JP2012149330A - Plated steel excellent in corrosion resistance and workability, and method for manufacturing the same - Google Patents

Plated steel excellent in corrosion resistance and workability, and method for manufacturing the same Download PDF

Info

Publication number
JP2012149330A
JP2012149330A JP2011010840A JP2011010840A JP2012149330A JP 2012149330 A JP2012149330 A JP 2012149330A JP 2011010840 A JP2011010840 A JP 2011010840A JP 2011010840 A JP2011010840 A JP 2011010840A JP 2012149330 A JP2012149330 A JP 2012149330A
Authority
JP
Japan
Prior art keywords
plating
layer
diffusion
corrosion resistance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011010840A
Other languages
Japanese (ja)
Other versions
JP5668490B2 (en
Inventor
Kiyokazu Ishizuka
清和 石塚
Takehiro Takahashi
武寛 高橋
Kenichiro Matsumura
賢一郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011010840A priority Critical patent/JP5668490B2/en
Publication of JP2012149330A publication Critical patent/JP2012149330A/en
Application granted granted Critical
Publication of JP5668490B2 publication Critical patent/JP5668490B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plated steel which is excellent in corrosion resistance and workability, particularly excellent in corrosion resistance at a relatively low amount of deposited Ni, and can withstand severe processing such as a processing into a battery can, and to provide a method for manufacturing the same.SOLUTION: The steel is excellent in corrosion resistance and workability and has a Ni-Fe-Mn diffusion layer formed on its surface, wherein a surface layer of the diffusion layer has a Fe concentration of 10-50% and a Mn concentration of 0.01-1%, the diffusion layer contains 5-40 g/mof Ni, and an interface between the diffusion layer and the base steel is substantially a Ni-Fe diffusion plating layer. The steel can be formed by carrying out Ni-Mn alloy plating or Ni-Fe-Mn alloy plating and subsequently carrying out a thermal diffusion treatment.

Description

本発明は、耐食性、加工性に優れたNi系めっき鋼材に関するものであり、特に比較的低付着量のNiで耐食性が優れ、電池缶をはじめとする厳しい加工にも耐えうるめっき鋼材および製造方法に関する。   TECHNICAL FIELD The present invention relates to a Ni-based plated steel material excellent in corrosion resistance and workability, and in particular, a plated steel material and manufacturing method capable of withstanding severe processing such as a battery can with excellent resistance to corrosion with a relatively low adhesion amount of Ni. About.

電気電子器具、電池缶に代表される容器材料、バインダー等の日用家電部材等に用いられる鋼材には、耐食性、加工性等の観点から多くの場合Niめっきが施される。Niは自然環境中で、また種々の薬品に対しても安定であり、また耐熱性にも優れ、その表面外観の変化も少ないことから、前記用途以外にも種々の展開が期待されている。   In many cases, Ni plating is applied to steel materials used for electric and electronic appliances, container materials represented by battery cans, daily household electrical appliance members such as binders, and the like from the viewpoint of corrosion resistance, workability, and the like. Ni is stable in various environments and is resistant to various chemicals, is excellent in heat resistance, and has little change in the appearance of its surface. Therefore, various developments other than the above applications are expected.

Niめっきでは、めっきが硬質なため、加工時のめっき剥離等が問題となりやすいが、Niめっき後に熱処理することで、めっきと地鉄の界面にFe−Ni拡散層を形成して密着性を向上させると同時に、Niを再結晶、軟質化してめっき層の延展性を向上させる方法が知られており、加工性は大幅に改善される(特許文献1)。   In Ni plating, since plating is hard, peeling of the plating during processing tends to be a problem, but heat treatment after Ni plating improves the adhesion by forming a Fe-Ni diffusion layer at the interface between plating and ground iron At the same time, there is known a method of recrystallizing and softening Ni to improve the spreadability of the plating layer, and the workability is greatly improved (Patent Document 1).

前記技術では、表層Niが再結晶、軟質化しているため、加工時の摺動性や耐疵付き性が不足し、結果として加工性が悪化する場合もある。これに対して、特許文献2では、表層に加熱により硬化したNi−P合金層を設けることで、表層を硬質化して耐疵付き性を改善している。しかしながら、Ni−P合金層はNiに比較して融点が低いため、加熱処理時に軟化あるいは溶融して設備を汚染する問題が発生しやすい。   In the above technique, since the surface layer Ni is recrystallized and softened, the slidability and the scratch resistance during processing are insufficient, and as a result, the workability may deteriorate. On the other hand, in patent document 2, the surface layer is hardened by providing the surface layer with the Ni-P alloy layer hardened | cured by heating, and the wrinkle resistance is improved. However, since the Ni—P alloy layer has a lower melting point than Ni, there is a problem that the facility is softened or melted during the heat treatment to contaminate the equipment.

特許文献3では、Fe−Ni拡散層を介して形成されている再結晶軟質化されたNiめっき層と、更にその上層に加熱により硬化していないNi−Pめっき層を有することを特徴とする電池缶用Niめっき鋼板が示されており、前述のような問題なく、耐疵付き性を改善できる。しかしながら、この技術は、Niめっき、熱拡散処理後に再度Ni−Pめっきを行っており、工程が複雑であるとともに、加工の条件によってはNi−Pめっき層の密着性が不足する場合もある。   Patent Document 3 is characterized by having a recrystallized and softened Ni plating layer formed through an Fe-Ni diffusion layer and an Ni-P plating layer that is not hardened by heating on the upper layer. An Ni-plated steel sheet for battery cans is shown, and the scratch resistance can be improved without the above-mentioned problems. However, in this technique, Ni-P plating is performed again after Ni plating and thermal diffusion treatment, the process is complicated, and the adhesion of the Ni-P plating layer may be insufficient depending on processing conditions.

