JP2012149503A - Soil improvement method and management method for the same - Google Patents

Soil improvement method and management method for the same Download PDF

Info

Publication number
JP2012149503A
JP2012149503A JP2011194389A JP2011194389A JP2012149503A JP 2012149503 A JP2012149503 A JP 2012149503A JP 2011194389 A JP2011194389 A JP 2011194389A JP 2011194389 A JP2011194389 A JP 2011194389A JP 2012149503 A JP2012149503 A JP 2012149503A
Authority
JP
Japan
Prior art keywords
ground improvement
soil
solidification
excavation
solidified material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194389A
Other languages
Japanese (ja)
Other versions
JP5898889B2 (en
Inventor
Kanichi Akagi
寛一 赤木
Yoshimasa Kondo
義正 近藤
Atsuo Tsuchiya
敦雄 土屋
Kenji Shimozaka
賢二 下坂
Masaharu Katsumata
正治 勝又
Seiya Sakuma
誠也 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Toa Corp
Maeda Corp
Maguma Co Ltd
Toda Corp
Hazama Ando Corp
Original Assignee
Hazama Gumi Ltd
Waseda University
Hazama Corp
Toa Corp
Maeda Corp
Maguma Co Ltd
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Waseda University, Hazama Corp, Toa Corp, Maeda Corp, Maguma Co Ltd, Toda Corp filed Critical Hazama Gumi Ltd
Priority to JP2011194389A priority Critical patent/JP5898889B2/en
Publication of JP2012149503A publication Critical patent/JP2012149503A/en
Application granted granted Critical
Publication of JP5898889B2 publication Critical patent/JP5898889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new soil improvement method and a management method for the same capable of constructing an excellent deep layer mixing pile and a columnar continuous wall by breaking up a cut soil mass and homogeneously mixing the same with a solidification agent even for high-plasticity clay having a large plasticity index Ip as well as a large liquid limit W.SOLUTION: A soil improvement method includes a drilling process which: digs up a drilled soil mass with drilling blades; and cuts as well as breaks up the drilled soil mass by rotation of agitation blades, using a soil improvement machine having the drilling blades as well as the agitating blades. In the drilling process, the agitation blades are rotated at a velocity equal to or larger than an average peripheral velocity necessary for cutting a soil mass in accordance with shear strength of a soil property of the drilled soil mass. The soil improvement method also includes a solidification treatment process which mixes the drilled soil mass and a solidification agent.

Description

本発明は、地盤改良工法及びその管理方法に関するものであり、詳しくは、掘削翼及び攪拌翼を有する地盤改良機を用いて、特定の掘削、攪拌条件の掘削工程と、掘削土塊と特定の固化材を特定の条件で混合する固化処理工程を含む地盤改良工法及びその管理方法に関するものである。   The present invention relates to a ground improvement method and a management method thereof, and more specifically, using a ground improvement machine having a drilling blade and a stirring blade, a specific excavation, a drilling process under stirring conditions, a drilling clot, and a specific solidification It is related with the ground improvement construction method including the solidification process process which mixes a material on specific conditions, and its management method.

地盤改良工事において、CDM(Cement Deep Mixing Method)工法やDJM(Dry Jet Mixing)工法に代表される深層混合処理工法やSMW(Soil Mixing Wall)に代表されるソイルセメント地下連続壁工法等がある。これらの工法では地盤改良機に取り付けたロッドの先端部に掘削翼や攪拌翼、さらに固定翼を取り付けた地盤改良機により施工を行っている。   The ground improvement works include CDM (Cement Deep Mixing Method) method, DJM (Dry Jet Mixing) method represented by deep mixing treatment method and SMW (Soil Mixing Wall) represented by soil cement underground continuous wall method. In these methods, construction is carried out with a ground improvement machine in which excavation blades, stirring blades, and fixed blades are attached to the tip of the rod attached to the ground improvement machine.

即ち、地盤改良機に取り付けたロッドを回転し、ロッドの先端に取り付けた掘削翼で土を掻き起こし、ロッドに固定した攪拌翼により掘削土塊を破砕し、細分化しつつ固化材と混合し、固化させることにより、地盤中に柱状の固化体や連続壁を造成する工法である。   That is, rotate the rod attached to the ground improvement machine, scrape the soil with the excavating blade attached to the tip of the rod, crush the excavated clot with the stirring blade fixed to the rod, mix with the solidification material while subdividing, solidify It is a construction method that creates columnar solidified bodies and continuous walls in the ground.

図1に地盤改良機の先端部分を例示する。図1は1軸型の地盤改良機であるが、この他に、多軸型の地盤改良機がある。   FIG. 1 illustrates the tip portion of the ground improvement machine. FIG. 1 shows a single-axis type ground improvement machine, but there is a multi-axis type ground improvement machine.

固化材としては通常、セメント類や石灰等を使用し、これらの固化材をスラリー状とする場合や粉体のまま使用することがある。また掘削土塊と固化材の混合は掘削時に混合を行うものや、ロッドの引き上げ時に行うもの、あるいはこれらの併用のものと限定はされていない。   Usually, cement or lime is used as the solidifying material, and these solidifying materials may be used in the form of a slurry or as powder. Further, the mixing of the excavated soil block and the solidified material is not limited to the mixing at the time of excavation, the mixing at the time of lifting the rod, or the combination of these.

上記の工法では掘削した土塊と固化材の混合の度合いを示す指数として、羽根切り回数(攪拌翼が固化材を添加した土中1.0m区間を下降及び上昇する際の攪拌翼を構成する各羽根の回転数の総和)という概念を導入し、その羽根切り回数が350回/mを基準値とし、これで混合性を評価する手法がとられている。   In the above construction method, as an index indicating the degree of mixing of excavated soil mass and solidifying material, the number of blade cutting times (the stirring blades constituting the stirring blades when descending and rising the 1.0 m section in the soil to which the solidifying material was added) The concept of “total number of blade rotations” is introduced, and the number of blade cutting times is set to 350 times / m as a reference value.

さらに機械的な工夫として、攪拌翼と掘削した土塊が同一方向に回転移動することを防ぎ、混合性を向上させるために、ロッドに対し自由に回転する外環(ボス)に固定翼を取り付け、これを土中に食い込ませて回転を防止した固定翼が提案されている(例えば、特許文献1参照)。   Furthermore, as a mechanical device, in order to prevent the stirring blade and the excavated soil mass from rotating and moving in the same direction, and to improve mixing, a fixed blade is attached to the outer ring (boss) that rotates freely with respect to the rod. There has been proposed a fixed wing in which this is cut into the soil to prevent rotation (see, for example, Patent Document 1).

これらのいずれの方法においても、目的とするところは掘削した土塊を細分化し、これと固化材を均一に混合し、均質な固化体を造成することにある。   In any of these methods, the object is to subdivide the excavated soil mass and uniformly mix this with the solidified material to create a homogeneous solidified body.

しかしながら、改良対象となる土質は様々である。例えば、低塑性土は圧縮強度が大きくてもスラリー状の固化材と混合すると、土塊はばらばらにほぐれて細分化し易いので、攪拌翼の周速が低速であっても固化材との混合は比較的容易であり、羽根切り回数により混合の程度を規定し易い。   However, the soil quality to be improved varies. For example, even if the low-plastic soil has a high compressive strength, if mixed with a slurry-like solidified material, the clumps will loosen apart and tend to be subdivided, so mixing with the solidified material is comparative even if the peripheral speed of the stirring blade is low. It is easy to specify the degree of mixing by the number of blade cutting.

これに対し、高塑性粘土はスラリー状固化材と混合してもばらばらに細分化し難く、さらに攪拌翼で混合時に攪拌翼への附着や細分化土の再付着により、攪拌翼と一緒に共回りし、羽根切り回数を増加させても共回りするだけで、混合の程度を良くすることにならないという問題がある。   In contrast, high-plastic clay is difficult to break apart even when mixed with a slurry-like solidifying material, and when mixed with a stirring blade, it adheres to the stirring blade and reattaches the subdivided soil, and rotates together with the stirring blade. However, even if the number of blade cuts is increased, there is a problem that the degree of mixing is not improved only by co-rotation.

なお、ここでいう高塑性粘土とは、土の塑性指数Ipが大きくかつ、液性限界Wが大きい粘土で、工学的分類による塑性図である図2において、A線とB線により区画されている部分(CH)に分類される粘土であり、具体的には自然状態の含水比が液性限界Wよりも小さく、鋭敏比が2以下の過圧密粘土等が相当する。 Note that the high plasticity clay here, and large plasticity index Ip soil, in liquid limit W L is large clay, in FIG. 2 is a plastic diagram according engineered classified, partitioned by line A and line B and a clay that is classified to a portion (CH) and, the water content ratio of the natural state in particular is smaller than liquid limit W L, sensitive ratio like 2 following overconsolidated clay corresponds.

特許第3621971号公報Japanese Patent No. 3621971

本発明は、上記の通りの背景から、塑性指数Ip及び液性限界Wが大きい高塑性粘土であっても、切削土塊を細分化し、固化材との混合を均一にして、良好な深層混合処理杭や柱状連続壁を造成することのできる新しい地盤改良工法及びその管理方法を提供することを課題としている。 The present invention is, from the background as described above, even at high plasticity clays greater plasticity index Ip and liquid limit W L is the cutting clods is subdivided, in the uniform mixing of the solidifying material, good deep mixing It is an object to provide a new ground improvement method and its management method capable of creating treated piles and columnar continuous walls.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、掘削翼及び攪拌翼を有する地盤改良機を用いて、掘削翼により掘り起こした掘削土塊を回転する攪拌翼により切断・細分化する掘削工程を含む地盤改良工法であって、掘削土塊の土質のせん断強度に対応して、土塊の切断に必要とされる平均周速以上で攪拌翼を回転させる掘削工程と、掘削土塊と固化材を混合する固化処理工程を含む。   The first is a ground improvement method including a drilling process in which a ground improvement machine having a drilling blade and a stirring blade is used to cut and subdivide the excavated soil mass excavated by the drilling blade with a rotating stirring blade. Corresponding to the shear strength of the soil, it includes a drilling step of rotating the stirring blade at an average peripheral speed or higher required for cutting the soil block, and a solidification process step of mixing the drilled soil block and the solidified material.

