JP2012148256A - Surface acoustic wave atomizing device - Google Patents

Surface acoustic wave atomizing device Download PDF

Info

Publication number
JP2012148256A
JP2012148256A JP2011010561A JP2011010561A JP2012148256A JP 2012148256 A JP2012148256 A JP 2012148256A JP 2011010561 A JP2011010561 A JP 2011010561A JP 2011010561 A JP2011010561 A JP 2011010561A JP 2012148256 A JP2012148256 A JP 2012148256A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
groove
liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011010561A
Other languages
Japanese (ja)
Inventor
Yohei Ishigami
陽平 石上
Masanori Okano
正紀 岡野
Yuichi Setsuhara
裕一 節原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011010561A priority Critical patent/JP2012148256A/en
Publication of JP2012148256A publication Critical patent/JP2012148256A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means
    • B05B17/0684Wicks or the like

Abstract

PROBLEM TO BE SOLVED: To provide a surface acoustic wave atomizing device in which a surface of a substrate is easily supplied with liquid, and which stably keeps balance between liquid supply quantity and atomizing quantity and stably generates a large quantity of fine particles with smaller powder consumption without requiring an increase in the size of the device.SOLUTION: The surface acoustic wave atomizing device 1 includes a substrate 2 comprising a piezoelectric material and a pair of comb-shaped electrodes 3 for generating surface acoustic wave W and a groove 4 reaching a propagation region of the surface acoustic wave W, the comb-shaped electrodes 3 and the groove 4 being formed on the surface S of the substrate 2. The surface acoustic wave atomizing device 1 is configured to supply liquid 5 charged to one end side of the groove 4 to the propagation region of the surface acoustic wave W by capillary phenomenon, hold the liquid in the groove 4 and atomize the liquid by the surface acoustic wave W propagated on the bottom surface of the groove 4. The liquid 5 of necessary and sufficient quantity is stably supplied to the propagation region of the surface acoustic wave W by the groove 4 and capillary phenomenon and the liquid in the groove is kept at the constant thickness of a liquid layer. The groove 4 is smoothly formed so as to have a tilted surface 4a on the edge of the groove in contact with the substrate surface S and suppresses the reflection of the surface acoustic wave W.

Description

本発明は、液体を弾性表面波によって霧化する弾性表面波霧化装置に関する。   The present invention relates to a surface acoustic wave atomization device that atomizes a liquid with surface acoustic waves.

従来、弾性表面波が伝搬している圧電材料などからなる基板の表面に液体を供給すると、液体が弾性表面波のエネルギを受け取って流動や振動をして、微小粒子となって飛翔する現象が知られており、この現象を利用して液体を霧化する装置が種々提案されている。このような弾性表面波霧化装置において、安定した霧化を小電力で効率的に行うには、液体を基板の表面に薄く延ばすと共に、液体供給量と霧化量とのバランスを良好に保つ必要がある。そこで、弾性表面波が伝搬する基板表面の一部に他部よりも表面粗さの大きい粗面領域を形成し、その粗面領域に液体を保持し、その領域内で弾性表面波によって液体の広がりを促進しつつ霧化する弾性表面波霧化装置が知られている(例えば、特許文献1参照)。これを、図7(a)によって説明する。この弾性表面波霧化装置は、圧電材料からなる基板91を備え、基板91の表面Sには弾性表面波Wを発生させる櫛形電極92を有し、弾性表面波Wが伝搬する前方表面の霧化領域に粗面領域93が形成されている。液体94は、粗面領域93に供給されると、その領域に保持され、液体94の周辺部のうち櫛形電極92に面する部分において、弾性表面波Wによって微小粒子Mとなって次々と霧化される。   Conventionally, when a liquid is supplied to the surface of a substrate made of a piezoelectric material or the like through which surface acoustic waves are propagating, the liquid receives the surface acoustic wave energy and flows and vibrates, resulting in the phenomenon of flying as fine particles. Various devices for atomizing a liquid using this phenomenon have been proposed. In such a surface acoustic wave atomizer, in order to efficiently perform stable atomization with low power, the liquid is thinly spread on the surface of the substrate, and the balance between the liquid supply amount and the atomization amount is kept good. There is a need. Therefore, a rough surface region having a surface roughness larger than that of the other part is formed on a part of the substrate surface where the surface acoustic wave propagates, the liquid is held in the rough surface region, and the surface of the liquid is caused by the surface acoustic wave in the region. 2. Description of the Related Art A surface acoustic wave atomizer that atomizes while promoting spreading is known (see, for example, Patent Document 1). This will be described with reference to FIG. This surface acoustic wave atomizing device includes a substrate 91 made of a piezoelectric material, and has a comb-shaped electrode 92 that generates surface acoustic waves W on the surface S of the substrate 91. A rough surface region 93 is formed in the conversion region. When the liquid 94 is supplied to the rough surface region 93, the liquid 94 is held in the region, and the surface of the peripheral portion of the liquid 94 facing the comb-shaped electrode 92 becomes minute particles M by the surface acoustic wave W. It becomes.