以上に述べたいずれの技術も、耐食性については通常のNiめっきからの改善効果は微々たるものである。Niは電気的に鋼材よりも貴であるため、亜鉛系めっきのような犠牲防食作用は期待できず、不可避的に存在するめっきピンホール部からの鉄錆(赤錆)発生が問題となる場合がある。そういった場合には、ニッケルの付着量を極端に大きくするといった経済的にきわめて不利な対策が必要となる。   In any of the technologies described above, the effect of improvement from ordinary Ni plating is insignificant with respect to corrosion resistance. Since Ni is electrically nobler than steel, sacrificial anticorrosive action like zinc-based plating cannot be expected, and iron rust (red rust) generation from the plating pinhole part that inevitably exists may be a problem. is there. In such a case, it is necessary to take an extremely disadvantageous economical measure such as extremely increasing the amount of nickel deposited.

一方、Fe−Ni拡散層の組成、厚みを制御することでピンホールは軽減され、また、貴なNiと卑なFeとの電位差腐食も緩和されることから、耐食性向上効果が得られることが知られている(特許文献4)ものの、より厳しい腐食環境においては十分とはいえない。   On the other hand, by controlling the composition and thickness of the Fe—Ni diffusion layer, pinholes are reduced, and the potential difference corrosion between noble Ni and base Fe is also alleviated, so that an effect of improving corrosion resistance can be obtained. Although known (Patent Document 4), it is not sufficient in a more severe corrosive environment.

また、特許文献5では、MnめっきとNiめっきをこの順で施し、熱拡散処理によって合金化することで耐食性を改善することが示されているが、このMnめっきとNiめっきの複合めっきでは、加工性が不十分である。   In Patent Document 5, it is shown that the Mn plating and the Ni plating are performed in this order, and the corrosion resistance is improved by alloying by thermal diffusion treatment. In the composite plating of the Mn plating and the Ni plating, Processability is insufficient.

特開昭61−235594号公報JP 61-235594 A 特公平5−25958号公報Japanese Patent Publication No. 5-25958 特許第4031679号公報Japanese Patent No. 4031679 特開平6−2104号公報JP-A-6-2104 特開2009−203497号公報JP 2009-203497 A

本発明は、耐食性、加工性に優れ、特に低付着量でも耐食性が優れ、電池缶をはじめとする厳しい加工にも耐えうるNi系めっき鋼材および製造方法の提供を目的とする。
また、従来技術でしばしば用いられる複数種類のめっきを用いることなく、一種類のめっきと一回の熱拡散処理で、耐食性と加工性に優れためっき鋼材を得ることも目的とする。
An object of the present invention is to provide a Ni-based plated steel material and a manufacturing method that are excellent in corrosion resistance and workability, have excellent corrosion resistance even at a low adhesion amount, and can withstand severe processing including battery cans.
Another object of the present invention is to obtain a plated steel material excellent in corrosion resistance and workability by one type of plating and one thermal diffusion treatment without using a plurality of types of plating often used in the prior art.

本発明の要旨とするところは、
(1)鋼材表面にNi−Fe−Mn拡散めっき層が形成され、前記拡散めっき層表層のFe濃度が10%質量以上50質量%以下、Mn濃度が0.01質量%以上1質量%以下であり、前記拡散層中のNi量が5〜40g/m2であり、下地鋼材との界面部のめっきが実質的にNi−Fe拡散合金層であることを特徴とする耐食性、加工性に優れためっき鋼材、
The gist of the present invention is that
(1) A Ni—Fe—Mn diffusion plating layer is formed on the surface of the steel material, and the Fe concentration in the surface layer of the diffusion plating layer is 10% by mass to 50% by mass, and the Mn concentration is 0.01% by mass to 1% by mass. Yes, the Ni content in the diffusion layer is 5 to 40 g / m 2 , and the plating at the interface with the base steel material is substantially a Ni—Fe diffusion alloy layer. Plated steel,

(2)鋼材に、Ni−Mn合金めっきまたはNi−Fe−Mn合金めっきを施し、次いで熱拡散処理を行って、めっき層中にFeを拡散させ、Ni−Fe−Mn拡散めっき層を形成することを特徴とする前記(1)に記載の耐食性、加工性に優れためっき鋼材の製造方法、 (2) Ni-Mn alloy plating or Ni-Fe-Mn alloy plating is applied to the steel material, and then heat diffusion treatment is performed to diffuse Fe in the plating layer to form a Ni-Fe-Mn diffusion plating layer. The method for producing a plated steel material having excellent corrosion resistance and workability as described in (1) above,

(3)前記Ni−Mn合金めっきのめっき層中Mn濃度が0.01%〜2質量%であることを特徴とする(2)に記載の耐食性、加工性に優れためっき鋼材の製造方法、 (3) The method for producing a plated steel material having excellent corrosion resistance and workability according to (2), wherein the Mn concentration in the plating layer of the Ni-Mn alloy plating is 0.01% to 2% by mass,

(4)前記Ni−Fe−Mn合金めっきのめっき層中Mn濃度が0.01%〜2質量%、Fe濃度が0.1〜30質量%であることを特徴とする(2)に記載の耐食性、加工性に優れためっき鋼材の製造方法、
である。
(4) The Mn concentration in the plating layer of the Ni—Fe—Mn alloy plating is 0.01% to 2% by mass, and the Fe concentration is 0.1 to 30% by mass. Manufacturing method of plated steel material with excellent corrosion resistance and workability,
It is.

