JP2012150972A - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP2012150972A
JP2012150972A JP2011008381A JP2011008381A JP2012150972A JP 2012150972 A JP2012150972 A JP 2012150972A JP 2011008381 A JP2011008381 A JP 2011008381A JP 2011008381 A JP2011008381 A JP 2011008381A JP 2012150972 A JP2012150972 A JP 2012150972A
Authority
JP
Japan
Prior art keywords
negative electrode
ion battery
lithium ion
current collector
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011008381A
Other languages
Japanese (ja)
Inventor
Chieko Araki
千恵子 荒木
Toshio Abe
登志雄 阿部
Keisuke Fujito
啓輔 藤戸
Tsunenori Yamamoto
恒典 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011008381A priority Critical patent/JP2012150972A/en
Publication of JP2012150972A publication Critical patent/JP2012150972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery which suppresses deterioration during high temperature storage while facilitating electrode winding in manufacture.SOLUTION: The lithium ion battery includes: a positive electrode capable of absorbing/desorbing lithium ions; a negative electrode 3 capable of absorbing/desorbing lithium ions; a separator arranged between the positive electrode and the negative electrode 3; and an electrolyte. A binder of a negative electrode mixture layer 2 contains polyvinylidene fluoride, and the crystallinity of the polyvinylidene fluoride in the negative electrode mixture layer 2 is higher on a collector 1 side than on a separator side. A value of Rcomputed by (formula 1) based on an absorbance (A) at 736 cmand an absorbance (A) at 840 cmobtained by an IR measurement is larger than 1.5 on the collector 1 side, and is equal to or less than 1.5 on the separator side. R=A/A...(formula 1)

Description

本発明は、リチウムイオン電池に関する。   The present invention relates to a lithium ion battery.

リチウムイオン電池が高温保存時に劣化する要因の1つとして、負極合剤層が負極集電体から剥離する現象がある。高温保存時に負極合剤が負極集電体から剥がれる1つの要因は、電解液中でバインダー(結着剤)の分子間に溶媒分子が入り込むため、バインダーが膨潤し、集電体―合剤間の結着が変化することが原因である。   One of the factors that cause deterioration of a lithium ion battery during high temperature storage is a phenomenon in which the negative electrode mixture layer is peeled off from the negative electrode current collector. One factor that causes the negative electrode mixture to peel off from the negative electrode current collector during high-temperature storage is that solvent molecules enter between the binder (binder) molecules in the electrolyte, causing the binder to swell, and between the current collector and the mixture. This is due to the change in binding.

バインダーの膨潤の抑制の1つの対策として、バインダーの結晶性の向上がある。特開2002−313318号公報(特許文献1)には、合剤層に結晶性ポリマーを用いる仕様が記載されている。正極合剤層を2層構造とし、そのうち、外側活物質層は活物質粒子,導電助剤粒子,バインダー粒子および結晶性ポリマー粒子を含有し、内側活物質層は結晶性ポリマー粒子が含有されていないことが開示されている。過充電時の発熱を抑制することができ、熱安定性が高く、高率放電特性に優れることを達成する構成である。活物質層に結晶性ポリマー粒子を用いることで溶媒がポリマー分子間に入り込みにくくなり、ポリマー粒子の膨潤が抑制でき、結着の変化による剥離が抑制できる。   One measure for suppressing the swelling of the binder is to improve the crystallinity of the binder. Japanese Patent Application Laid-Open No. 2002-313318 (Patent Document 1) describes a specification using a crystalline polymer for a mixture layer. The positive electrode mixture layer has a two-layer structure, in which the outer active material layer contains active material particles, conductive auxiliary agent particles, binder particles and crystalline polymer particles, and the inner active material layer contains crystalline polymer particles. There is no disclosure. This configuration can suppress heat generation during overcharge, achieve high thermal stability, and excellent high rate discharge characteristics. By using crystalline polymer particles in the active material layer, it becomes difficult for the solvent to enter between the polymer molecules, swelling of the polymer particles can be suppressed, and peeling due to a change in binding can be suppressed.

特開2002−313318号公報JP 2002-313318 A

しかし、合剤の結晶性が高いと合剤が硬くなり、捲回時に巻きにくくなり、電極が折れやすくなる。このため、電極の結晶化による集電体−合剤間の密着性向上と電極の捲回のしやすさの両立は大きな課題である。   However, if the crystallinity of the mixture is high, the mixture becomes hard, and it is difficult to wind it during winding, and the electrode is easily broken. For this reason, it is a big subject to improve the adhesion between the current collector and the mixture by crystallization of the electrode and the ease of winding the electrode.

そこで本発明の目的は、高温保存時における劣化の抑制と製造時の電極捲回のしやすさを両立するリチウムイオン電池を提供することにある。   Accordingly, an object of the present invention is to provide a lithium ion battery that achieves both suppression of deterioration during high-temperature storage and ease of electrode winding during production.

リチウムイオン電池は、一般的に、リチウムイオンを吸蔵・放出可能な正極と、リチウムイオンを吸蔵・放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、電解液とを有する。本発明の特徴は、負極合剤層の結着剤としてポリフッ化ビニリデンを使用し、負極中の結着剤の結晶化度が、セパレータ側よりも集電体側で高いことにある。具体的には、負極中の集電体側の界面近傍の赤外分光法(infrared spectroscopy:IR)測定より得られる736cm-1の吸光度(A736),840cm-1の吸光度(A840)から(式1)によって計算されるR1の値が、集電体側で1.5より大きく、セパレータ側で1.5以下であることを特徴とする。
1=A763/A840 …(式1)
In general, a lithium ion battery includes a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, a separator disposed between the positive electrode and the negative electrode, and an electrolyte. Have. A feature of the present invention is that polyvinylidene fluoride is used as a binder for the negative electrode mixture layer, and the crystallinity of the binder in the negative electrode is higher on the current collector side than on the separator side. Specifically, from the absorbance (A 736 ) of 736 cm −1 and the absorbance (A 840 ) of 840 cm −1 obtained by infrared spectroscopy (IR) measurement in the vicinity of the current collector-side interface in the negative electrode ( The value of R 1 calculated by Equation 1) is greater than 1.5 on the current collector side and 1.5 or less on the separator side.
R 1 = A 763 / A 840 (Formula 1)

本発明によれば、高温保存時にも長寿命を実現するリチウムイオン電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion battery which implement | achieves a long life also at the time of high temperature storage can be provided.