また、基板表面との間に隙間を形成するため基板表面に対向して配置した液膜形成部材を備え、前記隙間に供給した液体が隙間に保持されると共に隙間から弾性表面波源の方向に出るようにした弾性表面波霧化装置が知られている(例えば、特許文献2参照)。これを、図7(b)によって説明する。この弾性表面波霧化装置は、上述の図7(a)における粗面領域93に替えて、基板表面との間に隙間を形成する液膜形成部材95を備えたものである。液膜形成部材95の幅(弾性表面波Wの伝搬方向の長さ)は、液体供給量と霧化量のバランスを保つ幅に設定されている。   In addition, a liquid film forming member disposed opposite the substrate surface to form a gap with the substrate surface is provided, and the liquid supplied to the gap is held in the gap and exits from the gap toward the surface acoustic wave source. Such a surface acoustic wave atomizer is known (see, for example, Patent Document 2). This will be described with reference to FIG. This surface acoustic wave atomizing apparatus includes a liquid film forming member 95 that forms a gap with the substrate surface in place of the rough surface region 93 in FIG. The width of the liquid film forming member 95 (the length in the propagation direction of the surface acoustic wave W) is set to a width that maintains a balance between the liquid supply amount and the atomization amount.

特開2009−154058号公報JP 2009-154058 A 特開2008−104974号公報JP 2008-104974 A

しかしながら、上述した特許文献1,2に示されるような弾性表面波霧化装置においては、霧化に関与しない液体が、依然として弾性表面波の伝搬面に多量に存在することがあり、これらの液体によって弾性表面波のエネルギが消費されるという問題がある。また、上述したような弾性表面波霧化装置においては、実質的な霧化領域が、弾性表面波の発生源である櫛形電極に対面している部分に限定されることにより、霧化量の増大のためには装置の大型化が必要であるという問題がある。   However, in the surface acoustic wave atomization apparatus as shown in Patent Documents 1 and 2 described above, a large amount of liquid that is not involved in atomization may still exist on the propagation surface of the surface acoustic wave. Therefore, there is a problem that the energy of the surface acoustic wave is consumed. Further, in the surface acoustic wave atomization apparatus as described above, the substantial atomization region is limited to the portion facing the comb-shaped electrode that is the generation source of the surface acoustic wave. There is a problem that it is necessary to increase the size of the apparatus for the increase.

本発明は、上記課題を解消するものであって、液体供給が容易で供給量と霧化量のバランスを安定に保つことができ、装置を構成する基板を大型化することなく、より少ない電力で大量の微細粒子を安定発生できる弾性表面波霧化装置を提供することを目的とする。   The present invention solves the above-described problems, can easily supply liquid, can stably maintain a balance between the supply amount and the atomization amount, and requires less power without increasing the size of the substrate constituting the apparatus. It is an object of the present invention to provide a surface acoustic wave atomizer capable of stably generating a large amount of fine particles.

上記課題を達成するために、本発明の弾性表面波霧化装置は、一対の櫛形電極が形成された圧電材料から成る基板を備え、櫛形電極に高周波電圧を印加することにより基板の表面に弾性表面波を生成し、この弾性表面波によって基板の表面に供給される液体を霧化する弾性表面波霧化装置において、基板の表面には溝が形成されており、溝の一端側に投入された液体を毛細管現象によって弾性表面波の伝搬領域に供給し、溝の底表面を伝搬する弾性表面波によって霧化することを特徴とする。   In order to achieve the above object, a surface acoustic wave atomization apparatus according to the present invention includes a substrate made of a piezoelectric material on which a pair of comb electrodes are formed, and elastically applies to the surface of the substrate by applying a high frequency voltage to the comb electrodes. In the surface acoustic wave atomization device that generates surface waves and atomizes the liquid supplied to the surface of the substrate by the surface acoustic waves, a groove is formed on the surface of the substrate, and the groove is formed on one end of the groove. The liquid is supplied to the surface acoustic wave propagation region by capillary action and atomized by the surface acoustic wave propagating on the bottom surface of the groove.

この弾性表面波霧化装置において、溝は、基板表面と接する縁に傾斜面を有して滑らかに形成されていることが好ましい。   In this surface acoustic wave atomizer, the groove is preferably formed smoothly with an inclined surface at an edge in contact with the substrate surface.

この弾性表面波霧化装置において、溝が複数形成されていることが好ましい。   In this surface acoustic wave atomizer, it is preferable that a plurality of grooves are formed.

この弾性表面波霧化装置において、複数の溝は、弾性表面波が繰り返し通過するように配置されてもよい。   In this surface acoustic wave atomization device, the plurality of grooves may be arranged so that the surface acoustic waves pass repeatedly.

