JP2012149285A - Rhenium recovery method and system from waste acid - Google Patents

Rhenium recovery method and system from waste acid Download PDF

Info

Publication number
JP2012149285A
JP2012149285A JP2011007166A JP2011007166A JP2012149285A JP 2012149285 A JP2012149285 A JP 2012149285A JP 2011007166 A JP2011007166 A JP 2011007166A JP 2011007166 A JP2011007166 A JP 2011007166A JP 2012149285 A JP2012149285 A JP 2012149285A
Authority
JP
Japan
Prior art keywords
rhenium
bismuth
resin
waste acid
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011007166A
Other languages
Japanese (ja)
Other versions
JP5284378B2 (en
Inventor
Ikunobu Sumida
育伸 隅田
真 ▲浜▼本
Makoto Hamamoto
Tetsuo Yamaki
徹夫 八巻
Takehito Kono
雄仁 河野
Shinji Sato
真二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Priority to JP2011007166A priority Critical patent/JP5284378B2/en
Publication of JP2012149285A publication Critical patent/JP2012149285A/en
Application granted granted Critical
Publication of JP5284378B2 publication Critical patent/JP5284378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a rhenium recovery method and system from waste acid which can satisfactorily reduce the load of the impurity removal in a purification process.SOLUTION: There is disclosed a method for recovering rhenium from a waste acid which contains at least rhenium and bismuth. The method includes the steps of: passing a waste acid through an anion exchange resin to allow rhenium and bismuth to adsorb on the resin; passing an eluent through the resin on which rhenium and bismuth have adsorbed to elute rhenium and the bismuth from the resin; and separating and recovering rhenium and bismuth contained in the liquid after elution by pseudo-moving bed type chromatography.

Description

本発明は、廃酸からのレニウム回収方法及びシステムに関する。   The present invention relates to a method and system for recovering rhenium from spent acid.

レニウムは、モリブデン原鉱の輝水鉛鉱や銅鉱石に僅かに随伴する希少金属であるが、触媒の添加元素、熱電対や超耐熱合金用添加元素、高真空電子管材料等に用いられる重要な金属である。   Rhenium is a rare metal slightly associated with molybdenite or copper ore, but it is an important metal used as an additive element for catalysts, additive elements for thermocouples and superalloys, high vacuum electron tube materials, etc. It is.

レニウムを工業的に回収するための有望な原料の一つとして廃酸がある。廃酸は、銅等の非鉄金属の製錬工程から発生する亜硫酸ガスを硫酸の製造に利用する場合に水洗浄がなされるが、その際に生成する硫酸を定期的に一部抜き出したものである。原鉱中に含まれていたレニウムがその他の不純物と共に廃酸中に混入している。その他の不純物としてはAs、Fe、Cuなどが代表的である。   One promising raw material for industrial recovery of rhenium is waste acid. Waste acid is water-washed when sulfurous acid gas generated from the smelting process of non-ferrous metals such as copper is used for the production of sulfuric acid. is there. Rhenium contained in the ore is mixed in the waste acid along with other impurities. As other impurities, As, Fe, Cu and the like are typical.

レニウムの工業的回収法についてはあまり系統的な研究がなされていないが、一つの有力な方法として、Re27を含む原料を水溶液に溶解し、陰イオン交換樹脂を使用したイオン交換法によりレニウムを樹脂に吸着し、吸着したレニウムを溶離する方法が提案されている。 There has not been much systematic research on the industrial recovery method of rhenium, but one effective method is to dissolve the raw material containing Re 2 O 7 in an aqueous solution and use an ion exchange method using an anion exchange resin. A method of adsorbing rhenium on a resin and eluting the adsorbed rhenium has been proposed.

このようなイオン交換法を用いたレニウムの回収法として、例えば特許文献1には、レニウムを含む銅製錬廃酸をレニウムの選択吸着性のある陰イオン交換樹脂を充填した固定床式イオン交換樹脂塔に通液し、レニウムを樹脂に吸着させた後、溶離液でレニウムを溶離させて回収する方法が開示されている。   As a method for recovering rhenium using such an ion exchange method, for example, Patent Document 1 discloses a fixed bed type ion exchange resin in which a copper smelting waste acid containing rhenium is filled with an anion exchange resin having selective adsorption of rhenium. A method is disclosed in which rhenium is adsorbed on a resin after passing through a column and then recovered by eluting rhenium with an eluent.

特公昭63−16340号公報Japanese Patent Publication No. 63-16340

レニウムの回収をイオン交換法で行う場合、レニウム成分を選択的に回収するイオン交換樹脂を使用している。しかしながら、処理液中の他の成分の一部も樹脂に吸着することがある。このような他の成分は、樹脂から目的成分を溶離させる際に用いた溶離液中に混入してしまう。溶離液に混入した他の成分は精製工程で除去することが必要となるが、その割合が多いと精製フローが長く、複雑なものとなってしまう。   When the rhenium is recovered by an ion exchange method, an ion exchange resin that selectively recovers the rhenium component is used. However, some of the other components in the treatment liquid may be adsorbed on the resin. Such other components are mixed in the eluent used when the target component is eluted from the resin. Other components mixed in the eluent need to be removed in the purification process, but if the ratio is large, the purification flow becomes long and complicated.