本発明によって、耐食性、加工性に優れためっき鋼材が得られる。また低コストな製造方法も提供される。   According to the present invention, a plated steel material excellent in corrosion resistance and workability can be obtained. A low-cost manufacturing method is also provided.

本発明の鋼材のめっき層構造例(GDS(グロー放電発光分光分析))結果を示す概念図である。It is a conceptual diagram which shows the example of a plating layer structure (GDS (glow discharge emission spectroscopic analysis)) of the steel material of this invention.

本発明の鋼材は、表面にNi−Fe−Mn拡散めっき層が形成され、前記拡散めっき表層のFe濃度が10%質量以上50%質量以下、Mn濃度が0.01質量%以上1質量%以下であり、前記拡散めっき層中のNi量が5〜40g/m2であり、下地鋼材との界面部のめっきが実質的にNi−Fe拡散めっき層であることを特徴とする。 In the steel material of the present invention, a Ni—Fe—Mn diffusion plating layer is formed on the surface, the Fe concentration of the diffusion plating surface layer is 10% by mass to 50% by mass, and the Mn concentration is 0.01% by mass to 1% by mass. The amount of Ni in the diffusion plating layer is 5 to 40 g / m 2 , and the plating at the interface with the base steel material is substantially a Ni—Fe diffusion plating layer.

拡散めっき層とは、めっき後の熱拡散処理によって、鋼中のFeをめっき層に拡散し形成されためっき層であり、GDS等の手法で表層から深さ方向の元素分布を観察した時に、緩やかに組成が変化する傾斜構造によって特徴づけられる。GDSでの測定例を図1に示す。なお、GDSの測定により得られる最表層には、C等の不可避的汚染物質の濃化層が薄く検出されるが、図1ではCが0.1%以下に低下した最初の測定データを本発明のめっき表層として示している。本発明の拡散めっき表層とはこのようにして定義したものであり、また、本発明の拡散めっき表層の成分濃度はこのようにして得られた測定データによるものである。   The diffusion plating layer is a plating layer formed by diffusing Fe in steel to the plating layer by thermal diffusion treatment after plating, and when the element distribution in the depth direction from the surface layer is observed by a technique such as GDS, Characterized by a graded structure with a slowly changing composition. An example of measurement by GDS is shown in FIG. In addition, in the outermost layer obtained by the GDS measurement, a concentrated layer of inevitable contaminants such as C is thinly detected. In FIG. 1, the first measurement data in which C is reduced to 0.1% or less is recorded. It is shown as a plating surface layer of the invention. The diffusion plating surface layer of the present invention is defined as described above, and the component concentration of the diffusion plating surface layer of the present invention is based on the measurement data thus obtained.

本発明の鋼材めっき層における各成分の濃度分布は、図1に示したように、Niは表層から鋼材に向かって徐々に濃度が低下し、Feは表層から鋼材に向かって徐々に濃度が増加している。Mnは表層付近でNi,Feと共存しており、その濃度の極大値は表層でも、また表層からやや入ったところでも良い。   As shown in FIG. 1, the concentration distribution of each component in the steel plating layer of the present invention is such that Ni gradually decreases in concentration from the surface layer toward the steel material, and Fe gradually increases in concentration from the surface layer toward the steel material. is doing. Mn coexists with Ni and Fe in the vicinity of the surface layer, and the maximum value of the concentration may be on the surface layer or a little from the surface layer.

下地鋼材との界面ではMn濃度は極めて低く、実質的にNi−Fe拡散層となっている点も本発明の鋼材の特徴である。界面近傍のMn濃度が極めて低くなる理由は必ずしも明らかでないが、NiおよびMnが共存するめっき層中への鋼材からのFeの外方拡散は促進される一方、めっき層のMnの鋼材方向への内方拡散は抑制されるためと推定される。   A feature of the steel material of the present invention is that the Mn concentration is extremely low at the interface with the base steel material, and the Ni-Fe diffusion layer is substantially formed. The reason why the Mn concentration in the vicinity of the interface becomes extremely low is not clear, but the outward diffusion of Fe from the steel into the plating layer in which Ni and Mn coexist is promoted, while the Mn of the plating layer toward the steel It is estimated that inward diffusion is suppressed.