本発明の弾性表面波霧化装置によれば、基板表面の溝に投入された液体を毛細管現象により、弾性表面波の伝搬領域に必要かつ十分に安定供給でき、また、溝内の液体を一定厚さに保持することができる。これにより、基板を大型化することなく、液体を効率良く大量の微細粒子に霧化することができる。   According to the surface acoustic wave atomization apparatus of the present invention, the liquid injected into the groove on the substrate surface can be stably and necessaryly supplied to the surface acoustic wave propagation region by capillary action, and the liquid in the groove is kept constant. Thickness can be maintained. Thereby, the liquid can be efficiently atomized into a large amount of fine particles without increasing the size of the substrate.

(a)は本発明の一実施形態に係る弾性表面波霧化装置についての斜視図、(b)は同装置の溝部分の溝方向の断面図、(c)は同装置の溝横断方向の断面図。(A) is a perspective view about the surface acoustic wave atomization apparatus which concerns on one Embodiment of this invention, (b) is sectional drawing of the groove direction of the groove part of the apparatus, (c) is the groove cross direction of the apparatus. Sectional drawing. (a)は他の実施形態に係る弾性表面波霧化装置についての斜視図、(b)は同装置の溝横断方向の断面図。(A) is a perspective view about the surface acoustic wave atomization apparatus which concerns on other embodiment, (b) is sectional drawing of the groove cross direction of the apparatus. (a)はさらに他の実施形態に係る弾性表面波霧化装置についての平面図、(b)は同装置の溝横断方向の断面図。(A) is a top view about the surface acoustic wave atomization apparatus which concerns on other embodiment, (b) is sectional drawing of the groove cross direction of the apparatus. (a)は同装置の変形例を示す断面図、(b)は同装置の他の変形例を示す断面図。(A) is sectional drawing which shows the modification of the apparatus, (b) is sectional drawing which shows the other modification of the apparatus. (a)は同装置のさらに他の変形例を示す平面図、(b)は同装置のさらに他の変形例を示す平面図。(A) is a top view which shows the further another modification of the apparatus, (b) is a top view which shows the other modification of the apparatus. さらに他の実施形態に係る弾性表面波霧化装置についての斜視図。The perspective view about the surface acoustic wave atomization apparatus which concerns on other embodiment. (a)は従来の弾性表面波霧化装置の断面図、(b)は従来の他の弾性表面波霧化装置の断面図。(A) is sectional drawing of the conventional surface acoustic wave atomization apparatus, (b) is sectional drawing of the other conventional surface acoustic wave atomization apparatus.

以下、本発明の実施形態に係る弾性表面波霧化装置について、図面を参照して説明する。また、図中の直交座標軸XYを適宜参照する。図1(a)(b)(c)は一実施形態に係る弾性表面波霧化装置1を示す。弾性表面波霧化装置1は、図1(a)に示すように、基板2を備えており、基板2の表面Sには弾性表面波Wを生成するための一対の櫛形電極3が形成され、さらに、基板2には、弾性表面波Wの伝搬領域に達する溝4が形成されている。弾性表面波霧化装置1は、溝4の一端側に投入された液体5を毛細管現象によって弾性表面波Wの伝搬領域に供給して溝4内に保持し、溝4の底表面を伝搬する弾性表面波Wによって霧化する。以下、各部を詳述する。   Hereinafter, a surface acoustic wave atomization apparatus according to an embodiment of the present invention will be described with reference to the drawings. Further, the orthogonal coordinate axis XY in the drawing is referred to as appropriate. Fig.1 (a) (b) (c) shows the surface acoustic wave atomization apparatus 1 which concerns on one Embodiment. As shown in FIG. 1A, the surface acoustic wave atomization apparatus 1 includes a substrate 2, and a pair of comb electrodes 3 for generating a surface acoustic wave W is formed on the surface S of the substrate 2. Further, the substrate 2 is formed with a groove 4 reaching the propagation region of the surface acoustic wave W. The surface acoustic wave atomization apparatus 1 supplies the liquid 5 thrown into one end side of the groove 4 to the propagation region of the surface acoustic wave W by capillary action, holds it in the groove 4, and propagates the bottom surface of the groove 4. Atomization is caused by the surface acoustic wave W. Hereinafter, each part will be described in detail.

基板2は、圧電材料、例えば、LiNbO(ニオブ酸リチウム)のような圧電体そのものから構成される。また、基板2は、弾性表面波Wが存在する表面部分のみに圧電体材料を備えた基板とすることもできる。例えば、基板2は、非圧電性基板の表面に圧電薄膜、例えば、PZT薄膜(鉛、ジルコニューム、チタン合金薄膜)を形成したものでもよい。基板2の圧電体薄膜の表面部分において、弾性表面波Wが発生し伝搬する。 The substrate 2 is composed of a piezoelectric material itself, such as a piezoelectric material such as LiNbO 3 (lithium niobate). Further, the substrate 2 may be a substrate having a piezoelectric material only on the surface portion where the surface acoustic wave W exists. For example, the substrate 2 may be one in which a piezoelectric thin film, for example, a PZT thin film (lead, zirconium, titanium alloy thin film) is formed on the surface of a non-piezoelectric substrate. A surface acoustic wave W is generated and propagated on the surface portion of the piezoelectric thin film of the substrate 2.

