JP2012148333A - Method for preventing melt and adhesion in consumable electrode arc welding - Google Patents

Method for preventing melt and adhesion in consumable electrode arc welding Download PDF

Info

Publication number
JP2012148333A
JP2012148333A JP2011010538A JP2011010538A JP2012148333A JP 2012148333 A JP2012148333 A JP 2012148333A JP 2011010538 A JP2011010538 A JP 2011010538A JP 2011010538 A JP2011010538 A JP 2011010538A JP 2012148333 A JP2012148333 A JP 2012148333A
Authority
JP
Japan
Prior art keywords
welding
characteristic
short
circuit
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011010538A
Other languages
Japanese (ja)
Inventor
Toshiro Uesono
敏郎 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2011010538A priority Critical patent/JP2012148333A/en
Publication of JP2012148333A publication Critical patent/JP2012148333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing melt and adhesion which prevents melt and adhesion on completion of welding in consumable electrode arc welding.SOLUTION: In the method for preventing melt and adhesion in consumable electrode arc welding, a stop command is output to a motor when a welding completion command is input to a welding source, and the output of the welding source is antistic-controlled so that a wire kindling height on stop of a welding wire may reach a prescribed value, in a preset melt and adhesion preventing period from the time at which the antistic control is completed, melt and adhesion preventing voltage lower than antistic voltage is output, and, in the melt and adhesion preventing period, external characteristics are formed in which a tilt becomes positive rising properties when short circuit current is less than a preset short circuit standard current value and the tilt becomes zero and negative flat properties when it is more than the short circuit standard value.

Description

本発明は、消耗電極アーク溶接における溶接終了時の溶着防止の制御に関するものである。   The present invention relates to control for preventing welding at the end of welding in consumable electrode arc welding.

ミグ、マグ溶接等の消耗電極式アーク溶接では、溶接のアンチスチック制御終了後にトーチを移動させたとき、手ぶれ等により溶接ワイヤが被加工物に短絡し溶着することが多々ある。この不具合に対してアンチスチック制御終了後に所定期間だけ溶接ワイヤにアンチスチック電圧より低い電圧を出力し、溶接ワイヤが被加工物の溶融池に短絡し溶着したとき低い電圧を印加して溶接ワイヤを溶着から解除していた。   In consumable electrode arc welding such as MIG and MAG welding, when the torch is moved after the anti-stick control of welding is completed, the welding wire is often short-circuited to the work piece due to camera shake or the like. To solve this problem, a voltage lower than the anti-stic voltage is output to the welding wire for a predetermined period after the anti-stic control is completed, and when the welding wire is short-circuited and welded to the molten pool of the workpiece, the welding wire is It was released from welding.

図4は従来技術の消耗電極アーク溶接の溶着防止方法を実施するための溶接電源の電気接続図である。同図において主電源回路INVは、3相200V等の商用電源を入力としてインバータ制御による出力制御を行い、溶接電流及び溶接電圧を出力する。出力電圧検出回路VDは、主電源回路INVの出力電圧を検出して出力電圧検出信号Vdとして出力する。出力電流検出回路IDは、主電源回路INVの出力電流を検出して出力電流検出信号Idとして出力する。   FIG. 4 is an electrical connection diagram of a welding power source for carrying out a welding prevention method for consumable electrode arc welding according to the prior art. In the figure, a main power supply circuit INV performs output control by inverter control with a commercial power supply such as three-phase 200 V as an input, and outputs a welding current and a welding voltage. The output voltage detection circuit VD detects the output voltage of the main power supply circuit INV and outputs it as an output voltage detection signal Vd. The output current detection circuit ID detects the output current of the main power supply circuit INV and outputs it as an output current detection signal Id.

図4に示す出力電圧設定回路VSは、予め定めた出力電圧設定信号Vsを出力し、定電圧特性設定回路CVCは、予め定めた定電圧特性設定信号Cvcを出力する。外部特性制御回路SCは、出力電圧設定信号Vs、定電圧特性設定信号Cvc及び出力電流検出信号Idを入力とし演算を行い、図3に示す第1の定電圧特性L1の外部特性を形成する外部特性制御信号Scを出力する、と共にアンチスチック処理が終了するとアンチスチック処理終了信号Atを出力する。   The output voltage setting circuit VS shown in FIG. 4 outputs a predetermined output voltage setting signal Vs, and the constant voltage characteristic setting circuit CVC outputs a predetermined constant voltage characteristic setting signal Cvc. The external characteristic control circuit SC receives the output voltage setting signal Vs, the constant voltage characteristic setting signal Cvc, and the output current detection signal Id and performs an operation to form an external characteristic of the first constant voltage characteristic L1 shown in FIG. When the characteristic control signal Sc is output and the anti-stick process ends, an anti-stick process end signal At is output.

