JP2012147528A - Ac power source - Google Patents

Ac power source Download PDF

Info

Publication number
JP2012147528A
JP2012147528A JP2011002351A JP2011002351A JP2012147528A JP 2012147528 A JP2012147528 A JP 2012147528A JP 2011002351 A JP2011002351 A JP 2011002351A JP 2011002351 A JP2011002351 A JP 2011002351A JP 2012147528 A JP2012147528 A JP 2012147528A
Authority
JP
Japan
Prior art keywords
series circuit
voltage
capacitor
power supply
bidirectional switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011002351A
Other languages
Japanese (ja)
Other versions
JP5732857B2 (en
Inventor
Kazuaki Mino
和明 三野
Yasuhiro Okuma
康浩 大熊
Kazuo Kuroki
一男 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011002351A priority Critical patent/JP5732857B2/en
Publication of JP2012147528A publication Critical patent/JP2012147528A/en
Application granted granted Critical
Publication of JP5732857B2 publication Critical patent/JP5732857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Abstract

PROBLEM TO BE SOLVED: To solve a problem of a conventional AC power source in which when an IGBT is turned on while a current of a reactor is being refluxing through a serially connected IGBT, the IGBT used in the reflux is reversely recovered by a voltage of the AC power source, a large surge voltage is generated in blocking the reverse recovery, and hence, noise is generated in a larger quantity and a reverse recovery loss is large.SOLUTION: A capacitor series circuit and a bidirectional switch series circuit are connected in parallel to an AC power source, and another bidirectional switch is connected between a series connection point inside the capacitor series circuit and a series connection point inside the bidirectional switch series circuit. A voltage at which an IGBT performing a diode operation is reversely recovered because an IGBT is turned on and a voltage at which the IGBT is turned on/off are set to a voltage approximately a half of a voltage of the AC power source as a first step, and are set to the voltage of the AC power source itself as a second step.

Description

本発明は、交流入力電圧を電圧制御又は電力制御して負荷へ交流電圧又は交流電力を供給する交流電源装置に関する。 The present invention relates to an AC power supply apparatus that supplies AC voltage or AC power to a load by controlling voltage or power of an AC input voltage.

図8に、特許文献1に示された従来の交流電源回路を示す。図8(a)は交流電源Vsより低い交流電圧を出力する降圧形交流チョッパ回路図で、図8(b)は交流電源Vsより高い交流電圧を出力する昇圧形交流チョッパ回路図である。
まず図8(a)について説明する。逆阻止形IGBTS1aとS1bを逆並列接続した第1の双方向スイッチと、逆阻止形IGBTS2aとS2bを逆並列接続した第2の双方向スイッチとを直列接続した双方向スイッチ直列回路と、交流電源Vsと、コンデンサCiと並列接続し、第2の双方向スイッチと並列に負荷LDを接続したいわゆる降圧形交流チョッパ回路である。
FIG. 8 shows a conventional AC power supply circuit disclosed in Patent Document 1. FIG. 8A is a step-down AC chopper circuit diagram that outputs an AC voltage lower than the AC power source Vs, and FIG. 8B is a step-up AC chopper circuit diagram that outputs an AC voltage higher than the AC power source Vs.
First, FIG. 8A will be described. A bidirectional switch series circuit in which a first bidirectional switch in which reverse blocking IGBTs 1a and S1b are connected in reverse parallel and a second bidirectional switch in which reverse blocking IGBTs 2a and S2b are connected in reverse parallel are connected in series; and an AC power supply This is a so-called step-down AC chopper circuit in which Vs and a capacitor Ci are connected in parallel and a load LD is connected in parallel with the second bidirectional switch.

このような構成において、交流電源Vsの極性が正の時、IGBTS1aをオンすると負荷には交流電源と同じ電圧が印加され、IGBTS1aをオフしIGBTS2bをオンすると負荷電圧は零となる。また、交流電源Vsの電圧の極性が負の時、IGBTS1bをオンすると負荷LDには交流電源と同じ電圧が印加され、IGBTS1bをオフしIGBTS2aをオンすると負荷電圧は零となる。これらのスイッチング動作においては、IGBTがオフする時にIGBTに印加される電圧は電源電圧と同じになる。このようなスイッチング動作を高周波で行い、オンとオフの比率を調整することにより、負荷LDには交流電源Vsと周波数が同じで電圧が低い所望の交流電圧が印加される。   In such a configuration, when the polarity of the AC power source Vs is positive, when the IGBT TS 1a is turned on, the same voltage as that of the AC power source is applied to the load, and when the IGBT TS 1a is turned off and the IGBT TS 2b is turned on, the load voltage becomes zero. When the polarity of the voltage of the AC power supply Vs is negative, when the IGBT TS1b is turned on, the same voltage as that of the AC power supply is applied to the load LD, and when the IGBTTS1b is turned off and the IGBTTS2a is turned on, the load voltage becomes zero. In these switching operations, the voltage applied to the IGBT when the IGBT is turned off is the same as the power supply voltage. By performing such a switching operation at a high frequency and adjusting the ON / OFF ratio, a desired AC voltage having the same frequency as the AC power source Vs and a low voltage is applied to the load LD.

