数信号について、正弦波信号に基づくデジタル信号処理(アナログ/デジタル変換処理及びデジタル演算処理)を通じ、受信した信号光に含まれる受信データを取り出すための処理を行う受信データ処理部を構成する。   The AD converter 121 and the digital arithmetic unit 122 can be configured in advance as a single module. In this way, wiring for connection as the AD converter 121 and the digital arithmetic unit 122 can be designed in advance in the module, which is advantageous from the viewpoint of downsizing the apparatus and reducing wiring load. is there. The AD converter 121 and the digital arithmetic unit 122 perform digital signal processing (analog / digital conversion processing and digital arithmetic processing) based on a sine wave signal with respect to the intermediate frequency signal converted into the electric signal by the differential optical detector 13. A reception data processing unit that performs processing for extracting reception data included in the received signal light is configured.

信号光の伝送ビッレートをZ、信号光の多値変調数をm[1シンボル当たりの情報量]はlogm(bit/symbol)、1シンボル当たりの第1系列(I)及び第2系列(Q)のデジタル信号の取得回数をhとすると、発振器124では2hZ/logmの周波数を有する正弦波信号を発生させて、この正弦波信号に同期してAD変換器121はサンプリングを行う。 The transmission bit rate of the signal light is Z, and the multilevel modulation number of the signal light is m [information amount per symbol] is log 2 m (bit / symbol), the first sequence (I) and the second sequence (one symbol) If the number of times of acquisition of the digital signal of Q) is h, the oscillator 124 generates a sine wave signal having a frequency of 2hZ / log 2 m, and the AD converter 121 performs sampling in synchronization with this sine wave signal.

次に、動作を説明する。受信する信号光及び局発光は、例えば、次式に示す電界ベクトルEs(t)及びEL(t)によって表されるものとする。
(式3)
Es(t)=Asexp{j(wst+Os(t))}s(t) (3)
(式4)
EL(t)
=[AL1+AL2exp{j(w0t)}]exp{j(wLt+OL(t))}
(4)
ここで、s(t)は受信した信号光のデータに対応した信号ベクトル、Asは受信した信号光の振幅、wsは受信した信号光の平均角周波数、Os(t)は受信した信号光の光位相揺らぎ、AL1は1方の局発光の振幅、AL2は他方の局発光の振幅、wLは一方の局発光の平均角周波数、w0は局発光間の角周波数差、OL(t)は局発光の光位相揺らぎ、tは時間、jは虚数単位をそれぞれ表す。
Next, the operation will be described. The received signal light and local light are represented by, for example, electric field vectors Es (t) and EL (t) shown in the following equations.
(Formula 3)
Es (t) = Asexp {j (wst + Os (t))} s (t) (3)
(Formula 4)
EL (t)
= [AL1 + AL2exp {j (w0t)}] exp {j (wLt + OL (t))}
(4)
Here, s (t) is a signal vector corresponding to the received signal light data, As is the amplitude of the received signal light, ws is the average angular frequency of the received signal light, and Os (t) is the received signal light. Optical phase fluctuation, AL1 is the amplitude of one local light, AL2 is the amplitude of the other local light, wL is the average angular frequency of one local light, w0 is the angular frequency difference between the local lights, OL (t) is the local light The optical phase fluctuation of light emission, t represents time, and j represents an imaginary unit.

ここれらの受信した信号光Es及び局発光ELが2×2合波器で混合された後、差動光検波器13で光検波された複素電流は、次式によって定義される。この複素電流の実部Iが一方の局発光に関する中間周波数信号に相当し、虚部Qが他方の局発光に関する中間周波数信号に相当する。
(式5)
I+jQ
=RAsAL1exp{j(wst+Os(t)−wLt−OL(t))}s(t)
+RAsAL2exp{j(wst+Os(t)−wLt−OL(t)−w0t}s(t)
(≡[RAsAL1exp{j(θ1(t))}+RAsAL2exp{j(θ2(t))}]s(t))
=exp{j(wst+Os(t)−wLt−OL(t))}[RAsAL1+RAsAL2exp{−j(w0t)}]s(t)
=exp{j(θ(t))}[RAsAL1+RAsAL2exp{−j(w0t)}]s(t) (5)
ここで、次式を満たすものとする。
(式6)
(RAsAL1)+(RAsAL2)=1 (6)
次に、(5)式について、光周波数wLの局発光に由来する項に着目し、信号光と局発光の周波数差及び相対位相雑音の補償を行うと、補償後の複素電流I’+jQ’は、次式となる。
(式7)
I’jQ’=[RAsAL1+RAsAL2exp{−j(w0t)}]s(t) (7)
After the received signal light Es and the local light EL are mixed by the 2 × 2 multiplexer, the complex current optically detected by the differential optical detector 13 is defined by the following equation. The real part I of this complex current corresponds to an intermediate frequency signal related to one local light, and the imaginary part Q corresponds to an intermediate frequency signal related to the other local light.
(Formula 5)
I + jQ
= RAsAL1exp {j (wst + Os (t) -wLt-OL (t))} s (t)
+ RAsAL2exp {j (wst + Os (t) −wLt−OL (t) −w0t} s (t)
(≡ [RAsAL1exp {j (θ1 (t))} + RAsAL2exp {j (θ2 (t))}] s (t))
= Exp {j (wst + Os (t) -wLt-OL (t))} [RAsAL1 + RAsAL2exp {-j (w0t)}] s (t)
= Exp {j (θ (t))} [RAsAL1 + RAsAL2exp {−j (w0t)}] s (t) (5)
Here, it is assumed that the following expression is satisfied.
(Formula 6)
(RAsAL1) 2 + (RAsAL2) 2 = 1 (6)
Next, focusing on the term derived from the local light of the optical frequency wL in the equation (5) and compensating for the frequency difference between the signal light and the local light and the relative phase noise, the complex current I ′ + jQ ′ after the compensation is obtained. Is given by
(Formula 7)
I′jQ ′ = [RAsAL1 + RAsAL2exp {−j (w0t)}] s (t) (7)