溶着防止期間設定回路MPTは、アンチスチック処理終了信号Atの入力に応じて予め定めた期間、溶着防止期間設定信号Mptを出力する。外部特性制御回路SCは、溶着防止期間設定信号Mptが入力しているとき、図3に示す第1の定電圧特性L1を所定電圧降圧させた第2の定電圧特性L2の外部特性を形成する外部特性制御信号Scを出力する。   The welding prevention period setting circuit MPT outputs a welding prevention period setting signal Mpt for a predetermined period in accordance with the input of the anti-stick process end signal At. When the welding prevention period setting signal Mpt is input, the external characteristic control circuit SC forms the external characteristic of the second constant voltage characteristic L2 obtained by stepping down the first constant voltage characteristic L1 shown in FIG. An external characteristic control signal Sc is output.

図5は、従来技術のアンチスチック処理終了後に溶接ワイヤが溶融池に短絡し溶着したとき溶接ワイヤに所定の電圧を印加して溶接ワイヤを溶着解除するときの波形図である。図5において、同図(A)は出力電圧信号Vdを示し、同図(B)は出力電流信号Idを示し、同図(C1)〜(C5)は溶接ワイヤが溶融池から溶着解除するときの状態を示す。以下、図5を参照して従来技術の動作について説明する。   FIG. 5 is a waveform diagram when the welding wire is released from welding by applying a predetermined voltage to the welding wire when the welding wire is short-circuited and welded to the molten pool after the anti-stick treatment of the prior art is completed. 5, (A) shows the output voltage signal Vd, (B) shows the output current signal Id, and (C1) to (C5) show when the welding wire is released from the weld pool. Shows the state. Hereinafter, the operation of the prior art will be described with reference to FIG.

外部特性制御回路SCは、溶着防止期間設定信号Mptの入力に応じて図3に示す第1の定電圧特性L1を降圧させた第2の定電圧特性L2になる外部特性制御を行う。例えば、負荷電圧20Vのとき14Vに降圧する。   The external characteristic control circuit SC performs external characteristic control that becomes the second constant voltage characteristic L2 obtained by stepping down the first constant voltage characteristic L1 shown in FIG. 3 in response to the input of the welding prevention period setting signal Mpt. For example, when the load voltage is 20V, the voltage is stepped down to 14V.

溶着防止期間中の時刻t=t1において、溶接トーチ4を所定の位置に移動させる際に手ぶれ等により溶接ワイヤ1が被加工物2に長く短絡し強く溶着した状態にあり、図5(B)に示す出力電流検出信号Idは次第に増加し、同図(A)に示す出力電圧検出信号Idは短絡状態にあるために数V程度の低い値になり、時刻t=t2において、出力電流検出信号Idの値が所定の基準電流値より大きくなると同図(C2)に示すようにアークが発生する。   At time t = t1 during the welding prevention period, when the welding torch 4 is moved to a predetermined position, the welding wire 1 is short-circuited to the workpiece 2 for a long time due to camera shake or the like, and is strongly welded. The output current detection signal Id shown in FIG. 3 gradually increases, and the output voltage detection signal Id shown in FIG. 3A becomes a low value of about several volts because it is in a short circuit state, and at time t = t2, the output current detection signal Id When the value of Id becomes larger than a predetermined reference current value, an arc is generated as shown in FIG.

アークが発生した状態で溶接ワイヤ1を被加工物2から引き上げることで、時刻t=t3において溶接ワイヤ1が被加工物2の溶融池から離脱する。そして、時刻t=t4において、アーク長が更に長くなるとアークが消弧する。このとき、図3に示す第2の定電圧特性l2の動作点は、例えば、C点からA点に移動し、図5(A)に示す出力電圧検出信号Idの値は、時刻t=t2〜t4の間、増加する。   By pulling up the welding wire 1 from the workpiece 2 in a state where an arc is generated, the welding wire 1 is detached from the molten pool of the workpiece 2 at time t = t3. At time t = t4, when the arc length is further increased, the arc is extinguished. At this time, for example, the operating point of the second constant voltage characteristic 12 shown in FIG. 3 moves from the point C to the point A, and the value of the output voltage detection signal Id shown in FIG. Increase for ~ t4.