櫛形電極3は、圧電材料の表面に2つの櫛形の電極を互いに噛み合わせて形成した電極(IDT:インター・ディジタル・トランスジューサ)である。櫛形電極3のY方向(弾性表面波Wの伝搬方向Xに直交する方向)の幅は、安定した弾性表面波Wを生成するには、波長λの20倍程度以上が好ましいが、それ以下でもよい。一対の櫛形電極3の互いに隣り合う櫛の歯は互いに異なる電極に属し、生成される弾性表面波Wの波長λの半分の長さのピッチでX方向に沿って配列されている。櫛形電極3に高周波電圧印加用の電気回路10から高周波(例えば、MHz帯)電圧を印加することにより、櫛形電極3によって電気的エネルギが波の機械的エネルギに変換されて、基板2の表面Sに弾性表面波Wが生成される。弾性表面波Wの振幅は、櫛形電極3に印加する電圧の大きさで決まる。弾性表面波Wは、櫛形電極3の歯が交差した幅に対応する幅の波となって、櫛の歯に垂直な方向に伝搬する。櫛形電極3は、その両側に互いに逆向きに伝搬する弾性表面波を生成するので、基板表面に反射器を備えて、X方向にのみ伝搬する弾性表面波Wを生成する、いわゆる一方向性電極として構成してもよい。   The comb-shaped electrode 3 is an electrode (IDT: Inter Digital Transducer) formed by engaging two comb-shaped electrodes on the surface of a piezoelectric material. The width of the comb electrode 3 in the Y direction (the direction orthogonal to the propagation direction X of the surface acoustic wave W) is preferably about 20 times the wavelength λ or more in order to generate a stable surface acoustic wave W. Good. The comb teeth adjacent to each other of the pair of comb-shaped electrodes 3 belong to different electrodes, and are arranged along the X direction at a pitch that is half the wavelength λ of the generated surface acoustic wave W. By applying a high-frequency (for example, MHz band) voltage from the electric circuit 10 for applying a high-frequency voltage to the comb-shaped electrode 3, the electrical energy is converted into wave mechanical energy by the comb-shaped electrode 3, and the surface S of the substrate 2. A surface acoustic wave W is generated. The amplitude of the surface acoustic wave W is determined by the magnitude of the voltage applied to the comb electrode 3. The surface acoustic wave W becomes a wave having a width corresponding to the width at which the teeth of the comb-shaped electrode 3 intersect, and propagates in a direction perpendicular to the teeth of the comb. Since the comb-shaped electrode 3 generates surface acoustic waves propagating in opposite directions on both sides, the so-called unidirectional electrode having a reflector on the substrate surface and generating a surface acoustic wave W propagating only in the X direction. You may comprise as.

溝4は、図1(a)(b)(c)に示すように、基板2における弾性表面波Wの伝搬方向X側の端部から、弾性表面波Wの伝搬領域に入り込む位置まで、伝搬方向Xに平行に形成されている。溝4は、言い換えると、基板2の表面Sに設けた、長い微小隙間の段差構造である。溝4の先端は、基板表面と接する縁に傾斜面4aが形成されて、基板2の表面Sと溝4の底面とが滑らかに接続されている。従って、櫛形電極3によって生成されて溝4に向かう弾性表面波Wは、溝4の先端に到達すると、溝4の内部に入りこみ、溝4の底表面を溝4に沿って伝搬する。このような溝4の一端側に、適宜の液体供給手段5aによって液体5を投入すると、液体5は、毛細管現象によって溝4に沿って基板2の中央側の溝4の先端へと進入する。溝4に進入した液体は、溝4の内部に所定の一様な厚みを有して保持された状態となる。この溝4に沿って広がる液体5を霧化に利用することができる。すなわち、この溝4の底表面には、溝4に沿って伝搬する弾性表面波Wが存在しているので、一様な厚さで長距離にわたって溝4内に分布する液体5を微小粒子Mとして効率的に霧化することができる。なお、液体供給手段5aは、液体5の微小量を送るポンプで構成してもよく、毛細管現象を利用する方法で構成してもよい。なお、傾斜面4aの構造は、溝4の深さと、弾性表面波Wの波長等に基づいて設定することができる。また、溝4の幅と深さとは、霧化の対象と成る液体5の表面張力などの物性値や投入する弾性表面波Wの振幅(エネルギ)等に基づいて、適正厚さに液体5を保持できる寸法とすればよい。   As shown in FIGS. 1A, 1 </ b> B, and 1 </ b> C, the groove 4 propagates from the end portion on the side of the propagation direction X of the surface acoustic wave W in the substrate 2 to a position where it enters the propagation region of the surface acoustic wave W. It is formed parallel to the direction X. In other words, the groove 4 is a step structure with a long minute gap provided on the surface S of the substrate 2. An inclined surface 4 a is formed at the edge of the groove 4 at the edge in contact with the substrate surface, and the surface S of the substrate 2 and the bottom surface of the groove 4 are smoothly connected. Therefore, the surface acoustic wave W generated by the comb-shaped electrode 3 and directed toward the groove 4 reaches the inside of the groove 4 and propagates along the groove 4 along the bottom surface of the groove 4. When the liquid 5 is poured into one end side of the groove 4 by an appropriate liquid supply means 5a, the liquid 5 enters the tip of the groove 4 on the center side of the substrate 2 along the groove 4 by capillary action. The liquid that has entered the groove 4 is held in the groove 4 with a predetermined uniform thickness. The liquid 5 spreading along the groove 4 can be used for atomization. That is, since the surface acoustic wave W propagating along the groove 4 exists on the bottom surface of the groove 4, the liquid 5 distributed in the groove 4 with a uniform thickness over a long distance is dispersed in the fine particles M. Can be atomized efficiently. The liquid supply means 5a may be constituted by a pump that sends a minute amount of the liquid 5, or may be constituted by a method using a capillary phenomenon. The structure of the inclined surface 4a can be set based on the depth of the groove 4, the wavelength of the surface acoustic wave W, and the like. The width and depth of the groove 4 are determined based on the physical properties such as the surface tension of the liquid 5 to be atomized and the amplitude (energy) of the surface acoustic wave W to be injected. The dimensions can be maintained.