界面近傍のNi−Fe拡散層にMnが存在すると、この層の伸びが低下することにより、加工性や加工後の耐食性が低下する。前述の「実質的に」と記載した意味合いは次のとおりである。通常鋼材には、数%未満のMnが含有されており、この鋼中Mnの影響によって、GDSの解析手法では下地鋼材界面でMnが存在するように観察されることもあるが、このような場合でも、Mn濃度が0.01%未満であれば、実質的にNi−Fe拡散層と言える。   If Mn is present in the Ni—Fe diffusion layer in the vicinity of the interface, the elongation of this layer is lowered, and thus the workability and the corrosion resistance after processing are lowered. The above-mentioned meaning of “substantially” is as follows. Usually, steel materials contain less than a few percent of Mn, and due to the influence of Mn in the steel, it may be observed that Mn is present at the base steel material interface in the GDS analysis technique. Even in this case, if the Mn concentration is less than 0.01%, it can be said to be substantially a Ni—Fe diffusion layer.

前記拡散めっき層表層のFe濃度は10質量%以上50%質量以下、Mn濃度は0.01質量%以上1質量%以下であることが必要である。Feが10%質量未満では摺動性が劣る結果、加工性が劣り、50質量%を超えるとめっき層自体の耐食性が低下して、鉄錆(赤錆)が発生しやすくなる。拡散めっき層表層のFe濃度は10質量%〜30質量%がより好ましい。   The Fe concentration of the surface layer of the diffusion plating layer needs to be 10% by mass or more and 50% by mass or less, and the Mn concentration needs to be 0.01% by mass or more and 1% by mass or less. If Fe is less than 10% by mass, the slidability is inferior. As a result, the workability is inferior. The Fe concentration in the surface layer of the diffusion plating layer is more preferably 10% by mass to 30% by mass.

拡散めっき層表層のMnは0.01質量%未満では耐食性が劣り、1質量%を超えると、加工時のめっき損傷が大きくなり、加工後の耐食性が低下する。拡散めっき層表層のMn濃度は0.1〜1質量%がより好ましい。   If the Mn of the surface layer of the diffusion plating layer is less than 0.01% by mass, the corrosion resistance is inferior, and if it exceeds 1% by mass, the plating damage during processing increases and the corrosion resistance after processing decreases. The Mn concentration in the surface layer of the diffusion plating layer is more preferably 0.1 to 1% by mass.

前記拡散めっき層中のNi量は5〜40g/m2であることが必要であり、5g/m2未満では耐食性が不足し、40g/m2を超えても効果が飽和し不経済となって本発明の趣旨に反するとともに、加工の程度によっては密着性が低下する場合もあり、好ましくない。 Ni content in the diffusion plating layer is required to be 5 to 40 g / m 2, insufficient corrosion resistance is less than 5 g / m 2, even beyond 40 g / m 2 effect is saturated becomes uneconomical In addition to being contrary to the spirit of the present invention, the adhesion may be lowered depending on the degree of processing, which is not preferable.

上記のようなめっき層の構造とすることで耐食性が改善される理由は必ずしも明確でないが、拡散層の形成によってめっきピンホールが軽減され、また、めっき層がFe、MnといったNiよりも電位的に卑な金属を含有することで、下地Feとの電位差腐食も緩和される効果によるものと推定される。また後述する加工性の改善効果により、加工後の耐食性も改善される。   The reason why the corrosion resistance is improved by the structure of the plating layer as described above is not necessarily clear, but the formation of the diffusion layer reduces plating pinholes, and the plating layer is more potential than Ni such as Fe and Mn. It is presumed to be due to the effect that the potential difference corrosion with the base Fe is also mitigated by containing a base metal. Moreover, the corrosion resistance after a process is also improved by the improvement effect of the workability mentioned later.

加工性が改善される理由としては、Ni−Fe−Mn拡散層が適度な硬度を持つことで表層の摺動性が改善される効果とともに、めっき硬度に比し、伸びの低下が小さいので、めっきの割れや剥離が発生しにくいことに起因するものと推定される。更には、下地鋼材との界面が実質的にNi−Fe拡散層となっているが、この層の伸びが大きいことから、厳しい加工にも追随するものと推定される。   The reason why the workability is improved is that the Ni-Fe-Mn diffusion layer has an appropriate hardness, and the effect of improving the slidability of the surface layer, as well as the decrease in elongation is small compared to the plating hardness, It is presumed to be caused by the fact that plating cracks and peeling are less likely to occur. Furthermore, although the interface with the base steel material is substantially a Ni—Fe diffusion layer, the elongation of this layer is large, so that it is presumed to follow severe processing.

つぎに本発明のめっき鋼材の製造方法について説明する。本発明では、鋼材にNi−Mn合金めっきまたはNi−Fe−Mn合金めっきを施し、次いで熱拡散処理を行う。すなわち一種類のめっきを施す工程と、その後の一回の熱拡散処理工程からなる単純なプロセスにより製造することが可能である。   Next, a method for producing the plated steel material of the present invention will be described. In the present invention, Ni—Mn alloy plating or Ni—Fe—Mn alloy plating is applied to the steel material, and then thermal diffusion treatment is performed. That is, it can be manufactured by a simple process comprising a step of applying one type of plating and a subsequent thermal diffusion treatment step.