時刻t=t4〜t5で溶接トーチ4を移動中に、溶接ワイヤ1が再度被加工物2に短く短絡し弱く溶着しても、図5(B)に示すように出力電流検出信号Idは急激に増加し、その後、時刻t=t6において、出力電流検出信号Idの値が所定の基準電流値より大きくなると同図(C2)に示すようにアークが発生する。このとき、短い短絡にも関わらず長い短絡と同様の短絡電流が流れる。   Even if the welding wire 1 is short-circuited to the workpiece 2 again and is weakly welded while the welding torch 4 is moving at the time t = t4 to t5, the output current detection signal Id is rapidly changed as shown in FIG. Then, at time t = t6, when the value of the output current detection signal Id becomes larger than a predetermined reference current value, an arc is generated as shown in FIG. At this time, a short-circuit current similar to that of a long short circuit flows despite a short short circuit.

アークが発生中に再度溶接ワイヤ1を被加工物2から引き上げることで、溶接ワイヤ1が被加工物2の溶融池から離脱する。そして、時刻t=t7において、アーク長が更に長くなるとアークが消弧する。   The welding wire 1 is detached from the molten pool of the workpiece 2 by pulling the welding wire 1 again from the workpiece 2 while the arc is generated. At time t = t7, when the arc length is further increased, the arc is extinguished.

上述において、溶接ワイヤ1と被加工物2との短絡の長さに関係なく、短絡の初期の電流上昇速度が速いので、短い短絡で弱く溶着しても大きな短絡電流が流れるので溶接ワイヤ1が被加工物2の溶融池から離脱するときにスパッタが多く発生し、被加工物に多くのスパッタが付着して溶接不良を招いてしまう。   In the above description, regardless of the length of the short-circuit between the welding wire 1 and the workpiece 2, the current rising speed at the initial stage of the short-circuit is fast. When the workpiece 2 leaves the molten pool, a lot of spatter is generated, and a lot of spatter adheres to the workpiece, resulting in poor welding.

特許文献1に記載されたパルスアーク溶接電源装置の出力制御方法では、外部特性を制御することが記載されている。   In the output control method of the pulse arc welding power supply device described in Patent Document 1, it is described that external characteristics are controlled.

特開2002−283050号公報JP 2002-283050 A

消耗電極式アーク溶接では、アンチスチック制御が終了した直後に溶接トーチを移動する際に、手ぶれ等により溶接ワイヤの先端が被加工物の溶融池に短絡して溶着することが多々ある。この不具合に対して、従来では溶着を防止するためにアンチスチック制御が終了した直後に所定期間だけ溶接ワイヤにアンチスチック電圧より低い電圧を印加し、溶接ワイヤが被加工物に溶着したとき溶接ワイヤを溶着解除していた。   In the consumable electrode type arc welding, when the welding torch is moved immediately after the anti-stick control is completed, the tip of the welding wire is often short-circuited to the molten pool of the workpiece due to camera shake or the like and is often welded. In order to prevent this problem, conventionally, when the anti-stick control is applied to the welding wire for a predetermined period immediately after the anti-stick control is completed to prevent welding, and the welding wire is welded to the workpiece, the welding wire Was unwelding.

しかし、移動中の溶接ワイヤの短絡には、長い短絡又は短い短絡の短絡状態が発生し強い溶着と軽い溶着とか生じる。このとき、従来の溶着防止方法では、短い短絡で弱く溶着したときでも大きな短絡電流が流れるので、溶接ワイヤを被加工物の溶融池から離脱するとき、スパッタが多く発生し放電痕が被加工物に付着して溶接不良を招いてしまう。   However, the short-circuiting of the moving welding wire may cause a short-circuit state of a long short-circuit or a short-circuit, resulting in strong welding and light welding. At this time, in the conventional welding prevention method, a large short-circuit current flows even when weakly welded by a short circuit, so when the welding wire is separated from the molten pool of the workpiece, a lot of spatter occurs and discharge traces are formed on the workpiece. It will adhere to and cause poor welding.