ここで、上記の補償の方法の一例について説明する。差動光検波器から出力される複素電流信号は、この補償に関連する技術として、例えば、非特許文献1には、受信した信号光が4値の位相偏移変調(Phase Shift Keying:PSK)方式の場合に、該受信した信号光と局発光の位相差θ(t)を計算する方法が示されており、この拡張により、m値のPSK方式の場合には、次式の関係に従って近似的に計算できることが示される。
(式8)
θ(t)≒(1/m)(1/Δt)∫arg{(I+jQ)}dt (8)
そこで、本発明では(8)式と同様にして、(5)式に含まれる光周波数wLの局発光の位相差θ1(t)及び光周波数wL+w0の局発光の位相差θ2(t)の各近似値を、次式に従って計算する。
(式9)
θ1(t)≒(1/m)(1/Δt)∫arg{(I+jQ)}dt
θ2(t)≒(1/m)(1/Δt)∫arg{([I+jQ]exp{−j(w0t)})}dt (9)
このとき、(9)式における積分時間幅は、複数の局発光の周波数差の逆数、すなわち、2π/w0よりも十分に大きく、かつ、受信した信号光の平均周波数と局発光の平均周波数との周波数差の最大値の逆数、すなわち、1/max(|wL−ws|/2π|)よりも十分に小さい。なお、受信した信号光がDQPSK方式の場合、mの値は4である。なお、上記の補償方法は一例であり、本発明に他の構成の補償方法を適用することも可能である。
Here, an example of the above compensation method will be described. The complex current signal output from the differential optical detector is a technique related to this compensation. For example, Non-Patent Document 1 discloses that the received signal light is quaternary phase shift keying (PSK). In the case of the method, a method for calculating the phase difference θ (t) between the received signal light and the local light is shown. By this extension, in the case of the m-value PSK method, the approximation is performed according to the relationship of the following equation: It can be calculated automatically.
(Formula 8)
θ (t) ≈ (1 / m) (1 / Δt) ∫arg {(I + jQ) m } dt (8)
Therefore, in the present invention, each of the local light emission phase difference θ1 (t) and the local light emission phase difference θ2 (t) of the optical frequency wL + w0 included in the equation (5) is the same as the equation (8). An approximate value is calculated according to the following equation:
(Formula 9)
θ1 (t) ≈ (1 / m) (1 / Δt) ∫arg {(I + jQ) m } dt
θ2 (t) ≈ (1 / m) (1 / Δt) ∫arg {([I + jQ] exp {−j (w0t)}) m } dt (9)
At this time, the integration time width in the equation (9) is sufficiently larger than the reciprocal of the frequency difference between the plurality of local lights, that is, 2π / w0, and the average frequency of the received signal light and the average frequency of the local light It is sufficiently smaller than the reciprocal of the maximum value of the frequency difference, that is, 1 / max (| wL−ws | / 2π |). When the received signal light is DQPSK, the value of m is 4. Note that the above compensation method is an example, and a compensation method having another configuration can be applied to the present invention.

(9)式によりθx(t)及びθy(t)の各近似値が計算されると、前述の(5)式に含まれるRAsAL1及びRAsAL2の比が、次式により近似的に求められる。
(式10)
RAsAL1:RAsAL2
≒∫|exp{−j(θ1(t))}(I+jQ)}|dt
:∫|exp{−j(θ2(t))}(I+jQ)}|dt (10)
ただし、(10)式における積分時間幅は、複数の局発光間の周波数差の逆数2π/w0(=1/f0)よりも十分に大きい。
When approximate values of θx (t) and θy (t) are calculated by the equation (9), the ratio of RAsAL1 and RAsAL2 included in the above equation (5) is approximately obtained by the following equation.
(Formula 10)
RAsAL1: RAsAL2
≈∫ | exp {−j (θ1 (t))} (I + jQ)} | dt
: ∫ | exp {−j (θ2 (t))} (I + jQ)} | dt (10)
However, the integration time width in the equation (10) is sufficiently larger than the reciprocal 2π / w0 (= 1 / f0) of the frequency difference between the plurality of local lights.