Ni−Mn合金めっき、Ni−Fe−Mn合金めっきは、硫酸浴、塩化物浴、watt浴、スルファミン酸浴などの一般的なNiめっき浴に、Mn塩(硫酸Mn、塩化Mn等)、またはMn塩に加えてFe塩(硫酸第一鉄、塩化第一鉄等)を添加した浴を用いて電気めっきをすることにより、得ることができる。めっき層の組成はめっき浴だけでなく、電流密度への依存も認められ、高電流密度ほどめっき層のMn濃度が増加する傾向にある。目的の組成に合わせて電流密度を調整する必要があるが、通常は1〜100A/dm2程度の条件とすることで、本願発明に必要なめっき組成を得ることができる。 Ni-Mn alloy plating and Ni-Fe-Mn alloy plating can be performed by using a general Ni plating bath such as a sulfuric acid bath, chloride bath, watt bath, sulfamic acid bath, Mn salt (sulfuric acid Mn, Mn chloride, etc.), or It can obtain by electroplating using the bath which added Fe salt (Ferrous sulfate, ferrous chloride, etc.) in addition to Mn salt. The composition of the plating layer is not only dependent on the plating bath, but also depends on the current density. The higher the current density, the more the Mn concentration of the plating layer tends to increase. It is necessary to adjust the current density in accordance with the target composition, but usually by the 1~100A / dm 2 about conditions, it is possible to obtain a plating composition required for the present invention.

Ni−Mn合金めっきの場合には、めっき層Mn濃度を0.01質量%〜2質量%、好ましくは0.1質量%〜1質量%となるように浴濃度と電流密度を調整する。Ni−Fe−Mn合金めっきの場合には、めっき層Mn濃度を0.01質量%〜2質量%、好ましくは0.1質量%〜1質量%となるように、Fe濃度は0.1〜30質量%となるように浴濃度と電流密度を調整する。   In the case of Ni—Mn alloy plating, the bath concentration and current density are adjusted so that the plating layer Mn concentration is 0.01% by mass to 2% by mass, preferably 0.1% by mass to 1% by mass. In the case of Ni—Fe—Mn alloy plating, the Fe concentration is 0.1 to 2% by mass, preferably 0.1 to 1% by mass, so that the plating layer Mn concentration is 0.1 to 1% by mass. The bath concentration and current density are adjusted to be 30% by mass.

Ni−Mn合金めっき、Ni−Fe−Mn合金めっきのいずれの場合にも、後の熱拡散処理の結果で、表層Fe濃度、Mn濃度が同じであれば、基本的に性能の差異は無い。鋼材の材質特性等により、焼鈍条件に制約があって、低温短時間での熱拡散処理が必要な鋼種には、Ni−Fe−Mn合金めっきを、高温での焼鈍が必要な鋼種にはNi−Mn合金めっきを用いればよい。いずれの場合もめっき層の付着量は、Ni量として5〜40g/m2となるようにする。 In both cases of Ni—Mn alloy plating and Ni—Fe—Mn alloy plating, there is basically no difference in performance as long as the surface layer Fe concentration and Mn concentration are the same as a result of the subsequent thermal diffusion treatment. Ni-Fe-Mn alloy plating is used for steel types that require thermal diffusion treatment at a low temperature in a short time because the annealing conditions are limited depending on the material properties of the steel material, and Ni is used for steel types that require annealing at high temperatures. -Mn alloy plating may be used. In either case, the adhesion amount of the plating layer is set to 5 to 40 g / m 2 as the Ni amount.

めっき後の熱拡散処理は、通常の加熱方式で行うことができ、バッチ加熱方式、連続加熱方式のいずれも用いられる。また両方を併用することも可能である。
なお、めっきを施す鋼材の材質特性を考慮すると、加熱拡散処理と焼鈍処理を同時に行うことが好ましい。通常のNiめっきにおいては、Feの拡散速度が律速となるため、特にめっき付着量が多い場合において、加熱拡散処理と焼鈍処理の処理条件の両立が困難な場合があったが、Ni−Mn合金めっき、Ni−Fe−Mn合金めっきは、通常のNiめっきに比較して鋼材のFeの拡散が速い傾向が認められ、この効果によって、めっき付着量が多い場合でも、後述するような通常の焼鈍条件に相当する条件の範囲内で、Feが表層まで拡散して、本発明の望ましいめっき層構造を得ることができる。Ni−Mn合金めっき、Ni−Fe−Mn合金めっきにおいてFeの拡散が速い理由は必ずしも明確でないが、Mnの存在がNi中のFeの活量を下げ、Feの活量こう配が大きくなることが考えられる。この効果を得るためのMn濃度としては0.1質量%以上が望ましい。
The thermal diffusion treatment after plating can be performed by a normal heating method, and either a batch heating method or a continuous heating method is used. It is also possible to use both together.
In consideration of the material characteristics of the steel material to be plated, it is preferable to perform the heat diffusion treatment and the annealing treatment at the same time. In normal Ni plating, since the diffusion rate of Fe is rate-limiting, it is sometimes difficult to achieve both heat diffusion treatment and annealing treatment conditions, particularly when the amount of plating adhesion is large. Plating and Ni-Fe-Mn alloy plating tend to have a faster diffusion of Fe in steel than normal Ni plating, and this effect allows normal annealing as described later even when the amount of plating is large. Within the range of conditions corresponding to the conditions, Fe diffuses to the surface layer, and a desirable plated layer structure of the present invention can be obtained. The reason why Fe diffusion is fast in Ni—Mn alloy plating and Ni—Fe—Mn alloy plating is not necessarily clear, but the presence of Mn lowers the activity of Fe in Ni and may increase the activity gradient of Fe. Conceivable. The Mn concentration for obtaining this effect is preferably 0.1% by mass or more.