そこで、本発明では、溶接ワイヤの短絡状態に関係なく、溶接ワイヤが被加工物の溶融池から離脱するときにスパッタが発生しにくい溶着防止方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a welding prevention method in which spatter is hardly generated when the welding wire is detached from the molten pool of the workpiece regardless of the short-circuit state of the welding wire.

上述した課題を解決するために、請求項1の発明は、溶接電源に溶接終了指令が入力されるとモータに停止指令を出力し、溶接ワイヤが停止したときのワイヤ燃え上がり高さが所定値になるように溶接電源の出力をアンチスチック制御する消耗電極アーク溶接の溶着防止方法において、前記アンチスチック制御が終了した時点から予め定めた溶着防止期間は、アンチスチック電圧より低い溶着防止電圧を出力し、前記溶着防止期間は、短絡電流が予め定めた短絡基準電流値未満のとき傾きが正の上昇特性となり、短絡基準電流値以上のとき傾きが零及び負のフラット特性となる外部特性を形成する、ことを特徴とする消耗電極アーク溶接の溶着防止方法である。   In order to solve the above-described problem, the invention of claim 1 outputs a stop command to the motor when a welding end command is input to the welding power source, and the wire burn-up height when the welding wire stops becomes a predetermined value. In the method for preventing welding of consumable electrode arc welding in which the output of the welding power source is controlled in an anti-stick manner, a welding prevention voltage lower than the anti-stic voltage is output during a predetermined welding prevention period from the end of the anti-stick control. In the welding prevention period, an external characteristic is formed in which the slope has a positive rising characteristic when the short-circuit current is less than a predetermined short-circuit reference current value, and the slope has zero and negative flat characteristics when the short-circuit current is greater than the short-circuit reference current value. This is a welding prevention method for consumable electrode arc welding.

本発明によれば、溶着防止期間の溶接電源の外部特性を上昇特性とフラット特性とで形成することで、溶接ワイヤの短絡期間が長くなり強く溶着するとき、外部特性をフラット特性に成るように制御して溶接ワイヤに高い出力電圧を印加することで、短絡時に大きな電流が流れ強い溶着でも容易に溶着解除できる。逆に、溶接ワイヤの短絡期間が短くなり弱く溶着するとき、外部特性を上昇特性に成るように制御して溶接ワイヤに印加する出力電圧を低くすることで、弱い溶着を小さな電流で溶断できるので、溶接ワイヤを被加工物の溶融池から離脱するときに発生するスパッタを大きく減少できる。
上述より、短絡状態に応じて溶接ワイヤに印加する溶着防止電圧を最適化できるので、溶接ワイヤの溶着から解除の時に発生するスパッタが抑制でき溶接品質の向上に繋がるる。
According to the present invention, the external characteristics of the welding power source during the welding prevention period are formed by the rising characteristics and the flat characteristics, so that when the welding wire is long and strongly welded, the external characteristics become flat characteristics. By controlling and applying a high output voltage to the welding wire, a large current flows at the time of a short circuit, and welding can be easily released even with strong welding. Conversely, when the welding wire is short-circuited and weakly welded, it is possible to melt weak welding with a small current by controlling the external characteristics to be increased and lowering the output voltage applied to the welding wire. The spatter generated when the welding wire is detached from the molten pool of the workpiece can be greatly reduced.
As described above, since the welding prevention voltage applied to the welding wire can be optimized according to the short-circuit state, the spatter generated when the welding wire is released from the welding can be suppressed, leading to improvement in welding quality.

本発明の実施形態に係る消耗電極アーク溶接の溶着防止方法を実施するた めの溶接電源の電気接続図である。FIG. 2 is an electrical connection diagram of a welding power source for carrying out a welding prevention method for consumable electrode arc welding according to an embodiment of the present invention. 実施形態の動作を説明する波形図である。It is a wave form diagram explaining operation | movement of embodiment. 実施形態の外部特性図である。It is an external characteristic view of an embodiment. 従来技術の消耗電極アーク溶接の溶着防止方法を実施するための溶接電源の 電気接続図である。FIG. 6 is an electrical connection diagram of a welding power source for carrying out a welding prevention method for consumable electrode arc welding according to the prior art. 従来技術の動作を説明する波形図である。It is a wave form diagram explaining operation | movement of a prior art.