本実施形態によれば、毛細管現象によって溝4内に液体5を供給するので必要十分な量の液体5を溝4内に安定供給でき、溝4に保持されて一様厚さで溝4に沿って広がる液体5を霧化に有効に利用できる。すなわち、基板表面に供給される液体5の液面の高さを一定とすることができ、霧化効率が向上する。また、溝4の構造(長さ)とその配置の設定により、弾性表面波Wが液体5と相互作用する距離を長くすることができる。すなわち、溝4の底表面すなわち霧化に使われる有効面積を長さで稼いで広くでき、基板2を大型化することなく、より大量に効率的に霧化できる。   According to the present embodiment, since the liquid 5 is supplied into the groove 4 by capillary action, a necessary and sufficient amount of the liquid 5 can be stably supplied into the groove 4 and is held in the groove 4 and has a uniform thickness. The liquid 5 spreading along can be effectively used for atomization. That is, the height of the liquid level of the liquid 5 supplied to the substrate surface can be made constant, and the atomization efficiency is improved. Further, the distance at which the surface acoustic wave W interacts with the liquid 5 can be increased by setting the structure (length) of the groove 4 and the arrangement thereof. That is, the bottom surface of the groove 4, that is, the effective area used for atomization can be increased by increasing the length, and the substrate 2 can be atomized more efficiently without increasing the size.

本実施形態は、従来装置における、基板表面上に液体を直に配置して基板表面で液体を広げる場合に液体の表面張力の影響のため広い範囲で適切な厚さを維持することができず、厚すぎる液体層中でエネルギの伝達が困難であった問題を解消している。言い換えると、溝4の内部は、従来装置における大量の液体の存在が排除されているので、弾性表面波Wのエネルギの損失が回避されている。さらに述べると、毛細管現象によって液体5を供給することにより、液体供給量と霧化量のバランスを自己調節的に維持することができ、霧化に関与しない液体5の存在を抑えることができるので、より少ない消費電力で大量の微細粒子を安定に噴霧できる。なお、表面張力によって保持された液体は、霧化によって消費されると、表面張力によって自動的に液体を補充するように動作する。また、毛細管現象を利用し液体を供給すると共に、表面張力によって溝4内に液体5が保持されるので、溝4の断面を適切に設定することにより、最適な厚さに維持した液体5の薄い層を効果的に形成することができる。また、溝4の先端の段差は傾斜面4aを有して滑らかに形成されているので、この段差部分における弾性表面波Wの反射を抑制して効率よく弾性表面波Wを溝4の底表面に導くことができる。   In this embodiment, in the conventional apparatus, when the liquid is directly disposed on the substrate surface and the liquid is spread on the substrate surface, an appropriate thickness cannot be maintained over a wide range due to the influence of the surface tension of the liquid. This solves the problem that it is difficult to transfer energy in a liquid layer that is too thick. In other words, since the presence of a large amount of liquid in the conventional apparatus is excluded in the groove 4, energy loss of the surface acoustic wave W is avoided. Further, by supplying the liquid 5 by capillary action, the balance between the liquid supply amount and the atomization amount can be maintained in a self-regulating manner, and the presence of the liquid 5 not involved in the atomization can be suppressed. A large amount of fine particles can be stably sprayed with less power consumption. When the liquid held by the surface tension is consumed by atomization, the liquid is automatically replenished by the surface tension. In addition, liquid is supplied by utilizing capillary action, and the liquid 5 is held in the groove 4 by surface tension. Therefore, by appropriately setting the cross section of the groove 4, the liquid 5 maintained at an optimum thickness can be obtained. A thin layer can be formed effectively. Further, since the step at the tip of the groove 4 has an inclined surface 4 a and is formed smoothly, reflection of the surface acoustic wave W at this step portion is suppressed and the surface acoustic wave W is efficiently transferred to the bottom surface of the groove 4. Can lead to.