(10)式の関係に従って求められたRAsAL1及びRAsAL2の比と、(6)式の関係とを用いることにより、RAsAL1及びRAsAL2の値を算出する。このRAsAL1及びRAsAL2の値と、差動光検波器13から出力される中間周波数信号の電流値と、発振器124の周波数から算出したw0(=2πf0)を(7)式をs(t)について解いて分母を有理化して信号ベクトルs(t)の値を演算する。このs(t)は、デジタル演算器122から出力される受信した信号光電界の振幅及び位相の推定した結果に相当する。
(式11)
s(t)
=[I’+jQ’]/[RAsAL1+RAsAL2exp{−j(w0t)}]
=[I’+jQ’][RAsAL1+RAsAL2exp{j(w0t)]/[1+2RAsAL1RAsAL2cos(w0t)] (11)
したがって、信号ベクトルs(t)の演算値を基に、識別部123において、受信した信号光の変調方式に対応した閾値に従ってデータの識別処理を実行することにより、受信データの再生が可能になる。
The values of RAsAL1 and RAsAL2 are calculated by using the ratio of RAsAL1 and RAsAL2 obtained according to the relationship of equation (10) and the relationship of equation (6). The value of RAsAL1 and RAsAL2, the current value of the intermediate frequency signal output from the differential optical detector 13, and w0 (= 2πf0) calculated from the frequency of the oscillator 124 are solved for Equation (7) for s (t). And rationalize the denominator to calculate the value of the signal vector s (t). This s (t) corresponds to the estimation result of the amplitude and phase of the received signal light electric field output from the digital computing unit 122.
(Formula 11)
s (t)
= [I '+ jQ'] / [RAsAL1 + RAsAL2exp {-j (w0t)}]
= [I '+ jQ'] [RAsAL1 + RAsAL2exp {j (w0t)] / [1 + 2RAsAL1RAsAL2cos (w0t)] (11)
Therefore, based on the calculated value of the signal vector s (t), the identification unit 123 can perform the data identification process according to the threshold value corresponding to the modulation method of the received signal light, whereby the received data can be reproduced. .

ただし、上記(11)式は、次の(12)式の条件で発散するため、このような状態を回避するための措置が必要である。
(式12)
cos(w0t)=−1/[2RAsAL1RAsAL2] (12)
(12)式が成立するのは、(4)式を考慮すると次式の場合のみである。
(式13)
RAsAL1=RAsAL2=√2/2 (13)
したがって、(13)式の条件に近づいた場合には、例えば、複数の局発光の振幅比を変化させることにより、前述の(11)式の関係が発散して信号ベクトルs(t)の演算が不能になる状態を回避することが可能になる。
However, since the above equation (11) diverges under the condition of the following equation (12), measures are required to avoid such a state.
(Formula 12)
cos (w0t) = − 1 / [2RAsAL1RAsAL2] (12)
The expression (12) is established only in the case of the following expression in consideration of the expression (4).
(Formula 13)
RAsAL1 = RAsAL2 = √2 / 2 (13)
Therefore, when the condition of the equation (13) is approached, for example, by changing the amplitude ratio of a plurality of local lights, the relationship of the above equation (11) diverges and the signal vector s (t) is calculated. It becomes possible to avoid a situation in which it becomes impossible.

局発光源部20において、光源101から出力される角周波数wLの光の一部が変調器103により角周波数がw0だけシフトされる。変調器103からの光はVOA105に入力されて、角周波数wLと角周波数wL+w0の複数の局発光間の強度(振幅)比が調整され、角周波数差がw0の複数の局発光からなる局発光ELとなる。   In the local light source unit 20, a part of the light having the angular frequency wL output from the light source 101 is shifted by the modulator 103 by the angular frequency w 0. The light from the modulator 103 is input to the VOA 105, the intensity (amplitude) ratio between a plurality of local lights having the angular frequency wL and the angular frequency wL + w0 is adjusted, and the local light comprising a plurality of local lights having an angular frequency difference of w0. It becomes EL.

局発光ELが2×2合波器に送られると共に、その一部が光分岐器106で分岐されてモニタ回路107に送られる。モニタ回路107では、局発光ELに含まれる各局発光の強度(振幅)の比がモニタされ、そのモニタ結果が強度比制御回路108に伝えられる。   The local light EL is sent to the 2 × 2 multiplexer, and a part thereof is branched by the optical splitter 106 and sent to the monitor circuit 107. The monitor circuit 107 monitors the ratio of the intensity (amplitude) of each local light included in the local light EL and transmits the monitoring result to the intensity ratio control circuit 108.

強度比制御回路108は、モニタ回路107のモニタ結果及びデジタル演算器122の演算結果に応じてVOA105の減衰量を変化させる。   The intensity ratio control circuit 108 changes the attenuation amount of the VOA 105 according to the monitor result of the monitor circuit 107 and the calculation result of the digital calculator 122.

2×2合波器に入力された局発光ELは、角周波数wSを有する受信した信号光Esと合成され、光位相差がπ異なる各光が差動光検波器13に出力される。差動光検波器13では、2×2合波器からの出力光が差動光検波13される。これにより、局発光ELに含まれる角周波数wLの局発光と受信した信号光Esとのビートによる中間周波数wiを有する信号Iが差動光検出器13から出力されると共に、局発光ELに含まれる角周波数wL+w0の局発光と受信した信号光Esとのビートによる中間周波数wi+w0を有する信号Qが差動光検出器13から出力される。   The local light EL input to the 2 × 2 multiplexer is combined with the received signal light Es having the angular frequency wS, and each light having an optical phase difference of π is output to the differential optical detector 13. In the differential optical detector 13, the output light from the 2 × 2 multiplexer is subjected to differential optical detection 13. Thereby, the signal I having the intermediate frequency wi due to the beat between the local light of the angular frequency wL included in the local light EL and the received signal light Es is output from the differential photodetector 13 and included in the local light EL. A signal Q having an intermediate frequency wi + w0 due to a beat between the local light having the angular frequency wL + w0 and the received signal light Es is output from the differential photodetector 13.

ここで、中間周波信号I,Qは、周波数差が信号帯域幅の2倍よりも小さく、かつ、信号光源及び局発光源部20のスペクトル線幅よりも大きくなるように設定されているため、各々のスペクトルが周波数軸上で重なり合うようになる。これにより、差動光検波器13及びそれらより後段に配置される電子回路に要求される帯域幅は、例えば、信号帯域幅の2倍程度で済むようになる。なお、中間周波数fIF1及びfIF2が0Hz近傍となるように局発光の角周波数wLを設定した場合には、要求される帯域幅を信号帯域幅と同程度まで狭くすることができる。   Here, the intermediate frequency signals I and Q are set so that the frequency difference is smaller than twice the signal bandwidth and larger than the spectral line width of the signal light source and the local light source unit 20. Each spectrum overlaps on the frequency axis. As a result, the bandwidth required for the differential optical detector 13 and the electronic circuit disposed downstream thereof is, for example, about twice the signal bandwidth. When the local light angular frequency wL is set so that the intermediate frequencies fIF1 and fIF2 are in the vicinity of 0 Hz, the required bandwidth can be reduced to the same level as the signal bandwidth.

差動光検波器13から出力される中間周波信号I,QがAD変換器121で高速にAD変換され、中間周波信号I,Qに対応したデジタル信号系列がデジタル演算器122に入力される。デジタル演算器122では、(3)式〜(11)式に対応した一連のアルゴリズムに従ってデジタル信号処理が実行され、信号ベクトルs(t)の値が演算される。また、その演算過程で求められるRAsAL1及びRAsAL2の値が上記(13)式の条件に近づくと、当該情報がデジタル演算器122から局発光源部20内の強度比制御回路108に伝えられ、強度比制御回路108によりVOA105が制御されることで、局発光ELに含まれる局発光間の強度の比が変えられ、(11)式が発散して信号ベクトルs(t)の演算が不能になってしまうことが回避される。   The intermediate frequency signals I and Q output from the differential optical detector 13 are AD converted at high speed by the AD converter 121, and a digital signal sequence corresponding to the intermediate frequency signals I and Q is input to the digital calculator 122. In the digital calculator 122, digital signal processing is executed according to a series of algorithms corresponding to the equations (3) to (11), and the value of the signal vector s (t) is calculated. Further, when the values of RAsAL1 and RAsAL2 obtained in the calculation process approach the condition of the above expression (13), the information is transmitted from the digital calculator 122 to the intensity ratio control circuit 108 in the local light source unit 20, and the intensity By controlling the VOA 105 by the ratio control circuit 108, the ratio of the intensity between the local lights included in the local light EL is changed, the expression (11) diverges and the calculation of the signal vector s (t) becomes impossible. Is avoided.

そして、デジタル演算器122における信号ベクトルs(t)の演算値が識別部123に伝えられると、識別部123では、受信した信号光の変調方式に対応した閾値に従って、信号ベクトルs(t)の演算値がどのデータ値に該当するかの識別処理が実行され、その識別結果が受信データとして出力される。   When the calculated value of the signal vector s (t) in the digital calculator 122 is transmitted to the identification unit 123, the identification unit 123 determines the signal vector s (t) according to the threshold corresponding to the modulation method of the received signal light. An identification process of which data value the calculated value corresponds to is executed, and the identification result is output as received data.

以上のように、受信信号のAD変換及びデジタル信号処理を組合せ、局発光ELに含む局発光間の角周波数差w0の設定を最適化したことにより、差動光検波器等に要求される帯域幅を低減できる。   As described above, by combining AD conversion of received signals and digital signal processing, and setting the angular frequency difference w0 between the local lights included in the local light EL, the bandwidth required for the differential optical detector or the like is improved. The width can be reduced.

なお、デジタル演算器122において信号ベクトルs(t)の演算にあたっては、上述の式(11)に示すように、一方の局発光に与えるべき周波数差w0についての三角関数sin(w0t),cos(w0t)を演算する必要がある。ここで周波数差を与えるための周波数信号を独立した発振回路から供給されるように構成する場合、w0tの設定値としては一定範囲の値を取ることが考えられるため、デジタル演算器122は、発振回路の発振周波数に応じた三角関数sin(w0t),cos(w0t)の値を予めテーブル構成で蓄積しておく必要がある。   In the calculation of the signal vector s (t) in the digital calculator 122, as shown in the above equation (11), trigonometric functions sin (w0t) and cos () regarding the frequency difference w0 to be given to one local light. It is necessary to calculate w0t). Here, in the case where the frequency signal for giving the frequency difference is configured to be supplied from an independent oscillation circuit, it is conceivable that the set value of w0t takes a value within a certain range. The values of trigonometric functions sin (w0t) and cos (w0t) corresponding to the oscillation frequency of the circuit need to be stored in advance in a table configuration.

この場合、局発光源部20で用いる発振器102とデジタル演算器122を同期することが望ましい。例えば、分周器125が発振器124で発生する正弦波信号を整数分の1分周した正弦波信号を、局発光間の周波数差(図2であればfIF1+fIF2、図3であれば(fIF2−fIF1)を規定する周波数信号とすることにより、AD変換器121でのサンプリングタイミング毎のsin(w0t)及びcos(w0t)の値に規則性をもたせ、サンプリングタイミングに対応した信号ベクトルs(t)の演算を簡素化させてもよい。   In this case, it is desirable to synchronize the oscillator 102 and the digital calculator 122 used in the local light source unit 20. For example, a frequency difference between local lights (fIF1 + fIF2 in FIG. 2, fIF1 + fIF2 in FIG. 2, (fIF2- By making the frequency signal defining fIF1), regularity is given to the values of sin (w0t) and cos (w0t) at each sampling timing in the AD converter 121, and the signal vector s (t) corresponding to the sampling timing This calculation may be simplified.

AD変換器121のサンプリング周波数(即ち、発振器124からの正弦波信号周波数)を1/Tとし、パターン発生器126において発振器124からの正弦波信号を4分の1分周する場合について例示する。この場合、AD変換器121でのサンプリングが、タイミング番号♯0,♯1,・・・,♯6の順番で行われる場合においては、サンプリング時刻はそれぞれTを用いて0,T,・・・,6Tと表記することができる。   An example in which the sampling frequency of the AD converter 121 (that is, the sine wave signal frequency from the oscillator 124) is 1 / T and the pattern generator 126 divides the sine wave signal from the oscillator 124 by a quarter is illustrated. In this case, when sampling by the AD converter 121 is performed in the order of the timing numbers # 0, # 1,..., # 6, the sampling times are set to 0, T,. , 6T.

このとき、Δw=1/4Tとなることから、タイミング番号♯0〜♯6でのw0tは0からπ/2ずつ増加していく。したがって、タイミング番号♯0〜♯6でのcosw0tは、順に、1,0,−1,0,1,0,−1となり、タイミング番号♯7以降も含めて4値(1,0,−1,0)の値が循環する循環数列を構成する。同様に、タイミング番号♯0〜♯6でのsinw0tについても、順に、0,1,0,−1,0,1となり、タイミング番号♯7以降も含めて4値(0,1,0,−1)の値が循環する循環数列を構成する。   At this time, since Δw = 1 / 4T, w0t at timing numbers # 0 to # 6 increases from 0 by π / 2. Accordingly, cosw0t at timing numbers # 0 to # 6 is sequentially 1, 0, −1, 0, 1, 0, −1, and includes four values (1,0, −1) including timing numbers # 7 and thereafter. , 0) constitutes a circulating sequence. Similarly, sinw0t at timing numbers # 0 to # 6 is also 0, 1, 0, −1, 0, 1 in order, and four values (0, 1, 0, − including timing number # 7 and thereafter). 1) constitute a cyclic sequence in which the values of 1) circulate.

したがって、仮に分周器125での分周比を「1」とする場合においても、デジタル演算器122での演算の際には、sin(w0t),cos(w0t)の値をテーブル構成で蓄積していることまでは必要ではなく、sin(w0t),cos(w0t)の値については上述の簡易な循環数列についての値を導出し、演算を単純化させることができる。   Therefore, even when the frequency division ratio in the frequency divider 125 is set to “1”, the values of sin (w0t) and cos (w0t) are stored in a table configuration when the digital arithmetic unit 122 calculates. It is not necessary to do so, and the values of sin (w0t) and cos (w0t) can be derived from the above-described simple cyclic number sequence to simplify the calculation.

また、分周器125での分周比を「2」として、デジタル演算器122での演算をチャンネルch1及びチャンネルch2により2並列化する場合には、サンプリングタイミングに従って入力されるデジタル信号に基づく信号ベクトルs(t)の演算をチャンネルch1及びch2で交互に行うことができるので、チャンネルch1,ch2毎のsin(w0t),cos(w0t)の値の割当てを更に単純化させることができる。   In addition, when the division ratio in the frequency divider 125 is “2” and the calculation in the digital calculator 122 is paralleled by two channels ch1 and ch2, a signal based on the digital signal input according to the sampling timing. Since the calculation of the vector s (t) can be performed alternately on the channels ch1 and ch2, the assignment of the values of sin (w0t) and cos (w0t) for each of the channels ch1 and ch2 can be further simplified.

すなわち、デジタル演算器122をなすチャンネルch1での信号ベクトルs(t)の演算の際に割り当てられるsin(w0t)は固定値0であり、cos(w0t)の値は交互に現れる2値(1,−1)の値となる。一方、チャンネルch2ではsin(w0t)は交互に現れる2値(1,−1)の値となり、cos(w0t)の値は固定値0となる。   That is, sin (w0t) assigned in the calculation of the signal vector s (t) in the channel ch1 forming the digital calculator 122 is a fixed value 0, and the value of cos (w0t) is a binary value (1 , -1). On the other hand, in channel ch2, sin (w0t) is a binary (1, -1) value that appears alternately, and the value of cos (w0t) is a fixed value of 0.