図1、図2及び図3を参照して本発明の実施形態について説明する。
図1は、本発明の実施形態に係る消耗電極アーク溶接の溶着防止方法を実施するための溶接電源の電気接続図である。同図において、図4に示す従来技術の溶接電源の電気接続図と同一符号の構成物は、同一動作を行うので説明は省略し、符号の相違する構成物についてのみ説明する。
An embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3.
FIG. 1 is an electrical connection diagram of a welding power source for carrying out a welding prevention method for consumable electrode arc welding according to an embodiment of the present invention. In the figure, components having the same reference numerals as those in the electrical connection diagram of the conventional welding power source shown in FIG. 4 perform the same operations, and thus description thereof will be omitted. Only components having different reference numerals will be described.

図1に示す外部特性傾き設定回路MPCは、予め定めた外部特性傾き設定信号Mpcを出力する。このとき、図3に示す外部特性L3の傾きが正の上昇特性のとき、1V〜3V/100Aが望ましく。傾きが零又は負のフラット特性のとき0V〜3V/100Aが望ましい。   The external characteristic inclination setting circuit MPC shown in FIG. 1 outputs a predetermined external characteristic inclination setting signal Mpc. At this time, when the slope of the external characteristic L3 shown in FIG. 3 is a positive increase characteristic, 1V to 3V / 100A is desirable. When the inclination is zero or a negative flat characteristic, 0 V to 3 V / 100 A is desirable.

図1に示す溶着防止期間設定回路MPTは、アンチスチック処理終了信号Atの入力に応じて溶着防止期間設定信号Mptを出力する。切換回路SWは、溶着防止期間設定信号Mptに応じて定電圧特性設定信号Cvcと外部特性傾き設定信号Mpcとに切り換える。   The welding prevention period setting circuit MPT shown in FIG. 1 outputs a welding prevention period setting signal Mpt in response to the input of the anti-stick process end signal At. Switching circuit SW switches between constant voltage characteristic setting signal Cvc and external characteristic inclination setting signal Mpc in accordance with welding prevention period setting signal Mpt.

図1に示す外部特性制御回路SCは、アンチスチック処理が終了するとアンチスチック処理終了信号Atを溶着防止期間設定回路MPTに出力する、と共に溶着防止期間中は出力電圧設定信号Vs、外部特性傾き設定信号Mpc及び出力電流検出信号Idを入力とし演算を行い、図3に示す外部特性L3の傾きが正の上昇特性と傾きが零又は負のフラット特性となる外部特性を形成する外部特性制御信号Scを出力する。   The external characteristic control circuit SC shown in FIG. 1 outputs an anti-stic process end signal At to the welding prevention period setting circuit MPT when the anti-stick process is completed, and at the same time, an output voltage setting signal Vs and an external characteristic slope setting during the welding prevention period. An external characteristic control signal Sc that performs calculation with the signal Mpc and the output current detection signal Id as inputs and forms an external characteristic in which the slope of the external characteristic L3 shown in FIG. 3 is a positive rising characteristic and the slope is zero or a negative flat characteristic. Is output.

図2は、本発明の実施形態の動作を説明する波形図である。図2において、同図(A)は出力電圧信号Vdを示し、同図(B)は出力電流信号Idを示し、同図(C1)〜(C5)は溶接ワイヤが溶融池に短絡と短絡解除するときの状態を示す。以下、図2を参照して本発明の実施形態の動作について説明する。   FIG. 2 is a waveform diagram for explaining the operation of the embodiment of the present invention. In FIG. 2, (A) shows the output voltage signal Vd, (B) shows the output current signal Id, and (C1) to (C5) show that the welding wire is short-circuited and released from the molten pool. Indicates the state when The operation of the embodiment of the present invention will be described below with reference to FIG.

図1に示す切換回路SWは、溶着防止期間設定信号MptがLowレベルのときa接点の定電圧特性設定信号Cvcを選択し、Highレベルのときa接点からb接点に切り換えて外部特性傾き設定信号Mpcを選択する。   The switching circuit SW shown in FIG. 1 selects the constant voltage characteristic setting signal Cvc of the contact a when the welding prevention period setting signal Mpt is at the low level, and switches from the contact a to the contact b when the welding prevention period setting signal Mpt is at the high level. Select Mpc.