弾性表面波霧化装置1は、例えば、小電力の乾電池によって駆動する医療用の吸霧器として用いられる。この場合、霧化される液体5は、水や、水に薬品を溶かした薬液などである。また、弾性表面波霧化装置1を比較的大電力で駆動する場合は、例えば、乾燥防止用の湿度調整装置として用いられる。   The surface acoustic wave atomizer 1 is used as, for example, a medical atomizer that is driven by a low-power dry battery. In this case, the liquid 5 to be atomized is water or a chemical solution in which a chemical is dissolved in water. Moreover, when driving the surface acoustic wave atomizer 1 with comparatively high electric power, it is used as a humidity adjusting device for preventing drying, for example.

次に、図2(a)(b)を参照して、他の実施形態に係る弾性表面波霧化装置1を説明する。この弾性表面波霧化装置1は、上述の図1に示した弾性表面波霧化装置1において、溝4を並列に3箇所に備えたものであり、他は同様である。本実施形態によれば、溝4の個数を増加することにより、装置を大型化することなく、その個数の増加分に応じて、より大量に霧化することができる。   Next, a surface acoustic wave atomization apparatus 1 according to another embodiment will be described with reference to FIGS. This surface acoustic wave atomizing device 1 is provided with three grooves 4 in parallel in the surface acoustic wave atomizing device 1 shown in FIG. According to the present embodiment, by increasing the number of grooves 4, it is possible to atomize in a larger amount according to the increase in the number of devices without increasing the size of the apparatus.

次に、図3(a)(b)を参照して、さらに他の実施形態に係る弾性表面波霧化装置1を説明する。この弾性表面波霧化装置1は、溝4が、弾性表面波Wの伝搬方向Xに平行ではなく方向Xに直交するように基板2の表面Sを横断して形成されている点が、上述の図2に示した弾性表面波霧化装置1と異なる。液体5は、それぞれの溝4の端部側から導入され、毛細管現象によって基板2の中央側へと供給される。この実施形態においては、複数の溝4は、弾性表面波Wが繰り返し通過するように配置されている。すなわち、弾性表面波Wは、溝4の段差を上り下りしながら基板2の表面Sと溝4の底表面とを交互に伝搬し、溝4の底表面を伝搬する際に、溝4内の液体5を霧化する。つまり、弾性表面波Wは、複数の溝4の存在により、複数回利用される。このような構成の弾性表面波霧化装置1は、従来の図7(b)に示したような液膜形成部材95を備える必要がなく、より、簡単な構成とすることができ、より効率的に大量に霧化をすることができる。なお、このような溝4の配置において、図4(a)(b)に示すように、弾性表面波Wの反射を抑制するために、各溝4はその両側、すなわち弾性表面波Wの伝搬方向に位置する基板表面と接する縁に傾斜面4bを設けることが好ましい。   Next, with reference to FIG. 3 (a) (b), the surface acoustic wave atomization apparatus 1 which concerns on other embodiment is demonstrated. In the surface acoustic wave atomization apparatus 1, the groove 4 is formed so as to cross the surface S of the substrate 2 so as to be orthogonal to the direction X instead of being parallel to the propagation direction X of the surface acoustic wave W. 2 is different from the surface acoustic wave atomizer 1 shown in FIG. The liquid 5 is introduced from the end side of each groove 4 and supplied to the center side of the substrate 2 by capillary action. In this embodiment, the plurality of grooves 4 are arranged so that the surface acoustic wave W passes repeatedly. That is, the surface acoustic wave W propagates alternately on the surface S of the substrate 2 and the bottom surface of the groove 4 while going up and down the step of the groove 4, and when propagating on the bottom surface of the groove 4, Atomize the liquid 5. That is, the surface acoustic wave W is used a plurality of times due to the presence of the plurality of grooves 4. The surface acoustic wave atomization apparatus 1 having such a configuration does not need to include the liquid film forming member 95 as shown in FIG. 7B, and can be configured more simply and more efficiently. A large amount can be atomized. In this arrangement of the grooves 4, as shown in FIGS. 4A and 4B, in order to suppress the reflection of the surface acoustic waves W, each groove 4 has its both sides, that is, the propagation of the surface acoustic waves W. It is preferable to provide the inclined surface 4b at the edge in contact with the substrate surface positioned in the direction.