そこで、本発明は、精製工程での不純物除去の負荷を良好に低減することができる廃酸からのレニウム回収方法及びシステムを提供することを課題とする。   Therefore, an object of the present invention is to provide a method and system for recovering rhenium from waste acid that can satisfactorily reduce the load of removing impurities in the purification process.

本発明者らは、上記課題を解決するために鋭意検討した結果、初めに、前記廃酸から陰イオン交換樹脂でレニウム、ビスマスを樹脂に吸着させ、続いて樹脂に吸着したレニウム、ビスマスを溶離させ、当該レニウムとビスマスを含んだ溶離液からクロマトグラフィーによってレニウムとビスマスとに分離するという2段階の精製により、その後の精製工程で処理する溶離液中の不純物の濃度を良好に抑制することができることを見出した。これにより、精製工程での不純物除去の負荷を良好に低減することができる。   As a result of diligent studies to solve the above problems, the present inventors first adsorbed rhenium and bismuth from the waste acid with an anion exchange resin, and then eluted the rhenium and bismuth adsorbed on the resin. The concentration of impurities in the eluent to be treated in the subsequent purification process can be satisfactorily suppressed by the two-stage purification, in which the rhenium and bismuth-containing eluent is separated into rhenium and bismuth by chromatography. I found out that I can do it. Thereby, the load of removing impurities in the purification process can be reduced favorably.

以上の知見を基礎として完成した本発明は一側面において、少なくともレニウム及びビスマスを含む廃酸からレニウムを回収する方法であって、廃酸を陰イオン交換樹脂に通液して、レニウム及びビスマスを該樹脂に吸着させる吸着工程と、レニウム及びビスマスが吸着した前記樹脂に溶離液を通液してレニウム及びビスマスを該樹脂から溶離させる溶離工程と、溶離後液中に含まれるレニウム及びビスマスを疑似移動床式クロマトグラフィーで分離・回収する分離・回収工程とを含む方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a method for recovering rhenium from a waste acid containing at least rhenium and bismuth, wherein the waste acid is passed through an anion exchange resin, and rhenium and bismuth are removed. An adsorption step for adsorbing the resin, an elution step for passing the eluent through the resin adsorbed with rhenium and bismuth to elute rhenium and bismuth from the resin, and imitation of rhenium and bismuth contained in the solution after elution. And a separation / recovery step for separation / recovery by moving bed chromatography.

本発明は別の一側面において、前記吸着工程から溶離工程を疑似移動床式イオン交換装置で行う。   In another aspect of the present invention, the adsorption step to the elution step are performed by a simulated moving bed ion exchange apparatus.

本発明は別の一側面において、少なくともレニウム及びビスマスを含む廃酸からレニウムを回収するシステムであって、廃酸を陰イオン交換樹脂に通液して、レニウム及びビスマスを該樹脂に吸着させる吸着手段と、レニウム及びビスマスが吸着した前記樹脂に溶離液を通液してレニウム及びビスマスを該樹脂から溶離させる溶離手段と、溶離後液中に含まれるレニウム及びビスマスを疑似移動床式クロマトグラフィーで分離・回収する分離・回収手段とを備えたシステムである。   In another aspect, the present invention is a system for recovering rhenium from a waste acid containing at least rhenium and bismuth, and adsorbs rhenium and bismuth on the resin by passing the waste acid through an anion exchange resin. Means, elution means for passing the eluent through the resin adsorbed with rhenium and bismuth to elute rhenium and bismuth from the resin, and rhenium and bismuth contained in the liquid after elution are simulated by moving bed chromatography. The system includes separation / recovery means for separation / recovery.

本発明に係るシステムの一実施態様においては、前記吸着手段及び溶離手段が疑似移動床式イオン交換装置である。   In one embodiment of the system according to the present invention, the adsorption means and elution means are simulated moving bed type ion exchange devices.

本発明によれば、精製工程での不純物除去の負荷を良好に低減することができる廃酸からのレニウム回収方法及びシステムを提供することを課題とする。   According to the present invention, it is an object to provide a method and system for recovering rhenium from waste acid, which can satisfactorily reduce the load of removing impurities in the purification process.

図1は、本発明の実施形態に係る廃酸からのレニウム回収システムを用いたレニウム回収方法のフロー図である。FIG. 1 is a flow chart of a rhenium recovery method using a rhenium recovery system from waste acid according to an embodiment of the present invention.

以下に、本発明に係る廃酸からのレニウム回収方法及びシステムの実施形態を、図1を参照しながら説明する。   Hereinafter, an embodiment of a method and system for recovering rhenium from waste acid according to the present invention will be described with reference to FIG.