アンチスチック処理が終了し、図2に示す溶着防止期間中の時刻t=t1において、溶接トーチ4を所定の位置に移動させる際に手ぶれ等により、溶接ワイヤ1が被加工物2に長く短絡すると、図3に示す外部特性L3の正の上昇特性で短絡制御を行う。   When the anti-stick process is completed and the welding wire 1 is short-circuited to the workpiece 2 for a long time due to camera shake or the like when moving the welding torch 4 to a predetermined position at time t = t1 during the welding prevention period shown in FIG. The short circuit control is performed with the positive increase characteristic of the external characteristic L3 shown in FIG.

図2に示す時刻t=t1〜t2の短絡において、図3に示す外部特性L3の正の上昇特性に応じて図2(B)に示す出力電流検出信号Idの値は次第に増加し、正の上昇特性からB点を経由して零のフラット特性のC点に移行し、時刻t=t2においてアークが発生する。このとき、外部特性L3の零のフラット特性により、時刻t=t2〜t3の図3(A)の出力電圧信号Vdの値が大きく溶接ワイヤ1の燃え上がりが大きくなる。   In the short circuit at time t = t1 to t2 shown in FIG. 2, the value of the output current detection signal Id shown in FIG. 2B gradually increases according to the positive rise characteristic of the external characteristic L3 shown in FIG. The rising characteristic shifts to a point C having a zero flat characteristic via point B, and an arc is generated at time t = t2. At this time, due to the zero flat characteristic of the external characteristic L3, the value of the output voltage signal Vd in FIG. 3A at time t = t2 to t3 is large, and the burning of the welding wire 1 is large.

この大きな燃え上がり状態で溶接ワイヤ1を被加工物2から引き上げると、溶接ワイヤ1が被加工物2の溶融池から容易に離脱する。そして、時刻t=t3において、図3に示す外部特性L3の零のフラット特性から正の上昇特性に戻り、溶接ワイヤ1を被加工物2から更に引き上げて負荷を大きくすると、正の上昇特性に応じて出力電流検出信号Idの値が急激に減少しアークが速やかに消弧する。
上述より、長い短絡で溶接ワイヤ1が被加工物2に強く溶着しても、外部特性L3の零のフラット特性で溶接ワイヤ1を大きく燃え上がらせるので溶着が容易に解除できる。
When the welding wire 1 is pulled up from the workpiece 2 in this large burn-up state, the welding wire 1 is easily detached from the molten pool of the workpiece 2. Then, at time t = t3, the zero flat characteristic of the external characteristic L3 shown in FIG. 3 returns to the positive ascending characteristic, and when the load is increased by further lifting the welding wire 1 from the workpiece 2, the positive ascending characteristic is obtained. Accordingly, the value of the output current detection signal Id decreases rapidly and the arc is extinguished quickly.
As described above, even if the welding wire 1 is strongly welded to the work piece 2 due to a long short circuit, the welding wire 1 is greatly burned with the zero flat characteristic of the external characteristic L3, so that the welding can be easily released.

溶着防止期間中の溶接トーチ4の移動中において、時刻t=t5で溶接ワイヤ1が再度被加工物2に短く短絡すると、図3に示す外部特性L3の正の上昇特性で短絡制御を行う。   If the welding wire 1 is short-circuited again to the workpiece 2 again at time t = t5 during the movement of the welding torch 4 during the welding prevention period, short-circuit control is performed with the positive increase characteristic of the external characteristic L3 shown in FIG.

図2に示す時刻t=t5〜t6において、図3に示す外部特性L3の正の上昇特性に応じて図2(B)に示す出力電流検出信号Idの値は増加する。しかし、短絡期間が短いと図3に示す正の上昇特性で短絡制御を行い、時刻t=t6において正の上昇特性でアークが発生する。このとき、外部特性L3の正の上昇特性により、出力電流検出信号Idの値の増加が抑制され溶接ワイヤ1の燃え上がりが小さくなる。   At time t = t5 to t6 shown in FIG. 2, the value of the output current detection signal Id shown in FIG. 2B increases in accordance with the positive increase characteristic of the external characteristic L3 shown in FIG. However, if the short-circuit period is short, short-circuit control is performed with the positive rise characteristic shown in FIG. 3, and an arc is generated with the positive rise characteristic at time t = t6. At this time, due to the positive increase characteristic of the external characteristic L3, an increase in the value of the output current detection signal Id is suppressed, and the burning of the welding wire 1 is reduced.