第2に、上記第1の発明の地盤改良工法において、掘削土塊に気泡もしくは気泡と水を添加して気泡混合土を形成する掘削混合工程を含む掘削工程の後に、気泡混合土に固化材を添加・混合し、固化材混合土を造成する固化処理工程を含む。   Secondly, in the ground improvement method according to the first aspect of the present invention, after the excavation step including the excavation mixing step of forming the bubble mixed soil by adding bubbles or bubbles and water to the excavated soil mass, the solidified material is applied to the bubble mixed soil. It includes a solidification process step of adding and mixing to create a solidified material mixed soil.

第3に、上記第1の発明の地盤改良工法において、掘削土塊に気泡と固化材もしくは気泡と水と固化材を同時に添加して気泡混合土を形成する掘削混合工程を含む掘削工程の後に、気泡混合土に固化材を添加・混合し、固化材混合土を造成する固化処理工程を含む。   Third, in the ground improvement method of the first invention, after the excavation step including the excavation mixing step of forming the bubble mixed soil by simultaneously adding bubbles and solidified material or air bubbles and water and solidified material to the excavated soil mass, It includes a solidification process step in which a solidifying material is added to and mixed with the bubble mixed soil to form a solidified mixed soil.

第4に、上記第1の発明の地盤改良工法において、掘削土塊に気泡と固化材もしくは気泡と水と固化材を同時に添加して気泡混合土を形成する掘削混合工程を含む掘削工程の後に、破泡剤を添加し、破泡しながら固化材混合土を造成する固化処理工程を含む。   Fourth, in the ground improvement method of the first invention, after the excavation step including the excavation mixing step of forming the bubble mixed soil by simultaneously adding bubbles and solidified material or bubbles and water and solidified material to the excavated soil mass, It includes a solidification process step of adding a foam breaker and creating a solidified material mixed soil while breaking the foam.

第5に、上記第2又は第3の発明の地盤改良工法において、気泡混合土に、破泡剤を加えた固化材を添加して、気泡を破泡しながら固化材混合土を造成する固化処理工程を含む。   Fifth, in the ground improvement method of the second or third invention, a solidifying material added with a foam-breaking agent is added to the bubble mixed soil, and the solidified mixed soil is created while breaking the bubbles. Including processing steps.

第6に、上記第2から第5の発明の地盤改良工法において、気泡混合土の性状が、単位体積重量を10.3kN/m以上、テーブルフロー値(TF値)が110mm以上となるように調整する掘削工程を含む。 Sixth, in the ground improvement method according to the second to fifth inventions, the properties of the bubble-mixed soil are such that the unit volume weight is 10.3 kN / m 3 or more and the table flow value (TF value) is 110 mm or more. Including a drilling process to adjust to

第7に、上記第2から第6の発明の地盤改良工法において、固化材混合土の性状が、単位体積重量を10.3kN/m以上、ベーンせん断強さが8.0kN/m以下となるように調整する掘削工程と固化処理工程を含む。 Seventh, in the ground improvement method according to the second to sixth inventions, the properties of the solidified mixed soil include a unit volume weight of 10.3 kN / m 3 or more and a vane shear strength of 8.0 kN / m 2 or less. The excavation process and the solidification process are adjusted to be

第8に、上記第2から第6の発明の地盤改良工法において、固化材混合土の性状が、単位体積重量を10.3kN/m以上、テーブルフロー値(TF値)が110mm以上となるように調整する掘削工程と固化処理工程を含む。 Eighth, in the ground improvement method according to the second to sixth inventions, the properties of the solidified mixed soil are such that the unit volume weight is 10.3 kN / m 3 or more and the table flow value (TF value) is 110 mm or more. The excavation process and the solidification process are adjusted as described above.

第9に、上記第2から第8の発明の地盤改良工法において、気泡の添加を掘削翼から行い、気泡混合土を作る掘削混合工程を含む。   Ninth, in the ground improvement methods of the second to eighth inventions, the method includes an excavation and mixing step in which bubbles are added from the excavation blades to create an air-mixed soil.

第10に、上記第1から第8の発明の地盤改良工法において、固化材の添加を掘削翼または撹拌翼から行い、固化処理工程を含む。   Tenth, in the ground improvement methods of the first to eighth inventions, the solidifying material is added from the excavation blade or the stirring blade, and includes a solidification treatment step.

第11に、上記第1から第10の発明の地盤改良工法において、固化材として、ポンプ圧送できる最小水固化材比45%以上となる水量を加えたスラリー状の固化材ミルクを用いて固化処理工程を含む。   Eleventh, in the ground improvement method according to the first to tenth aspects of the present invention, as the solidification material, solidification treatment is performed using slurry-type solidification material milk to which a water amount of 45% or more of the minimum water solidification material ratio that can be pumped is added. Process.

第12に、上記第1から第10の発明の地盤改良工法において、固化材として粉体状固化材を用いて固化処理工程を含む。   12thly, in the ground improvement construction method of the said 1st-10th invention, the solidification processing process is included using a powdery solidification material as a solidification material.

第13に、上記第2から第12の発明の地盤改良工法において、気泡径の中央値が100〜400μmの気泡を用いる。   Thirteenthly, in the ground improvement method of the second to twelfth inventions, bubbles having a median bubble diameter of 100 to 400 μm are used.

第14に、上記第2から第13の発明の地盤改良工法において、少なくとも気泡が消失しない必要な量以上の水を添加する。   Fourteenth, in the ground improvement method of the second to thirteenth inventions, at least a necessary amount of water that does not eliminate bubbles is added.

第15に、上記第1から第14の発明の地盤改良工法において、固化材として、少なくともセメント類、石灰類及び石膏類のいずれかの固化材を用いる。   Fifteenth, in the ground improvement methods of the first to fourteenth inventions, at least one of cements, limes and gypsum is used as the solidifying material.

第16に、上記第1から第15の発明の地盤改良工法において、掘削翼及び攪拌翼を保持するロッドの形状が矩形であり、このロッドの回転時に圧送空気、破泡剤により大きくなった気泡を地上に逃がすための空隙を造る固化処理工程を含む。   Sixteenth, in the ground improvement method according to any one of the first to fifteenth inventions, the shape of the rod holding the excavation blade and the stirring blade is rectangular, and the bubbles are increased by the compressed air and the foam breaker when the rod rotates. Including a solidification process step for creating a gap for allowing the air to escape to the ground.

第17に、上記第1から第16の発明の地盤改良工法において、掘削工程もしくは固化処理工程で作られた混合土の増減に対して、地上にケーシングを立設して施工する。   Seventeenth, in the ground improvement method according to the first to sixteenth aspects of the present invention, a casing is erected on the ground in response to an increase or decrease in the mixed soil produced in the excavation process or the solidification process.

第18に、上記第1から第17の発明の地盤改良工法において、地盤改良機に、掘削した土塊を外周部に誘導する形状とした固定翼を用いる。   Eighteenth, in the ground improvement method according to the first to seventeenth aspects of the present invention, a fixed wing having a shape for guiding the excavated mass to the outer periphery is used for the ground improvement machine.

第19に、上記第1から第18の発明の地盤改良工法において、地盤改良機に、掘削翼と逆回転する攪拌翼を用いる。   Nineteenth, in the ground improvement method according to the first to eighteenth aspects of the invention, a stirring blade that rotates reversely to the excavation blade is used for the ground improvement machine.

第20に、上記第1から第19の発明の地盤改良工法において、地盤改良機の攪拌翼を多段に取り付け、これらが互いに逆回転するようにする。   20thly, in the ground improvement method according to the first to 19th aspects of the present invention, the stirring blades of the ground improvement machine are attached in multiple stages so that they rotate in reverse.

第21に、地盤改良工法の管理方法において、気泡混合土の一部を採取し、採取した気泡混合土の単位体積重量が10.3kN/m以上、テーブルフロー値(TF値)が110mm以上を管理する。 21stly, in the management method of the ground improvement construction method, a part of the bubble mixed soil is sampled, the unit volume weight of the collected bubble mixed soil is 10.3 kN / m 3 or more, and the table flow value (TF value) is 110 mm or more. Manage.

第22に、地盤改良工法の管理方法において、固化材混合土の一部を採取し、採取した固化材混合土の単位体積重量が10.3kN/m以上、テーブルフロー(TF値)が110mm以上を管理する
第23に、地盤改良工法の管理方法において、固化材混合土の一部を採取し、採取した固化材混合土の単位体積重量が10.3kN/m以上、ベーンせん断強さが8.0kN/m以下を管理する。
Twenty-second, in the management method of the ground improvement method, a part of the solidified material mixed soil is sampled, the unit volume weight of the collected solidified material mixed soil is 10.3 kN / m 3 or more, and the table flow (TF value) is 110 mm. 23. In the management method of the ground improvement method, a part of the solidified material mixed soil is sampled, the unit volume weight of the collected solidified material mixed soil is 10.3 kN / m 3 or more, and the vane shear strength Manages 8.0 kN / m 2 or less.