上述した加熱拡散処理と焼鈍処理を同時に行う場合の加熱処理は、通常の焼鈍用の炉で行うことができ、バッチ焼鈍、連続焼鈍のいずれを用いても良く、また両方を併用することも可能である。その条件は、バッチ加熱或いはバッチ焼鈍においては、鋼材温度を450〜650℃、好ましくは500〜600℃の範囲で、数時間〜数十時間、好ましくは6〜24時間処理を行う。連続加熱或いは連続焼鈍においては、鋼材温度を700〜900℃、好ましくは700〜850℃の範囲で、均熱時間を数秒〜数十分間、通常は、10秒〜120秒で処理を行う。   When performing the above-described heat diffusion treatment and annealing treatment simultaneously, the heat treatment can be performed in a normal annealing furnace, either batch annealing or continuous annealing may be used, or both may be used in combination. It is. As for the conditions, in batch heating or batch annealing, the steel material temperature is 450 to 650 ° C., preferably 500 to 600 ° C., and the treatment is performed for several hours to several tens of hours, preferably 6 to 24 hours. In continuous heating or continuous annealing, the steel material temperature is 700 to 900 ° C, preferably 700 to 850 ° C, and the soaking time is several seconds to several tens of minutes, usually 10 seconds to 120 seconds.

鋼材中のFeとめっき層が相互拡散し、既に述べたような組成の拡散層となるように温度、時間を微調整すればよい。処理時の雰囲気は、表面酸化を避けるため、窒素などの不活性ガス、または不活性ガスに水素などの還元ガスを混合した雰囲気で行うのが望ましい。   The temperature and time may be finely adjusted so that Fe in the steel material and the plating layer are interdiffused to form a diffusion layer having the composition described above. In order to avoid surface oxidation, it is desirable that the atmosphere during the treatment is an atmosphere in which an inert gas such as nitrogen or a reducing gas such as hydrogen is mixed with an inert gas.

熱拡散処理後には、必要に応じて通常用いられる圧延を施して、形状や表面粗度を調整することができる。   After the thermal diffusion treatment, rolling ordinarily used can be performed as necessary to adjust the shape and surface roughness.

(実施例1〜13および比較例1〜3)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表1に示す条件でNi−Mn合金めっきを行い、種々の組成、付着量のNi―Mn合金めっきを形成した。その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて種々の温度、時間にて行った。Ni―Mn合金めっきのNi量および組成、熱拡散処理における均熱温度、時間の条件を後掲の表5に示す。
(Examples 1-13 and Comparative Examples 1-3)
Using an ultra-low carbon steel sheet (non-recrystallized steel sheet) added with Nb and Ti as a base plate, Ni-Mn alloy plating is performed under the conditions shown in Table 1 after degreasing and pickling treatment, and various compositions and adhesion amounts of Ni -Mn alloy plating was formed. Thereafter, thermal diffusion treatment was performed. The thermal diffusion treatment was performed in a continuous annealing furnace at various temperatures and times in an N 2 atmosphere containing 5% H 2 (dew point −40 ° C.). Table 5 below shows the Ni amount and composition of the Ni—Mn alloy plating, the soaking temperature in the thermal diffusion treatment, and the time conditions.

Figure 2012149330
Figure 2012149330

(実施例14〜17および比較例4)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表2に示す条件でNi―Fe―Mn合金めっきを行い、種々の組成、付着量のNi―Fe―Mn合金めっきを形成した。その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて種々の温度、時間にて行った。Ni―Fe―Mn合金めっきのNi量および組成、熱拡散処理における均熱温度、時間の条件を後掲の表5に示す。
(Examples 14 to 17 and Comparative Example 4)
Using Nb and Ti composite added ultra-low carbon steel plate (non-recrystallized steel plate) as the original plate, Ni-Fe-Mn alloy plating is performed under the conditions shown in Table 2 after degreasing and pickling treatment, and various compositions and adhesion amounts The Ni—Fe—Mn alloy plating was formed. Thereafter, thermal diffusion treatment was performed. The thermal diffusion treatment was performed in a continuous annealing furnace at various temperatures and times in an N 2 atmosphere containing 5% H 2 (dew point −40 ° C.). Table 5 below shows the Ni amount and composition of the Ni—Fe—Mn alloy plating, the soaking temperature in the thermal diffusion treatment, and the time conditions.

Figure 2012149330
Figure 2012149330

(比較例5)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、表3に示す条件でNiめっきを行った。その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて行った。Ni量および熱拡散処理における均熱温度、時間の条件を表5に示す。
(Comparative Example 5)
Using an ultra-low carbon steel plate (non-recrystallized steel plate) added with Nb and Ti as a base plate, Ni plating was performed under the conditions shown in Table 3 after degreasing and pickling treatment. Thereafter, thermal diffusion treatment was performed. The thermal diffusion treatment was performed in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. Table 5 shows the Ni amount and the soaking temperature and time conditions in the thermal diffusion treatment.