溶接ワイヤ1が被加工物2に短く短絡し軽く溶着したとき、小さな燃え上がりでも溶接ワイヤ1を被加工物2の溶着から解除できるので、溶着解除のときに発生するスパッタが抑制できる。そして、時刻t=t6において、図3に示す外部特性L3の正の上昇特性領域で溶接ワイヤ1を被加工物2から更に引き上げて負荷を大きくすると、アークが速やかに消弧する。   When the welding wire 1 is short-circuited and lightly welded to the work piece 2, the welding wire 1 can be released from the welding of the work piece 2 even with a small burn-up, so that spatter generated when releasing the welding can be suppressed. Then, at time t = t6, when the welding wire 1 is further pulled up from the workpiece 2 in the positive increase characteristic region of the external characteristic L3 shown in FIG. 3 and the load is increased, the arc is extinguished quickly.

上述より、溶着防止期間の溶接電源の外部特性を正の上昇特性と零のフラット特性とで形成することで、溶接ワイヤ1が被加工物2に強く溶着したとき溶接ワイヤ1に高い溶着防止電圧を印加されるので強い溶着でも容易に溶着が解除できる。逆に、溶接ワイヤ1が弱く溶着すると、溶接ワイヤに低い溶着防止電圧を印加させて溶着を解除するので、溶接ワイヤ1を被加工物2から離脱するときに発生するスパッタを大きく減少でき、溶接品質の向上に繋がる。   As described above, by forming the external characteristics of the welding power source during the welding prevention period with positive rising characteristics and zero flat characteristics, a high welding prevention voltage is applied to the welding wire 1 when the welding wire 1 is strongly welded to the workpiece 2. Can be easily released even by strong welding. Conversely, when the welding wire 1 is weakly welded, a low welding prevention voltage is applied to the welding wire to release the welding, so that spatter generated when the welding wire 1 is detached from the workpiece 2 can be greatly reduced, and welding is performed. It leads to quality improvement.

上述において、図3に示す外部特性L3を零のフラット特性としたが、負のフラット特性(例えば、0V〜−3V/100A)にしてもよい。更に、外部特性L3の溶着防止電圧の範囲において、正の上昇特性のとき10V〜15Vの範囲、零のフラット特性のとき15Vが望ましく、この値にすると溶着防止効果及びスパッタ抑制効果が大きい。   In the above description, the external characteristic L3 shown in FIG. 3 is a zero flat characteristic, but may be a negative flat characteristic (for example, 0 V to −3 V / 100 A). Further, in the range of the welding prevention voltage of the external characteristic L3, a range of 10V to 15V is desirable for the positive rising characteristic, and 15V is desirable for the zero flat characteristic. With this value, the welding prevention effect and the sputtering suppression effect are large.

1 非消耗電極
2 母材
3 アーク
4 溶接トーチ
5 モータ
At アンチスチック処理終了信号
CVC 定電圧特性設定回路
Cvc 定電圧特性設定信号
EV 電圧誤差増幅回路
Ev 電圧誤差増幅信号
ID 出力電流検出回路
Id 出力電流検出信号
INV 主電源回路
MPC 外部特性傾き設定回路
Mpc 外部特性傾き設定信号
MPT 溶着防止期間設定回路
Mpt 溶着防止期間設定信号
SC 主制御回路
Sc 主制御信号
SW 切換回路
TS 起動回路
Ts 起動信号
VD 出力電圧検出回路
Vd 出力電圧検出信号
VS 出力電圧設定回路
Vs 出力電圧設定信号
DESCRIPTION OF SYMBOLS 1 Non-consumable electrode 2 Base material 3 Arc 4 Welding torch 5 Motor At Anti-stick process end signal CVC Constant voltage characteristic setting circuit Cvc Constant voltage characteristic setting signal EV Voltage error amplification circuit Ev Voltage error amplification signal ID Output current detection circuit Id Output current Detection signal INV Main power supply circuit MPC External characteristic inclination setting circuit Mpc External characteristic inclination setting signal MPT Welding prevention period setting circuit Mpt Welding prevention period setting signal SC Main control circuit Sc Main control signal SW Switching circuit TS Start circuit Ts Start signal VD Output voltage Detection circuit Vd Output voltage detection signal VS Output voltage setting circuit Vs Output voltage setting signal

Claims (1)