第24に、地盤改良工法の管理方法において、撹拌機のトルク値を測定することで、固化材混合土のベーンせん断強さを8.0kN/m以下を管理する。 24thly, in the management method of a ground improvement construction method, the vane shear strength of solidification material mixing soil is managed below 8.0 kN / m < 2 > by measuring the torque value of a stirrer.

本発明の地盤改良工法によれば、掘削翼及び攪拌翼を有する地盤改良機を用いて、掘削土塊の土質のせん断強度に対応して、土塊の切断に必要とされる平均周速以上で攪拌翼を回転させながら、掘削翼より気泡を添加して気泡混合土を形成し、この気泡混合土の性状を調整する掘削混合工程と、気泡混合土と固化材を混合する固化処理工程で造成した固化材混合土の性状を調整した地盤改良工法としたので、塑性指数Ip及び液性限界Wが大きい高塑性粘土であっても、切削土塊を細分化し、固化材との混合を均一にして、良好な深層混合処理杭や柱状連続壁を造成することのできる新しい地盤改良工法とすることができる。 According to the ground improvement method of the present invention, using a ground improvement machine having excavation blades and agitation blades, the agitation is performed at an average peripheral speed or higher required for cutting the mass, corresponding to the shear strength of the soil of the excavation mass. While rotating the wing, bubbles were added from the excavating wing to form a bubble mixed soil, and the excavation and mixing step for adjusting the properties of the bubble mixed soil and the solidification treatment step for mixing the bubble mixed soil and the solidified material were created. since the properties of the solidified material mixed soil was adjusted ground improvement method, even at high plasticity clay plasticity index Ip and liquid limit W L is large, the cutting clods is subdivided, in the uniform mixing of the solidifying material Therefore, it can be a new ground improvement method capable of creating a good deep mixed processing pile or a columnar continuous wall.

さらに、添加する気泡条件、固化材条件、掘削翼及び攪拌翼の条件を特定することにより、上記本発明の効果をより確実なものとすることができる。   Furthermore, by specifying the bubble conditions to be added, the solidifying material conditions, the conditions of the excavating blade and the stirring blade, the effect of the present invention can be made more reliable.

施工機先端部を例示した概要図である。It is the schematic which illustrated the construction machine front-end | tip part. 土の工学的分類方法による塑性図である。It is a plastic figure by the engineering classification method of soil. 土質による必要な平均周速をせん断強度との関係で示した図である。It is the figure which showed the required average peripheral speed by soil quality in relation to the shear strength. ロッドの回転トルクと掘削深度の関係を示した図である。It is the figure which showed the relationship between the rotational torque of a rod, and excavation depth. 一軸圧縮強度と湿潤密度の関係を例示した図である。It is the figure which illustrated the relationship between uniaxial compressive strength and wet density. 気泡添加量とベーンせん断強さの関係を示した図である。It is the figure which showed the relationship between bubble addition amount and vane shear strength. 気泡添加量とTF値の関係を示した図である。It is the figure which showed the relationship between bubble addition amount and TF value. 地盤改良工法の工程を示した概略図である。It is the schematic which showed the process of the ground improvement construction method. 気泡吐出口及び固化材吐出口を有する施工機先端部(掘削翼)の例を示した概略図である。It is the schematic which showed the example of the construction machine front-end | tip part (excavation blade) which has a bubble discharge port and a solidification material discharge port. 土塊誘導固定翼の例を示した概略図である。It is the schematic which showed the example of the earth lump induction | guidance | derivation fixed wing | blade. 土塊誘導固定翼の別の例を示した概略図である。It is the schematic which showed another example of the earth lump induction | guidance | derivation fixed wing | blade. 逆転攪拌翼の例を示した概略図である。It is the schematic which showed the example of the reverse stirring blade.

本発明の地盤改良工法について、まず、土塊の細分化を行うための掘削工程について詳述する。
<掘削工程>
本発明の掘削工程では、掘削翼及び攪拌翼を有する地盤改良機を用いて、掘削翼により掘り起こした掘削土塊を回転する攪拌翼により切断・細分化する。そして、掘削土塊の土質のせん断強度に対応して、土塊の切断に必要とされる平均周速以上で攪拌翼を回転させる。
Regarding the ground improvement method of the present invention, first, the excavation process for subdividing the soil mass will be described in detail.
<Drilling process>
In the excavation process of the present invention, a ground improvement machine having excavation blades and agitation blades is used to cut and subdivide the excavated soil mass dug up by the excavation blades with rotating agitation blades. Then, the agitating blade is rotated at a speed equal to or higher than the average peripheral speed required for cutting the clot according to the shear strength of the soil of the excavated clot.

この土塊の切断に必要とされる平均周速は、以下に詳述する攪拌翼と掘削土塊の各条件にあてはめることより求めることができる。   The average peripheral speed required for cutting the clot can be obtained by applying to each condition of the stirring blade and the excavated clot described in detail below.

掘削土塊は半径R(m)の球形とし、湿潤密度をρ(kg/m)と仮定する。この静止している土塊に、撹拌翼を周速V(m/s)で衝突させ、その力をF(N/m)とする。Fにより土塊の中央部を切断する。土塊のせん断力をτ(N/m)とする。
土塊の質量mは式(1)で表すことができる。
The excavated block is assumed to be spherical with a radius R (m), and the wet density is assumed to be ρ (kg / m 3 ). The stirring blade is caused to collide with the stationary mass at a peripheral speed V (m / s), and the force is set to F (N / m 2 ). Cut the center of the soil mass with F. Let the shearing force of the soil block be τ (N / m 2 ).
The mass m of the soil mass can be expressed by the formula (1).

Figure 2012149503
Figure 2012149503

衝突力Fとせん断力τは式(2)で表すことができる。   The collision force F and the shearing force τ can be expressed by equation (2).

Figure 2012149503
Figure 2012149503

土塊の運動量と力積の関係から式(3)が得られる。   Equation (3) is obtained from the relationship between the momentum of the clot and the impulse.

Figure 2012149503
Figure 2012149503

周速Vの撹拌翼が土塊を切断する時間をt(s)とすると、式(4)が得られる。   If the time for the circumferential speed V stirring blade to cut the clod is t (s), the equation (4) is obtained.

Figure 2012149503
Figure 2012149503

式(2)、(3)、(4)より、式(5)が得られる。   Equation (5) is obtained from equations (2), (3), and (4).

Figure 2012149503
Figure 2012149503

これらから、土塊を切断するためには、周速V以上の周速で、掘削土塊に衝突させることにより達成できることになる。   From these, in order to cut the clod, it can be achieved by colliding with the excavated clod at a peripheral speed equal to or higher than the peripheral speed V.

例えば、一般的な高塑性粘土として、鋭敏比が2以下、自然含水比が液性限界以下の過圧密粘土を考え、その湿潤密度を1600kg/mとし、半径0.6mの攪拌翼を使用する場合の、せん断強度τと平均周速の関係を式(5)を用いて計算すると図3に示すグラフで表すことができる。 For example, as a general high plastic clay, an overconsolidated clay having a sensitivity ratio of 2 or less and a natural moisture content of a liquid limit or less is considered, and its wet density is 1600 kg / m 3 and a stirring blade having a radius of 0.6 m is used. When the relationship between the shear strength τ and the average peripheral speed is calculated using the equation (5), it can be represented by the graph shown in FIG.

図3のグラフに示すように、せん断強度が20000N/mの場合には切断に必要な周速は4.3m/sであり、せん断強度が5000N/mの場合は2.2m/sとなる。なお、この時の回転数は各々138rpm、69rpmである。通常実施している回転数が20〜40rpmであるので、高塑性粘土の土塊の切断に対しては回転数が不足していることがわかる。 As shown in the graph of FIG. 3, when the shear strength is 20000 N / m 2 , the peripheral speed required for cutting is 4.3 m / s, and when the shear strength is 5000 N / m 2 , 2.2 m / s. It becomes. The rotation speeds at this time are 138 rpm and 69 rpm, respectively. Since the rotation speed currently implemented is 20-40 rpm, it turns out that rotation speed is insufficient with respect to the cutting | disconnection of the block of high plastic clay.

攪拌翼の周速は中心からの距離に比例するので、ここで述べる平均周速は、攪拌翼のr/2(rは攪拌翼の半径)位置におけるものとする。   Since the peripheral speed of the stirring blade is proportional to the distance from the center, the average peripheral speed described here is assumed to be at the position of r / 2 (r is the radius of the stirring blade) of the stirring blade.

また、改良対象土層は改良に先立って地質調査を行い、自然含水比、液性限界、せん断強度等の計測を行い、これらの値を用いて攪拌翼の必要な平均周速を決定することができる。   Prior to the improvement, the soil layer to be improved shall be subjected to geological surveys, natural moisture content, liquid limit, shear strength, etc. shall be measured, and these values shall be used to determine the required average peripheral speed of the impeller. Can do.

以上のことからも明らかなように、本発明の地盤改良工法の掘削工程においては、土質に応じて一定値以上の周速、即ち、前記式(5)で導かれる土塊のせん断強度に対応する平均周速値以上の周速で攪拌翼を掘削土塊と衝突させ、切断し、細分化させる。これにより固化材との均質混合性を向上させることができる。   As is clear from the above, in the excavation process of the ground improvement method of the present invention, it corresponds to the peripheral speed of a certain value or more according to the soil quality, that is, the shear strength of the clot derived from the equation (5). The impeller impinges on the excavated soil block at a peripheral speed equal to or higher than the average peripheral speed value, and is cut and subdivided. Thereby, homogeneous mixing property with a solidification material can be improved.

しかしながら、上記の条件を適用しても、高塑性粘土の破砕、細分化に際しては、その粘性により掘削翼や攪拌翼に再付着し、団子状になり易く、掘削翼や攪拌翼に高塑性粘土が付着した状態で高速回転をさせると回転トルクが大きくなるため、再付着を防止することが必要となる。   However, even when the above conditions are applied, when the high plastic clay is crushed and subdivided, it reattaches to the drilling blade and the stirring blade due to its viscosity, and tends to form a dumpling. When rotating at a high speed with the adhering to the surface, the rotational torque increases, so it is necessary to prevent the reattachment.

そのため、再付着を防止して、ロッドの回転トルクを小さくするために、掘削土に気泡を混合して流動性を高めることで、施工性で高品質な地盤改良体が得られる。   Therefore, in order to prevent re-adhesion and reduce the rotational torque of the rod, by mixing air bubbles in the excavated soil and improving the fluidity, a ground improvement body with high workability can be obtained.

本発明の地盤改良工法の施工方法を以下に説明するとともに、試験による結果から気泡を用いる地盤改良工法の好ましい条件を規定する。
<地盤改良工法>
本発明の地盤改良工法としては、以下に示す地盤改良工法1及び地盤改良工法2を例示することができる。
(地盤改良工法1)
地盤改良工法1は、掘削翼及び撹拌翼を下方に移動掘削しながら気泡もしくは気泡と水を添加し、掘削土塊と気泡が混合された気泡掘削土を最深部まで形成した後、掘削翼及び撹拌翼を上方に引上げながら気泡混合土に固化材を添加して固化材混合土を形成し地盤改良を行う施工方法である。
The construction method of the ground improvement method of the present invention will be described below, and preferable conditions for the ground improvement method using air bubbles are defined from the results of the test.
<Ground improvement method>
Examples of the ground improvement method of the present invention include the ground improvement method 1 and the ground improvement method 2 shown below.
(Ground improvement method 1)
The ground improvement construction method 1 adds the bubbles or bubbles and water while moving the excavation blade and the stirring blade downward, and forms the bubble excavation soil in which the excavated soil mass and the bubbles are mixed to the deepest part, and then the excavation blade and the stirring blade. This is a construction method for improving the ground by forming a solidified material mixed soil by adding a solidified material to the bubble mixed soil while pulling up the wing.

この場合、引上げ時に固化材に破泡剤を加え、破泡しながら固化処理を行ってもよい。
(地盤改良工法2)
地盤改良工法2は、掘削翼及び撹拌翼を下方に移動掘削しながら気泡と固化材もしくは気泡と水と固化材を同時に添加し、掘削土塊と気泡と固化材が混合された気泡混合土を最深部まで形成した後、掘削翼及び撹拌翼を上方に引上げながら気泡混合土に固化材を添加して固化材混合土を形成し地盤改良を行う施工方法である。
In this case, a foam breaker may be added to the solidified material at the time of pulling and the solidification treatment may be performed while breaking the foam.
(Ground improvement method 2)
Ground improvement construction method 2 is the method of deepening the bubble mixed soil in which excavated soil mass, bubbles and solidified material are mixed while adding excavation blade and agitating blade downward while excavating and mixing blades and adding bubbles and solidified material or bubbles, water and solidified material simultaneously. This is a construction method for improving the ground by forming a solidified material mixed soil by adding a solidified material to the bubble mixed soil while pulling up the excavating blade and the stirring blade upward.

この場合、引上げ時に固化材に破泡剤を加え破泡しながら固化処理を行ってもよいし、固化材を添加せずに破泡剤のみを添加して、破泡しながら固化処理を行ってもよい。   In this case, the solidification material may be added to the solidified material at the time of pulling up, and the solidification process may be performed while foaming. Alternatively, only the foam-breaking agent may be added without adding the solidification material, and the solidification process may be performed while foaming. May be.

また、上記地盤改良工法1、2のいずれの地盤改良工法においても、掘削翼及び撹拌翼による混合性を向上させるためには、下方移動する掘削時には気泡もしくは固化材を最下部に位置する掘削翼から添加し、引上げ時には上部に位置する撹拌翼から添加することが効果的である。   Further, in any of the ground improvement methods 1 and 2 above, in order to improve the mixing property by the excavation blade and the stirring blade, the excavation blade in which the bubble or the solidified material is located at the bottom when excavating to move downward It is effective to add from the stirring blade located at the top when pulling up.

また、各工程段階で形成される気泡混合土、固化材混合土、気泡固化材混合土の単位体積重量は、孔壁の安定性の面から、単位体積重量が10.3kN/m以上とする必要があり、単位体積重量が10.3kN/m以上となるように添加する気泡量、水量、固化材量を調整する必要がある。
<現場試験>
以下に示す現場試験により、掘削土塊に気泡を添加混合した気泡混合土の好ましい性状を確認した。
In addition, the unit volume weight of the foam mixed soil, the solidified material mixed soil, and the foam solidified material mixed soil formed in each process step is 10.3 kN / m 3 or more in terms of the stability of the hole wall. It is necessary to adjust the amount of bubbles, the amount of water, and the amount of solidified material added so that the unit volume weight becomes 10.3 kN / m 3 or more.
<Field test>
A preferable property of the bubble mixed soil obtained by adding and mixing bubbles to the excavated soil block was confirmed by an on-site test shown below.

現場試験において、地盤改良機として攪拌翼が半径50cmの一軸型を使用し、図1に示す撹拌機の先端部から気泡を吐出しながら関東ローム層を深さ6mまで掘削し、スラリー状気泡混合土を作成した。気泡添加率は0〜1.2%の範囲で変化させた。この現場試験条件を表1に、ロッドの回転トルクと掘削深度の関係を図4に示す。なお、気泡添加率は下記式(6)により算出することができる。   In the field test, a uniaxial type with a 50cm radius stirring blade was used as a ground improvement machine, and the Kanto Loam layer was excavated to a depth of 6m while discharging bubbles from the tip of the stirrer shown in Fig. 1. Created soil. The bubble addition rate was changed in the range of 0 to 1.2%. Table 1 shows the field test conditions, and FIG. 4 shows the relationship between the rotational torque of the rod and the excavation depth. The bubble addition rate can be calculated by the following formula (6).

Figure 2012149503
Figure 2012149503

Figure 2012149503
Figure 2012149503

図4から、気泡添加率が0〜1.2%の範囲では気泡添加率が大きいほどトルクは小さくなることが分かり、さらにNo.1の気泡添加率1.2%とNo.6の無添加を比較すると、トルクは1/2程度であることがわかる。これらのことから、気泡を添加することにより、地盤改良においても回転トルクは明らかに低減することが分かる。   From FIG. 4, it can be seen that when the bubble addition rate is in the range of 0 to 1.2%, the torque decreases as the bubble addition rate increases. No. 1 bubble addition rate of 1.2% and No. 1 When no additive of 6 is compared, the torque is found to be about ½. From these facts, it can be seen that by adding bubbles, the rotational torque is clearly reduced even in the ground improvement.

次に、上記現場試験で、気泡を添加しつつ掘削を行ない、気泡混合土を作成した後に、攪拌翼を引き上げながら、破泡剤を添加したセメントミルクを気泡混合土と混練し、固化処理を行った。   Next, in the above-mentioned field test, excavation was performed while adding bubbles, and after creating the bubble mixed soil, the cement milk to which the foam breaker was added was kneaded with the bubble mixed soil while raising the stirring blade, and the solidification treatment was performed. went.

本発明の地盤改良工法の掘削混合工程では気泡を使用するため、固化体の強度を高めたり、廃泥土量を減少させるためには、固化処理工程において気泡を破泡させ、地上部まで導き脱泡させる必要がある。   In the excavation and mixing process of the ground improvement method of the present invention, bubbles are used. Therefore, in order to increase the strength of the solidified body and reduce the amount of waste mud, the bubbles are broken in the solidification process and guided to the ground. Need to foam.

そのために、固化処理工程で使用する固化材ミルク又は粉体状固化材中に破泡剤を添加し、これらと気泡混合土又は気泡固化材混合土と混合することにより、破泡剤が気泡の界面活性剤の効果を減少させ、数百ミクロンの気泡同士が接触して気泡同士が合体し粒径が大きくなる。   For this purpose, a foam breaker is added to the solidified milk or powdered solidified material used in the solidification treatment step and mixed with the bubble mixed soil or the bubble solidified material mixed soil. The effect of the surfactant is reduced, bubbles of several hundred microns come into contact with each other, and the bubbles merge to increase the particle size.

混練により気泡同士が徐々に合体し、その粒径は徐々に大きくなり、浮力も大きくなるため、気泡混合土中を通って地上にまで到達する。即ち、気泡混合土中の気泡を脱泡することができる。   By kneading, the bubbles gradually coalesce, the particle size gradually increases, and the buoyancy also increases, so that they reach the ground through the bubble mixed soil. That is, the bubbles in the bubble mixed soil can be removed.

固化材は高炉セメントB種を用い、水セメント比(W/C)は45〜100%まで変化させたセメントミルクとし、このセメントミルク中に破泡剤を添加して、混合気泡土とセメントミルクを混合、攪拌することにより破泡を生じさせ、気泡の脱泡状況を観察した。なお、セメント添加量は各試験改良柱とも150kg/mとした。 Blast furnace cement type B is used as the solidification material, and the water-cement ratio (W / C) is changed to 45 to 100%, and cement foam milk is added to the cement milk to add mixed foam soil and cement milk. Were mixed and stirred to cause foam breakage, and the bubble defoaming condition was observed. The amount of cement added was 150 kg / m 3 for each test improvement column.

脱泡状況の観察によると、試験柱No.1、2では、気泡径5〜10cm程度の気泡が気泡混合土中を上昇して、地上面に脱泡する様子が観測できたが、No.3〜No.5の試験柱では脱泡現象は観測できなかった。   According to the observation of the defoaming situation, the test column No. In Nos. 1 and 2, it was observed that bubbles with a bubble diameter of about 5 to 10 cm rose in the bubble mixed soil and defoamed on the ground surface. 3-No. No defoaming phenomenon was observed in the test column 5.

上記現場試験において、サンプリングした試料により湿潤密度と一軸圧縮強度試験を行った結果を図5に示す。図5によれば、各改良柱のセメント添加量は150kg/mと同量であるにもかかわらず、湿潤密度、一軸圧縮強度ともに、試験No.1、2とNo.3、4、5では大きな差異が生じている。試験柱No.1、2の湿潤密度は約1.50g/cmであるのに、No.3、4、5は1.37〜1.41g/cmに分布しており、この差は脱泡の程度の差と考えられる。 FIG. 5 shows the results of the wet density and uniaxial compressive strength tests performed on the sampled samples in the field test. According to FIG. 5, although the amount of cement added to each improved column was the same as 150 kg / m 3 , both the wet density and the uniaxial compressive strength were tested. 1, 2 and no. There is a big difference between 3, 4, and 5. Test column No. Nos. 1 and 2 have a wet density of about 1.50 g / cm 3 , but no. 3, 4, and 5 are distributed in the range of 1.37 to 1.41 g / cm 3 , and this difference is considered to be a difference in the degree of defoaming.

また、No.1、2の一軸圧縮強度は345〜380kN/mであるのに、No.3〜No.5では15〜155kN/mと大きく異なっており、この原因はNo.3〜No.5の地盤改良柱からは気泡の脱泡が生じないために、気泡が弱点となったことに加え、気泡混合土の流動性不足により、セメントミルクとの混練りが不足し、強度の発現が小さくなったと考えられる。 No. Although the uniaxial compressive strength of 1 and 2 is 345 to 380 kN / m 2 , 3-No. No. 5 is significantly different from 15 to 155 kN / m 2 . 3-No. Since the bubbles were not defoamed from the ground improvement pillar of No. 5, the bubbles became weak points, and due to the lack of fluidity of the bubble-mixed soil, the kneading with the cement milk was insufficient, and the strength was not expressed. It seems that it has become smaller.

流動性を示す指標として、JIS R 5201に規定されるTF値が挙げられるが、気泡混合土のTF値を測定すると、No.1、2のTF値は、110mm以上であったのに対し、No.3〜No.5は100mm程度であった、このことより、110mmが脱泡及び混練りの限界値であると推定される。   As an index indicating fluidity, the TF value defined in JIS R 5201 can be mentioned. The TF values of 1 and 2 were 110 mm or more, whereas 3-No. 5 was about 100 mm. From this, it is estimated that 110 mm is the defoaming and kneading limit value.

これらの結果から、本発明の地盤改良工法では、強度の発現のために、気泡混合土のTF値を110mm以上とすることが好ましい。   From these results, in the ground improvement method of the present invention, it is preferable to set the TF value of the bubble mixed soil to 110 mm or more in order to develop strength.

また、さらに別の現場試験では、固化材が添加された固化材混合土の好ましい性状を、ベーンせん断強さ(地盤工学学会規準JGS1411-2003)とTF値の計測により明らかにした。   Further, in another on-site test, preferable properties of the solidified material mixed soil to which the solidified material was added were clarified by measuring the vane shear strength (Geotechnical Society Standard JGS1411-2003) and the TF value.

図6は、現場試験において、所要の地盤改良強度が得られた混合土のベーンせん断強さを測定した結果であり、図7は、同じ混合土のベーンせん断とTF値の関係を示している。   FIG. 6 is a result of measuring the vane shear strength of the mixed soil in which the required ground improvement strength was obtained in the field test, and FIG. 7 shows the relationship between the vane shear and the TF value of the same mixed soil. .

所要の地盤改良が得られた固化材混合土の性状として、図6ではベーンせん断強さが8.0kN/m程度以下であり、図7では、TF値が110mm以上を示している。 As the properties of the solidified material mixed soil in which the required ground improvement is obtained, the vane shear strength is about 8.0 kN / m 2 or less in FIG. 6, and the TF value is 110 mm or more in FIG.

これらの結果から、本発明の地盤改良工法では、強度の発現のために、固化材が添加された固化材混合土のベーンせん断強さが8.0kN/m以下、もしくはTF値が110mm以上とすることが好ましい。 From these results, in the ground improvement construction method of the present invention, the vane shear strength of the solidified material mixed soil to which the solidified material is added is 8.0 kN / m 2 or less, or the TF value is 110 mm or more, in order to develop strength. It is preferable that

これらの現場試験において使用した気泡は、起泡剤を25倍に発泡させて、単位体積重量が0.392kN/m、気泡粒径の中央値が100〜400μmの気泡を用いたが、発砲倍率が30倍としても同様な性状が得られることが室内試験で確認されている。 The bubbles used in these field tests were bubbles with a foaming agent foamed 25 times, a unit volume weight of 0.392 kN / m 3 , and a median bubble particle size of 100 to 400 μm. Laboratory tests have confirmed that similar properties can be obtained even at a magnification of 30 times.

本発明の地盤改良の掘削工程に用いる気泡は、発砲倍率が20〜30倍、気泡径の中央値が100〜400μmの範囲内の気泡を用いることが好ましい。   The bubbles used in the excavation process for ground improvement according to the present invention are preferably those having a firing ratio of 20 to 30 times and a median bubble diameter of 100 to 400 μm.

気泡を添加して掘削、細分化、混合を行うと、気泡の水分は乾燥した土粒子に吸着されて破泡する。そのために不飽和な土層を対象に改良を行う場合には、破泡が生じないように気泡とともにセメントミルクや水による加水が必要である。破泡を生じさせないためのセメントミルクや水による加水量は、加水後の含水比が表面含水比以上になる水量である。   When excavating, subdividing, and mixing by adding bubbles, the moisture in the bubbles is adsorbed by the dry soil particles and bubbles are broken. Therefore, when making an improvement on an unsaturated soil layer, it is necessary to add water with cement milk or water so that bubbles do not break. The amount of water added by cement milk or water so as not to cause foam breakage is the amount of water at which the water content ratio after the addition becomes equal to or greater than the surface water content ratio.

本発明の地盤改良工法に用いる固化材は、一般に公知の土壌固化材を用いることができ、これらのものとしては、例えば、セメント類、石灰類、石膏類の固化材を挙げることができる。これらの中でも、セメント類の固化材としてポルトランドセメントを主材としたものを好適に用いることができる。   As the solidifying material used in the ground improvement method of the present invention, generally known soil solidifying materials can be used, and examples thereof include cements, limes, and gypsum solidifying materials. Among these, those containing Portland cement as a main material can be suitably used as a cement solidifying material.

このポルトランドセメントは凝結反応において、完全な水和にいたるまでにセメント重量の25%の水と化学反応し、さらにセメント重量の15%をゲル水として結合するとされており、40%以上の水を加えると強度の低下を引き起こすことが一般に知られている。   This Portland cement is supposed to chemically react with 25% of the cement weight of water in the setting reaction until complete hydration, and 15% of the cement weight is bound as gel water. It is generally known that the addition causes a decrease in strength.

改良対象土中に含有する水量は、通常40%以上であるので、固化材ミルクを固化材として使用する場合は、施工可能な最小の含水比とすることが望ましい。現状の技術による合理的な圧送法としてポンプ圧送を考慮すると、ポンプ圧送できる最小の水固化材比(W/C)は約45%であるので、固化材ミルクを用いる場合の水固化材比は45%とすることが好ましい。   Since the amount of water contained in the soil to be improved is usually 40% or more, when using the solidified milk as a solidified material, it is desirable to have a minimum water content ratio that can be applied. Considering pumping as a rational pumping method based on the current technology, the minimum water-solidifying material ratio (W / C) that can be pumped is about 45%. It is preferable to set it to 45%.

さらに、最小の水固化材比を用いることにより、産廃処理の必要な排泥量も最小となるので、経済的にも有利になる。   Furthermore, by using the minimum water-solidifying material ratio, the amount of mud required for industrial waste treatment is minimized, which is economically advantageous.

上述の通り、気泡混合土あるいは気泡固化材混合土を固化させた時の圧縮強度を考慮した場合には、施工ができる範囲で水固化材比は出来る限り小さいほうが好ましい。そのため、水固化材比が0である、粉体状固化材を用いることもできる。   As described above, in consideration of the compressive strength when the cell-mixed soil or cell-solidifying material mixed soil is solidified, the water-solidifying material ratio is preferably as small as possible within the range where construction is possible. Therefore, a powdery solidifying material having a water solidifying material ratio of 0 can also be used.

この場合、粉体状固化材を気泡混合土又は、気泡固化材混合土中に断続的に、安定して送り出すための方法は特に限定されるものではないが、本発明の地盤改良工法においては、粉体状固化材を空気圧送により掘削翼または撹拌翼に送る方法を好適に採用することができる。   In this case, there is no particular limitation on the method for stably and stably sending the powder solidified material into the bubble mixed soil or the bubble solidified material mixed soil, but in the ground improvement method of the present invention, A method of sending the powdered solidified material to the excavation blade or the stirring blade by pneumatic feeding can be suitably employed.

なお、粉体状固化材を上記のように空気圧送等で送り出して用いる場合には、気泡混合土又は気泡が混合した固化材混合土の流動性が変動することが考えられるため、施工ができる範囲であればTF値、ベーンせん断強さ及び単位体積重量を限定する必要はない。   In addition, when the powdered solidified material is sent out by pneumatic feeding or the like as described above, the fluidity of the mixed solid material or the mixed solid material mixed with bubbles may be changed, so that the construction can be performed. If it is a range, it is not necessary to limit TF value, vane shear strength, and unit volume weight.

気泡を破泡剤を用いて破泡させると、気泡は合体を繰り返し、大径となって上昇をするが、この上昇をより効率的に促進させるために、気泡の通り道を構成させることが好ましい。   When bubbles are broken using a foam breaker, the bubbles repeatedly coalesce and increase in diameter and rise, but in order to promote this rise more efficiently, it is preferable to configure the passage of bubbles. .

そのために、地盤改良機のロッドの形状を矩形とすることにより、ロッドの回転によりロッドと混合土の間に空隙をつくり、この空隙を気泡の通り道として構成させることにより脱泡を容易にすることができる。   Therefore, by making the shape of the rod of the ground improvement machine rectangular, a void is created between the rod and the mixed soil by the rotation of the rod, and this void is configured as a passage for bubbles to facilitate defoaming. Can do.

さらに粉体状固化材を攪拌翼まで空気圧送すると、圧送された空気は周辺地盤から漏気、噴発するなどの周辺地盤への影響度が大きいので、排気にも有効となる。   Furthermore, when the powdered solidified material is pneumatically fed to the stirring blade, the air that is pumped has a great influence on the surrounding ground such as leakage and eruption from the surrounding ground, and is effective for exhaust.

図8に本発明の地盤改良工法の工程概略図を示す。まず、掘削土に気泡を加え(図8(A))、さらに固化材を加えると、気泡と固化材の体積に相当する体積の排泥土が地上に排出する(図8(B))。次に、気泡を脱泡させる工程においては体積減少が生じるので、排泥土が孔中に引き戻される(図8(C))。この排泥と引戻しを円滑に行い、かつ排泥土が掘削現場の周辺に流出しないように、また、固化処理終了後(図8(D))に、改良体が地表面と同程度の位置となるように調整するためにも図に示すケーシングを用いるのが好ましい。   FIG. 8 shows a process schematic diagram of the ground improvement method of the present invention. First, when bubbles are added to the excavated soil (FIG. 8A), and further solidified material is added, a volume of waste mud soil corresponding to the volume of the bubbles and the solidified material is discharged to the ground (FIG. 8B). Next, since the volume is reduced in the step of defoaming the bubbles, the waste mud soil is pulled back into the hole (FIG. 8C). This drainage and pullback are performed smoothly, and so that the drainage mud does not flow around the excavation site, and after the solidification process (FIG. 8 (D)), the improved body is positioned at the same level as the ground surface. It is preferable to use the casing shown in FIG.

本発明の地盤改良工法に用いる掘削翼及び攪拌翼を有する地盤改良機としては、図1に示した従来型のものでもよいし、気泡を吐出することができるようにした図9のような構成のものでもよい。   As the ground improvement machine having the excavation blade and the stirring blade used in the ground improvement method of the present invention, the conventional type shown in FIG. 1 may be used, or the structure as shown in FIG. It may be.

また、本発明の方法については、撹拌翼の周速は最外縁部が最大なので、外縁に近いほうが土塊の切断・細分化には効率的である。そこで大きな土塊を外縁方向へ強制的に移動させ、切断することが混合にとって望ましい。   In the method of the present invention, since the peripheral speed of the stirring blade is the maximum at the outermost edge, the closer to the outer edge is more efficient for cutting and subdividing the clot. Therefore, it is desirable for mixing to forcibly move and cut a large mass of soil in the direction of the outer edge.

この効果を促進するため、固定翼の形状を、図10、図11に示すように中心部より外径部に向かって面積が減少するような形状として、杭体中心部の被混合体を外周部へ誘導することが考慮される。このような形状を持つ固定翼を使用することにより、半径方向での土塊の切断を行い、良好な撹拌混合がなされる。   In order to promote this effect, the shape of the fixed wing is such that the area decreases from the center toward the outer diameter as shown in FIGS. It is considered to guide to the part. By using the fixed wing having such a shape, the earth lump is cut in the radial direction, and good stirring and mixing are performed.

さらにまた、土塊が攪拌翼と同方向に回転していると、撹拌翼と土塊との衝突速度は低減するので、この現象を抑制するために、固定翼を設けるが、攪拌翼の効果をより増大させるために、撹拌翼を掘削翼と逆回転させることにより、撹拌翼と土塊の実際の衝突速度は増加し、相対的な周速Vは増大することとなる。図12に示す固定翼に取り付けた逆転ギアを用いて逆回転する撹拌翼を使用することにより、土塊とのより早い衝突速度が得られ、良好な撹拌混合がなされることとなる。   Furthermore, since the collision speed between the stirring blade and the earth lump is reduced when the earth lump rotates in the same direction as the stirring blade, a fixed blade is provided to suppress this phenomenon. In order to increase, the actual impingement speed of the stirring blade and the clot increases and the relative peripheral speed V increases by rotating the stirring blade counterclockwise with the excavation blade. By using a stirring blade that reversely rotates using a reverse gear attached to the fixed blade shown in FIG. 12, a faster collision speed with the soil mass is obtained, and good stirring and mixing are performed.

また、ギアの比率を変えることにより、撹拌翼の周速の増加も図り、さらなる良好な撹拌混合も図られる。   Further, by changing the gear ratio, the peripheral speed of the stirring blade can be increased, and further excellent stirring and mixing can be achieved.

現行、撹拌翼を複数配置した施工機械もあるが、翼の回転が同方向であり土塊は上位に移動するほど攪拌翼と同一方向に移動する現象が加速されてしまう傾向がある。   At present, there is a construction machine in which a plurality of stirring blades are arranged. However, as the blades rotate in the same direction and the earth lump moves upward, the phenomenon of moving in the same direction as the stirring blades tends to be accelerated.

そこで図12に示すように、逆転翼を交互に配置することにより、土塊の回転方向は転向し、上位の撹拌翼に対し衝突速度の増加が図られ、上記の欠点を補い、なおかつ更なる破砕、撹拌効率の増加が図られる。   Therefore, as shown in FIG. 12, by alternately arranging the reversing blades, the rotation direction of the clot is turned, the collision speed is increased with respect to the upper stirring blade, and the above-mentioned drawback is compensated, and further crushing is performed. The stirring efficiency can be increased.

発明の地盤改良工法は、高塑性粘土においても細分化を行うために、攪拌翼の周速を高速で回転させ、攪拌翼の回転エネルギーにより土塊を切断し、細分化する掘削工程、また、気泡を混合する掘削混合工程と、固化材との混合状態を均質に混合する固化処理工程を含むものである。   The ground improvement method of the invention is an excavation process in which the peripheral speed of the stirring blade is rotated at a high speed and the clot is cut and subdivided by the rotational energy of the stirring blade in order to subdivide even in the high plastic clay. And a solidification process step of mixing the mixed state of the solidified material homogeneously.

土塊と固化材を均質な混合体とすることにより、均質な強度を持ち、かつ連続的な固化体を得ることができ、結果として固化材の添加量を少なくし、かつ排泥量も少なくすることができる。また、掘削速度が増大し施工サイクルの短縮が図られ、さらには、均質な固化体を得ることにより、過大な設計をする必要がなくなり、工事コストの低減を図ることが可能となる。
<管理方法>
また、本地盤改良工法において、施工中に確実に所要品質の改良体が得られるように施工管理を行うことは非常に重要である。
By making the soil mass and the solidified material into a homogeneous mixture, it is possible to obtain a solidified body having a uniform strength and a continuous strength. As a result, the amount of solidified material added is reduced and the amount of mud is also reduced. be able to. Further, the excavation speed is increased and the construction cycle is shortened. Furthermore, by obtaining a homogeneous solidified body, it is not necessary to carry out an excessive design, and the construction cost can be reduced.
<Management method>
In this ground improvement method, it is very important to perform construction management so that an improved body of required quality can be obtained during construction.

上記の現場実験により、気泡混合土の単位体積重量が10.3kN/m以上、テーブルフロー値(TF値)が110mm以上であれば、所要の品質の地盤改良体が得られることが確認されたので、本地盤改良工法における管理方法のひとつとして、施工中に気泡混合土の一部を地中から採取し、採取した気泡混合土の単位体積重量が10.3kN/m以上、テーブルフロー値(TF値)が110mm以上を管理することが挙げられる。 From the above field experiment, it is confirmed that if the unit volume weight of the air-mixed soil is 10.3 kN / m 3 or more and the table flow value (TF value) is 110 mm or more, a ground improvement body of the required quality can be obtained. Therefore, as one of the management methods in this ground improvement method, part of the bubble mixed soil was sampled from the ground during construction, and the unit volume weight of the sampled bubble mixed soil was 10.3 kN / m 3 or more, table flow It is mentioned that the value (TF value) is managed to be 110 mm or more.

また、上記の現場実験により、固化材混合土の単位体積重量が10.3kN/m以上、テーブルフロー値(TF値)が110mm以上もしくは、単位体積重量が10.3kN/m以上、ベーンせん断強さが8.0kN/m以下であれば、所要の品質の地盤改良体が得られることが確認されたので、本地盤改良工法における管理方法のひとつとして、固化材混合土の一部を地中から採取し、採取した単位体積重量が10.3kN/m以上、テーブルフロー値(TF値)が110mm以上、もしくは、単位体積重量が10.3kN/m以上、ベーンせん断強さを8.0kN/m以下に管理することが挙げられる。 Further, according to the above-mentioned field experiment, the unit volume weight of the solidified material mixed soil is 10.3 kN / m 3 or more, the table flow value (TF value) is 110 mm or more, or the unit volume weight is 10.3 kN / m 3 or more. If the shear strength is 8.0 kN / m 2 or less, it has been confirmed that a ground improvement body of the required quality can be obtained. As one of the management methods in this ground improvement construction method, a part of the solidified material mixed soil Is collected from the ground, the unit volume weight collected is 10.3 kN / m 3 or more, the table flow value (TF value) is 110 mm or more, or the unit volume weight is 10.3 kN / m 3 or more, vane shear strength Is controlled to 8.0 kN / m 2 or less.

ベーンせん断強さは、地中から採取した試料をベーンせん断試験から求めることもできるが、地中から採取することなしに、撹拌機の撹拌時のトルクの測定値から求めることもできるので、本地盤改良工法の管理方法のひとつとして、撹拌機のトルク値を管理することが挙げられる。   The vane shear strength can be obtained from the sample taken from the ground by the vane shear test, but it can also be obtained from the measured torque of the stirrer without taking it from the ground. One of the management methods of the panel improvement method is to manage the torque value of the agitator.

Claims (24)

掘削翼及び攪拌翼を有する地盤改良機を用いて、掘削翼により掘り起こした掘削土塊を回転する攪拌翼により切断・細分化する掘削工程を含む地盤改良工法であって、掘削土塊の土質のせん断強度に対応して、土塊の切断に必要とされる平均周速以上で攪拌翼を回転させる掘削工程と、掘削土塊と固化材を混合する固化処理工程を含むことを特徴とする地盤改良工法。   A soil improvement method that includes a drilling process that uses a ground improvement machine having a drilling blade and a stirring blade to cut and subdivide the excavated soil mass excavated by the drilling blade with a rotating stirring blade. The ground improvement construction method characterized by including the excavation process which rotates a stirring blade more than the average peripheral speed required for the cutting | disconnection of a clot, and the solidification process process which mixes a excavation clot and a solidification material corresponding to this. 掘削土塊に気泡もしくは気泡と水を添加して気泡混合土を形成する掘削混合工程を含む掘削工程の後に、気泡混合土に固化材を添加・混合し、固化材混合土を造成する固化処理工程を含むことを特徴とする請求項1に記載の地盤改良工法。   Solidification process of adding solidified material to the air-blended soil and creating solidified material-mixed soil after the excavation step, including the excavated and mixed step of adding air bubbles or air bubbles and water to the excavated soil mass. The ground improvement construction method of Claim 1 characterized by the above-mentioned. 掘削土塊に気泡と固化材もしくは気泡と水と固化材を同時に添加して気泡混合土を形成する掘削混合工程を含む掘削工程の後に、気泡混合土に固化材を添加・混合し、固化材混合土を造成する固化処理工程を含むことを特徴とする請求項1に記載の地盤改良工法。   After the excavation process, including the excavation and mixing process, in which air bubbles and solidification material or air bubbles and water and solidification material are added simultaneously to the excavated soil mass, the solidification material is added to and mixed with the air bubble mixed soil. The ground improvement construction method according to claim 1, further comprising a solidification treatment step for creating soil. 掘削土塊に気泡と固化材もしくは気泡と水と固化材を同時に添加して気泡混合土を形成する掘削混合工程を含む掘削工程の後に、破泡剤を添加し、破泡しながら固化材混合土を造成する固化処理工程を含むことを特徴とする請求項1に記載の地盤改良工法。   After the excavation process including the excavation and mixing process in which bubbles and solidified material or air bubbles and water and solidified material are added simultaneously to the excavated soil mass, the foam breaker is added and the solidified material mixed soil while foaming. The ground improvement construction method according to claim 1, further comprising a solidification treatment step of forming a slag. 気泡混合土に、破泡剤を加えた固化材を添加して、気泡を破泡しながら固化材混合土を造成する固化処理工程を含むこと特徴とする請求項2又は3に記載の地盤改良工法。   The ground improvement of Claim 2 or 3 including the solidification process process which adds the solidification material which added the foam breaker to the bubble mixing soil, and produces | generates solidification material mixed soil, foaming a bubble. Construction method. 気泡混合土の性状が、単位体積重量を10.3kN/m以上、テーブルフロー値(TF値)が110mm以上となるように調整する掘削工程を含むことを特徴とする請求項2から5のいずれか一項に記載の地盤改良工法。 The property of the bubble mixed soil includes an excavation step of adjusting so that the unit volume weight is 10.3 kN / m 3 or more and the table flow value (TF value) is 110 mm or more. The ground improvement construction method according to any one of the above. 固化材混合土の性状が、単位体積重量を10.3kN/m以上、ベーンせん断強さが8.0kN/m以下となるように調整する掘削工程と固化処理工程を含むことを特徴とする請求項2から6のいずれか一項に記載の地盤改良工法。 The property of the solidified material mixed soil includes an excavation step and a solidification treatment step in which the unit volume weight is adjusted to be 10.3 kN / m 3 or more and the vane shear strength is 8.0 kN / m 2 or less. The ground improvement construction method according to any one of claims 2 to 6. 固化材混合土の性状が、単位体積重量を10.3kN/m以上、テーブルフロー値(TF値)が110mm以上となるように調整する掘削工程と固化処理工程を含むことを特徴とする請求項2から6のいずれか一項に記載の地盤改良工法。 The property of the solidified material mixed soil includes an excavation step and a solidification treatment step in which the unit volume weight is adjusted to be 10.3 kN / m 3 or more and the table flow value (TF value) is 110 mm or more. Item 7. The ground improvement method according to any one of Items 2 to 6. 気泡の添加を掘削翼から行い、気泡混合土を作る掘削混合工程を含むことを特徴とする請求項2から8のいずれか一項に記載の地盤改良工法。   The ground improvement construction method according to any one of claims 2 to 8, further comprising an excavation and mixing step of adding air bubbles from the excavation blades to create air bubble mixed soil. 固化材の添加を掘削翼または撹拌翼から行い、固化処理工程を含むことを特徴とする請求項1から8記載のいずれか一項に記載の地盤改良工法。   The ground improvement method according to any one of claims 1 to 8, wherein the solidifying material is added from an excavation blade or a stirring blade, and includes a solidification treatment step. 固化材として、ポンプ圧送できる最小水固化材比45%以上となる水量を加えたスラリー状の固化材ミルクを用いて固化処理工程を含むことを特徴とする請求項1から10のいずれか一項に記載の地盤改良工法。   The solidification process is included using the solidified material milk of the slurry form which added the water quantity used as 45% or more of the minimum water solidified material ratio which can be pumped as a solidified material, The solidification process process is included. The ground improvement method described in 1. 固化材として粉体状固化材を用いて固化処理工程を含むことを特徴とする請求項1から10のいずれか一項に記載の地盤改良工法。   The ground improvement construction method according to any one of claims 1 to 10, further comprising a solidification treatment step using a powdery solidification material as the solidification material. 気泡径の中央値が100〜400μmの気泡を用いることを特徴とする請求項2から12のいずれかに記載の地盤改良工法。   The ground improvement method according to any one of claims 2 to 12, wherein bubbles having a median bubble diameter of 100 to 400 µm are used. 少なくとも気泡が消失しない必要な量以上の水を添加することを特徴とする請求項2から13のいずれか一項に記載の地盤改良工法。   The ground improvement construction method according to any one of claims 2 to 13, wherein at least a necessary amount of water that does not eliminate bubbles is added. 固化材として、少なくともセメント類、石灰類及び石膏類のいずれかの固化材を用いることを特徴とする請求項1から14のいずれか一項に記載の地盤改良工法。   The ground improvement construction method according to any one of claims 1 to 14, wherein at least one of cements, limes, and gypsums is used as the solidifying material. 掘削翼及び攪拌翼を保持するロッドの形状が矩形であり、このロッドの回転時に圧送空気、破泡剤により大きくなった気泡を地上に逃がすための空隙を造る固化処理工程を含むことを特徴とする請求項1から15のいずれか一項に記載の地盤改良工法。   The shape of the rod holding the excavation blade and the stirring blade is rectangular, and includes a solidification process step for creating a gap for allowing air bubbles enlarged by the compressed air and the foam breaker to escape to the ground when the rod rotates. The ground improvement construction method according to any one of claims 1 to 15. 掘削工程もしくは固化処理工程で作られた混合土の増減に対して、地上にケーシングを立設して施工することを特徴とする請求項1から16のいずれか一項に記載の地盤改良工法。   The ground improvement construction method according to any one of claims 1 to 16, wherein a casing is erected on the ground for construction of the mixed soil produced in the excavation process or the solidification process. 地盤改良機に、掘削した土塊を外周部に誘導する形状とした固定翼を用いることを特徴とする請求項1から17のいずれか一項に記載の地盤改良工法。   The ground improvement method according to any one of claims 1 to 17, wherein a fixed wing having a shape that guides an excavated mass to an outer peripheral portion is used for the ground improvement machine. 地盤改良機に、掘削翼と逆回転する攪拌翼を用いることを特徴とする請求項1から18のいずれか一項に記載の地盤改良工法。   The ground improvement construction method according to any one of claims 1 to 18, wherein the ground improvement machine uses a stirring blade that rotates reversely to the excavation blade. 地盤改良機の攪拌翼を多段に取り付け、これらが互いに逆回転するようにしたことを特徴とする請求項1から19のいずれか一項に記載の地盤改良工法。   The ground improvement method according to any one of claims 1 to 19, wherein the agitating blades of the ground improvement machine are attached in multiple stages so that they rotate in reverse with each other. 気泡混合土の一部を採取し、採取した気泡混合土の単位体積重量が10.3kN/m以上、テーブルフロー値(TF値)が110mm以上を管理することを特徴とする地盤改良工法の管理方法。 A part of the bubble mixed soil is sampled, and the unit volume weight of the collected bubble mixed soil is controlled to be 10.3 kN / m 3 or more and the table flow value (TF value) is 110 mm or more. Management method. 固化材混合土の一部を採取し、採取した固化材混合土の単位体積重量が10.3kN/m以上、テーブルフロー(TF値)が110mm以上を管理することを特徴とする地盤改良工法の管理方法。 A part of solidified material mixed soil is sampled, and the ground volume improvement method is characterized in that the unit volume weight of the collected solidified material mixed soil is controlled to be 10.3 kN / m 3 or more and the table flow (TF value) is 110 mm or more. Management method. 固化材混合土の一部を採取し、採取した固化材混合土の単位体積重量が10.3kN/m以上、ベーンせん断強さが8.0kN/m以下を管理することを特徴とする地盤改良工法の管理方法。 A part of the solidified material mixed soil is sampled, and the unit volume weight of the collected solidified material mixed soil is controlled to be 10.3 kN / m 3 or more and the vane shear strength is controlled to 8.0 kN / m 2 or less. Management method of ground improvement method. 撹拌機のトルク値を測定することで、固化材混合土のベーンせん断強さが8.0kN/m以下に管理することを特徴とする地盤改良工法の管理方法。 A management method of the ground improvement method, wherein the vane shear strength of the solidified material mixed soil is controlled to 8.0 kN / m 2 or less by measuring the torque value of the agitator.
JP2011194389A 2010-12-28 2011-09-06 Ground improvement method Active JP5898889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194389A JP5898889B2 (en) 2010-12-28 2011-09-06 Ground improvement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010292948 2010-12-28
JP2010292948 2010-12-28
JP2011194389A JP5898889B2 (en) 2010-12-28 2011-09-06 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2012149503A true JP2012149503A (en) 2012-08-09
JP5898889B2 JP5898889B2 (en) 2016-04-06

Family

ID=46791991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194389A Active JP5898889B2 (en) 2010-12-28 2011-09-06 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5898889B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213250A (en) * 2013-04-24 2014-11-17 株式会社大林組 In-situ purification method and system for contaminated soil using air bubble and iron powder slurry
JP2015063888A (en) * 2013-08-27 2015-04-09 学校法人早稲田大学 Construction method for soil cement underground continuous wall
JP2017020179A (en) * 2015-07-07 2017-01-26 株式会社テノックス九州 Drilling and agitation device with corotation prevention blade
CN106592605A (en) * 2017-01-17 2017-04-26 浙江勤业建工集团有限公司 Construction method of foundation pit bracing with tri-axial stirring piles overlapped with reinforced concrete cast-in-place piles to be driven
JP2018150775A (en) * 2017-03-15 2018-09-27 株式会社不動テトラ Agitation mixing apparatus
JP2018150773A (en) * 2017-03-15 2018-09-27 株式会社不動テトラ Agitation mixing apparatus
JP2019015022A (en) * 2017-07-03 2019-01-31 学校法人早稲田大学 Construction method for soil cement underground continuous wall
JP2021046675A (en) * 2019-09-17 2021-03-25 株式会社加藤建設 Construction method of ground improvement work
JP2021080776A (en) * 2019-11-21 2021-05-27 藤井 健之 Pile construction method, and pile
CN113818496A (en) * 2021-08-20 2021-12-21 华电金沙江上游水电开发有限公司拉哇分公司 Method for evaluating compactness of vibroflotation gravel pile based on digital drilling

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761108A (en) * 1980-09-30 1982-04-13 Nitto Techno Group:Kk Method and apparatus for injection and stirring of powdered body
JPH04153406A (en) * 1990-10-17 1992-05-26 Sumitomo Cement Co Ltd Ground improvement method
JPH04327607A (en) * 1991-04-26 1992-11-17 Kotoo:Kk Mixing and agitating device
JPH06146259A (en) * 1992-11-10 1994-05-27 Ask Kenkyusho:Kk Forming method of columnar body in ground
JPH0885940A (en) * 1994-09-20 1996-04-02 Ohbayashi Corp Mixing method with stirring
JP2002003843A (en) * 2000-06-23 2002-01-09 Sumitomo Osaka Cement Co Ltd Additive for soil-improvement construction method
JP2006232600A (en) * 2005-02-24 2006-09-07 San Nopco Ltd Fluidizing agent for soil cement
JP2008057255A (en) * 2006-08-31 2008-03-13 Kokudo Sogo Kensetsu Kk Relative agitator for deep mixing processing and deep mixing method of soil stabilization
JP2011226161A (en) * 2010-04-20 2011-11-10 Ohbayashi Corp Soil improving device and soil improving method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761108A (en) * 1980-09-30 1982-04-13 Nitto Techno Group:Kk Method and apparatus for injection and stirring of powdered body
JPH04153406A (en) * 1990-10-17 1992-05-26 Sumitomo Cement Co Ltd Ground improvement method
JPH04327607A (en) * 1991-04-26 1992-11-17 Kotoo:Kk Mixing and agitating device
JPH06146259A (en) * 1992-11-10 1994-05-27 Ask Kenkyusho:Kk Forming method of columnar body in ground
JPH0885940A (en) * 1994-09-20 1996-04-02 Ohbayashi Corp Mixing method with stirring
JP2002003843A (en) * 2000-06-23 2002-01-09 Sumitomo Osaka Cement Co Ltd Additive for soil-improvement construction method
JP2006232600A (en) * 2005-02-24 2006-09-07 San Nopco Ltd Fluidizing agent for soil cement
JP2008057255A (en) * 2006-08-31 2008-03-13 Kokudo Sogo Kensetsu Kk Relative agitator for deep mixing processing and deep mixing method of soil stabilization
JP2011226161A (en) * 2010-04-20 2011-11-10 Ohbayashi Corp Soil improving device and soil improving method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213250A (en) * 2013-04-24 2014-11-17 株式会社大林組 In-situ purification method and system for contaminated soil using air bubble and iron powder slurry
JP2015063888A (en) * 2013-08-27 2015-04-09 学校法人早稲田大学 Construction method for soil cement underground continuous wall
JP2017020179A (en) * 2015-07-07 2017-01-26 株式会社テノックス九州 Drilling and agitation device with corotation prevention blade
CN106592605A (en) * 2017-01-17 2017-04-26 浙江勤业建工集团有限公司 Construction method of foundation pit bracing with tri-axial stirring piles overlapped with reinforced concrete cast-in-place piles to be driven
JP2018150775A (en) * 2017-03-15 2018-09-27 株式会社不動テトラ Agitation mixing apparatus
JP2018150773A (en) * 2017-03-15 2018-09-27 株式会社不動テトラ Agitation mixing apparatus
JP2019015022A (en) * 2017-07-03 2019-01-31 学校法人早稲田大学 Construction method for soil cement underground continuous wall
JP2021046675A (en) * 2019-09-17 2021-03-25 株式会社加藤建設 Construction method of ground improvement work
JP2021080776A (en) * 2019-11-21 2021-05-27 藤井 健之 Pile construction method, and pile
JP7128794B2 (en) 2019-11-21 2022-08-31 健之 藤井 Pile construction method and pile
CN113818496A (en) * 2021-08-20 2021-12-21 华电金沙江上游水电开发有限公司拉哇分公司 Method for evaluating compactness of vibroflotation gravel pile based on digital drilling

Also Published As

Publication number Publication date
JP5898889B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5898889B2 (en) Ground improvement method
US20130305963A1 (en) Method of producing activated construction mixture
CN107379248A (en) A kind of construction concrete central mix plant of uniform stirring
JP5507591B2 (en) Excavation stirring method for hard ground
JP4905394B2 (en) Excavator
CN205683866U (en) The dual massing machine of filling in mine
JP5513182B2 (en) Stepwise solidification method
JP4708489B2 (en) Soil, soil and ground improvement machines with bucket mixer
JP6555849B2 (en) Ground improvement device
CN211466906U (en) Mortar screening mixer
JP2008095401A (en) Single-shaft convective mixing and agitation apparatus for soil improvement
Hatem et al. Rheological properties of low pH cement-palygorskite injection grout
JP2005009240A (en) Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile
JP3831282B2 (en) Pile circumference fixing liquid and underground pile creation method
JPH11131469A (en) Earth auger excavator and constructing method for large depth column type continuous underground wall in collapsible gravel bed
JP6363988B2 (en) Cement milk manufacturing method and manufacturing apparatus
CN214687238U (en) Dustproof cement mortar mixer
CN214082113U (en) High-efficient agitating unit of concrete
CN212440905U (en) Well cementation additive mixing arrangement
CN203579878U (en) Horizontal foaming silicon-calcium concrete mixer
CN209665850U (en) A kind of improved concrete mixer
JP2008308900A (en) Device and method for forming underground pile
JPH0615766B2 (en) Excavation mixing agitator used for ground improvement
Chen et al. Investigating the time-varying effect and accurate measurement method of wet shotcrete rheology based on eBT2 rheometer
JP2022044989A (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5898889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250