更に、分周器での分周比を「4」として、パターン発生器126で発生される周波数信号と分周器125での分周によって得られる正弦波信号とを実質的に同一の周波数とする場合には、デジタル演算器122での演算をチャンネルch1〜ch4により4並列化することになるが、各チャンネルch1〜ch4でのsin(w0t),cos(w0t)の値の割当てを更に単純化できる。   Further, assuming that the frequency division ratio at the frequency divider is “4”, the frequency signal generated by the pattern generator 126 and the sine wave signal obtained by frequency division at the frequency divider 125 have substantially the same frequency. In this case, the computation in the digital computing unit 122 is parallelized by four channels ch1 to ch4, but the assignment of the values of sin (w0t) and cos (w0t) in each channel ch1 to ch4 is further simplified. Can be

この場合には、各チャンネルch1〜ch4では常にw0tは位相平面上では同一の点を取ることになるので、正弦及び余弦の値についても常に固定値とすることができる。即ち、各チャンネルch1〜ch4におけるsin(w0t)はそれぞれ固定値0,1,0,−1であり、cos(w0t)はそれぞれ固定値1,0,−1,0となる。   In this case, w0t always takes the same point on the phase plane in each of the channels ch1 to ch4, so that the values of sine and cosine can always be fixed values. That is, sin (w0t) in each of the channels ch1 to ch4 has a fixed value of 0, 1, 0, −1, and cos (w0t) has a fixed value of 1, 0, −1, 0, respectively.

なお、パターン発生器126で発生される周波数信号は、発振器124からの正弦波信号周波数の1/4であることには限定されるものではない。この場合においても、特に分周器125での分周によって得られる正弦波信号をパターン発生器126で発生される周波数信号の周波数に合致させることで、デジタル演算器122での演算の際に用いられるsin(w0t),cos(w0t)の値を固定値することができる。   The frequency signal generated by the pattern generator 126 is not limited to being ¼ of the sine wave signal frequency from the oscillator 124. Also in this case, in particular, the sine wave signal obtained by the frequency division by the frequency divider 125 is matched with the frequency of the frequency signal generated by the pattern generator 126 to be used for the calculation by the digital arithmetic unit 122. The values of sin (w0t) and cos (w0t) can be fixed values.

これにより、上述の信号ベクトルs(t)を求める(11)式において、分母のcos(w0t)の項(Δφ0を加味すれば、cos(w0t−Δφ0))と、分子のej(w0t)(Δφ0を加味すれば、ej(w0t−Δφ0))の項と、をチャンネル毎に定数とすることができるので、演算負荷を大幅に軽減できる。特に、分周器125とパターン発生器126については共用化すれば、上述のごとくデジタル演算器122の演算を単純化させることができるほか、装置構成も単純化させることが可能となる。   Thereby, in the above equation (11) for obtaining the signal vector s (t), the denominator cos (w0t) term (Δφ0 is taken into account, cos (w0t−Δφ0)) and the numerator ej (w0t) ( If Δφ0 is taken into account, the term ej (w0t−Δφ0)) can be made constant for each channel, so that the calculation load can be greatly reduced. In particular, if the frequency divider 125 and the pattern generator 126 are shared, the operation of the digital arithmetic unit 122 can be simplified as described above, and the apparatus configuration can be simplified.

10、20:局発光源部
12:混合部
13:差動光検波器
14、24:処理部
15:偏波制御器
16:差動光検波器
101:光源
102:発振器
103:変調器
104:分周器
105:VOA
106:分岐器
107:モニタ回路
108:強度比制御回路
121:AD変換器
122:デジタル演算器
123:識別器
124:発振器
125:分周器
126:パターン発生器
301、302:コヒーレント光受信装置
351:光送信装置
352:光ネットワーク
401、402:光通信システム
10, 20: Local light source 12: Mixer 13: Differential optical detector 14, 24: Processing unit 15: Polarization controller 16: Differential optical detector 101: Light source 102: Oscillator 103: Modulator 104: Frequency divider 105: VOA
106: Brancher 107: Monitor circuit 108: Intensity ratio control circuit 121: AD converter 122: Digital calculator 123: Discriminator 124: Oscillator 125: Divider 126: Pattern generator 301, 302: Coherent light receiving device 351 : Optical transmission device 352: Optical network 401, 402: Optical communication system

Claims (6)