次に、図5(a)(b)を参照して、さらに他の実施形態に係る弾性表面波霧化装置1を説明する。図5(a)に示す弾性表面波霧化装置1は、上述の図3(a)における3個の溝4が方向Xに対して斜めに形成されているものである。すなわち、溝4は、方向Xに直交しない構成であっても上述同様の効果が得られる。また、図5(b)に示す弾性表面波霧化装置1は、上述の図3(a)における3個の溝4の一端側が共通の凹部4cによって連結されているものである。この弾性表面波霧化装置1においては、凹部4cに液体5を投入して各溝4に液体5を供給することができる。   Next, a surface acoustic wave atomization apparatus 1 according to another embodiment will be described with reference to FIGS. In the surface acoustic wave atomization device 1 shown in FIG. 5A, the three grooves 4 in FIG. 3A described above are formed obliquely with respect to the direction X. That is, even if the groove 4 has a configuration not orthogonal to the direction X, the same effect as described above can be obtained. Moreover, the surface acoustic wave atomization apparatus 1 shown in FIG.5 (b) is what the one end side of the three groove | channels 4 in above-mentioned FIG.3 (a) is connected by the common recessed part 4c. In this surface acoustic wave atomization apparatus 1, the liquid 5 can be supplied to the grooves 4 by introducing the liquid 5 into the recesses 4 c.

次に、図6を参照して、さらに他の実施形態に係る弾性表面波霧化装置1を説明する。この弾性表面波霧化装置1は、上述の図2に示した弾性表面波霧化装置1を縦型に使用するものであり、液体供給手段5aとして液体容器を使用し、基板2の端部を液体5に浸すことにより、液体5を溝4に沿って毛細管現象を利用して上昇させるものである。本実施形態によれば、液体投入が容易で液体供給量と霧化量のバランスをより安定に保つことができる。基板2の配置は、垂直に限らず、斜めに傾ける構成とすることもできる。   Next, a surface acoustic wave atomization apparatus 1 according to still another embodiment will be described with reference to FIG. This surface acoustic wave atomization apparatus 1 uses the surface acoustic wave atomization apparatus 1 shown in FIG. 2 in a vertical type, uses a liquid container as the liquid supply means 5a, and has an end portion of the substrate 2. The liquid 5 is raised along the groove 4 by utilizing capillary action. According to the present embodiment, liquid can be easily charged and the balance between the liquid supply amount and the atomization amount can be kept more stable. The arrangement of the substrate 2 is not limited to being vertical, but can be inclined.

なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、上述した各実施形態の構成を互いに組み合わせた構成とすることができる。例えば、図2に示した溝4と図3に示した溝4とを組み合わせた溝を備えるようにしてもよい。また、溝4の個数は、2個や4個以上とすることができる。図3、図5における溝4は、基板2の表面Sを横断する構成に変えて、一端が開放され多端が閉塞された溝とすることができる。また、図1(c)に示した溝4の矩形の断面形状に替えて、台形断面や逆台形断面や楕円弧状断面などの溝とすることができる。また、溝4の長さ方向の形状は、直線形状に限らず屈曲した形状や滑らかな曲線形状などとすることができる。   The present invention is not limited to the above-described configuration, and various modifications can be made. For example, the configurations of the above-described embodiments can be combined with each other. For example, you may make it provide the groove | channel which combined the groove | channel 4 shown in FIG. 2, and the groove | channel 4 shown in FIG. The number of grooves 4 can be two or four or more. The groove 4 in FIGS. 3 and 5 can be a groove whose one end is opened and whose other ends are closed, instead of the structure crossing the surface S of the substrate 2. Moreover, it can replace with the rectangular cross-sectional shape of the groove | channel 4 shown in FIG.1 (c), and can be made into grooves, such as a trapezoidal cross section, a reverse trapezoid cross section, and an elliptical arc-shaped cross section. Further, the shape of the groove 4 in the length direction is not limited to a linear shape, and may be a bent shape or a smooth curved shape.

1 弾性表面波霧化装置
2 基板
3 櫛形電極
4 溝
4a,4b 傾斜面
5 液体
S 基板の表面
W 弾性表面波
X 伝搬方向
DESCRIPTION OF SYMBOLS 1 Surface acoustic wave atomizer 2 Substrate 3 Comb electrode 4 Groove 4a, 4b Inclined surface 5 Liquid S Surface of substrate W Surface acoustic wave X Propagation direction

Claims (4)