Figure 2012149330
Figure 2012149330

(比較例6)
Nb,Ti複合添加の極低炭素鋼板(未再結晶鋼板)を原板として、脱脂、酸洗処理の後、
表4に示す条件でMnめっきを行い、引き続き表3に示す条件でNiめっきを行った。その後熱拡散処理を行った。熱拡散処理は、連続焼鈍炉にて、5%H2含有N2雰囲気(露点−40℃)にて行った。Ni量およびMn量(Mn量は、Mn/(Ni+Mn)%で表記)、熱拡散処理における均熱温度、時間の条件を後掲の表5に示す。
(Comparative Example 6)
Nb, Ti composite added ultra-low carbon steel plate (non-recrystallized steel plate) as the original plate, after degreasing and pickling treatment,
Mn plating was performed under the conditions shown in Table 4, and Ni plating was subsequently performed under the conditions shown in Table 3. Thereafter, thermal diffusion treatment was performed. The thermal diffusion treatment was performed in a 5% H 2 -containing N 2 atmosphere (dew point −40 ° C.) in a continuous annealing furnace. Table 5 below shows the conditions of the amount of Ni and the amount of Mn (the amount of Mn is expressed as Mn / (Ni + Mn)%), the soaking temperature in the thermal diffusion treatment, and the time.

Figure 2012149330
Figure 2012149330

(評価方法)
・製品組成は、GDSの深さ方向分析により、表層のMn%、Fe%を求めた。また、おなじくGDSにより鋼材界面のMn濃度を求めた。
・耐食性:JISZ2371の塩水噴霧試験を3日間行い、赤錆(鉄錆)発生状況を目し観察し、発生皆無を◎、面積率3%未満を○、20%未満を△、20%超を×と評価した。
・摺動性:ドロービード試験による摩擦係数測定を行い、0.12未満を◎、0.15未満を○、0.2未満を△、0.2以上を×と評価した。
・めっき割れ:0T曲げ加工を行い、曲げ外側頭頂部のめっき割れを光学顕微鏡により観察した。下地に至る割れがないものを◎、軽微な割れはあるが下地までは至っていないものを○、下地に至る割れが散見されるものを△、下地に至る割れが顕著なものを×と評価した。
(Evaluation method)
-Product composition calculated | required Mn% of surface layer and Fe% by the depth direction analysis of GDS. Similarly, the Mn concentration at the steel material interface was determined by GDS.
・ Corrosion resistance: A salt spray test of JISZ2371 was conducted for 3 days, and the occurrence of red rust (iron rust) was observed and observed. No occurrence, ◎, area ratio less than 3% ○, less than 20% △, more than 20% × It was evaluated.
-Sliding property: The coefficient of friction was measured by a draw bead test, and less than 0.12 was evaluated as ◎, less than 0.15 was evaluated as ◯, less than 0.2 was evaluated as Δ, and 0.2 or more was evaluated as ×.
-Plating crack: 0T bending process was performed, and the plating crack of the bending outer top part was observed with the optical microscope. The case where there was no crack reaching the base was evaluated as ◎, the case where there was a slight crack but not reaching the base was evaluated as ◯, the case where cracks reaching the base were found △, and the case where the crack reaching the base was remarkable was evaluated as ×. .

各サンプルのめっき層構造と性能評価結果を表5に示す。本発明の鋼材は優れた耐食性、加工性を有することが分かる。   Table 5 shows the plating layer structure and performance evaluation results of each sample. It can be seen that the steel material of the present invention has excellent corrosion resistance and workability.

Figure 2012149330
Figure 2012149330

本発明の鋼材は、優れた耐食性、加工性を有し、電気電子器具、電池缶に代表される容器材料、バインダー等の日用家電部材等はもちろんのこと、従来Niめっきが適用されていなかった部材まで幅広く適用できる可能性がある。
また、本発明の鋼材は、一種類のめっきと一回の熱拡散処理のみで製造でき、低コスト化にも有利なものであって、産業上極めて有用である。
The steel material of the present invention has excellent corrosion resistance and workability, and is not applied to conventional Ni plating, as well as electric and electronic appliances, container materials represented by battery cans, daily household appliances such as binders, etc. There is a possibility that it can be applied to a wide range of components.
In addition, the steel material of the present invention can be manufactured by only one type of plating and a single thermal diffusion treatment, and is advantageous for cost reduction, and is extremely useful industrially.

Claims (4)