初期位相と位相揺らぎが揃った複数の局発光を出力する局発光源部と、
前記局発光源部が出力する前記局発光及び入力される信号光を混合し、混合信号光を出力する混合部と、
前記混合信号光を光検波し、複数の前記局発光と前記信号光との間の中間周波数信号を出力する光検波部と、
前記光検波部の出力する前記中間周波数信号をそれぞれ分離処理して前記信号光の信号成分を復調する処理部と、
前記光検波部が出力する前記中間周波数信号の互いの位相が所定の関係となるように前記局発光間の位相関係を調整する調整部と、
を備えるコヒーレント光受信装置。
A local light source section that outputs a plurality of local light sources with the same phase fluctuation and initial phase;
Mixing the local light output from the local light source unit and the input signal light, and outputting a mixed signal light; and
An optical detection unit that optically detects the mixed signal light and outputs an intermediate frequency signal between the local light and the signal light;
A processing unit that separates each of the intermediate frequency signals output from the optical detection unit and demodulates a signal component of the signal light;
An adjustment unit that adjusts the phase relationship between the local lights so that the phases of the intermediate frequency signals output by the optical detection unit have a predetermined relationship;
A coherent optical receiver.
前記局発光源部は、
1つの光を出力する光源と、
正弦波信号を発振する発振器と、
前記光源からの光を前記発振器からの正弦波信号で変調して複数の前記局発光を生成する変調器と、
を有することを特徴とする請求項1に記載のコヒーレント光受信装置。
The local light source section is
A light source that outputs one light;
An oscillator that oscillates a sine wave signal;
A modulator that modulates light from the light source with a sine wave signal from the oscillator to generate a plurality of local lights;
The coherent optical receiver according to claim 1, comprising:
前記局発光源部は、複数の前記中間周波信号の周波数差の絶対値が前記信号光の変調帯域の半分より大きくなる前記局発光を出力し、
前記処理部は、複数の前記中間周波信号とそれぞれの中間周波数信号と同じ周波数でかつ互いの位相揺らぎが揃い乗ずる際の初期位相が所定の関係である正弦波信号をそれぞれ乗じ、
前記調整部は、端子数がKの光多端子結合回路と同等とするダイバーシティ方式の場合に各端子に対応する中間周波数信号の出力が2πq/K、(q:0〜K−1)の位相の出力となるように正弦波信号の位相となるように調整すること
を特徴とする請求項1又は2に記載のコヒーレント光受信装置。
The local light source unit outputs the local light in which the absolute value of the frequency difference between the plurality of intermediate frequency signals is larger than half of the modulation band of the signal light,
The processing unit multiplies each of the intermediate frequency signals and a sine wave signal having the same frequency as each of the intermediate frequency signals and the initial phase when the phase fluctuations are multiplied together, and having a predetermined relationship,
In the case of a diversity system in which the adjusting unit is equivalent to an optical multi-terminal coupling circuit having K terminals, the output of the intermediate frequency signal corresponding to each terminal is a phase of 2πq / K, (q: 0 to K−1). The coherent optical receiver according to claim 1, wherein the phase of the sine wave signal is adjusted so that the output of the coherent optical signal becomes the output of the coherent optical receiver.
前記局発光源部は、
光周波数の差が、前記信号光の帯域幅の2倍よりも小さく、かつ、前記信号光の光源スペクトル線幅及び前記局発光の光源スペクトル線幅よりも大きい局発光を出力し、
前記処理部は、
位相が直交する前記中間周波数信号をデジタル信号に変換するAD変換器と
前記AD変換器から出力されるデジタル信号を(C1)式で演算し、前記信号光に含まれるデータ情報を推定するための信号ベクトルs(t)を出力するデジタル演算器と、
前記デジタル演算部が出力する前記信号ベクトルs(t)を識別処理し、前記信号光の信号成分を受信データとして出力する識別器と、を有し、
前記調整部は、
複数の前記中間周波数信号の位相差が、前記デジタル演算器で前記中間周波数信号に乗ずる複数の正弦波信号の位相差と4分の1周期異なる位相差となるように調整すること
を特徴とする請求項1又は2に記載のコヒーレント光受信装置。
(式C1)
s(t)=[I’+jQ’]/[X+Y exp(−jw0t)]
ただし、前記中間周波数信号の振幅をX及びY、前記局発光の角周波数差をw0、虚数単位をjとする。
The local light source section is
A difference in optical frequency is smaller than twice the bandwidth of the signal light, and the local light emission greater than the light source spectral line width of the signal light and the light source spectral line width of the local light is output,
The processor is
An AD converter for converting the intermediate frequency signal having the orthogonal phase into a digital signal, and a digital signal output from the AD converter by the equation (C1) to estimate data information included in the signal light A digital computing unit that outputs a signal vector s (t);
A discriminator that discriminates the signal vector s (t) output by the digital arithmetic unit and outputs a signal component of the signal light as received data;
The adjustment unit is
The phase difference between the plurality of intermediate frequency signals is adjusted by the digital computing unit so that the phase difference differs from the phase difference between the plurality of sine wave signals multiplied by the intermediate frequency signal by a quarter period. The coherent optical receiver according to claim 1 or 2.
(Formula C1)
s (t) = [I ′ + jQ ′] / [X + Y exp (−jw0t)]
Here, the amplitude of the intermediate frequency signal is X and Y, the angular frequency difference of the local light is w0, and the imaginary unit is j.
前記局発光の強度の比を変化させる強度比制御回路を更に備えることを特徴とする請求項4に記載のコヒーレント光受信装置。   The coherent optical receiver according to claim 4, further comprising an intensity ratio control circuit that changes an intensity ratio of the local light. 波長多重信号を伝送する光ファイバと、
請求項1から5のいずれかに記載の複数のコヒーレント光受信装置と、
前記光ファイバを伝送する波長多重信号を分岐し、それぞれ前記コヒーレント光受信装置へ結合する光分岐器と、
を備え、それぞれの前記コヒーレント光受信装置が1つの前記局発光源部を共用することを特徴とする光通信システム。
An optical fiber for transmitting a wavelength multiplexed signal;
A plurality of coherent optical receivers according to any one of claims 1 to 5;
An optical branching device for branching a wavelength division multiplexed signal transmitted through the optical fiber and coupling it to the coherent optical receiving device;
And each of the coherent optical receivers shares one local light source unit.
JP2011009985A 2011-01-20 2011-01-20 Coherent optical receiver and optical communication system Active JP5710989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009985A JP5710989B2 (en) 2011-01-20 2011-01-20 Coherent optical receiver and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009985A JP5710989B2 (en) 2011-01-20 2011-01-20 Coherent optical receiver and optical communication system

Publications (3)

Publication Number Publication Date
JP2012151752A true JP2012151752A (en) 2012-08-09
JP2012151752A5 JP2012151752A5 (en) 2014-02-27
JP5710989B2 JP5710989B2 (en) 2015-04-30