一対の櫛形電極が形成された圧電材料から成る基板を備え、前記櫛形電極に高周波電圧を印加することにより前記基板の表面に弾性表面波を生成し、この弾性表面波によって前記基板の表面に供給される液体を霧化する弾性表面波霧化装置において、
前記基板の表面には溝が形成されており、
前記溝の一端側に投入された液体を毛細管現象によって弾性表面波の伝搬領域に供給し、前記溝の底表面を伝搬する弾性表面波によって霧化することを特徴とする弾性表面波霧化装置。
A substrate made of a piezoelectric material on which a pair of comb-shaped electrodes are formed, and a surface acoustic wave is generated on the surface of the substrate by applying a high-frequency voltage to the comb-shaped electrode, and is supplied to the surface of the substrate by the surface acoustic wave. In the surface acoustic wave atomization device for atomizing the liquid to be
Grooves are formed on the surface of the substrate,
A surface acoustic wave atomization device characterized in that a liquid charged into one end of the groove is supplied to a surface acoustic wave propagation region by capillary action and atomized by a surface acoustic wave propagating on the bottom surface of the groove. .
前記溝は、基板表面と接する縁に傾斜面を有して滑らかに形成されていることを特徴とする請求項1に記載の弾性表面波霧化装置。   The surface acoustic wave atomization device according to claim 1, wherein the groove has an inclined surface at an edge in contact with the substrate surface and is smoothly formed. 前記溝が複数形成されていることを特徴とする請求項1または請求項2に記載の弾性表面波霧化装置。   The surface acoustic wave atomizer according to claim 1 or 2, wherein a plurality of the grooves are formed. 前記複数の溝は、弾性表面波が繰り返し通過するように配置されていることを特徴とする請求項3に記載の弾性表面波霧化装置。   The surface acoustic wave atomization device according to claim 3, wherein the plurality of grooves are arranged so that surface acoustic waves pass repeatedly.
JP2011010561A 2011-01-21 2011-01-21 Surface acoustic wave atomizing device Withdrawn JP2012148256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010561A JP2012148256A (en) 2011-01-21 2011-01-21 Surface acoustic wave atomizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010561A JP2012148256A (en) 2011-01-21 2011-01-21 Surface acoustic wave atomizing device

Publications (1)

Publication Number Publication Date
JP2012148256A true JP2012148256A (en) 2012-08-09

Family

ID=46791076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010561A Withdrawn JP2012148256A (en) 2011-01-21 2011-01-21 Surface acoustic wave atomizing device

Country Status (1)

Country Link
JP (1) JP2012148256A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111139A (en) * 2015-12-18 2017-06-22 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー Liquid sample introduction system and method for analytic plasma spectrometer
WO2020019030A1 (en) 2018-07-24 2020-01-30 Monash University Nebulizer
WO2021059923A1 (en) * 2019-09-26 2021-04-01 パナソニックIpマネジメント株式会社 Liquid atomization system, mist-generating system, and liquid atomization method
US20220288329A1 (en) * 2014-11-11 2022-09-15 The University Court Of The University Of Glasgow Nebulisation of Liquids
US11717845B2 (en) * 2016-03-30 2023-08-08 Altria Client Services Llc Vaping device and method for aerosol-generation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220288329A1 (en) * 2014-11-11 2022-09-15 The University Court Of The University Of Glasgow Nebulisation of Liquids
US11771846B2 (en) * 2014-11-11 2023-10-03 The University Court Of The University Of Glasgow Nebulisation of liquids
JP2017111139A (en) * 2015-12-18 2017-06-22 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー Liquid sample introduction system and method for analytic plasma spectrometer
US20210265151A1 (en) * 2015-12-18 2021-08-26 Thermo Fisher Scientific (Bremen) Gmbh Liquid Sample Introduction System and Method, for Analytical Plasma Spectrometer
US11717845B2 (en) * 2016-03-30 2023-08-08 Altria Client Services Llc Vaping device and method for aerosol-generation
WO2020019030A1 (en) 2018-07-24 2020-01-30 Monash University Nebulizer
EP3826775A4 (en) * 2018-07-24 2022-04-20 Monash University Nebulizer
WO2021059923A1 (en) * 2019-09-26 2021-04-01 パナソニックIpマネジメント株式会社 Liquid atomization system, mist-generating system, and liquid atomization method

Similar Documents

Publication Publication Date Title
JP4915567B2 (en) Surface acoustic wave atomizer
WO2012096378A1 (en) Surface acoustic wave atomizer
JP5154658B2 (en) Surface acoustic wave atomizer
JP2012148256A (en) Surface acoustic wave atomizing device
WO2011058955A1 (en) Surface acoustic wave atomization device
JP3626222B2 (en) Ultrasonic atomizer using surface acoustic wave
JP5861121B2 (en) Surface acoustic wave atomizer
JP2010253347A (en) Surface acoustic wave atomizer
JP2008238058A (en) Elastic surface wave atomizer
JP5906455B2 (en) Atomizer
JP2015093205A (en) Nano-bubble generator
JP2008308372A (en) Ozone generating device
JP2010269278A (en) Surface acoustic wave atomizer
JP5362210B2 (en) Surface acoustic wave atomizer
WO2007026872A1 (en) Ultrasonic vibration unit and ultrasonic atomizer
JP2000233158A (en) Spraying device
JP7336663B2 (en) Liquid atomization system and mist generation system
JP2013099734A (en) Surface acoustic wave liquid spray device having directivity
JPH04164659A (en) Toner jet recorder
JPWO2011086810A1 (en) Atomizer
JP7300662B2 (en) liquid atomization system
KR101033815B1 (en) Ultra-sonic vibrator and cleansing device using ultra-sonic and cleansing method thereof
JP2525299B2 (en) Ultrasonic atomizer
JP4547580B2 (en) Ultrasonic irradiation device
WO2024034126A1 (en) Suction instrument

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401