図1は、本発明の実施形態に係る廃酸からのレニウム回収システムを用いたレニウム回収方法のフロー図である。
非鉄金属製錬工場において排出される廃酸は、重要なレニウム回収源である。このような廃酸中には、一般に、レニウム分:0.01〜0.50g/L、ビスマス分:0.01〜0.05g/L、砒素分:1〜5g/L、鉄分:0.01〜0.05g/L、銅分:0.1〜0.5g/Lが含まれている。なお、廃酸中のレニウムはレニウム酸(HReO4)の形態で存在している。
FIG. 1 is a flow chart of a rhenium recovery method using a rhenium recovery system from waste acid according to an embodiment of the present invention.
Waste acid discharged at non-ferrous metal smelters is an important source of rhenium recovery. In such waste acid, in general, the rhenium content: 0.01 to 0.50 g / L, the bismuth content: 0.01 to 0.05 g / L, the arsenic content: 1 to 5 g / L, the iron content: 0.0. 01-0.05g / L, copper content: 0.1-0.5g / L is contained. Note that rhenium in the waste acid exists in the form of rhenic acid (HReO 4 ).

本発明の実施形態に係るレニウム回収システムは、廃酸から水銀を除去する脱水銀手段を有している。脱水銀工程では、例えば、キレート樹脂や強塩基性陰イオン交換樹脂のような水銀に対する吸着力の強い樹脂に廃酸を通すことにより行われる。水銀が除去された後の廃酸は、脱水銀廃酸として続いて処理される。   The rhenium recovery system according to the embodiment of the present invention has a mercury removal means for removing mercury from waste acid. In the mercury removal step, for example, waste acid is passed through a resin having a strong adsorptivity to mercury such as a chelate resin or a strongly basic anion exchange resin. The spent acid after the mercury is removed is subsequently treated as demercured spent acid.

レニウム回収システムは、上記脱水銀廃酸を陰イオン交換樹脂に通液して、廃酸中のレニウム及びビスマスを該樹脂に吸着させる吸着手段(例えば、イオン交換樹脂塔)を備えている。この吸着手段を用いた吸着工程では、陰イオン交換樹脂は、レニウム及びビスマスを選択的に吸着するものを用いる。陰イオン交換樹脂を通ってレニウム及びビスマスが除去された処理液は、吸着後液として回収される。砒素、鉄、銅については樹脂に吸着せず吸着後液に全量移行する。   The rhenium recovery system is provided with an adsorbing means (for example, an ion exchange resin tower) for passing the demercured waste acid through an anion exchange resin and adsorbing the rhenium and bismuth in the waste acid to the resin. In the adsorption step using this adsorption means, an anion exchange resin that selectively adsorbs rhenium and bismuth is used. The treatment liquid from which rhenium and bismuth have been removed through the anion exchange resin is recovered as a post-adsorption liquid. Arsenic, iron, and copper do not adsorb to the resin, but transfer to the total amount after adsorption.

レニウム回収システムは、レニウム及びビスマスが吸着した陰イオン交換樹脂に溶離液(1)を通液してレニウム及びビスマスを陰イオン交換樹脂から溶離させる溶離手段を備えている。この溶離工程では、溶離液(1)によって陰イオン交換樹脂に吸着しているレニウム及びビスマスを溶離する。溶離液(1)は、レニウム及びビスマスを選択的に溶離させるものであれば特に限定されない。溶離液(1)としては、例えば、塩酸を使用することができるが、金属塩化物を含む塩酸溶液を用いるとより好ましい。このとき用いる金属塩化物としては、ZnCl2が好ましく、これを用いると溶離効率がより良好となる。溶離後液には、このとき溶離したレニウム及びビスマスが含まれている。 The rhenium recovery system includes elution means for passing the eluent (1) through an anion exchange resin on which rhenium and bismuth are adsorbed to elute rhenium and bismuth from the anion exchange resin. In this elution step, rhenium and bismuth adsorbed on the anion exchange resin are eluted with the eluent (1). The eluent (1) is not particularly limited as long as it selectively elutes rhenium and bismuth. For example, hydrochloric acid can be used as the eluent (1), but a hydrochloric acid solution containing a metal chloride is more preferable. As the metal chloride used at this time, ZnCl 2 is preferable, and when this is used, the elution efficiency becomes better. The solution after elution contains rhenium and bismuth eluted at this time.

上記の吸着工程から溶離工程は、通常の固定式陰イオン交換装置を用いて行っても良いが、疑似移動床式陰イオン交換装置を用いるのが好ましい。疑似移動床式陰イオン交換装置は、例えば、米国Calgon Carbon社のISEP(登録商標)等、周知のものを用いることができる。   The adsorption process to the elution process may be performed using a normal fixed anion exchanger, but it is preferable to use a simulated moving bed anion exchanger. As the simulated moving bed type anion exchange apparatus, for example, a well-known apparatus such as ISEP (registered trademark) of Calgon Carbon, USA can be used.