実施の形態に係るリチウムイオン電池の負極を示す図。The figure which shows the negative electrode of the lithium ion battery which concerns on embodiment. 実施例1に係る捲回型電池の片側断面図を示す図。FIG. 3 is a cross-sectional view showing one side of a wound battery according to Example 1;

環境保護,省エネルギーの観点から、エンジンとモーターとを動力源として併用したハイブリッド自動車が開発,製品化されている。また、将来的には、燃料電池をエンジンの替わりに用いる燃料電池ハイブリッド自動車の開発も盛んになっている。このハイブリッド自動車のエネルギー源として電気を繰返し充電放電可能な二次電池は必須の技術である。   From the viewpoints of environmental protection and energy saving, hybrid vehicles using an engine and a motor as a power source have been developed and commercialized. In the future, fuel cell hybrid vehicles that use fuel cells instead of engines are also actively developed. A secondary battery capable of repeatedly charging and discharging electricity as an energy source of this hybrid vehicle is an essential technology.

なかでも、リチウムイオン電池は、その動作電圧が高く、高い出力を得やすい高エネルギー密度の特徴を有する電池であり、今後、ハイブリッド自動車の電源として益々重要性が増している。電気自動車へのハイブリッド自動車の用途では、高出力,高エネルギー密度および長寿命化が重要な課題である。そこで、負極の電極合剤層中の結着剤の結晶化度を層方向で変化させ、高密着での高温保存時における長寿命化と製造時の電極捲回のしやすさの両立を実現した。   Among them, the lithium ion battery is a battery having a high operating voltage and a high energy density that easily obtains a high output, and is becoming increasingly important as a power source for a hybrid vehicle in the future. High power, high energy density, and long life are important issues in the use of hybrid vehicles for electric vehicles. Therefore, by changing the crystallinity of the binder in the electrode mixture layer of the negative electrode in the layer direction, it is possible to achieve both long life during high temperature storage with high adhesion and ease of winding the electrode during production. did.

本発明のリチウムイオン電池は、上述のような負極を備えていればよく、その他の構成要素や構造については特に制限はない。他の構成として、従来公知のリチウムイオン電池で適用されている各種構成要素、構造を採用することができる。   The lithium ion battery of this invention should just be equipped with the above negative electrodes, and there is no restriction | limiting in particular about another component and structure. As other configurations, various components and structures applied in conventionally known lithium ion batteries can be employed.

リチウムイオン電池は、一般的に、リチウムイオンを吸蔵・放出可能な正極と、リチウムイオンを吸蔵・放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、電解液とを有する。正極は、正極合剤と、正極集電体とを有する。正極合剤層とは、正極活物質,導電剤及び結着剤を含む正極合剤が、正極集電体に塗布されることにより形成される合剤層をいう。負極は、負極合剤と、負極集電体とを有する。負極合剤層とは、負極活物質,導電剤及び結着剤を含む負極合剤が、負極集電体に塗布されることにより形成される合剤層をいう。   In general, a lithium ion battery includes a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, a separator disposed between the positive electrode and the negative electrode, and an electrolyte. Have. The positive electrode has a positive electrode mixture and a positive electrode current collector. The positive electrode mixture layer refers to a mixture layer formed by applying a positive electrode mixture containing a positive electrode active material, a conductive agent, and a binder to a positive electrode current collector. The negative electrode has a negative electrode mixture and a negative electrode current collector. The negative electrode mixture layer refers to a mixture layer formed by applying a negative electrode mixture containing a negative electrode active material, a conductive agent, and a binder to a negative electrode current collector.

図1に、電極の断面図の例を示す。図1に示すように、負極3は、銅箔(負極集電体1)の両面に、負極合剤層2が設けられている構造となっている。負極合剤層は、負極活物質や結着剤の混合物であり、集電体に塗布されたものである。負極合剤層中のバインダーの結晶化度は、銅箔側とセパレータ側とで差があり、銅箔側の前記ポリフッ化ビニリデンの結晶化度が高い構造とした。   In FIG. 1, the example of sectional drawing of an electrode is shown. As shown in FIG. 1, the negative electrode 3 has a structure in which a negative electrode mixture layer 2 is provided on both surfaces of a copper foil (negative electrode current collector 1). The negative electrode mixture layer is a mixture of a negative electrode active material and a binder, and is applied to a current collector. The binder crystallinity in the negative electrode mixture layer was different between the copper foil side and the separator side, and the polyvinylidene fluoride on the copper foil side had a high crystallinity.

活物質同士の結着性より集電体−活物質間の結着性の方が弱く、電池の高温保存時に負極合剤層は負極集電体の界面で剥離してしまう。活物質−活物質間の密着性は現状を維持し、集電体−合剤間の密着性向上を図る必要がある。そのため、集電体近傍のバインダーの結晶性を高くすることとした。一方、合剤層全体、特に合剤層中のセパレータ側のバインダーを結晶化しすぎると、電極の柔軟性を維持することが困難となる。捲回時に巻きにくくなったり、合剤層の割れなどの原因となるため、集電体近傍の結晶化度よりも低くすること、特に現状の結晶性を維持することが好ましい。バインダーとしては、部分的に結晶化する高分子であるためポリフッ化ビニリデンが好ましい。   The binding property between the current collector and the active material is weaker than the binding property between the active materials, and the negative electrode mixture layer is peeled off at the interface of the negative electrode current collector when the battery is stored at a high temperature. It is necessary to maintain the current state of adhesion between the active material and the active material and to improve the adhesion between the current collector and the mixture. Therefore, the crystallinity of the binder near the current collector was increased. On the other hand, if the entire mixture layer, especially the binder on the separator side in the mixture layer is excessively crystallized, it becomes difficult to maintain the flexibility of the electrode. Since it becomes difficult to wind at the time of winding or cracks of the mixture layer, it is preferable to lower the crystallinity in the vicinity of the current collector, particularly to maintain the current crystallinity. The binder is preferably polyvinylidene fluoride because it is a polymer that partially crystallizes.

結晶化度はIR測定により得られる760cm-1の吸光度(A760)及び840cm-1の吸光度(A840)から(式1)によって計算されるR1の値と関連があり、結晶性が高くなるとR1の値も高くなる。
1=A763/A840 …(式1)
The crystallinity is related to the value of R 1 as calculated by absorbance 760 cm -1 obtained by IR measurement (A 760) and absorbance at 840 cm -1 from (A 840) (Equation 1), high crystallinity As a result, the value of R 1 also increases.
R 1 = A 763 / A 840 (Formula 1)

763はα型結晶構造に帰属する吸光度であり、A840はβ型結晶構造に帰属する吸光度である。R1の値はポリフッ化ビニリデンの結晶領域におけるα型結晶構造とβ型結晶構造の割合を示している。 A 763 is the absorbance attributed to the α-type crystal structure, and A 840 is the absorbance attributed to the β-type crystal structure. The value of R 1 indicates the ratio of α-type crystal structure and β-type crystal structure in the crystalline region of polyvinylidene fluoride.

ポリフッ化ビニリデンのα型結晶構造とは、重合体分子中のある1つの主鎖炭素に結合するフッ素原子(または水素原子)に対し、一方の隣接する炭素原子に結合した水素原子(またはフッ素原子)がトランスの位置にあり、なおかつもう一方(逆側)に隣接する炭素原子に結合する水素原子(またはフッ素原子)がゴーシュの位置(60度の位置)にあり、その立体構造の連鎖が2つ以上連続して有することを特徴とするものであって、分子鎖がTG+TG-型でC−F2,C−H2結合の双極子能率が分子鎖に垂直方向と平行方向とのそれぞれ成分を有している。α型結晶構造を有するポリフッ化ビニリデンについてIR分析を行うと、1212cm-1,1183cm-1および763cm-1付近に特徴的なピーク(特性吸収)を有し、粉末X線回折においては 2θ=17.7度,18.3度,19.9度付近に特徴的なピークを有する。
ポリフッ化ビニリデンのβ結晶構造とは、重合体分子中の1つの主査炭素に隣合う炭素原子に結合したフッ素原子と水素原子がそれぞれトランス立体配位(TT型構造)、つまり隣り合う炭素原子に結合するフッ素原子と水素原子が炭素−炭素結合の方向から見て180度の位置に存在することを特徴とする。TT型構造の部分がTT型の主鎖を構成する炭素−炭素結合は平面ジグザグ構造を持ち、C−F2,C−H2結合の双極子能率が分子鎖に対して垂直方向の成分を有している。β結晶構造についてIRを行うと、1274cm-1,1163cm-1および840cm-1付近に特徴的なピーク(特性吸収)を有し、粉末X線回折分析においては2θ=21度付近に特徴的なピークを有する。
The α-type crystal structure of polyvinylidene fluoride is a hydrogen atom (or fluorine atom) bonded to one adjacent carbon atom with respect to a fluorine atom (or hydrogen atom) bonded to one main chain carbon in the polymer molecule. ) Is located at the trans position, and the hydrogen atom (or fluorine atom) bonded to the carbon atom adjacent to the other side (reverse side) is located at the Gauche position (60 degree position). The molecular chain is a TG + TG type, and the dipole efficiency of the C—F 2 and C—H 2 bonds is perpendicular to and parallel to the molecular chain. Each has a component. Doing IR analysis polyvinylidene fluoride having an α-type crystal structure, 1212Cm -1, has a 1183 cm -1 and 763cm -1 near the characteristic peaks (characteristic absorptions), in a powder X-ray diffraction 2 [Theta] = 17 It has characteristic peaks around .7 degrees, 18.3 degrees, and 19.9 degrees.
The β crystal structure of polyvinylidene fluoride is that the fluorine atom and the hydrogen atom bonded to the carbon atom adjacent to one principal carbon in the polymer molecule are each in the trans configuration (TT structure), that is, to the adjacent carbon atom. A fluorine atom and a hydrogen atom to be bonded are present at a position of 180 degrees when viewed from the direction of the carbon-carbon bond. The carbon-carbon bond in which the TT-type structure part constitutes the TT-type main chain has a planar zigzag structure, and the dipole efficiency of the C—F 2 and C—H 2 bonds has a component perpendicular to the molecular chain. Have. Doing IR for β crystal structure, 1274Cm -1, it has a 1163Cm -1 and 840 cm -1 near the characteristic peaks (characteristic absorptions), in a powder X-ray diffraction analysis is a characteristic in the vicinity of degrees 2 [Theta] = 21 Has a peak.

集電体の近傍の合剤で測定されるR1が1.5より大きいと、結着剤の結晶化度が高くなり剥離が抑制される。
尚、R1の値が1.7以上であるとより望ましい。結晶性がより向上し、70℃の環境下で電極を保存しても剥離がおこらない。
If R 1 measured with the mixture in the vicinity of the current collector is greater than 1.5, the crystallinity of the binder becomes high and peeling is suppressed.
It is more preferable that the value of R 1 is 1.7 or more. The crystallinity is further improved, and peeling does not occur even when the electrode is stored in an environment of 70 ° C.

一方、セパレータ側の表面近傍で測定される合剤の結晶化度は、IR測定により得られる760cm-1の吸光度(A760)及び840cm-1の吸光度(A840)から(式1)によって計算されるR1の値が1.5以下である。この範囲であれば、電極を捲回した際の充分な柔軟性を維持することが可能となる。その結果、高温保存時における長期間の高密着性と、捲回時の巻きやすさの両立を実現しうる。また、高温保存時における負極集電体と負極合剤層の密着性が向上により、電池の長寿命化が達成される。 On the other hand, the crystallinity of the mixture to be measured near the surface of the separator side is calculated by absorbance 760 cm -1 obtained by IR measurement (A 760) and absorbance at 840 cm -1 from (A 840) (Equation 1) The value of R 1 is 1.5 or less. Within this range, it is possible to maintain sufficient flexibility when the electrode is wound. As a result, it is possible to achieve both long-term high adhesion during high-temperature storage and ease of winding during winding. In addition, the battery life can be extended by improving the adhesion between the negative electrode current collector and the negative electrode mixture layer during high-temperature storage.

ポリフッ化ビニリデンは、部分的に結晶化する高分子であり、熱処理により結晶の比率が高くなる。負極合剤層の集電体近傍の温度を高く維持することにより結晶化度を高めることが可能であり、一方セパレータ側(表面側)の温度を低くし、結晶化度を現状の状態とすることができる。   Polyvinylidene fluoride is a polymer that is partially crystallized, and the ratio of crystals increases by heat treatment. It is possible to increase the crystallinity by maintaining a high temperature in the vicinity of the current collector of the negative electrode mixture layer, while lowering the temperature on the separator side (surface side) to bring the crystallinity to the current state. be able to.

例えば、負極集電体の少なくとも一方の面上から銅箔を熱し、銅箔を熱した面と逆の面上に負極合剤層形成用の負極合剤含有組成物を塗布する。塗布する際、塗布した面に送風をあて、電極表面温度が120℃以下になるのが望ましい。その後、60〜150℃で乾燥し、その後プレスすることで厚みと密度を調整して、負極合剤層を形成する。   For example, the copper foil is heated from at least one surface of the negative electrode current collector, and the negative electrode mixture-containing composition for forming the negative electrode mixture layer is applied to the surface opposite to the surface heated from the copper foil. When applying, it is desirable that air is blown on the applied surface so that the electrode surface temperature is 120 ° C. or lower. Then, it dries at 60-150 degreeC, adjusts thickness and density by pressing after that, and forms a negative mix layer.

さらに、その他のリチウムイオン電池の構成について説明する。電極合剤は、溶媒を加えたスラリー上で集電体上に塗布される。スラリーを形成するための溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド,ジメチルスルフォキシド,ヘキサメチルフォスフォアミド,ジオキサン,テトラヒドロフラン,テトラメチルウレア,トリエチルフォスフェイト,トリメチルフォスフェイト等を用いることができる。特に、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどの含窒素系有機溶媒はバインダー樹脂の溶解性が高く好ましい。また、これら溶媒は単独でも混合して用いても良い。   Further, the configuration of other lithium ion batteries will be described. The electrode mixture is applied onto a current collector on a slurry to which a solvent is added. Solvents for forming the slurry include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, and tetramethylurea. , Triethyl phosphate, trimethyl phosphate, and the like can be used. In particular, nitrogen-containing organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide are preferable because of high solubility of the binder resin. These solvents may be used alone or in combination.

正極は、正極活物質として、LiMnxM1yM2z2(式中、M1がCo,Niから選ばれる少なくとも1種、M2がCo,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種、x+y+z=1,0.2≦x≦0.6,0.2≦y≦0.4,0.05≦z≦0.4)で表されるリチウム複合酸化物を含むものが好ましい。 The positive electrode is LiMn x M1 y M2 z O 2 (wherein, M1 is selected from Co, Ni, M2 is selected from Co, Ni, Al, B, Fe, Mg, Cr as a positive electrode active material) At least one, x + y + z = 1, 0.2 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.4, 0.05 ≦ z ≦ 0.4) containing a lithium composite oxide preferable.

正極6は、正極活物質及び結着剤を含む正極合剤層5がアルミニウム箔などの集電体4上に塗布されることにより形成される。また、電子抵抗の低減のため更に正極合剤層に導電剤を加えても良い。   The positive electrode 6 is formed by applying a positive electrode mixture layer 5 containing a positive electrode active material and a binder onto a current collector 4 such as an aluminum foil. Moreover, you may add a electrically conductive agent to the positive mix layer for reduction of electronic resistance.

正極活物質は、組成式LiαMnxM1yM2z2(式中、M1は、Co,Niから選ばれる少なくとも1種、M2は、Co,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種であり、x+y+z=1,0<α<1.2,0.2≦x≦0.6,0.2≦y≦0.4,0.05≦z≦0.4)で表されるリチウム複合酸化物が好ましい。また、その中でも、M1がNi又はCoであって、M2がCo又はNiであることがより好ましい。LiMn1/3Ni1/3Co1/32であればさらに好ましい。組成中、Niを多くすると容量が大きく取れ、Coを多くすると低温での出力が向上でき、Mnを多くすると材料コストを抑制できる。また、添加元素は、サイクル特性を安定させるのに効果がある。他に、一般式LiMxPO4(M:Fe又はMn、0.01≦X≦0.4)やLiMn1-xxPO4(M:Mn以外の2価のカチオン、0.01≦X≦0.4)である空間群Pmnbの対称性を有する斜方晶のリン酸化合物でも良い。特に、LiMn1/3Ni1/3Co1/32は、低温特性とサイクル安定性とが高く、ハイブリット自動車(HEV)用リチウム電池材料として好適である。バインダーは、正極を構成する材料と正極用集電体を密着させるものであればよく、例えば、フッ化ビニリデン,四フッ化エチレン,アクリロニトリル,エチレンオキシドなどの単独重合体又は共重合体,スチレン−ブタジエンゴムなどを挙げることができる。導電剤は、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。 The positive electrode active material has a composition formula Li α Mn x M 1 y M 2 z O 2 (wherein M 1 is at least one selected from Co and Ni, and M 2 is Co, Ni, Al, B, Fe, Mg, Cr) X + y + z = 1, 0 <α <1.2, 0.2 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.4, 0.05 ≦ z ≦ 0.4. ) Is preferable. Among these, it is more preferable that M1 is Ni or Co and M2 is Co or Ni. LiMn 1/3 Ni 1/3 Co 1/3 O 2 is more preferable. In the composition, if Ni is increased, the capacity can be increased, if Co is increased, the output at a low temperature can be improved, and if Mn is increased, the material cost can be suppressed. In addition, the additive element is effective in stabilizing the cycle characteristics. In addition, the general formula LiM x PO 4 (M: Fe or Mn, 0.01 ≦ X ≦ 0.4) and LiMn 1-x M x PO 4 (M: divalent cation other than Mn, 0.01 ≦ An orthorhombic phosphate compound having symmetry of the space group Pmnb where X ≦ 0.4) may be used. In particular, LiMn 1/3 Ni 1/3 Co 1/3 O 2 has high low-temperature characteristics and high cycle stability, and is suitable as a lithium battery material for hybrid vehicles (HEV). The binder may be any material as long as the material constituting the positive electrode and the current collector for the positive electrode are in close contact. For example, a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene-butadiene, or the like. Examples include rubber. The conductive agent is, for example, a carbon material such as carbon black, graphite, carbon fiber, and metal carbide, and each may be used alone or in combination.

負極集電体としては、ステンレス鋼,銅,ニッケル,チタン等の金属箔あるいは金属メッシュ等を用いることができる。特に、銅が好ましく、耐熱性の高いジルコニアや亜鉛含有銅も好ましい。   As the negative electrode current collector, a metal foil such as stainless steel, copper, nickel, titanium, or a metal mesh can be used. In particular, copper is preferable, and zirconia and zinc-containing copper having high heat resistance are also preferable.

負極活物質が、炭素質材料,IV属元素を含む酸化物,IV属元素を含む窒化物の少なくとも1種からなるものが好ましい。   The negative electrode active material is preferably composed of at least one of a carbonaceous material, an oxide containing a group IV element, and a nitride containing a group IV element.

負極活物質としては、天然黒鉛,天然黒鉛に乾式のCVD(Chemical Vapor Dposition)法や湿式のスプレイ法で形成される被膜を形成した複合炭素質材料,エポキシやフェノール等の樹脂原料若しくは石油や石炭から得られるピッチ系材料を原料として焼成して造られる人造黒鉛,非晶質炭素材料などの炭素質材料、又は、リチウムと化合物を形成することでリチウムを吸蔵放出できるリチウム金属,リチウムと化合物を形成し、結晶間隙に挿入されることでリチウムを吸蔵放出できる珪素,ゲルマニウム,錫など第四族元素の酸化物若しくは窒化物を用いることができる。特に、炭素質材料は、導電性が高く、低温特性,サイクル安定性の面から優れた材料である。炭素質材料の中では、炭素網面層間(d002)の広い材料が急速充放電や低温特性に優れ、好適である。しかし、d002が広い材料は、充電の初期での容量低下や充放電効率が低いことがあるので、d002は0.39nm以下が好ましく、このような炭素質材料を、擬似異方性炭素と称する場合がある。更に、電極を構成するには黒鉛質,非晶質,活性炭などの導電性の高い炭素質材料を混合しても良い。または、黒鉛質材料として、以下(1)〜(3)に示す特徴を有する材料を用いても良い。
(1)ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強度(ID)とラマン分光スペクトルで測定される1580〜1620cm-1の範囲にあるピーク強度(IG)との強度比であるR値(ID/IG)が、0.2以上0.4以下
(2)ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピークの半値幅Δ値が、40cm-1以上100cm-1以下
(3)X線回折における(110)面のピーク強度(I(110))と(004)面のピーク強度(I(004))との強度比X値(I(110)/I(004))が0.1以上0.45以下。
Negative electrode active materials include natural graphite, composite carbonaceous materials with a film formed by dry CVD (Chemical Vapor Dposition) method and wet spray method on natural graphite, resin raw materials such as epoxy and phenol, petroleum and coal Carbonaceous materials such as artificial graphite and amorphous carbon materials produced by firing from pitch-based materials obtained from the above, or lithium metal that can occlude and release lithium by forming a compound with lithium, lithium and a compound An oxide or nitride of a Group 4 element such as silicon, germanium, or tin that can be formed and inserted into a crystal gap to occlude and release lithium can be used. In particular, the carbonaceous material is a material having high conductivity, and excellent in terms of low temperature characteristics and cycle stability. Among the carbonaceous materials, a material having a wide carbon network surface layer (d 002 ) is excellent in rapid charge / discharge and low temperature characteristics, and is suitable. However, since a material with a wide d 002 may have a reduced capacity and a low charge / discharge efficiency at the initial stage of charging, d 002 is preferably 0.39 nm or less. May be called. Furthermore, a carbonaceous material having high conductivity such as graphite, amorphous, activated carbon or the like may be mixed to constitute the electrode. Alternatively, a material having the characteristics shown in (1) to (3) below may be used as the graphite material.
(1) peak in the range of 1300~1400Cm -1 measured by Raman spectrum intensity (I D) and the peak intensity in the range of 1580~1620Cm -1 as measured by Raman spectroscopy spectra (I G) and the The R value (I D / I G ), which is an intensity ratio, is 0.2 or more and 0.4 or less. (2) The half-value width Δ value of a peak in the range of 1300 to 1400 cm −1 measured by a Raman spectroscopic spectrum is 40 cm -1 or more 100 cm -1 or less (3) the intensity ratio X values of the peak intensity of the (110) plane in X-ray diffraction (I (110)) and (004) plane peak intensity (I (004)) (I (110) / I (004) ) is 0.1 or more and 0.45 or less.

なお、負極合剤層には、電子抵抗の低減のため更に導電剤を加えても良い。前記導電剤は、例えば、カーボンブラック,グラファイト,カーボンファイバー及び金属炭化物などのカーボン材料であり、それぞれ単独でも混合して用いても良い。   Note that a conductive agent may be further added to the negative electrode mixture layer in order to reduce electronic resistance. The conductive agent is, for example, a carbon material such as carbon black, graphite, carbon fiber, and metal carbide, and each may be used alone or in combination.

電解液に用いる溶媒としては、低温特性,負極電極上の被膜形成の観点からエチレンカーボネート(EC),ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC),ビニレンカーボネート(VC)を含むものが好ましい。   As the solvent used in the electrolytic solution, those containing ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC) are preferable from the viewpoint of low temperature characteristics and film formation on the negative electrode.

電解液に用いるリチウム塩としては、特に限定はないが、無機リチウム塩では、LiPF6,LiBF4,LiClO4,LiI,LiCl,LiBr等、また、有機リチウム塩では、LiB[OCOCF34,LiB[OCOCF2CF34,LiPF4(CF32,LiN(SO2CF32,LiN(SO2CF2CF32等を用いることができる。特に、民生用電池で多く用いられているLiPF6は、品質の安定性から好適な材料である。また、LiB[OCOCF34は、解離性,溶解性が良好で、低い濃度で高い導電率を示すので有効な材料である。 The lithium salt used in the electrolytic solution is not particularly limited, but for inorganic lithium salts, LiPF 6 , LiBF 4 , LiClO 4 , LiI, LiCl, LiBr, etc., and for organic lithium salts, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 or the like can be used. In particular, LiPF 6 frequently used in consumer batteries is a suitable material because of the stability of quality. LiB [OCOCF 3 ] 4 is an effective material because it has good dissociation and solubility and shows high conductivity at a low concentration.

リチウムイオン電池に使用するセパレータとしては、例えば、ポリエチレン,ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。電池の高容量化の観点からは、セパレータの厚みは、20μm以下とすることが好ましく、18μm以下とすることがより好ましい。このような厚みのセパレータを用いることで、電池の体積あたりの容量を大きくすることができる。しかし、セパレータを薄くしすぎると、取り扱い性が損なわれたり、正負極間の隔離が不十分となって短絡が生じ易くなったりするため、厚みの下限は10μmであることが好ましい。   Examples of the separator used in the lithium ion battery include a microporous film made of polyolefin such as polyethylene and polypropylene, and a nonwoven fabric. From the viewpoint of increasing the capacity of the battery, the thickness of the separator is preferably 20 μm or less, and more preferably 18 μm or less. By using a separator having such a thickness, the capacity per volume of the battery can be increased. However, if the separator is made too thin, the handleability is impaired, or the separation between the positive and negative electrodes is insufficient and short-circuiting is likely to occur, so the lower limit of the thickness is preferably 10 μm.

本発明のリチウムイオン電池は、高出力が可能であるとともに長寿命であり、ハイブリッド自動車の電源,自動車の電動制御系の電源やバックアップ電源として広く利用可能であり、鉄道,電動工具,フォークリフトなどの産業用機器の電源としても好適である。   The lithium ion battery of the present invention has high output and long life, and can be widely used as a power source for hybrid vehicles, a power source for electric control systems of vehicles, and a backup power source, such as railways, power tools, forklifts, etc. It is also suitable as a power source for industrial equipment.

上述の通り、負極合剤層の結着剤としてポリフッ化ビニリデンを使用し、結着剤の結晶化度が、セパレータ側よりも集電体側で高いこと、具体的には、集電体側の合剤層のIR測定より得られる736cm-1の吸光度(A736),840cm-1の吸光度(A840)から(式1)によって計算されるR1の値が1.5より大きく、前記セパレータ側の合剤層のIR測定より得られるR1の値が1.5以下である負極を用い、リチウムイオン電池を構成することが好ましい。 As described above, polyvinylidene fluoride is used as the binder for the negative electrode mixture layer, and the crystallinity of the binder is higher on the current collector side than on the separator side. The value of R 1 calculated by (Equation 1) from the absorbance (A 736 ) of 736 cm −1 and the absorbance (A 840 ) of 840 cm −1 obtained from the IR measurement of the agent layer is greater than 1.5, and the separator side It is preferable to constitute a lithium ion battery using a negative electrode having an R 1 value of 1.5 or less obtained from IR measurement of the mixture layer.

1=A736/A840 …(式1)
以下、本発明を実施するための最良の形態を具体的な実施例によって説明する。
R 1 = A 736 / A 840 (Formula 1)
Hereinafter, the best mode for carrying out the present invention will be described with reference to specific examples.

〔実施例〕
(捲回型電池の作製)
〔Example〕
(Production of wound battery)

図2に本実施例の捲回型電池100の片側断面図を示す。以下に示す方法で、本実施例の捲回型電池を作製した。   FIG. 2 shows a cross-sectional side view of the wound battery 100 of this example. The wound type battery of this example was manufactured by the method described below.

正極活物質としてLiMn1/3Ni1/3Co1/32を用い、電子導電性材料としてカーボンブラック(CB1)と黒鉛(GF2)を用い、バインダーとしてポリフッ化ビニリデン(PVDF)を用いて、乾燥時の固形分重量を、LiMn1/3Ni1/3Co1/32:CB1:GF2:PVDF=86:9:2:3の比となるように、溶剤としてNMP(N−メチルピロリドン)を用いて正極材ペーストを調製した。この正極材ペーストを、正極集電体4となるアルミ箔に塗布し、80℃で乾燥、加圧ローラでプレス、120℃で乾燥して正極合剤層5を正極集電体4に形成した。 LiMn 1/3 Ni 1/3 Co 1/3 O 2 is used as the positive electrode active material, carbon black (CB1) and graphite (GF2) are used as the electronic conductive material, and polyvinylidene fluoride (PVDF) is used as the binder. The solid weight at the time of drying was set to NMP (N-- as a solvent so that the ratio of LiMn 1/3 Ni 1/3 Co 1/3 O 2 : CB1: GF2: PVDF = 86: 9: 2: 3 A positive electrode material paste was prepared using methylpyrrolidone). This positive electrode material paste was applied to an aluminum foil to be the positive electrode current collector 4, dried at 80 ° C., pressed with a pressure roller, and dried at 120 ° C. to form the positive electrode mixture layer 5 on the positive electrode current collector 4. .

次に、負極活物質として非晶質炭素である擬似異方性炭素を用い、導電材としてカーボンブラック(CB2)を用い、バインダーとしてPVDFを用いて、乾燥時の固形分重量を、擬似異方性炭素:CB2:PVDF=90:5:5の比となるように、溶剤としてNMPを用いて、負極合剤層のスラリーを調製した。この負極材スラリーを、負極集電体1となる銅箔に塗布した。塗布の際、負極材スラリーの銅箔側とセパレータ側で温度差がつくよう、銅箔の温度が130℃になるように下側から温め、上側より送風をスラリー表面にあてることにより120℃以下になるように、負極材スラリーの温度調整をした。その後、80℃にて乾燥、プレスし、120℃で乾燥して負極合剤層2を負極集電体1に形成した。   Next, pseudo-anisotropic carbon, which is amorphous carbon, is used as the negative electrode active material, carbon black (CB2) is used as the conductive material, and PVDF is used as the binder. A slurry of the negative electrode mixture layer was prepared using NMP as a solvent so as to have a ratio of carbon: CB2: PVDF = 90: 5: 5. This negative electrode material slurry was applied to a copper foil to be the negative electrode current collector 1. During coating, the temperature of the copper foil is increased from the lower side to 130 ° C so that there is a temperature difference between the copper foil side and the separator side of the negative electrode material slurry. Thus, the temperature of the negative electrode material slurry was adjusted. Then, it dried and pressed at 80 degreeC, it dried at 120 degreeC, and the negative mix layer 2 was formed in the negative electrode collector 1. FIG.

電解液として、溶媒を容積組成比EC:VC:DMC:EMC=19.8:0.2:40:40で混合したものを用い、リチウム塩としてLiPF6を1M溶解して電解液を作製した。   As an electrolytic solution, a solvent was mixed at a volume composition ratio EC: VC: DMC: EMC = 19.8: 0.2: 40: 40, and 1M LiPF6 was dissolved as a lithium salt to prepare an electrolytic solution.

作製した電極間にセパレータ7を挟み込み、捲回群を形成し、負極電池缶13に挿入した。そして、負極の集電をとるためにニッケル製の負極リード9の一端を負極集電体1に溶接し、他端を負極電池缶13に溶接した。また、正極の集電をとるためにアルミニウム製の正極リード8の一端を正極集電体4に溶接し、他端を電流遮断溶接し、さらにこの電流遮断弁を介して正極電池蓋12と電気的に接続した。さらに電解液を注液し、かしめることで捲回型電池を作製した。なお、図2において、10は正極絶縁材、11は負極絶縁材、14はガスケットである。   The separator 7 was sandwiched between the produced electrodes to form a wound group and inserted into the negative battery can 13. Then, one end of a nickel negative electrode lead 9 was welded to the negative electrode current collector 1 and the other end was welded to the negative electrode battery can 13 in order to collect the negative electrode current. In addition, in order to collect the positive electrode, one end of the positive electrode lead 8 made of aluminum is welded to the positive electrode current collector 4, the other end is subjected to current interruption welding, and further, the positive electrode battery lid 12 is electrically connected to the positive electrode via the current interruption valve. Connected. Further, a wound battery was manufactured by pouring and caulking the electrolyte. In FIG. 2, 10 is a positive electrode insulating material, 11 is a negative electrode insulating material, and 14 is a gasket.

負極合剤層の負極活物質として黒鉛を用いた以外は実施例1と同様の方法で、実施例2の捲回型電池を作製した。   A wound battery of Example 2 was produced in the same manner as in Example 1 except that graphite was used as the negative electrode active material of the negative electrode mixture layer.

銅箔の温度が150℃になるように下側から温め、上側より送風をスラリー表面にあてることにより120℃以下になるように、負極材スラリーの温度調整を行った以外は実施例1と同様の方法で、実施例3の捲回型電池を作製した。   The same as in Example 1 except that the temperature of the copper foil was 150 ° C. from the lower side, and the temperature of the negative electrode material slurry was adjusted to 120 ° C. or less by blowing air on the slurry surface from the upper side. Thus, a wound battery of Example 3 was produced.

負極合剤層の負極活物質として黒鉛を用い、かつ、銅箔の温度が150℃になるように下側から温め、上側より送風をスラリー表面にあてることにより120℃以下になるように、負極材スラリーの温度調整を行った以外は実施例1と同様の方法で、実施例4の捲回型電池を作製した。   The graphite is used as the negative electrode active material of the negative electrode mixture layer and is heated from the lower side so that the temperature of the copper foil is 150 ° C. A wound battery of Example 4 was produced in the same manner as in Example 1 except that the temperature of the material slurry was adjusted.

〔比較例1〕
負極材スラリーを、銅箔側/セパレータ側で温度差を設けるような調整を行わない状態で負極集電体上に塗布し、80℃で乾燥し、プレスし、120℃で乾燥して負極合剤層を負極集電体に形成した以外は実施例1と同様の方法で、比較例1の捲回型電池を作製した。
[Comparative Example 1]
The negative electrode material slurry was applied on the negative electrode current collector without adjustment to provide a temperature difference on the copper foil side / separator side, dried at 80 ° C., pressed, dried at 120 ° C. A wound battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the agent layer was formed on the negative electrode current collector.

〔比較例2〕
負極材スラリーを、銅箔側/セパレータ側で温度差を設けるような調整を行わない状態で負極集電体上に塗布し、80℃で乾燥し、プレスし、150℃で乾燥して負極合剤層を負極集電体に形成した以外は実施例1と同様の方法で、比較例2の捲回型電池を作製した。
[Comparative Example 2]
The negative electrode material slurry is applied on the negative electrode current collector without adjustment to provide a temperature difference on the copper foil side / separator side, dried at 80 ° C., pressed, dried at 150 ° C. A wound battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the agent layer was formed on the negative electrode current collector.

〔比較例3〕
負極材スラリーを、負極集電体1となる銅箔に、銅箔を120℃に塗布面とは逆から温めながら塗布した。その際、上側から送風をあて、塗布表面の温度は150℃になるように、負極材スラリーの温度調整を行った。その後、120℃で乾燥、プレスし、負極合剤層2を負極集電体1に形成した。それ以外は実施例1と同様の方法で、比較例3の捲回型電池を作製した。
[Comparative Example 3]
The negative electrode material slurry was applied to a copper foil to be the negative electrode current collector 1 while heating the copper foil to 120 ° C. from the opposite side of the application surface. At that time, air was blown from above, and the temperature of the negative electrode material slurry was adjusted so that the temperature of the coating surface was 150 ° C. Then, it dried and pressed at 120 degreeC and the negative mix layer 2 was formed in the negative electrode collector 1. FIG. Otherwise, a wound battery of Comparative Example 3 was produced in the same manner as in Example 1.

上記実施例1〜4,比較例1〜3の電池について、以下の試験を行った。   The batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were subjected to the following tests.

(折り曲げ試験)
負極の柔軟性を評価するため、負極を30mm×10mmに切り抜いたものを用意し、負極を180°折り曲げ、その後、0°まで広げた。0°まで広げた際、割れたり,ひび割れた場合は×、割れない場合は○とした。結果を表1に記載した。
(Bending test)
In order to evaluate the flexibility of the negative electrode, a negative electrode cut out to 30 mm × 10 mm was prepared, the negative electrode was bent 180 °, and then expanded to 0 °. When it was expanded to 0 °, it was marked as x when it was cracked or cracked, and marked as ◯ when it was not cracked. The results are shown in Table 1.

(残存率評価)
得られた負極の残存率を評価するため、負極を直径15mmφに打ち抜いたものを15枚用意し、ポリエチレン容器に電解液と負極を入れ、70℃で7日間保存した。保存後、集電体と合剤が密着した割合である残存率を調査した。残存率は(式2)で示されるように電解液に保存した合剤の数と剥がれていない合剤の数の割合と定義する。測定結果を表1に記載した。
残存率(%)=電解液浸漬後の負極合剤面積/負極合剤面積 …(式2)
(Remaining rate evaluation)
In order to evaluate the residual ratio of the obtained negative electrode, 15 negative electrodes punched out to a diameter of 15 mmφ were prepared, and the electrolyte and the negative electrode were put in a polyethylene container and stored at 70 ° C. for 7 days. After storage, the remaining rate, which is the ratio of the current collector and the mixture adhering to each other, was investigated. The residual rate is defined as the ratio of the number of the mixture stored in the electrolyte and the number of the mixture not removed as shown in (Formula 2). The measurement results are shown in Table 1.
Residual rate (%) = area of negative electrode mixture after immersion in electrolyte / area of negative electrode mixture (Formula 2)

(結晶化度評価)
得られた負極のポリフッ化ビニリデンのα結晶構造とβ結晶構造の比率を評価するため、赤外線分光光度計を用い、763cm-1の吸光度(A763),840cm-1の吸光度(A840)を測定した。(式1)で示されるようなR1を算出した。測定結果を表1に記載した。
(Evaluation of crystallinity)
To evaluate the proportion of α-crystal structure of polyvinylidene fluoride obtained negative electrode and β crystal structure, using an infrared spectrophotometer, the absorbance of 763cm -1 (A 763), the absorbance of 840 cm -1 to (A 840) It was measured. R 1 as shown in (Formula 1) was calculated. The measurement results are shown in Table 1.

(電池特性評価)
<70℃保存時の電池容量評価方法>
電池を定電流0.6Aで4.1Vまで充電し、定電圧4.1Vで電流値が20mAになるまで充電し、30分の運転休止の後、0.6Aで2.7Vまで放電した。この操作を3回繰返した。次に、電池を4.1Vまで定電流0.6Aで充電し、30分放置し、70℃恒温槽に電池を入れ、30日放置後の電圧を測定した。測定結果を表1に記載した。
(Battery characteristics evaluation)
<Method for evaluating battery capacity during storage at 70 ° C.>
The battery was charged at a constant current of 0.6 A to 4.1 V, charged at a constant voltage of 4.1 V until the current value reached 20 mA, and after 30 minutes of operation stop, discharged to 2.6 V at 0.6 A. This operation was repeated three times. Next, the battery was charged at a constant current of 0.6 A up to 4.1 V, allowed to stand for 30 minutes, placed in a 70 ° C. constant temperature bath, and the voltage after standing for 30 days was measured. The measurement results are shown in Table 1.

Figure 2012150972
Figure 2012150972

1 負極集電体
2 負極合剤層
3 負極
4 正極集電体
5 正極合剤層
6 正極
7 セパレータ
8 正極リード
9 負極リード
10 正極絶縁材
11 負極絶縁材
12 正極電池蓋
13 負極電池缶
14 ガスケット
100 リチウムイオン電池
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode mixture layer 3 Negative electrode 4 Positive electrode collector 5 Positive electrode mixture layer 6 Positive electrode 7 Separator 8 Positive electrode lead 9 Negative electrode lead 10 Positive electrode insulating material 11 Negative electrode insulating material 12 Positive electrode battery lid 13 Negative electrode battery can 14 Gasket 100 Lithium ion battery

Claims (6)

リチウムイオンを吸蔵・放出可能な正極と、リチウムイオンを吸蔵・放出可能な負極と、前記正極と前記負極との間に配置されたセパレータと、電解液とを有するリチウムイオン電池において、
前記負極は、集電体と、前記集電体上に設けられた負極合剤層を有し、
前記負極合剤層は少なくとも負極活物質と結着剤とを有し、
前記結着剤の結晶化度は、セパレータ側と比して集電体側で高いことを特徴とするリチウムイオン電池。
In a lithium ion battery having a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution,
The negative electrode has a current collector and a negative electrode mixture layer provided on the current collector,
The negative electrode mixture layer has at least a negative electrode active material and a binder,
The lithium ion battery, wherein the binder has a higher crystallinity on the current collector side than on the separator side.
請求項1に記載のリチウムイオン電池において、
前記結着剤はポリフッ化ビニリデンを含み、前記ポリフッ化ビニリデンの赤外分光法測定より得られる763cm-1の吸光度(A763),840cm-1の吸光度(A840)から(式1)によって計算されるR1の値は、セパレータ側の表面で1.5以下であり、集電体と負極合剤層との界面で1.5より大きいことを特徴とするリチウムイオン電池。
1=A763/A840 …(式1)
The lithium ion battery according to claim 1,
The binder contains polyvinylidene fluoride, and is calculated by (Equation 1) from the absorbance (A 763 ) of 763 cm −1 and the absorbance (A 840 ) of 840 cm −1 obtained by infrared spectroscopy measurement of the polyvinylidene fluoride. The lithium ion battery is characterized in that the value of R 1 is 1.5 or less on the surface on the separator side and greater than 1.5 at the interface between the current collector and the negative electrode mixture layer.
R 1 = A 763 / A 840 (Formula 1)
請求項1に記載のリチウムイオン電池において、
前記集電体は銅箔であることを特徴とするリチウムイオン電池。
The lithium ion battery according to claim 1,
The lithium ion battery, wherein the current collector is a copper foil.
請求項1に記載のリチウムイオン電池において、
前記正極が、LiMnxM1yM2z2(式中、M1がCo,Niから選ばれる少なくとも1種、M2がCo,Ni,Al,B,Fe,Mg,Crから選ばれる少なくとも1種、x+y+z=1,0.2≦x≦0.6,0.2≦y≦0.4,0.05≦z≦0.4)で表されるリチウム複合酸化物を含むことを特徴とするリチウムイオン電池。
The lithium ion battery according to claim 1,
The positive electrode is, in LiMn x M1 y M2 z O 2 ( wherein, at least one M1 is Co, chosen from Ni, at least one M2 is Co, Ni, Al, B, Fe, Mg, selected from Cr, x + y + z = 1, 0.2 ≦ x ≦ 0.6, 0.2 ≦ y ≦ 0.4, 0.05 ≦ z ≦ 0.4) Ion battery.
請求項1に記載のリチウムイオン電池において、
前記負極が、炭素質材料,IV属元素を含む酸化物,IV属元素を含む窒化物の少なくとも1種からなることを特徴とするリチウムイオン電池。
The lithium ion battery according to claim 1,
A lithium ion battery, wherein the negative electrode is made of at least one of a carbonaceous material, an oxide containing a group IV element, and a nitride containing a group IV element.
請求項1に記載のリチウムイオン電池において、
前記電解液は、エチレンカーボネート(EC),ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC),ビニレンカーボネート(VC)を含むことを特徴とするリチウムイオン電池。
The lithium ion battery according to claim 1,
The lithium ion battery, wherein the electrolytic solution includes ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC).
JP2011008381A 2011-01-19 2011-01-19 Lithium ion battery Pending JP2012150972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008381A JP2012150972A (en) 2011-01-19 2011-01-19 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008381A JP2012150972A (en) 2011-01-19 2011-01-19 Lithium ion battery

Publications (1)

Publication Number Publication Date
JP2012150972A true JP2012150972A (en) 2012-08-09

Family

ID=46793067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008381A Pending JP2012150972A (en) 2011-01-19 2011-01-19 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP2012150972A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045707A1 (en) * 2013-09-24 2015-04-02 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP6123006B1 (en) * 2016-03-11 2017-04-26 住友化学株式会社 Porous layer
JP2017226117A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2017226121A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2017228404A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2017226122A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2018006321A (en) * 2016-03-11 2018-01-11 住友化学株式会社 Porous layer
WO2019074028A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Electrode for nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11769901B2 (en) 2019-07-03 2023-09-26 Samsung Sdi Co., Ltd. Separator for rechargeable battery, method of preparing the same and rechargeable lithium battery including the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045707A1 (en) * 2013-09-24 2015-04-02 ソニー株式会社 Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP2018006321A (en) * 2016-03-11 2018-01-11 住友化学株式会社 Porous layer
JP6123006B1 (en) * 2016-03-11 2017-04-26 住友化学株式会社 Porous layer
JP2017168419A (en) * 2016-03-11 2017-09-21 住友化学株式会社 Porous layer
US9876210B2 (en) 2016-03-11 2018-01-23 Sumitomo Chemical Company, Limited Porous layer
JP2017226117A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2017226122A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
CN107528036A (en) * 2016-06-21 2017-12-29 住友化学株式会社 Layered product
CN107521197A (en) * 2016-06-21 2017-12-29 住友化学株式会社 Layered product
JP2017228404A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP2017226121A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Laminate
JP7074419B2 (en) 2016-06-21 2022-05-24 住友化学株式会社 Laminate
CN107528036B (en) * 2016-06-21 2021-08-10 住友化学株式会社 Laminated body
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP2019071224A (en) * 2017-10-10 2019-05-09 日産自動車株式会社 Electrode for nonaqueous electrolyte secondary battery
JP7029921B2 (en) 2017-10-10 2022-03-04 日産自動車株式会社 Electrodes for non-aqueous electrolyte secondary batteries
WO2019074028A1 (en) * 2017-10-10 2019-04-18 日産自動車株式会社 Electrode for nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11769901B2 (en) 2019-07-03 2023-09-26 Samsung Sdi Co., Ltd. Separator for rechargeable battery, method of preparing the same and rechargeable lithium battery including the same

Similar Documents

Publication Publication Date Title
JP2012150972A (en) Lithium ion battery
JP5779639B2 (en) Lithium secondary battery
KR102130853B1 (en) Battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system
JP6403278B2 (en) Lithium ion secondary battery
TWI637550B (en) Negative electrode material for non-aqueous electrolyte battery and method for producing negative electrode active material particles
US7767348B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
US20140178732A1 (en) Non-aqueous electrolyte secondary battery
JPWO2018179817A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101944443B1 (en) Non-aqueous electrolyte secondary battery, electrode body used therefor, and method of manufacturing the electrode body
EP3264501A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6466161B2 (en) Anode material for lithium ion batteries
WO2013153619A1 (en) Nonaqueous electrolyte secondary battery
JP6927034B2 (en) Lithium-ion secondary battery and its manufacturing method
JP2011192610A (en) Lithium ion battery
WO2013038939A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
EP3264502B1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010232117A (en) Lithium secondary battery
JP2013218913A (en) Nonaqueous electrolyte secondary battery
US20110143196A1 (en) Lithium secondary battery
JP5432746B2 (en) Lithium ion secondary battery
JP2016085836A (en) Nonaqueous liquid electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
JP2012238461A (en) Secondary battery, and method for manufacturing the same
US8541118B2 (en) Lithium-ion battery and method for regenerating the same
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5193921B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521