溶接電源に溶接終了指令が入力されるとモータに停止指令を出力し、溶接ワイヤが停止したときのワイヤ燃え上がり高さが所定値になるように溶接電源の出力をアンチスチック制御する消耗電極アーク溶接の溶着防止方法において、前記アンチスチック制御が終了した時点から予め定めた溶着防止期間は、アンチスチック電圧より低い溶着防止電圧を出力し、前記溶着防止期間は、短絡電流が予め定めた短絡基準電流値未満のとき傾きが正の上昇特性となり、短絡基準電流値以上のとき傾きが零及び負のフラット特性となる外部特性を形成する、ことを特徴とする消耗電極アーク溶接の溶着防止方法。   When a welding end command is input to the welding power source, a stop command is output to the motor, and consumable electrode arc welding that performs anti-stick control of the welding power source output so that the wire burn-up height when the welding wire stops reaches a predetermined value. In the welding prevention method, a predetermined welding prevention period from the end of the anti-stick control outputs a welding prevention voltage lower than the anti-stic voltage, and the welding prevention period includes a short-circuit reference current in which a short-circuit current is predetermined. A method for preventing welding of consumable electrode arc welding, wherein an external characteristic is formed in which an inclination becomes a positive rising characteristic when less than a value and an inclination becomes zero and a negative flat characteristic when the value is equal to or greater than a short-circuit reference current value.
JP2011010538A 2011-01-21 2011-01-21 Method for preventing melt and adhesion in consumable electrode arc welding Pending JP2012148333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010538A JP2012148333A (en) 2011-01-21 2011-01-21 Method for preventing melt and adhesion in consumable electrode arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010538A JP2012148333A (en) 2011-01-21 2011-01-21 Method for preventing melt and adhesion in consumable electrode arc welding

Publications (1)

Publication Number Publication Date
JP2012148333A true JP2012148333A (en) 2012-08-09

Family

ID=46791130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010538A Pending JP2012148333A (en) 2011-01-21 2011-01-21 Method for preventing melt and adhesion in consumable electrode arc welding

Country Status (1)

Country Link
JP (1) JP2012148333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110405322A (en) * 2018-04-26 2019-11-05 株式会社神户制钢所 The control method of the source of welding current and the source of welding current
CN114850216A (en) * 2022-07-04 2022-08-05 太原理工大学 Method for preparing bimetal composite plate by electrically controlled micro-explosion forming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110405322A (en) * 2018-04-26 2019-11-05 株式会社神户制钢所 The control method of the source of welding current and the source of welding current
CN110405322B (en) * 2018-04-26 2021-07-13 株式会社神户制钢所 Welding power supply and control method thereof
CN114850216A (en) * 2022-07-04 2022-08-05 太原理工大学 Method for preparing bimetal composite plate by electrically controlled micro-explosion forming

Similar Documents

Publication Publication Date Title
JP6695030B2 (en) Control method of arc welding
JP4950819B2 (en) AC consumable electrode short-circuit arc welding method
EP1681123B1 (en) Arc start control method for AC arc welding
WO2012032703A1 (en) Arc welding control method
US9296057B2 (en) Welding device and carbon dioxide gas shielded arc welding method
JP2012006020A (en) Arc welding control method
JPWO2009051107A1 (en) Arc start control method
WO2017169899A1 (en) Arc welding control method
JP2014226709A (en) Arc welding control method, and arc welding apparatus
JP2014073521A (en) Arc welding control method, and arc welding apparatus
US9962786B2 (en) Arc welding method, arc welding apparatus, and arc welding controller
JP2005066615A (en) Arc-length control method at starting of gas-shielding arc welding with consumable electrode
JP2012148333A (en) Method for preventing melt and adhesion in consumable electrode arc welding
WO2020075791A1 (en) Arc welding control method
WO2017038060A1 (en) Arc welding method and arc welding device
JP6994623B2 (en) Arc start method
JP2010075983A (en) Control method of ac pulse arc welding
JP7113329B2 (en) Arc welding control method
JP6754935B2 (en) Arc welding control method
JP2016144826A (en) Output control method for pulse arc welding
JP5943460B2 (en) Arc start control method for consumable electrode arc welding
JP4211724B2 (en) Arc welding control method and arc welding apparatus
JP2016128186A (en) Output control method for pulse arc welding
JP3951931B2 (en) Welding control method and consumable electrode type pulse arc welding apparatus
JP2014069225A (en) Arc welding control method