レニウム回収システムは、溶離後液中に含まれるレニウム及びビスマスを、移動床溶液〔溶離液(2)〕を用いて分離・回収する分離・回収手段を備えている。この分離・回収工程では、疑似移動床式クロマトグラフィーによって溶離後液中に含まれるレニウム及びビスマスが吸着されると共に分離・回収される。その際にレニウム及びビスマスのイオン交換樹脂に対する親和性の差を利用し、分離・回収する。疑似移動床式クロマトグラフィーで分離・回収されたレニウムはレニウム区分回収液中に回収される。また、疑似移動床式クロマトグラフィーで分離・回収されたビスマスはビスマス区分回収液中に回収される。   The rhenium recovery system includes separation / recovery means for separating and recovering rhenium and bismuth contained in the liquid after elution using a moving bed solution [eluent (2)]. In this separation / recovery step, rhenium and bismuth contained in the liquid after elution are adsorbed and separated / recovered by simulated moving bed chromatography. At that time, separation / recovery is performed using the difference in the affinity of rhenium and bismuth for the ion exchange resin. The rhenium separated and recovered by simulated moving bed chromatography is recovered in the rhenium fraction recovery liquid. In addition, bismuth separated and recovered by simulated moving bed chromatography is recovered in the bismuth fraction recovery liquid.

上記分離・回収工程に用いられる疑似移動床式クロマトグラフィーは、例えば、米国Calgon Carbon社のCSEP(登録商標)等、周知のものを用いることができる。ここで、陰イオン交換樹脂に吸着されたレニウム、ビスマスを溶離した後、擬似移動床式ではない、固定床式のクロマトグラフィーで分離・回収する処理を行い、レニウムとビスマスとを分離することは可能であるが、このような場合には、レニウムとビスマスとの良好な分離精度を得るため長い(大きな)樹脂カラムを設置することが必要となる。しかし、このように対応すると、装置が大型化し、処理時間が増加するという問題が生じる。そこで、本発明では、クロマトグラフィーの処理を複数の樹脂カラムが用意された擬似移動床式クロマトグラフィーを用いることで、理論段数を増やし、高い分離精度・効率で処理することで、大型の処理装置を用いることなく、クロマトグラフィーの分離・回収を可能としている。   As the simulated moving bed chromatography used in the separation / recovery step, for example, a well-known one such as CSEP (registered trademark) of Calgon Carbon, USA can be used. Here, after eluting rhenium and bismuth adsorbed on the anion exchange resin, separation and recovery are performed by fixed bed chromatography, which is not simulated moving bed, to separate rhenium and bismuth. In such a case, it is necessary to install a long (large) resin column in order to obtain good separation accuracy between rhenium and bismuth. However, if it copes in this way, an apparatus will enlarge and the problem that processing time will increase will arise. Therefore, in the present invention, by using a simulated moving bed type chromatography in which a plurality of resin columns are prepared for chromatography, the number of theoretical plates is increased and processing is performed with high separation accuracy and efficiency. This makes it possible to separate and recover the chromatography without using the.

続いて、レニウム区分回収液のレニウムを硫化工程で硫化レニウムとした後、レニウム精製工程を行い、レニウムを精製する。一方、ビスマス区分回収液はシステム系外へ除去される。   Subsequently, after rhenium in the rhenium section recovery liquid is changed to rhenium sulfide in the sulfidation step, a rhenium purification step is performed to purify rhenium. On the other hand, the bismuth section recovery liquid is removed out of the system system.

本発明では、上述のように、脱水銀廃酸を陰イオン交換樹脂に通液して、廃酸中のレニウム及びビスマスを該樹脂に吸着させ、続いて陰イオン交換樹脂に溶離液(1)を通液してレニウム及びビスマスを陰イオン交換樹脂から溶離させて得られた溶離液から、疑似移動床式クロマトグラフィーによってレニウム及びビスマスを分離して回収している。このように、初めに陰イオン交換樹脂でレニウムを樹脂に吸着させ、続いて樹脂に吸着したレニウムを溶離させた後、疑似移動床式クロマトグラフィーによってレニウムを分離するという2段階の精製により、その後の精製工程で処理する溶離液中の不純物の濃度を良好に抑制することができる。これにより、精製工程での不純物除去の負荷を良好に低減することができる。
これに対し、2段階精製ではなく従来の陰イオン交換樹脂のみの精製では、目的成分(レニウム)と不純物成分(ビスマス)とが同時に溶離液中で濃縮されるため、不純物のみの分離が困難となる。また、従来のクロマトグラフィーのみの精製では、精製前の処理液中の目的成分(レニウム)の濃度が低く、クロマトグラフィーによる処理でさらに濃度が低下するため、精製工程での処理液量が増加するという問題がある。
In the present invention, as described above, the demercured waste acid is passed through the anion exchange resin, the rhenium and bismuth in the waste acid are adsorbed on the resin, and then the eluent (1) on the anion exchange resin. The rhenium and bismuth are separated and recovered by simulated moving bed chromatography from the eluate obtained by passing rhodium and eluting rhenium and bismuth from the anion exchange resin. In this way, first, rhenium is adsorbed on the resin with an anion exchange resin, and then rhenium adsorbed on the resin is eluted, and then rhenium is separated by simulated moving bed chromatography. The concentration of impurities in the eluent treated in the purification step can be satisfactorily suppressed. Thereby, the load of removing impurities in the purification process can be reduced favorably.
On the other hand, when purifying only the conventional anion exchange resin rather than the two-stage purification, the target component (rhenium) and the impurity component (bismuth) are concentrated in the eluent at the same time. Become. Further, in the purification only by the conventional chromatography, the concentration of the target component (rhenium) in the treatment liquid before purification is low, and the concentration is further lowered by the chromatography treatment, so that the amount of the treatment liquid in the purification process increases. There is a problem.

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

(実施例1)
実施例1として、上述の本発明に係るレニウム回収システムに従い、レニウム、ビスマス、及び、その他の不純物金属を含む廃酸(処理液ともいう)からのレニウムの回収を、疑似移動床式陰イオン交換装置、及び、疑似移動床式クロマトグラフィーを用いて、以下の条件で行った。
〔疑似移動床式イオン交換装置〕
・装置型式:ISEP(登録商標) L−100C型
・カラム数:30カラム(1インチCPVCカラム)
・カラム樹脂総充填量:12.2L
・樹脂:強塩基性イオン交換樹脂 (三菱化学社製PA408)
・樹脂塔回転速度:4.9Hr/回転
・廃酸通液量:96.6L/Hr、溶離液(1)通液量:8.8L/Hr
〔疑似移動床式クロマトグラフィー〕
・装置型式:ISEP(登録商標) L−130C型
・カラム数:30カラム(3インチPPカラム)
・カラム樹脂総充填量:137L
・樹脂:強塩基性イオン交換樹脂(三菱化学社製PA408)
・樹脂塔回転速度:6.4Hr/回転
・溶離後液通液量:6.3L/Hr、溶離液(2)通液量:19.9L/Hr、
Re区分通液量:6.7L/Hr、Bi区分通液量:19.5L/Hr
Example 1
As Example 1, in accordance with the above-described rhenium recovery system according to the present invention, recovery of rhenium from waste acid (also referred to as a treatment liquid) containing rhenium, bismuth, and other impurity metals is performed using simulated moving bed anion exchange. Using the apparatus and simulated moving bed chromatography, it was performed under the following conditions.
[Pseudo moving bed type ion exchanger]
-Device type: ISEP (registered trademark) L-100C type-Number of columns: 30 columns (1 inch CPVC column)
・ Total column resin charge: 12.2 L
Resin: Strongly basic ion exchange resin (PA408 manufactured by Mitsubishi Chemical Corporation)
Resin tower rotation speed: 4.9 Hr / rotation / Waste acid flow rate: 96.6 L / Hr, Eluent (1) Flow rate: 8.8 L / Hr
[Pseudo moving bed chromatography]
-Device type: ISEP (registered trademark) L-130C type-Number of columns: 30 columns (3 inch PP column)
・ Total column resin packing: 137L
Resin: Strongly basic ion exchange resin (PA408 manufactured by Mitsubishi Chemical Corporation)
-Resin tower rotation speed: 6.4 Hr / rotation-Liquid flow rate after elution: 6.3 L / Hr, Eluent (2) flow rate: 19.9 L / Hr,
Re section flow rate: 6.7 L / Hr, Bi section flow rate: 19.5 L / Hr

(比較例1)
比較例1として、レニウム、ビスマス、及び、その他の不純物金属を含む廃酸(処理液ともいう)からのレニウムの回収を、固定床式陰イオン交換装置のみで、以下の条件で行った。
〔固定床式陰イオン交換装置〕
・カラムサイズ:Φ90×1000mm
・カラム樹脂量:5000mL
・樹脂:強塩基性陰イオン交換樹脂(三菱化学社製PA408)
・樹脂吸着通液量Bv(Bed volume:液量/樹脂体積):30
・空間速度Sv(Space volume:通液速度/樹脂体積):4Hr-1
(Comparative Example 1)
As Comparative Example 1, rhenium was recovered from waste acid (also referred to as a treatment liquid) containing rhenium, bismuth, and other impurity metals using only a fixed bed anion exchanger under the following conditions.
[Fixed bed anion exchanger]
・ Column size: Φ90 × 1000mm
-Column resin amount: 5000 mL
・ Resin: Strongly basic anion exchange resin (PA408 manufactured by Mitsubishi Chemical Corporation)
Resin adsorption flow rate Bv (Bed volume: liquid amount / resin volume): 30
Space velocity Sv (Space volume: liquid flow rate / resin volume): 4Hr −1

表1に実施例1に係る疑似移動床式イオン交換試験結果を示す。表2に実施例1に係る疑似移動床式クロマトグラフィー試験結果を示す。表3に比較例1に係る固定床式陰イオン交換試験結果を示す。   Table 1 shows the simulated moving bed ion exchange test results according to Example 1. Table 2 shows the simulated moving bed chromatography test results according to Example 1. Table 3 shows the results of the fixed bed type anion exchange test according to Comparative Example 1.

Figure 2012149285
Figure 2012149285

Figure 2012149285
Figure 2012149285

Figure 2012149285
Figure 2012149285

表1より、廃酸中のRe及びBiはAs、Fe、Cuと分離されていることがわかった。さらに、廃酸(吸着前)のRe/Bi濃度比は、2.9(122/42)であった。また、樹脂に廃酸を吸着し、溶離した溶離液のRe/Bi濃度比は、2.8(1167/419)であった。以上のようにイオン交換試験ではRe/Bi濃度比は変わらないことが確認された。   From Table 1, it was found that Re and Bi in the waste acid were separated from As, Fe, and Cu. Furthermore, the Re / Bi concentration ratio of the waste acid (before adsorption) was 2.9 (122/42). Further, the waste acid was adsorbed on the resin, and the Re / Bi concentration ratio of the eluted eluent was 2.8 (1167/419). As described above, it was confirmed that the Re / Bi concentration ratio did not change in the ion exchange test.

表2より、溶離液を擬似移動床式クロマトグラフィーに通液した後のRe区分回収液では、Re/Bi濃度比が9.2(655/71)であり、溶離液と比較し大きくなっているため、後工程での負荷が軽減できることが確認された。また、ビスマスが濃縮したBi区分回収液(Re/Bi濃度比:1.2(148/119))は、系外除去することで、不純物であるビスマスの分離除去が可能となった。   From Table 2, Re / Bi concentration ratio is 9.2 (655/71) in the Re section recovery liquid after passing the eluent through simulated moving bed chromatography, which is larger than the eluent. Therefore, it was confirmed that the load in the subsequent process can be reduced. In addition, the Bi separated collection liquid (Re / Bi concentration ratio: 1.2 (148/119)) concentrated in bismuth can be removed out of the system, so that bismuth as an impurity can be separated and removed.

表3より、固定床式イオン交換装置でも擬似移動床式イオン交換装置と同様に廃酸と溶離液のRe/Bi濃度比はほぼ同じであるため(廃酸:4.2、溶離液:4.2)、後工程での負荷を低減することはできないことが確認された。
尚、実施例1では、擬似移動床式陰イオン交換装置を使用して、1段目の陰イオン交換樹脂による廃酸中のRe及びBiを他の金属イオンと分離したが、固定式の陰イオン交換装置を使用し、2段目のクロマトグラフィーの処理に擬似移動床式クロマトグラフィー装置を使用して実施してもReとBiの分離効果が得られることを確認している。
また、固定床式装置に対して、擬似移動床式の装置を用いることで、全体システムをコンパクトにでき、さらに樹脂の進行方向と各溶液の流れ方向とが逆向きに進む向流接触により溶離液中の目的金属の高濃度化や洗浄水・溶離液の使用量低減に効果があるので、さらに有効な処理方法となる。
From Table 3, since the Re / Bi concentration ratio of the waste acid and the eluent is almost the same in the fixed bed type ion exchanger as in the simulated moving bed type ion exchanger (waste acid: 4.2, eluent: 4). .2) It was confirmed that the load in the subsequent process cannot be reduced.
In Example 1, Re and Bi in the waste acid by the first-stage anion exchange resin were separated from other metal ions by using a simulated moving bed type anion exchange device. It has been confirmed that the separation effect of Re and Bi can be obtained even when an ion exchange apparatus is used and a simulated moving bed chromatography apparatus is used for the second stage chromatography.
In addition, by using a simulated moving bed type device compared to a fixed bed type device, the overall system can be made compact, and further elution is performed by countercurrent contact in which the resin traveling direction and the flow direction of each solution are reversed. Since it is effective in increasing the concentration of the target metal in the solution and reducing the amount of washing water and eluent used, it becomes a more effective treatment method.

Claims (4)

少なくともレニウム及びビスマスを含む廃酸からレニウムを回収する方法であって、
廃酸を陰イオン交換樹脂に通液して、レニウム及びビスマスを該樹脂に吸着させる吸着工程と、
レニウム及びビスマスが吸着した前記樹脂に溶離液を通液してレニウム及びビスマスを該樹脂から溶離させる溶離工程と、
溶離後液中に含まれるレニウム及びビスマスを疑似移動床式クロマトグラフィーで分離・回収する分離・回収工程と、
を含む方法。
A method for recovering rhenium from a spent acid containing at least rhenium and bismuth,
An adsorption step of passing waste acid through an anion exchange resin and adsorbing rhenium and bismuth on the resin;
An elution step of passing an eluent through the resin adsorbed with rhenium and bismuth to elute rhenium and bismuth from the resin;
A separation / recovery process for separating and recovering rhenium and bismuth contained in the liquid after elution by simulated moving bed chromatography;
Including methods.
前記吸着工程から溶離工程を疑似移動床式イオン交換装置で行う請求項1に記載の方法。   The method of Claim 1 which performs the elution process from the said adsorption | suction process with a simulated moving bed type ion exchange apparatus. 少なくともレニウム及びビスマスを含む廃酸からレニウムを回収するシステムであって、
廃酸を陰イオン交換樹脂に通液して、レニウム及びビスマスを該樹脂に吸着させる吸着手段と、
レニウム及びビスマスが吸着した前記樹脂に溶離液を通液してレニウム及びビスマスを該樹脂から溶離させる溶離手段と、
溶離後液中に含まれるレニウム及びビスマスを疑似移動床式クロマトグラフィーで分離・回収する分離・回収手段と、
を備えたシステム。
A system for recovering rhenium from spent acid containing at least rhenium and bismuth,
Adsorbing means for passing waste acid through an anion exchange resin and adsorbing rhenium and bismuth to the resin;
An elution means for passing an eluent through the resin adsorbed with rhenium and bismuth to elute rhenium and bismuth from the resin;
Separation / recovery means for separating and recovering rhenium and bismuth contained in the liquid after elution by simulated moving bed chromatography;
System with.
前記吸着手段及び溶離手段が疑似移動床式イオン交換装置である請求項3に記載のシステム。   The system according to claim 3, wherein the adsorption means and the elution means are simulated moving bed ion exchangers.
JP2011007166A 2011-01-17 2011-01-17 Method and system for recovering rhenium from spent acid Active JP5284378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007166A JP5284378B2 (en) 2011-01-17 2011-01-17 Method and system for recovering rhenium from spent acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007166A JP5284378B2 (en) 2011-01-17 2011-01-17 Method and system for recovering rhenium from spent acid

Publications (2)

Publication Number Publication Date
JP2012149285A true JP2012149285A (en) 2012-08-09
JP5284378B2 JP5284378B2 (en) 2013-09-11

Family

ID=46791811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007166A Active JP5284378B2 (en) 2011-01-17 2011-01-17 Method and system for recovering rhenium from spent acid

Country Status (1)

Country Link
JP (1) JP5284378B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103398A1 (en) * 2012-12-28 2014-07-03 パンパシフィック・カッパー株式会社 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
WO2014103397A1 (en) * 2012-12-28 2014-07-03 パンパシフィック・カッパー株式会社 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
US9127136B1 (en) 2014-07-18 2015-09-08 Sabic Global Technologies B.V. Purification of monomer from recycle polyesters
JP2016014167A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal
JP2016013941A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing rhenium sulfide, method for producing aqueous perrhenic acid solution, method for producing potassium perrhenate, method for producing ammonium perrhenate, and method for producing rhenium metal
JP2016013940A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal
JP2016013939A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution from crude rhenium sulfide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105714121B (en) * 2016-04-21 2017-11-28 西北有色金属研究院 A kind of method that rhenium and bismuth are reclaimed from acid waste liquid

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131829A (en) * 1983-12-16 1985-07-13 Nippon Mining Co Ltd Method for recovering rhenium
JPS6316340B2 (en) * 1983-12-16 1988-04-08 Nippon Mining Co
JPH02135135A (en) * 1988-11-15 1990-05-24 Toray Ind Inc Permselective membrane and separation of saccharides with same membrane
JPH0354118A (en) * 1989-07-24 1991-03-08 Sumitomo Chem Co Ltd Method for recovering rhenium
JPH0639205A (en) * 1992-05-22 1994-02-15 Kawasaki Heavy Ind Ltd Liquid chromatographic separator for three components
JPH09133670A (en) * 1995-07-25 1997-05-20 Matthey Rustenburg Refiners Pty Ltd Mutual separation of platinum group metal
JP2001516808A (en) * 1997-09-17 2001-10-02 アングロ アメリカン プラティナム コーポレイション リミティド Separation of platinum group metals
JP2005523350A (en) * 2002-04-16 2005-08-04 ディアゼン コーポレーション Multilayer macromolecule and method of using the multilayer macromolecule
JP2006183106A (en) * 2004-12-28 2006-07-13 Toyohashi Univ Of Technology Apparatus for separating and collecting metal, and method for separating and collecting metal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131829A (en) * 1983-12-16 1985-07-13 Nippon Mining Co Ltd Method for recovering rhenium
JPS6316340B2 (en) * 1983-12-16 1988-04-08 Nippon Mining Co
JPH02135135A (en) * 1988-11-15 1990-05-24 Toray Ind Inc Permselective membrane and separation of saccharides with same membrane
JPH0354118A (en) * 1989-07-24 1991-03-08 Sumitomo Chem Co Ltd Method for recovering rhenium
JPH0639205A (en) * 1992-05-22 1994-02-15 Kawasaki Heavy Ind Ltd Liquid chromatographic separator for three components
JPH09133670A (en) * 1995-07-25 1997-05-20 Matthey Rustenburg Refiners Pty Ltd Mutual separation of platinum group metal
JP2001516808A (en) * 1997-09-17 2001-10-02 アングロ アメリカン プラティナム コーポレイション リミティド Separation of platinum group metals
JP2005523350A (en) * 2002-04-16 2005-08-04 ディアゼン コーポレーション Multilayer macromolecule and method of using the multilayer macromolecule
JP2006183106A (en) * 2004-12-28 2006-07-13 Toyohashi Univ Of Technology Apparatus for separating and collecting metal, and method for separating and collecting metal

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271782A (en) * 2012-12-28 2015-01-07 环太铜业株式会社 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
WO2014103397A1 (en) * 2012-12-28 2014-07-03 パンパシフィック・カッパー株式会社 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
JP2014129584A (en) * 2012-12-28 2014-07-10 Pan Pacific Copper Co Ltd Manufacturing method of perrhenic acid aqueous solution from rhenium sulfide
KR20140144280A (en) * 2012-12-28 2014-12-18 판 퍼시픽 카파 가부시끼가이샤 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
KR20140144281A (en) * 2012-12-28 2014-12-18 판 퍼시픽 카파 가부시끼가이샤 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
CN104271511A (en) * 2012-12-28 2015-01-07 环太铜业株式会社 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
KR101627959B1 (en) 2012-12-28 2016-06-07 판 퍼시픽 카파 가부시끼가이샤 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
CN110078127A (en) * 2012-12-28 2019-08-02 环太铜业株式会社 By the method for sulfuration rhenium manufacture perrhenic acid aqueous solution
CN109081379A (en) * 2012-12-28 2018-12-25 环太铜业株式会社 By the method for sulfuration rhenium manufacture perrhenic acid aqueous solution
US9631259B2 (en) 2012-12-28 2017-04-25 Pan Pacific Copper Co., Ltd. Method for producing aqueous solution of perrhenic acid from rhenium sulfide
US9624561B2 (en) 2012-12-28 2017-04-18 Pan Pacific Copper Co., Ltd. Method for producing aqueous solution of perrhenic acid from rhenium sulfide
KR101629597B1 (en) 2012-12-28 2016-06-13 판 퍼시픽 카파 가부시끼가이샤 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
WO2014103398A1 (en) * 2012-12-28 2014-07-03 パンパシフィック・カッパー株式会社 Method for producing aqueous solution of perrhenic acid from rhenium sulfide
JP2016013939A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution from crude rhenium sulfide
JP2016013940A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal
JP2016013941A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing rhenium sulfide, method for producing aqueous perrhenic acid solution, method for producing potassium perrhenate, method for producing ammonium perrhenate, and method for producing rhenium metal
JP2016014167A (en) * 2014-07-01 2016-01-28 パンパシフィック・カッパー株式会社 Method for producing perrhenic acid aqueous solution and potassium perrhenate obtained by using the same, and method for producing ammonium perrhenate and rhenium metal
WO2016010587A1 (en) * 2014-07-18 2016-01-21 Sabic Global Technologies B.V. Purification of monomer from recycle polyesters
US9127136B1 (en) 2014-07-18 2015-09-08 Sabic Global Technologies B.V. Purification of monomer from recycle polyesters

Also Published As

Publication number Publication date
JP5284378B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5284378B2 (en) Method and system for recovering rhenium from spent acid
Zhu et al. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud
Zhang et al. Recovery of rhenium from copper leach solutions using ion exchange with weak base resins
Zhang et al. Highly-efficient separation and recovery of ruthenium from electroplating wastewater by a mesoporous silica-polymer based adsorbent
JP2004131745A (en) Method of separating and recovering platinum group element
CN113293293B (en) Method for recovering nickel and cobalt from laterite-nickel ore by resin adsorption method
JP6728905B2 (en) Purification method of cobalt chloride aqueous solution
Liang et al. Separation and recovery of V (IV) from sulfuric acid solutions containing Fe (III) and Al (III) using bis (2-ethylhexyl) phosphoric acid impregnated resin
JP2019173063A (en) Recovery method of nickel and cobalt from solution
CN107519948B (en) Composite amino weakly-alkaline anion exchange resin and method for recovering rhenium from arsenic sulfide slag leachate
WO2013129017A1 (en) Method for recovering gold adsorbed on activated carbon and gold manufacturing process using same
JP2010229017A (en) Method for producing high-purity ammonium paratungstate
JP2003201527A (en) Method for isolating rhenium
JP6433395B2 (en) Copper sulfide ore leaching method
Virolainen et al. Continuous ion exchange for hydrometallurgy: Purification of Ag (I)–NaCl from divalent metals with aminomethylphosphonic resin using counter-current and cross-current operation
JP3303066B2 (en) How to purify scandium
CN104831067A (en) Method for separating and recovering arsenic from metallurgical material acid leaching liquid
JP2010174336A (en) METHOD OF RECOVERING Ru AND/OR Ir FROM SOLUTION CONTAINING PLATINUM GROUP
JP2016151062A (en) METHOD FOR REMOVING IMPURITY ELEMENT FROM Pt-CONTAINING SOLUTION AND METHOD FOR RECOVERING Pt USING THE SAME
JP6433377B2 (en) Heavy metal recovery method and recovery device
JP4699824B2 (en) Equipment for removing heavy metals in hydrochloric acid
JPS6316341B2 (en)
JP5057322B2 (en) Method for eluting and recovering scandium in solid polymer materials
EP2419545B1 (en) Methods and systems for recoverying rhenium from a copper leach
JPH0533071A (en) Method for separating and refining rhodium from aqueous solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Ref document number: 5284378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250