鋼材表面にNi−Fe−Mn拡散めっき層が形成され、前記拡散めっき層表層のFe濃度が10質量%以上50質量%以下、Mn濃度が0.01質量%以上1質量%以下であり、前記Ni−Fe−Mn拡散めっき層中のNi量が5〜40g/m2であり、下地鋼材との界面部のめっきが実質的にNi−Fe拡散層であることを特徴とする耐食性、加工性に優れためっき鋼材。 A Ni—Fe—Mn diffusion plating layer is formed on the surface of the steel material, the Fe concentration of the surface layer of the diffusion plating layer is 10% by mass to 50% by mass, the Mn concentration is 0.01% by mass to 1% by mass, Corrosion resistance and workability characterized in that the amount of Ni in the Ni—Fe—Mn diffusion plating layer is 5 to 40 g / m 2 and the plating at the interface with the base steel material is substantially a Ni—Fe diffusion layer. Excellent plated steel material. 鋼材に、Ni−Mn合金めっきまたはNi−Fe−Mn合金めっきを施し、次いで熱拡散処理を行って、めっき層中にFeを拡散させ、Ni−Fe−Mn拡散めっき層を形成することを特徴とする請求項1に記載の耐食性、加工性に優れためっき鋼材の製造方法。   The steel material is subjected to Ni—Mn alloy plating or Ni—Fe—Mn alloy plating and then subjected to thermal diffusion treatment to diffuse Fe in the plating layer to form a Ni—Fe—Mn diffusion plating layer. The method for producing a plated steel material having excellent corrosion resistance and workability according to claim 1. 前記Ni−Mn合金めっきのめっき層中Mn濃度が0.01%〜2質量%であることを特徴とする請求項2に記載の耐食性、加工性に優れためっき鋼材の製造方法。   The method for producing a plated steel material having excellent corrosion resistance and workability according to claim 2, wherein the Mn concentration in the plating layer of the Ni-Mn alloy plating is 0.01% to 2% by mass. 前記Ni−Fe−Mn合金めっきのめっき層中Mn濃度が0.01%〜2質量%、Fe濃度が0.1〜30質量%であることを特徴とする請求項2に記載の耐食性、加工性に優れためっき鋼材の製造方法。   The corrosion resistance and processing according to claim 2, wherein the Ni-Fe-Mn alloy plating layer has a Mn concentration of 0.01% to 2% by mass and an Fe concentration of 0.1 to 30% by mass. Method for producing plated steel with excellent properties.
JP2011010840A 2011-01-21 2011-01-21 Plating steel material with excellent corrosion resistance and workability and manufacturing method Expired - Fee Related JP5668490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010840A JP5668490B2 (en) 2011-01-21 2011-01-21 Plating steel material with excellent corrosion resistance and workability and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010840A JP5668490B2 (en) 2011-01-21 2011-01-21 Plating steel material with excellent corrosion resistance and workability and manufacturing method

Publications (2)

Publication Number Publication Date
JP2012149330A true JP2012149330A (en) 2012-08-09
JP5668490B2 JP5668490B2 (en) 2015-02-12

Family

ID=46791850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010840A Expired - Fee Related JP5668490B2 (en) 2011-01-21 2011-01-21 Plating steel material with excellent corrosion resistance and workability and manufacturing method

Country Status (1)

Country Link
JP (1) JP5668490B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577361A (en) * 1980-06-14 1982-01-14 Mishima Kosan Co Ltd Production of mold for continuous casting
JP2005029808A (en) * 2003-07-07 2005-02-03 Nippon Steel Corp Surface-treated steel sheet for vessel having superior weldability, corrosion resistance, and adhesiveness to paint
JP2009203497A (en) * 2008-02-26 2009-09-10 Nippon Steel Corp Highly corrosion resistant plated steel and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577361A (en) * 1980-06-14 1982-01-14 Mishima Kosan Co Ltd Production of mold for continuous casting
JP2005029808A (en) * 2003-07-07 2005-02-03 Nippon Steel Corp Surface-treated steel sheet for vessel having superior weldability, corrosion resistance, and adhesiveness to paint
JP2009203497A (en) * 2008-02-26 2009-09-10 Nippon Steel Corp Highly corrosion resistant plated steel and method of manufacturing the same

Also Published As

Publication number Publication date
JP5668490B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP7359894B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts and method for manufacturing the same
JP5218703B2 (en) Hot-dip Al-plated steel sheet excellent in heat blackening resistance and method for producing the same
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6004102B2 (en) Hot stamp molded body and method for producing hot stamp molded body
WO2015037241A1 (en) Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
WO2015037242A1 (en) Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor
JP2015214747A (en) MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JPWO2014155944A1 (en) Molten Al-Zn-based plated steel sheet and method for producing the same
JP2006299290A (en) Hot-dip galvanized steel sheet superior in spot weldability, paintability and processability, and manufacturing method therefor
JP2019506297A (en) Hot press-formed product with excellent corrosion resistance and method for producing the same
KR20160117585A (en) Alloyed hot-dip galvanized steel sheet and method for producing same
JP2015214749A (en) MOLTEN Al-Zn-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
JP5418373B2 (en) Nickel-plated steel sheet for battery can and manufacturing method thereof
JP4882446B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JP2014503690A (en) Aluminum plated steel plate with excellent oxidation resistance and heat resistance
JP4051012B2 (en) Ni-plated steel sheet for battery cans
JP5626324B2 (en) Method for producing hot-dip galvanized steel sheet
TWI604087B (en) Plated steel plate and its manufacturing method
JP4980266B2 (en) High corrosion resistance plated steel material and method for producing the same
JP5668490B2 (en) Plating steel material with excellent corrosion resistance and workability and manufacturing method
JP5754144B2 (en) Plating steel material with excellent corrosion resistance and workability and manufacturing method
JP2018090885A (en) MOLTEN Zn-Al-Mg GROUP PLATED SHEET STEEL, AND MOLTEN Zn-Al-Mg GROUP PLATED SHEET STEEL MANUFACTURING METHOD
JP6518949B2 (en) Method of manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP2007321212A (en) Ni-PLATED STEEL SHEET HAVING EXCELLENT SLIDABILITY AND CONTACT RESISTANCE AND ITS PRODUCTION METHOD
JP2018076589A (en) Al-CONTAINING FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SURFACE PROPERTY AND SULFIDE CORROSION RESISTANCE AND PRODUCTION METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees