JP2012151512A - Nitride semiconductor light-emitting element and method of manufacturing the same - Google Patents

Nitride semiconductor light-emitting element and method of manufacturing the same Download PDF

Info

Publication number
JP2012151512A
JP2012151512A JP2012111397A JP2012111397A JP2012151512A JP 2012151512 A JP2012151512 A JP 2012151512A JP 2012111397 A JP2012111397 A JP 2012111397A JP 2012111397 A JP2012111397 A JP 2012111397A JP 2012151512 A JP2012151512 A JP 2012151512A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
algan
semiconductor light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012111397A
Other languages
Japanese (ja)
Other versions
JP5607106B2 (en
Inventor
Hajime Nago
肇 名古
Koichi Tachibana
浩一 橘
Toshiyuki Oka
俊行 岡
Shigeya Kimura
重哉 木村
Shinya Nunoue
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012111397A priority Critical patent/JP5607106B2/en
Publication of JP2012151512A publication Critical patent/JP2012151512A/en
Application granted granted Critical
Publication of JP5607106B2 publication Critical patent/JP5607106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a nitride semiconductor light-emitting element capable of obtaining sufficient optical output, and to provide a method of manufacturing the same.SOLUTION: A nitride semiconductor light-emitting element comprises: a first cladding layer 13 having an n-type nitride semiconductor; an active layer 14 that is formed on the first cladding layer 13 and has a nitride semiconductor containing In; a GaN layer 17 formed on the active layer 14; a first AlGaN layer 18 that is formed on the GaN layer 17 and has a first Al composition ratio x1; a p-type second AlGaN layer 19 that is formed on the first AlGaN layer 18, has a higher second Al composition ratio x2 than the first Al composition ratio x1, and contain a larger quantity of Mg than the GaN layer 17 and the first AlGaN layer 18; and a second cladding layer 20 that is formed on the second AlGaN layer 19 and has a p-type nitride semiconductor.

Description

本発明は、窒化物半導体発光素子およびその製造方法に関する。   The present invention relates to a nitride semiconductor light emitting device and a method for manufacturing the same.

従来、窒化物半導体発光素子には、Inを含む窒化物半導体を有する活性層上に、活性層に電子を閉じ込めるための電子障壁層として、Mgをドープしたp型AlGaN層が形成されたものが知られている(例えば、特許文献1または特許文献2参照。)。   Conventionally, a nitride semiconductor light emitting device has a Mg-doped p-type AlGaN layer formed on an active layer having a nitride semiconductor containing In as an electron barrier layer for confining electrons in the active layer. (For example, refer to Patent Document 1 or Patent Document 2).

特許文献1の窒化物半導体発光素子では、p型AlGaN層として、活性層の劣化を抑制するようにNガスを用いたMOCVD(Metal Organic Chemical Vapor Deposition)法により形成された第1のp型AlGaN層と、障壁電位を形成するようにHガスを用いたMOCVD法により形成された第2のp型AlGaN層とを具備している。 In the nitride semiconductor light emitting device of Patent Document 1, a p-type AlGaN layer is a first p-type formed by MOCVD (Metal Organic Chemical Vapor Deposition) method using N 2 gas so as to suppress degradation of the active layer. And an AlGaN layer and a second p-type AlGaN layer formed by MOCVD using H 2 gas so as to form a barrier potential.

然しながら、この窒化物半導体発光素子では、第1のp型AlGaN層は、第2のp型AlGaN層とAl組成比が略等しく0.1以上に設定され、且つバルク抵抗を下げるために多量のMgがドープされている。   However, in this nitride semiconductor light emitting device, the first p-type AlGaN layer has an Al composition ratio substantially equal to or higher than that of the second p-type AlGaN layer, and a large amount for reducing the bulk resistance. Mg is doped.

その結果、第2のp型AlGaN層を形成する際に、Mgが活性層に過剰に拡散し、活性層の品質が低下する問題がある。   As a result, when forming the second p-type AlGaN layer, there is a problem that Mg is excessively diffused into the active layer and the quality of the active layer is lowered.

特許文献2の窒化物半導体発光素子では、Mgが活性層に過剰に拡散するのを抑制するように活性層とp型AlGaN層との間に、アンドープのGaN、AlGaNなどからなる中間層を具備している。   In the nitride semiconductor light emitting device of Patent Document 2, an intermediate layer made of undoped GaN, AlGaN, or the like is provided between the active layer and the p-type AlGaN layer so as to suppress excessive diffusion of Mg into the active layer. is doing.

然しながら、この窒化物半導体発光素子では、活性層上に中間層を成長させながら基板の温度を上昇させている。その結果、昇温中に活性層の熱劣化が生じ、活性層の品質が低下する問題がある。   However, in this nitride semiconductor light emitting device, the temperature of the substrate is raised while growing an intermediate layer on the active layer. As a result, there is a problem that the thermal degradation of the active layer occurs during the temperature rise and the quality of the active layer is lowered.

従って、いずれの窒化物半導体発光素子においても、発光効率が低下し、十分な光出力が得られなくなるという問題がある。   Therefore, any of the nitride semiconductor light emitting devices has a problem that the light emission efficiency is lowered and a sufficient light output cannot be obtained.

特許第3446660号明細書Japanese Patent No. 3446660 特開2006−261392号公報JP 2006-261392 A

本発明は、十分な光出力が得られる窒化物半導体発光素子およびその製造方法を提供する。   The present invention provides a nitride semiconductor light emitting device capable of obtaining a sufficient light output and a method for manufacturing the same.

本発明の一態様の窒化物半導体発光素子は、n型窒化物半導体を有する第1クラッド層と、前記第1クラッド層上に形成され、Inを含む窒化物半導体を有し、障壁層と井戸層が交互に積層された多重量子井戸構造の活性層と、前記活性層上に前記障壁層を形成する温度と同じ第1の温度で形成され、Mg濃度が1E18cm−3以下のGaN層と、前記GaN層上に前記第1の温度で形成され、第1のAl組成比が0より大きく0.01以下、Mg濃度が1E18cm−3以下、厚さが前記GaN層の厚さより薄い第1AlGaN層と、前記第1AlGaN層上に形成され、前記第1のAl組成比より高い第2のAl組成比を有し、且つ前記GaN層および前記第1AlGaN層より多量にMgを含有するp型第2AlGaN層と、前記第2AlGaN層上に形成され、p型窒化物半導体を有する第2クラッド層と、を具備することを特徴とする窒化物半導体発光素子。 A nitride semiconductor light-emitting device of one embodiment of the present invention includes a first cladding layer having an n-type nitride semiconductor, a nitride semiconductor formed on the first cladding layer and containing In, a barrier layer and a well An active layer having a multiple quantum well structure in which layers are alternately stacked, a GaN layer having a Mg concentration of 1E18 cm −3 or less, formed at a first temperature that is the same as a temperature at which the barrier layer is formed on the active layer, A first AlGaN layer formed on the GaN layer at the first temperature, having a first Al composition ratio of greater than 0 and less than or equal to 0.01, an Mg concentration of less than or equal to 1E18 cm −3 , and a thickness less than the thickness of the GaN layer And a p-type second AlGaN formed on the first AlGaN layer, having a second Al composition ratio higher than the first Al composition ratio, and containing a larger amount of Mg than the GaN layer and the first AlGaN layer. Layers and said Formed on the 2AlGaN layer, a nitride semiconductor light emitting device characterized by comprising a second cladding layer, a having a p-type nitride semiconductor.

本発明の一態様の窒化物半導体発光素子の製造方法は、n型窒化物半導体を有する第1クラッド層上に、Inを含む窒化物半導体を有し、障壁層と井戸層が交互に積層された多重量子井戸構造の活性層を形成する工程と、前記活性層上に、Mg濃度が1E18cm−3以下のGaN層および第1のAl組成比が0より大きく0.01以下、Mg濃度が1E18cm−3以下、厚さが前記GaN層の厚さより薄い第1AlGaN層を順に、有機金属気相成長法により前記障壁層を形成する温度と同じ第1の成長温度、窒素ガス雰囲気およびMgを無添加で形成する工程と、前記第1AlGaN層上に、前記第1のAl組成比より大きい第2のAl組成比を有する第2AlGaN層を、有機金属気相成長法により前記第1の成長温度より高い第2の成長温度、水素ガスを主成分とする雰囲気およびMgを添加して形成する工程と、前記第2AlGaN層上に、p型窒化物半導体を有する第2クラッド層を形成する工程と、を具備することを特徴とする窒化物半導体発光素子の製造方法。 In a method for manufacturing a nitride semiconductor light-emitting device according to one embodiment of the present invention, a nitride semiconductor containing In is formed on a first cladding layer having an n-type nitride semiconductor, and barrier layers and well layers are alternately stacked. A step of forming an active layer having a multiple quantum well structure, a GaN layer having an Mg concentration of 1E18 cm −3 or less and a first Al composition ratio of greater than 0 and 0.01 or less, and an Mg concentration of 1E18 cm on the active layer. -3 or less, the first AlGaN layer whose thickness is smaller than the thickness of the GaN layer in order, the same first growth temperature as the temperature for forming the barrier layer by metal organic vapor phase epitaxy, nitrogen gas atmosphere and Mg are not added And a second AlGaN layer having a second Al composition ratio larger than the first Al composition ratio on the first AlGaN layer is higher than the first growth temperature by metal organic chemical vapor deposition. First And a step of forming an atmosphere containing hydrogen gas as a main component and Mg, and a step of forming a second cladding layer having a p-type nitride semiconductor on the second AlGaN layer. A method for manufacturing a nitride semiconductor light-emitting device.

本発明によれば、十分な光出力が得られる窒化物半導体発光素子およびその製造方法が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the nitride semiconductor light-emitting device from which sufficient optical output is obtained, and its manufacturing method are obtained.

本発明の実施例に係る窒化物半導体発光素子を示す断面図。Sectional drawing which shows the nitride semiconductor light-emitting device based on the Example of this invention. 窒化物半導体発光素子におけるMgの深さプロファイルを示す図。The figure which shows the depth profile of Mg in the nitride semiconductor light-emitting device. 窒化物半導体発光素子の発光効率を第1比較例と対比して示す図。The figure which shows the luminous efficiency of the nitride semiconductor light-emitting device in contrast with the 1st comparative example. 第1比較例の窒化物半導体発光素子を示す断面図。Sectional drawing which shows the nitride semiconductor light-emitting device of a 1st comparative example. 窒化物半導体発光素子の発光効率を第2比較例と対比して示す図。The figure which shows the luminous efficiency of the nitride semiconductor light-emitting device in contrast with the 2nd comparative example. 第2比較例の窒化物半導体発光素子を示す断面図。Sectional drawing which shows the nitride semiconductor light-emitting device of a 2nd comparative example. 窒化物半導体発光素子の発光効率を第3比較例と対比して示す図。The figure which shows the luminous efficiency of the nitride semiconductor light-emitting device in contrast with the 3rd comparative example. 窒化物半導体発光素子の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the nitride semiconductor light-emitting device. 窒化物半導体発光素子の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the nitride semiconductor light-emitting device. 窒化物半導体発光素子の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the nitride semiconductor light-emitting device. 窒化物半導体発光素子の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the nitride semiconductor light-emitting device.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例に係る窒化物半導体発光素子について図1を用いて説明する。図1は窒化物半導体発光素子を示す断面図である。   A nitride semiconductor light emitting device according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a nitride semiconductor light emitting device.

図1に示すように、本実施例の窒化物半導体発光素子10では、発光波長に対して透明な基板11、例えばサファイア基板上にバッファ層(図示せず)を介して形成された厚さ3μm程度の窒化ガリウム層12(以下、GaN層12)が形成されている。   As shown in FIG. 1, in the nitride semiconductor light emitting device 10 of this example, a thickness of 3 μm formed on a substrate 11 transparent to the emission wavelength, for example, a sapphire substrate via a buffer layer (not shown). About a gallium nitride layer 12 (hereinafter referred to as GaN layer 12) is formed.

GaN層12上には、厚さが2μm程度のシリコン(Si)がドープされたn型の窒化ガリウムクラッド層13(以下、n型GaNクラッド層もしくは第1クラッド層13)が形成されている。   On the GaN layer 12, an n-type gallium nitride cladding layer 13 (hereinafter referred to as an n-type GaN cladding layer or a first cladding layer 13) doped with silicon (Si) having a thickness of about 2 μm is formed.

n型GaNクラッド層13上には、Inを含む窒化物半導体を有する活性層14が形成されている。活性層14は、例えば厚さが5nmの窒化ガリウム障壁層15(以下、GaN障壁層15)と、厚さが2.5nmのインジウムガリウム窒化物井戸層16(以下、InGaN井戸層16)とが交互に積層され、最上層がInGaN井戸層16である多重量子井戸(MQW:Multi Quantum Well)活性層である。以後、活性層14をMQW活性層14と記す。   On the n-type GaN cladding layer 13, an active layer 14 having a nitride semiconductor containing In is formed. The active layer 14 includes, for example, a gallium nitride barrier layer 15 (hereinafter, GaN barrier layer 15) having a thickness of 5 nm and an indium gallium nitride well layer 16 (hereinafter, InGaN well layer 16) having a thickness of 2.5 nm. The multi-quantum well (MQW) active layers are stacked alternately and the top layer is an InGaN well layer 16. Hereinafter, the active layer 14 is referred to as an MQW active layer 14.

InGaN井戸層16((InGa1−xN層、0<x<1)のIn組成比xは、例えば発光のピーク波長が〜450nmになるように0.1程度に設定されている。 The In composition ratio x of the InGaN well layer 16 ((In x Ga 1-x N layer, 0 <x <1) is set to about 0.1 so that the peak wavelength of light emission is about 450 nm, for example.

MQW活性層14の上には、窒化ガリウム層17(以下、GaN層17)が形成されている。GaN層17上には、Al組成比x1(第1のAl組成比)が小さい第1AlGaN層18が形成されている。第1AlGaN層の組成はAlx1Ga1−x1N(0<x1<1)と表せる。 On the MQW active layer 14, a gallium nitride layer 17 (hereinafter referred to as a GaN layer 17) is formed. A first AlGaN layer 18 having a small Al composition ratio x1 (first Al composition ratio) is formed on the GaN layer 17. The composition of the first AlGaN layer can be expressed as Al x1 Ga 1-x1 N (0 <x1 <1).

GaN層17および第1AlGaN層18は、後述するようにアンドープで形成され、昇温工程でのMQW活性層14の熱劣化を抑制し、MQW活性層14へMgが拡散するのを抑制するためのキャップ層として機能する。   The GaN layer 17 and the first AlGaN layer 18 are formed undoped as will be described later, and suppress thermal degradation of the MQW active layer 14 in the temperature raising step, and suppress diffusion of Mg into the MQW active layer 14. Functions as a cap layer.

以後、GaN層17をGaNキャップ層17と記し、第1AlGaN層18をAlGaNキャップ層18と記す。   Hereinafter, the GaN layer 17 is referred to as a GaN cap layer 17, and the first AlGaN layer 18 is referred to as an AlGaN cap layer 18.

従って、AlGaNキャップ層18は、発光効率に支障をきたさないようにMQW活性層14の熱劣化を効果的に抑制し、且つ動作電圧に支障をきたさないように低いバルク抵抗が得られるという両方の要求を満たすようなAl組成比x1および厚さの組合せが必要である。   Therefore, the AlGaN cap layer 18 effectively suppresses the thermal degradation of the MQW active layer 14 so as not to hinder the light emission efficiency, and provides a low bulk resistance so as not to hinder the operating voltage. A combination of Al composition ratio x1 and thickness that meets the requirements is required.

GaNキャップ層17は、拡散してくるMgを吸収し、且つ後述するMQW活性層14に電子を閉じ込めるための電子障壁層となるp型AlGaN層の機能に支障をきたさないという両方の要求を満たすような厚さが必要である。   The GaN cap layer 17 satisfies both requirements of absorbing diffused Mg and not hindering the function of the p-type AlGaN layer serving as an electron barrier layer for confining electrons in the MQW active layer 14 described later. Such a thickness is necessary.

ここでは、GaNキャップ層17の厚さは、例えば5nm程度に設定されている。AlGaNキャップ層18のAl組成比x1は0より大きく0.01以下が好ましく、例えば0.003に設定され、厚さは、例えば1nm程度に設定されている。   Here, the thickness of the GaN cap layer 17 is set to about 5 nm, for example. The Al composition ratio x1 of the AlGaN cap layer 18 is preferably greater than 0 and less than or equal to 0.01, for example, set to 0.003, and the thickness is set to, for example, about 1 nm.

AlGaNキャップ層18の上には、Mgが高濃度にドープされ、MQW活性層14に電子を閉じ込めるためのp型AlGaN電子障壁層19(第2AlGaN層19)が形成されている。第2AlGaN層の組成は、Alx2Ga1−x2N、(0<x2<1、x1<x2)と表せる。 On the AlGaN cap layer 18, Mg is doped at a high concentration, and a p-type AlGaN electron barrier layer 19 (second AlGaN layer 19) for confining electrons in the MQW active layer 14 is formed. The composition of the second AlGaN layer can be expressed as Al x2 Ga 1-x2 N (0 <x2 <1, x1 <x2).

p型AlGaN電子障壁層19のAl組成比x2(第2のAl組成比)は、Al組成比x1より大きく、例えば0.1〜0.2に設定されている。   The Al composition ratio x2 (second Al composition ratio) of the p-type AlGaN electron barrier layer 19 is larger than the Al composition ratio x1, for example, set to 0.1 to 0.2.

p型AlGaN電子障壁層19のMg濃度は、例えば1E19〜1E20cm−3程度に設定されている。p型AlGaN電子障壁層19の厚さは、例えば10nm程度である。 The Mg concentration of the p-type AlGaN electron barrier layer 19 is set to about 1E19 to 1E20 cm −3 , for example. The thickness of the p-type AlGaN electron barrier layer 19 is, for example, about 10 nm.

p型AlGaN電子障壁層19の上には、例えば厚さ100nm程度のMgが高濃度にドープされたp型の窒化ガリウムクラッド層13(以下、p型GaNクラッド層若しくは第2クラッド層20)が形成されている。p型GaNクラッド層20のMg濃度は、例えば1E19〜1E20cm−3程度に設定されている。 On the p-type AlGaN electron barrier layer 19, a p-type gallium nitride cladding layer 13 (hereinafter referred to as a p-type GaN cladding layer or a second cladding layer 20) doped with, for example, Mg having a thickness of about 100 nm at a high concentration is formed. Is formed. The Mg concentration of the p-type GaN cladding layer 20 is set to about 1E19 to 1E20 cm −3 , for example.

p型GaNクラッド層20の上には、例えば厚さが10nm程度で、Mgがp型GaNクラッド層20より高濃度にドープされたp型の窒化ガリウムコンタクト層21(以下、p型GaNコンタクト層21)が形成されている。p型GaNコンタクト層21のMg濃度は、例えば1E20〜1E21cm−3程度に設定されている。 On the p-type GaN cladding layer 20, for example, a p-type gallium nitride contact layer 21 (hereinafter referred to as a p-type GaN contact layer) having a thickness of about 10 nm and doped with Mg at a higher concentration than the p-type GaN cladding layer 20. 21) is formed. The Mg concentration of the p-type GaN contact layer 21 is set to about 1E20 to 1E21 cm −3 , for example.

p型GaNコンタクト層21の上には、Ni/Auからなるp側電極22が形成されている。更に、一辺側がp型GaNコンタクト層21からn型GaNクラッド層13の一部まで掘り込まれており、露出したn型GaNクラッド層13の上には、Ti/Pt/Auからなるn側電極23が形成されている。n型GaNクラッド層13は、n型GaNコンタクト層を兼ねている。   A p-side electrode 22 made of Ni / Au is formed on the p-type GaN contact layer 21. Furthermore, one side is dug from the p-type GaN contact layer 21 to a part of the n-type GaN clad layer 13, and an n-side electrode made of Ti / Pt / Au is formed on the exposed n-type GaN clad layer 13. 23 is formed. The n-type GaN cladding layer 13 also serves as an n-type GaN contact layer.

p側電極22を電源の正極に接続し、n側電極23を電源の負極に接続し、通電することにより、MQW活性層14から光が放出される。   Light is emitted from the MQW active layer 14 by connecting the p-side electrode 22 to the positive electrode of the power supply, connecting the n-side electrode 23 to the negative electrode of the power supply, and energizing.