Family

ID=46793573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009985A Active JP5710989B2 (en) 2011-01-20 2011-01-20 Coherent optical receiver and optical communication system

Country Status (1)

Country Link
JP (1) JP5710989B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050771A (en) * 2013-08-30 2015-03-16 キーサイト テクノロジーズ, インク. Interleave in optical bandwidth
KR101539196B1 (en) * 2015-01-19 2015-07-24 연세대학교 산학협력단 Method and Device for Receiving in Coherent Optical Communication System
JP2020034775A (en) * 2018-08-30 2020-03-05 日本電信電話株式会社 Optical interference circuit
CN114205003A (en) * 2021-12-09 2022-03-18 北京邮电大学 Fast and slow loop combined feedback control system and method for locking signal light and local oscillator light frequency difference signal of optical fiber link
CN115277345A (en) * 2022-07-20 2022-11-01 公诚管理咨询有限公司 Carrier phase recovery method in coherent optical communication system based on COSTAS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374331A (en) * 1986-09-18 1988-04-04 Kokusai Denshin Denwa Co Ltd <Kdd> Diversity optical reception system
JPH0285830A (en) * 1988-09-22 1990-03-27 Fujitsu Ltd Coherent light receiving system
JPH0371729A (en) * 1989-08-11 1991-03-27 Fujitsu Ltd Receiver for coherent optical communication
JP2009049613A (en) * 2007-08-16 2009-03-05 Fujitsu Ltd Coherent light receiver and optical communication system
JP2009192746A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for correcting optical 90 degree hybrid function
JP2010171549A (en) * 2009-01-20 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical receiver, optical communication system, and heterodyne detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374331A (en) * 1986-09-18 1988-04-04 Kokusai Denshin Denwa Co Ltd <Kdd> Diversity optical reception system
JPH0285830A (en) * 1988-09-22 1990-03-27 Fujitsu Ltd Coherent light receiving system
JPH0371729A (en) * 1989-08-11 1991-03-27 Fujitsu Ltd Receiver for coherent optical communication
JP2009049613A (en) * 2007-08-16 2009-03-05 Fujitsu Ltd Coherent light receiver and optical communication system
JP2009192746A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for correcting optical 90 degree hybrid function
JP2010171549A (en) * 2009-01-20 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical receiver, optical communication system, and heterodyne detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050771A (en) * 2013-08-30 2015-03-16 キーサイト テクノロジーズ, インク. Interleave in optical bandwidth
US10389450B2 (en) 2013-08-30 2019-08-20 Keysight Technologies, Inc. Optical bandwidth interleaving
KR101539196B1 (en) * 2015-01-19 2015-07-24 연세대학교 산학협력단 Method and Device for Receiving in Coherent Optical Communication System
JP2020034775A (en) * 2018-08-30 2020-03-05 日本電信電話株式会社 Optical interference circuit
CN114205003A (en) * 2021-12-09 2022-03-18 北京邮电大学 Fast and slow loop combined feedback control system and method for locking signal light and local oscillator light frequency difference signal of optical fiber link
CN114205003B (en) * 2021-12-09 2023-10-20 北京邮电大学 Fast and slow loop combined feedback control system and method for locking signal light and local oscillation optical frequency difference signal of optical fiber link
CN115277345A (en) * 2022-07-20 2022-11-01 公诚管理咨询有限公司 Carrier phase recovery method in coherent optical communication system based on COSTAS

Also Published As

Publication number Publication date
JP5710989B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
US8406638B2 (en) Coherent light receiving system
JP5374596B2 (en) Correction of local oscillator frequency offset of coherent optical signal receiver
JP5601205B2 (en) Optical receiver and optical communication system
US7076169B2 (en) System and method for orthogonal frequency division multiplexed optical communication
Leven et al. Frequency estimation in intradyne reception
US8953953B2 (en) Coherent optical receiver, apparatus and method for detecting inter-channel skew in coherent optical receiver
WO2015176527A1 (en) Orthogonal multicarrier light source and pdm-qpsk signal transmission device
JP4893672B2 (en) Coherent optical communication apparatus and method
EP3208954A1 (en) Optical up/down-conversion-type optical phase conjugate pair signal transmission/reception circuit
US9529215B2 (en) Optical network element
JP5710989B2 (en) Coherent optical receiver and optical communication system
US20120269514A1 (en) High Speed IO with Coherent Detection
JP2004511128A (en) System and method for code division multiplexed optical communication
CN105794129A (en) Polarisation-independent coherent optical receiver
WO2018198873A1 (en) Optical transmission method and optical transmission device
US11777723B2 (en) Post-reception synchronization in a continuous variable quantum key distribution (CV-QKD) system
US10090933B2 (en) Polarization insensitive self-homodyne detection receiver
JP4730560B2 (en) Optical transmission system, optical transmission method, and optical transmitter
JP6739073B2 (en) Optical transmission method and optical transmission device
JP5888635B2 (en) Coherent optical time division multiplexing transmission equipment
JP2020150302A (en) Evaluation method for optical receiver and evaluation device for optical receiver
US20160241352A1 (en) Optical transmission system
JP4498953B2 (en) Coherent optical communication device and coherent optical communication system
JP2009296623A (en) Coherent optical transceiver
Mao et al. Pilot-aided blind phase search for coherent optical orthogonal frequency-division multiplexing systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5710989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150