ここで、n型GaNクラッド層13、MQW活性層14、p型GaNクラッド層20、p型GaNコンタクト層21の各層の機能については周知であり、その説明は省略している。   Here, the functions of the n-type GaN clad layer 13, the MQW active layer 14, the p-type GaN clad layer 20, and the p-type GaN contact layer 21 are well known, and the description thereof is omitted.

上記構造の窒化物半導体発光素子では、比較的低い成長温度でも結晶性の良好な厚膜が形成できるGaNキャップ層17と、比較的高融点で化学的に安定なことからMQW活性層14の熱劣化を効果的に抑制するAlGaNキャップ層18との2枚重ね構造の最適化を図ることにより、Mgが高濃度にドープされたp型AlGaN電子障壁層19乃至p型GaNコンタクト層21を形成する際に、MQW活性層14の熱劣化を抑制し、且つMQW活性層14へのMgの拡散を防止する効果が増強するように構成されている。   In the nitride semiconductor light emitting device having the above-described structure, the GaN cap layer 17 capable of forming a thick film with good crystallinity even at a relatively low growth temperature, and the heat of the MQW active layer 14 due to the relatively high melting point and the chemical stability The p-type AlGaN electron barrier layer 19 to the p-type GaN contact layer 21 doped with Mg at a high concentration are formed by optimizing the two-layer structure with the AlGaN cap layer 18 that effectively suppresses deterioration. At this time, the thermal degradation of the MQW active layer 14 is suppressed, and the effect of preventing the diffusion of Mg into the MQW active layer 14 is enhanced.

これを確かめるために、窒化物半導体発光素子10におけるMgの深さプロファイルを調べた結果を、図2を用いて説明する。   In order to confirm this, the result of examining the depth profile of Mg in the nitride semiconductor light emitting device 10 will be described with reference to FIG.

更に、GaNキャップ層17、AlGaNキャップ層18、Al組成比x1が発光効率に及ぼす影響を調べた結果を、図3乃至図7を用いて説明する。   Furthermore, the results of examining the influence of the GaN cap layer 17, the AlGaN cap layer 18, and the Al composition ratio x1 on the light emission efficiency will be described with reference to FIGS.

図2は窒化物半導体発光素子10におけるMgの深さプロファイルを示す図である。Mgの深さプロファイルは、2次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により求めた。   FIG. 2 is a view showing a depth profile of Mg in the nitride semiconductor light emitting device 10. The depth profile of Mg was determined by secondary ion mass spectrometry (SIMS).

図2にはMgの深さプロファイルの他に、Mgと結合して成膜中に取り込まれることからMgと同じ挙動を示す水素(H)の深さプロファイルと、各層を識別するためのマーカとなるAl、Inの2次イオン強度とを合せて示している。   In addition to the Mg depth profile, FIG. 2 shows a hydrogen (H) depth profile that shows the same behavior as Mg because it is combined with Mg and incorporated during film formation, and a marker for identifying each layer. The secondary ion intensity of Al and In is shown together.

太い実線はMgの深さプロファイルを示し、細い実線はHの深さプロファイルを示している。また、破線はAlの2次イオン強度を示し、一点鎖線はInの2次イオン強度を示している。   The thick solid line indicates the depth profile of Mg, and the thin solid line indicates the depth profile of H. The broken line indicates the secondary ion intensity of Al, and the alternate long and short dash line indicates the secondary ion intensity of In.

図2に示すように、AlおよびInの2次イオン強度の深さプロファイルから、MQW活性層14とアンドープのGaNキャップ層17との界面は、表面からの深さで略100nm近傍にある(設計値は、例えば126nm)。   As shown in FIG. 2, from the depth profile of the secondary ionic strength of Al and In, the interface between the MQW active layer 14 and the undoped GaN cap layer 17 is approximately 100 nm in depth from the surface (design). The value is, for example, 126 nm).

AlおよびInの2次イオン強度の立ち上がりの勾配(〜7nm/decade)と、H濃度のバックグランドレベル(〜5E18cm−3)以下におけるMg濃度の立ち下がりの勾配が略等しいことから、MgのMQW活性層14への有意な拡散は認めらない。このことは、MQW活性層14のMgは検出限界以下であることを示している。 Since the slope of rise of the secondary ion intensity of Al and In (˜7 nm / decade) and the slope of fall of the Mg concentration below the background level of H concentration (˜5E18 cm −3 ) are substantially equal, the MQW of Mg No significant diffusion into the active layer 14 is observed. This indicates that Mg in the MQW active layer 14 is below the detection limit.

また、アンドープGaNキャップ層17およびAlGaNキャップ層18中のMg濃度は、1E18cm−3以下と推定された。 The Mg concentration in the undoped GaN cap layer 17 and the AlGaN cap layer 18 was estimated to be 1E18 cm −3 or less.

従って、アンドープの厚いGaNキャップ層17と、アンドープでAl組成比x1が小さく且つ薄いAlGaNキャップ層18の2枚重ね構造により、MQW活性層14へのMgの拡散が効果的に抑制されていることが確認された。   Therefore, the diffusion of Mg into the MQW active layer 14 is effectively suppressed by the two-layered structure of the undoped thick GaN cap layer 17 and the undoped and thin AlGaN cap layer 18 having a small Al composition ratio x1. Was confirmed.

図3は窒化物半導体発光素子10の発光効率の電流依存性を第1比較例と対比して示す図、図4は第1比較例を示す断面図である。   FIG. 3 is a diagram showing the current dependence of the luminous efficiency of the nitride semiconductor light emitting device 10 in comparison with the first comparative example, and FIG. 4 is a cross-sectional view showing the first comparative example.

窒化物半導体発光素子の発光効率の電流依存性は、窒化物半導体発光素子に通電する電流を変えながら、積分球を用いて窒化物半導体発光素子から放射された光の強度を測定し、光の強度を通電電流で除算することにより求めた。   The current dependence of the luminous efficiency of the nitride semiconductor light emitting device is determined by measuring the intensity of light emitted from the nitride semiconductor light emitting device using an integrating sphere while changing the current passed through the nitride semiconductor light emitting device. The strength was determined by dividing by the energizing current.

窒化物半導体発光素子の発光効率の電流依存性は、一般に立ち上がりの低電流領域を除いて、電流が増加するほど低下する傾向を示す。これは、電流が大きくなるとMQW活性層に注入されたキャリアがオーバフローする確率が増加してキャリア注入効率が低下すること、発熱によりMQW活性層の内部量子効率が低下すること等に起因している。   The current dependency of the light emission efficiency of the nitride semiconductor light emitting device generally tends to decrease as the current increases except for the rising low current region. This is due to the fact that, when the current increases, the probability that the carriers injected into the MQW active layer overflow increases and the carrier injection efficiency decreases, and the internal quantum efficiency of the MQW active layer decreases due to heat generation. .

ここで、第1比較例とは、図4に示すように、アンドープの厚いGaNキャップ層17を有しない窒化物半導体発光素子40のことである。始に、第1比較例について説明する。 図3に示すように、第1比較例の窒化物半導体発光素子40は、電流が5mA以下では本実施例の窒化物半導体発光素子10と略等しい発光効率を示した。然し、発光効率は電流が増加するほど急激に低下した。   Here, the first comparative example is a nitride semiconductor light emitting device 40 that does not have the undoped thick GaN cap layer 17 as shown in FIG. First, the first comparative example will be described. As shown in FIG. 3, the nitride semiconductor light emitting device 40 of the first comparative example showed light emission efficiency substantially equal to that of the nitride semiconductor light emitting device 10 of this example when the current was 5 mA or less. However, the luminous efficiency decreased rapidly as the current increased.

一方、本実施例の窒化物半導体発光素子10では、電流が増加しても発光効率の低下が緩やかであり、第1比較例の窒化物半導体発光素子40より高い発光効率が得られた。   On the other hand, in the nitride semiconductor light emitting device 10 of this example, the decrease in light emission efficiency was moderate even when the current increased, and higher light emission efficiency than that of the nitride semiconductor light emitting device 40 of the first comparative example was obtained.

発光効率の増加率は、電流が20mAのときに9%、電流が50mAのときに17%程度であり、電流が大きいほど増加率が高くなる傾向を示した。   The increase rate of the luminous efficiency was about 9% when the current was 20 mA, and about 17% when the current was 50 mA. The increase rate was higher as the current was higher.

これは、主にアンドープの厚いGaNキャップ層17が、MQW活性層14へのMgの拡散を抑制していることを示している。   This indicates that the undoped thick GaN cap layer 17 mainly suppresses the diffusion of Mg into the MQW active layer 14.

図5は窒化物半導体発光素子10の発光効率の電流依存性を第2比較例と対比して示す図、図6は第2比較例を示す断面図である。   FIG. 5 is a diagram showing the current dependence of the luminous efficiency of the nitride semiconductor light emitting device 10 in comparison with the second comparative example, and FIG. 6 is a cross-sectional view showing the second comparative example.

ここで、第2比較例とは、図6に示すように、アンドープでAl組成比x1が小さく且つ薄いAlGaNキャップ層18を有しない窒化物半導体発光素子60のことである。始に、第2比較例について説明する。   Here, as shown in FIG. 6, the second comparative example is a nitride semiconductor light emitting device 60 that is undoped, has a small Al composition ratio x1, and does not have a thin AlGaN cap layer 18. First, the second comparative example will be described.

図5に示すように、第2比較例の窒化物半導体発光素子60は、電流が10mA以下では本実施例の窒化物半導体発光素子10と略等しい発光効率を示した。然し、発光効率は電流が増加するほどが急激に低下する傾向を示した。   As shown in FIG. 5, the nitride semiconductor light emitting device 60 of the second comparative example exhibited a luminous efficiency substantially equal to that of the nitride semiconductor light emitting device 10 of this example when the current was 10 mA or less. However, the luminous efficiency tended to decrease rapidly as the current increased.

一方、本実施例の窒化物半導体発光素子10では、電流が増加しても発光効率の低下が緩やかであり、第2比較例の窒化物半導体発光素子60より高い発光効率が得られた。   On the other hand, in the nitride semiconductor light emitting device 10 of this example, the decrease in light emission efficiency was moderate even when the current increased, and higher light emission efficiency than that of the nitride semiconductor light emitting device 60 of the second comparative example was obtained.

発光効率の増加率は、電流が20mAのときに3%、電流が50mAのときに6%程度であり、電流が大きいほど増加率が高くなる傾向を示した。   The increase rate of the light emission efficiency was about 3% when the current was 20 mA, and about 6% when the current was 50 mA. The increase rate increased as the current increased.

これは、Al組成比x1が低く且つ薄いAlGaNキャップ層18でも、MQW活性層14の熱劣化が効果的に抑制されたことを示している。   This shows that the thermal deterioration of the MQW active layer 14 is effectively suppressed even with the AlGaN cap layer 18 having a low Al composition ratio x1.

図7は窒化物半導体発光素子10の発光効率の電流依存性を、第3比較例と対比して示す図である。ここで、第3比較例とは、Al組成比x1の高いAlGaNキャップ層を有する窒化物半導体発光素子のことである。   FIG. 7 is a diagram showing the current dependency of the luminous efficiency of the nitride semiconductor light emitting device 10 in comparison with the third comparative example. Here, the third comparative example is a nitride semiconductor light emitting device having an AlGaN cap layer having a high Al composition ratio x1.

図7は、本実施例の窒化物半導体発光素子10におけるAlGaNキャップ層18のAl組成比x1が0.003、第3比較例の窒化物半導体発光素子におけるAlGaNキャップ層のAl組成比x1が0.05の場合の例である。   FIG. 7 shows that the Al composition ratio x1 of the AlGaN cap layer 18 in the nitride semiconductor light emitting device 10 of this example is 0.003, and the Al composition ratio x1 of the AlGaN cap layer in the nitride semiconductor light emitting device of the third comparative example is 0. .05 is an example.

図7に示すように、本実施例の窒化物半導体発光素子10および第3比較例の窒化物半導体発光素子の電流依存性は略同様である。然し、全電流領域において本実施例の窒化物半導体発光素子10のほうが、第3比較例の窒化物半導体発光素子より高い発光効率が得られている。   As shown in FIG. 7, the current dependency of the nitride semiconductor light emitting device 10 of this example and the nitride semiconductor light emitting device of the third comparative example are substantially the same. However, in the entire current region, the nitride semiconductor light emitting device 10 of this example has higher luminous efficiency than the nitride semiconductor light emitting device of the third comparative example.

発光効率の増加率は、電流が20mAのときに3%、電流が50mAのときに2.2%程度であり、電流に対する増加率は略一定の傾向を示した。   The increase rate of the luminous efficiency was about 3% when the current was 20 mA and about 2.2% when the current was 50 mA, and the increase rate with respect to the current showed a substantially constant tendency.

これは、Al組成比が低いほどAlGaN層の結晶性が向上することから、AlGaNキャップ層18では、MgがMQW活性層14へ拡散するのを抑制する効果が第3比較例のAlGaNキャップ層より向上したことを示している。   This is because the lower the Al composition ratio, the better the crystallinity of the AlGaN layer. Therefore, the AlGaN cap layer 18 is more effective in suppressing the diffusion of Mg into the MQW active layer 14 than the AlGaN cap layer of the third comparative example. It shows improvement.

これにより、GaNキャップ層17とAlGaNキャップ層18との2枚重ね構造の最適化を図ることにより、MQW活性層14の熱劣化を抑制し、且つMQW活性層14へのMgの拡散を防止する相乗効果が認められた。   Thereby, by optimizing the two-layer structure of the GaN cap layer 17 and the AlGaN cap layer 18, thermal degradation of the MQW active layer 14 is suppressed, and Mg diffusion to the MQW active layer 14 is prevented. A synergistic effect was observed.

次に、窒化物半導体発光素子10の製造方法について図8乃至図11を用いて説明する。図8乃至図11は窒化物半導体発光素子10の製造工程を順に示す断面図である。   Next, a method for manufacturing the nitride semiconductor light emitting device 10 will be described with reference to FIGS. 8 to 11 are cross-sectional views sequentially showing the manufacturing process of the nitride semiconductor light emitting device 10.

始に、基板11、例えばC面サファイア基板に前処理として、例えば有機洗浄、酸洗浄を施した後、MOCVD装置の反応室内に収納する。次に、例えば窒素(N)ガスと水素(H)ガスの常圧混合ガス雰囲気中で、高周波加熱により、基板11の温度TsをT0、例えば1100℃まで昇温する。これにより、基板11の表面が気相エッチングされ、表面に形成されている自然酸化膜が除去される。 First, as a pretreatment, the substrate 11, for example, a C-plane sapphire substrate, is subjected to, for example, organic cleaning and acid cleaning, and then stored in a reaction chamber of an MOCVD apparatus. Next, the temperature Ts of the substrate 11 is raised to T0, for example, 1100 ° C. by high frequency heating in an atmospheric pressure mixed gas atmosphere of nitrogen (N 2 ) gas and hydrogen (H 2 ) gas, for example. Thereby, the surface of the substrate 11 is vapor-phase etched, and the natural oxide film formed on the surface is removed.

次に、図8に示すように、NガスとHガスの混合ガスをキャリアガスとし、プロセスガスとして、例えばアンモニア(NH)ガスと、トリメチルガリウム(TMG:Tri-Methyl Gallium)を供給し、アンドープで厚さ3μmのGaN層12を形成する。 Next, as shown in FIG. 8, a mixed gas of N 2 gas and H 2 gas is used as a carrier gas, and for example, ammonia (NH 3 ) gas and tri-methyl gallium (TMG) are supplied as process gases. Then, an undoped GaN layer 12 having a thickness of 3 μm is formed.

次に、n型ドーパントとして、例えばシラン(SiH)ガスを供給し、厚さ2μmのn型GaNクラッド層13を形成する。 Next, as an n-type dopant, for example, silane (SiH 4 ) gas is supplied to form an n-type GaN cladding layer 13 having a thickness of 2 μm.

次に、NHガスは供給し続けながらTMGおよびSiHガスの供給を停止し、基板11の温度TsをT0より低いT1、例えば800℃まで降温し、800℃で保持する。 Next, the supply of TMG and SiH 4 gas is stopped while the NH 3 gas continues to be supplied, and the temperature Ts of the substrate 11 is lowered to T 1 lower than T 0, for example, 800 ° C., and held at 800 ° C.

次に、図9に示すように、N2ガスをキャリアガスとし、プロセスガスとして、例えばNHガスおよび、TMGを供給し、厚さ5nmのGaN障壁層15を形成し、この中にトリメチルインジウム(TMI:Tri-Methyl Indium)を供給することにより、厚さ2.5nm、In組成比が0.1のInGaN井戸層16を形成する。 Next, as shown in FIG. 9, N 2 gas is used as a carrier gas, and NH 3 gas and TMG are supplied as process gases, for example, to form a GaN barrier layer 15 having a thickness of 5 nm, in which trimethylindium ( By supplying TMI (Tri-Methyl Indium), the InGaN well layer 16 having a thickness of 2.5 nm and an In composition ratio of 0.1 is formed.

次に、TMIの供給を断続することにより、GaN障壁層15とInGaN井戸層16との形成を、例えば7回繰返す。これにより、MQW活性層14が得られる。   Next, by intermittently supplying TMI, the formation of the GaN barrier layer 15 and the InGaN well layer 16 is repeated, for example, seven times. Thereby, the MQW active layer 14 is obtained.

次に、図10に示すように、TMG、NHガスは供給し続けながらTMIの供給を停止し、アンドープで厚さ5nmのGaNキャップ層17を形成する。 Next, as shown in FIG. 10, the supply of TMI is stopped while the supply of TMG and NH 3 gas is continued, and an undoped GaN cap layer 17 having a thickness of 5 nm is formed.

次に、TMGの供給をそのままにし、トリメチルアルミニウム(TMA:Tri-Methyl Aluminum)を供給し、アンドープでAl組成比x1が0.003、厚さ1nmのAlGaNキャップ層18を形成する。   Next, the supply of TMG is left as it is, trimethylaluminum (TMA) is supplied, and an undoped AlGaN cap layer 18 having an Al composition ratio x1 of 0.003 and a thickness of 1 nm is formed.

次に、NHガスは供給し続けながらTMG、TMAの供給を停止し、Nガス雰囲気中で、基板11の温度TsをT1より高いT2、例えば1030℃まで昇温し、1030℃で保持する。 Next, the supply of TMG and TMA is stopped while continuing to supply NH 3 gas, and the temperature Ts of the substrate 11 is raised to T 2 higher than T 1, for example, 1030 ° C., and held at 1030 ° C. in an N 2 gas atmosphere. To do.

次に、図11に示すように、NガスとHガスの混合ガスをキャリアガスとし、プロセスガスとしてNHガス、TMG、TMA、p型ドーパントとしてビスシクロペンタジエニルマグネシウム(CpMg)を供給し、Mg濃度1E19〜20cm−3、厚さ10nmのp型AlGaN電子障壁層19を形成する。 Next, as shown in FIG. 11, a mixed gas of N 2 gas and H 2 gas is used as a carrier gas, NH 3 gas as a process gas, TMG, TMA, and biscyclopentadienyl magnesium (Cp 2 Mg) as a p-type dopant. ) To form a p-type AlGaN electron barrier layer 19 having an Mg concentration of 1E19 to 20 cm −3 and a thickness of 10 nm.

次に、TMG、CpMgを供給し続けながらTMAの供給を停止し、Mg濃度が1E20cm−3、厚さが100nm程度のp型GaNクラッド層20を形成する。 Next, the supply of TMA is stopped while continuing to supply TMG and Cp 2 Mg, and the p-type GaN cladding layer 20 having an Mg concentration of 1E20 cm −3 and a thickness of about 100 nm is formed.

次に、CpMgの供給を増やして、Mg濃度が1E21cm−3、厚さ10nm程度のp型GaNコンタクト層21を形成する。 Next, the supply of Cp 2 Mg is increased to form the p-type GaN contact layer 21 having an Mg concentration of 1E21 cm −3 and a thickness of about 10 nm.

次に、NHガスは供給し続けながらTMGの供給を停止し、キャリアガスのみ引き続き供給し、基板11を自然降温した。NHガスの供給は、基板11の温度Tsが500℃に達するまで継続する。 Next, the supply of TMG was stopped while the NH 3 gas was continuously supplied, and only the carrier gas was continuously supplied to cool the substrate 11 naturally. The supply of NH 3 gas is continued until the temperature Ts of the substrate 11 reaches 500 ° C.

次に、基板11をMOCVD装置から取り出した後、一部をn型GaNクラッド層13に達するまでRIE(Reactive Ion Etching)法により除去し、露出したn型GaNクラッド層13上にTi/Pt/Auからなるn側電極23を形成する。   Next, after removing the substrate 11 from the MOCVD apparatus, a part of the substrate 11 is removed by RIE (Reactive Ion Etching) until reaching the n-type GaN cladding layer 13, and Ti / Pt / on the exposed n-type GaN cladding layer 13. An n-side electrode 23 made of Au is formed.

また、p型GaNコンタクト層21上には、Ni/Auからなるp側電極22を形成する。これにより、図1に示す窒化物半導体発光素子10が得られる。   A p-side electrode 22 made of Ni / Au is formed on the p-type GaN contact layer 21. Thereby, the nitride semiconductor light emitting device 10 shown in FIG. 1 is obtained.

窒化物半導体発光素子10のI−V特性を測定したところ、電流が20mAのときの動作電圧は3.1〜3.5Vであった。このときの光出力として略15mWが得られ、発光のピーク波長は略450nmであった。   When the IV characteristic of the nitride semiconductor light emitting device 10 was measured, the operating voltage when the current was 20 mA was 3.1 to 3.5V. The light output at this time was approximately 15 mW, and the peak wavelength of light emission was approximately 450 nm.

以上説明したように、本実施例では、MQW活性層14を形成する温度T1と同じ温度で、アンドープで厚いGaNキャップ層17およびアンドープでAl組成比x1が低く且つ薄いAlGaNキャップ層18を形成している。   As described above, in this example, the undoped thick GaN cap layer 17 and the undoped Al composition ratio x1 and a thin AlGaN cap layer 18 are formed at the same temperature T1 as the MQW active layer 14 is formed. ing.

その結果、温度T1から温度T2への昇温時に、MQW活性層14の熱劣化が防止される。更に、温度T2でp型AlGaN電子障壁層19乃至p型GaNコンタクト層21の形成時に、MQW活性層14へのMgの拡散を防止することができる。   As a result, thermal degradation of the MQW active layer 14 is prevented when the temperature is increased from the temperature T1 to the temperature T2. Furthermore, when the p-type AlGaN electron barrier layer 19 to the p-type GaN contact layer 21 are formed at the temperature T2, diffusion of Mg into the MQW active layer 14 can be prevented.

これにより、MQW活性層14の品質が維持される。従って、十分な光出力が得られる窒化物半導体発光素子およびその製造方法が得られる。   Thereby, the quality of the MQW active layer 14 is maintained. Therefore, a nitride semiconductor light emitting device that can obtain a sufficient light output and a method for manufacturing the nitride semiconductor light emitting device can be obtained.

本実施例におけるGaNキャップ層17の膜厚、AlGaNキャップ層18のAl組成比x1および膜厚は、一例である。上述した趣旨を逸脱しない範囲内で窒化物半導体発光素子の構造、製造条件等に応じて、それぞれの最適化を図ることが更に望ましい。   The film thickness of the GaN cap layer 17 and the Al composition ratio x1 and film thickness of the AlGaN cap layer 18 in this embodiment are examples. It is further desirable to optimize each of the nitride semiconductor light emitting elements within the scope not departing from the above-mentioned purpose, depending on the structure, manufacturing conditions, and the like.

ここでは、基板11としてC面サファイア基板を用いた場合について説明したが、その他の基板、例えばGaN、SiC、ZnOなどの基板を用いても構わない。   Although the case where a C-plane sapphire substrate is used as the substrate 11 has been described here, other substrates such as a substrate such as GaN, SiC, or ZnO may be used.

また、基板11の面方位はC面だけでなく、その他の面、例えば非極性面を用いることも可能である。   Further, the plane orientation of the substrate 11 is not limited to the C plane, and other planes such as a nonpolar plane can be used.

窒化物半導体層の形成方法としてMOCVD法を用いた場合について説明したが、その他の形成方法、例えば、ハイドライド気相成長法(HVPE:Halide Vapor Phase Epitaxy)、分子線気相成長法(MBE:Molecular Beam Epitaxy)などを用いることも可能である。   Although the case where the MOCVD method is used as the method for forming the nitride semiconductor layer has been described, other forming methods such as hydride vapor phase epitaxy (HVPE), molecular beam vapor phase epitaxy (MBE) Beam Epitaxy) can also be used.

プロセスガスとして、TMG、TMA、TMI、NHを用いた場合について説明したが、その他のプロセスガス、例えばトリエチルガリウム(TEG:Tri Ethyl Gallium)を用いることも可能である。 Although the case where TMG, TMA, TMI, and NH 3 are used as the process gas has been described, other process gases such as triethyl gallium (TEG) can also be used.

10、40、60 窒化物半導体発光素子
11 基板
12 GaN層
13 n型GaNクラッド層
14 MQW活性層
15 GaN障壁層
16 InGaN井戸層
17 GaNキャップ層
18 AlGaNキャップ層
19 p型AlGaN電子障壁層
20 p型GaNクラッド層
21 p型GaNコンタクト層
22 p側電極
23 n側電極
10, 40, 60 Nitride semiconductor light emitting device 11 Substrate 12 GaN layer 13 n-type GaN cladding layer 14 MQW active layer 15 GaN barrier layer 16 InGaN well layer 17 GaN cap layer 18 AlGaN cap layer 19 p-type AlGaN electron barrier layer 20 p Type GaN cladding layer 21 p type GaN contact layer 22 p side electrode 23 n side electrode

Claims (3)

n型窒化物半導体を有する第1クラッド層と、
前記第1クラッド層上に形成され、Inを含む窒化物半導体を有し、障壁層と井戸層が交互に積層された多重量子井戸構造の活性層と、
前記活性層上に前記障壁層を形成する温度と同じ第1の温度で形成され、Mg濃度が1E18cm−3以下のGaN層と、
前記GaN層上に前記第1の温度で形成され、第1のAl組成比が0より大きく0.01以下、Mg濃度が1E18cm−3以下、厚さが前記GaN層の厚さより薄い第1AlGaN層と、
前記第1AlGaN層上に形成され、前記第1のAl組成比より高い第2のAl組成比を有し、且つ前記GaN層および前記第1AlGaN層より多量にMgを含有するp型第2AlGaN層と、
前記第2AlGaN層上に形成され、p型窒化物半導体を有する第2クラッド層と、
を具備することを特徴とする窒化物半導体発光素子。
a first cladding layer having an n-type nitride semiconductor;
An active layer having a multiple quantum well structure formed on the first cladding layer, having a nitride semiconductor containing In, and having barrier layers and well layers alternately stacked;
A GaN layer formed on the active layer at a first temperature that is the same as a temperature at which the barrier layer is formed, and having an Mg concentration of 1E18 cm −3 or less;
A first AlGaN layer formed on the GaN layer at the first temperature, having a first Al composition ratio of greater than 0 and less than or equal to 0.01, an Mg concentration of less than or equal to 1E18 cm −3 , and a thickness less than the thickness of the GaN layer When,
A p-type second AlGaN layer formed on the first AlGaN layer, having a second Al composition ratio higher than the first Al composition ratio, and containing a larger amount of Mg than the GaN layer and the first AlGaN layer; ,
A second cladding layer formed on the second AlGaN layer and having a p-type nitride semiconductor;
A nitride semiconductor light emitting device comprising:
前記GaN層に接する層が前記井戸層であることを特徴とする請求項1に記載の窒化物半導体発光素子。   The nitride semiconductor light emitting device according to claim 1, wherein the layer in contact with the GaN layer is the well layer. n型窒化物半導体を有する第1クラッド層上に、Inを含む窒化物半導体を有し、障壁層と井戸層が交互に積層された多重量子井戸構造の活性層を形成する工程と、
前記活性層上に、Mg濃度が1E18cm−3以下のGaN層および第1のAl組成比が0より大きく0.01以下、Mg濃度が1E18cm−3以下、厚さが前記GaN層の厚さより薄い第1AlGaN層を順に、有機金属気相成長法により前記障壁層を形成する温度と同じ第1の成長温度、窒素ガス雰囲気およびMgを無添加で形成する工程と、
前記第1AlGaN層上に、前記第1のAl組成比より大きい第2のAl組成比を有する第2AlGaN層を、有機金属気相成長法により前記第1の成長温度より高い第2の成長温度、水素ガスを主成分とする雰囲気およびMgを添加して形成する工程と、
前記第2AlGaN層上に、p型窒化物半導体を有する第2クラッド層を形成する工程と、
を具備することを特徴とする窒化物半導体発光素子の製造方法。
forming an active layer having a multiple quantum well structure having a nitride semiconductor containing In on a first clad layer having an n-type nitride semiconductor and having barrier layers and well layers alternately stacked;
A GaN layer having an Mg concentration of 1E18 cm −3 or less and a first Al composition ratio of greater than 0 and 0.01 or less, an Mg concentration of 1E18 cm −3 or less, and a thickness smaller than the thickness of the GaN layer on the active layer Forming a first AlGaN layer in sequence, the first growth temperature same as the temperature for forming the barrier layer by metal organic vapor phase epitaxy, a nitrogen gas atmosphere and Mg without addition;
A second AlGaN layer having a second Al composition ratio higher than the first Al composition ratio is formed on the first AlGaN layer by a second growth temperature higher than the first growth temperature by metal organic chemical vapor deposition. Forming an atmosphere containing hydrogen gas as a main component and Mg; and
Forming a second cladding layer having a p-type nitride semiconductor on the second AlGaN layer;
A method for manufacturing a nitride semiconductor light emitting device, comprising:
JP2012111397A 2012-05-15 2012-05-15 Nitride semiconductor light emitting device and manufacturing method thereof Active JP5607106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111397A JP5607106B2 (en) 2012-05-15 2012-05-15 Nitride semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111397A JP5607106B2 (en) 2012-05-15 2012-05-15 Nitride semiconductor light emitting device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011540650A Division JP5060656B2 (en) 2009-12-21 2009-12-21 Nitride semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012151512A true JP2012151512A (en) 2012-08-09
JP5607106B2 JP5607106B2 (en) 2014-10-15

Family

ID=46793393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111397A Active JP5607106B2 (en) 2012-05-15 2012-05-15 Nitride semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5607106B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043413A (en) * 2013-07-22 2015-03-05 パナソニックIpマネジメント株式会社 Nitride semiconductor light emitting element
JP2015170792A (en) * 2014-03-10 2015-09-28 ソニー株式会社 Semiconductor light-emitting element, manufacturing method of semiconductor light-emitting element and semiconductor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349398A (en) * 1999-06-04 2000-12-15 Nichia Chem Ind Ltd Nitride semiconductor light emitting device and its manufacture
JP2003283057A (en) * 2003-04-02 2003-10-03 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and its fabricating method
JP2004356256A (en) * 2003-05-28 2004-12-16 Sharp Corp Nitride semiconductor light-emitting element and its manufacturing method
JP2006261392A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Gallium nitride system compound semiconductor light emitting diode and illuminating device
JP2009038408A (en) * 2006-09-27 2009-02-19 Mitsubishi Electric Corp Semiconductor light emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349398A (en) * 1999-06-04 2000-12-15 Nichia Chem Ind Ltd Nitride semiconductor light emitting device and its manufacture
JP2003283057A (en) * 2003-04-02 2003-10-03 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and its fabricating method
JP2004356256A (en) * 2003-05-28 2004-12-16 Sharp Corp Nitride semiconductor light-emitting element and its manufacturing method
JP2006261392A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Gallium nitride system compound semiconductor light emitting diode and illuminating device
JP2009038408A (en) * 2006-09-27 2009-02-19 Mitsubishi Electric Corp Semiconductor light emitting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043413A (en) * 2013-07-22 2015-03-05 パナソニックIpマネジメント株式会社 Nitride semiconductor light emitting element
US9209361B2 (en) 2013-07-22 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light-emitting element
JP2015170792A (en) * 2014-03-10 2015-09-28 ソニー株式会社 Semiconductor light-emitting element, manufacturing method of semiconductor light-emitting element and semiconductor element

Also Published As

Publication number Publication date
JP5607106B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5060656B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US9331234B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP6193443B2 (en) Group III nitride semiconductor light emitting device and method of manufacturing the same
TWI659547B (en) Manufacturing method of III-nitride semiconductor light-emitting element
JP5306254B2 (en) Semiconductor light emitting device
US20140084242A1 (en) Group iii nitride semiconductor light-emitting device
JP6001446B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2011023539A (en) Group-iii nitride semiconductor optical element
JP6654731B1 (en) Group III nitride semiconductor light emitting device and method of manufacturing the same
JP2009260203A (en) Nitride semiconductor light emitting element
JP2018074173A (en) Light emitting element
JP6001627B2 (en) Group III nitride semiconductor light emitting device manufacturing method
JP2007227832A (en) Nitride semiconductor element
US8633469B2 (en) Group III nitride semiconductor light-emitting device
JP2012248763A (en) Manufacturing method of group iii nitride semiconductor light-emitting element
JP5607106B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2009224370A (en) Nitride semiconductor device
JP2013055293A (en) Group-iii nitride semiconductor light-emitting element and method of manufacturing the same
KR20090002195A (en) Semiconductor light-emitting device and manufacturing method thereof
JP6071044B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR101903360B1 (en) Light Emitting Device
JP2012256948A (en) Semiconductor light-emitting element
JP2014082396A (en) Nitride semiconductor light-emitting element
US20150236198A1 (en) Group III Nitride Semiconductor Light-Emitting Device And Production Method Therefor
JP2010027708A (en) Nitride semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R151 Written notification of patent or utility model registration

Ref document number: 5607106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250