次に図8(b)について説明する。逆阻止形IGBTS4aとS4bを逆並列接続した第4の双方向スイッチと、逆阻止形IGBTS5aとS5bを逆並列接続した第5の双方向スイッチとを直列接続した双方向スイッチ直列回路と、コンデンサCoと、負荷LDとが並列接続され、第5の双方向スイッチと並列に交流電源VsとリアクトルLとの直列回路が接続されたいわゆる昇圧形交流チョッパ回路である。このような構成において、交流電源Vsの極性が正の時、IGBTS5aをオンするとリアクトルLにエネルギーが蓄積され、IGBTS5aをオフしIGBTS4bをオンするとリアクトルLのエネルギーはIGBTS4bを介してコンデンサCoに正方向に充電され、交流電源Viの電圧より高い電圧となる。この時、IGBTS5aの電圧はコンデンサCoと同じ電圧となる。   Next, FIG. 8B will be described. A bidirectional switch series circuit in which a fourth bidirectional switch in which reverse blocking IGBTs 4a and S4b are connected in reverse parallel and a fifth bidirectional switch in which reverse blocking IGBTs 5a and S5b are connected in reverse parallel are connected in series, and a capacitor Co And a load LD, and a so-called step-up AC chopper circuit in which a series circuit of an AC power supply Vs and a reactor L is connected in parallel with the fifth bidirectional switch. In such a configuration, when the polarity of the AC power supply Vs is positive, when the IGBT TS 5a is turned on, energy is accumulated in the reactor L, and when the IGBT TS 5a is turned off and the IGBT TS 4b is turned on, the energy of the reactor L is forward to the capacitor Co via the IGBT TS 4b. To be higher than the voltage of the AC power source Vi. At this time, the voltage of the IGBTTS 5a is the same voltage as the capacitor Co.

また、交流電源Vsの電圧の極性が負の時、IGBTS5bをオンするとリアクトルLにエネルギーが蓄積され、IGBTS5bをオフしIGBTS4aをオンするとリアクトルLのエネルギーはIGBTS4aを介してコンデンサCoに負方向に充電される。この時、IGBTS5bの電圧はコンデンサCoと同じ電圧となる。このようなスイッチング動作を高周波で行い、オンとオフの比率を調整することにより、負荷LDには交流電源Vsと周波数が同じで電圧が高い所望の電圧が印加される。   Further, when the polarity of the voltage of the AC power supply Vs is negative, when the IGBT TS 5b is turned on, energy is accumulated in the reactor L. When the IGBT TS 5b is turned off and the IGBT TS 4a is turned on, the energy of the reactor L is charged in the negative direction to the capacitor Co via the IGBT TS 4a. Is done. At this time, the voltage of the IGBTTS 5b is the same voltage as the capacitor Co. By performing such a switching operation at a high frequency and adjusting the ON / OFF ratio, a desired voltage having the same frequency and high voltage as the AC power supply Vs is applied to the load LD.

これらのスイッチング動作においては、IGBTに印加される電圧及び負荷に印加される電圧波形は、以下となる。降圧形交流チョッパ回路の場合は交流電源電圧と零との間を変化する電圧で、昇圧形交流チョッパ回路の場合は昇圧された負荷電圧と零との間を変化する電圧で、いずれも電圧変化率(dv/dt)の大きい高速のスイッチング波形となる。   In these switching operations, the voltage applied to the IGBT and the voltage waveform applied to the load are as follows. In the case of a step-down AC chopper circuit, the voltage changes between the AC power supply voltage and zero, and in the case of a step-up AC chopper circuit, the voltage changes between the boosted load voltage and zero. A high-speed switching waveform with a large rate (dv / dt) is obtained.

特許第3216759号公報Japanese Patent No. 3216759

上述のように、いずれの回路構成の場合も、リアクトルの電流がIGBTを介して還流又は出力コンデンサを充電している時に直列接続されたIGBTをオンすると、還流中のIGBTは交流電源Vsの電圧又は交流出力コンデンサCoの電圧でダイオードと同様の逆回復動作となる。交流電源電圧又は交流出力電圧が数百ボルト以上と高い場合には、IGBTが高速で逆回復することになり、IGBT逆回復遮断時に大きなサージ電圧が発生し、ノイズ発生量が増加すると共に逆回復損失が大きくなる。また、スイッチング素子のスイッチング時の電圧変化量は交流電源電圧又は交流出力電圧にサージ電圧が加算された電圧となり、同様にノイズ発生量が大きく且つスイッチング損失が大きくなる。この結果、IGBTの耐圧はこの電圧に耐える高耐圧品が必要となり、また冷却装置が大型化する問題が生じる。
従って、本発明の課題は、逆回復を緩やかにしてノイズ発生量を低減すると共に逆回復時の損失を低減すること及びスイッチング時のノイズ発生量及びスイッチング損失を低減することである。
As described above, in any circuit configuration, when the IGBT connected in series is turned on when the current of the reactor is refluxing or charging the output capacitor via the IGBT, the IGBT being refluxed is the voltage of the AC power supply Vs. Alternatively, the reverse recovery operation similar to the diode is performed by the voltage of the AC output capacitor Co. If the AC power supply voltage or AC output voltage is as high as several hundred volts or more, the IGBT will reversely recover at high speed, and a large surge voltage will be generated when the IGBT reverse recovery is cut off, increasing the amount of noise generated and reverse recovery. Loss increases. Further, the amount of voltage change at the time of switching of the switching element is a voltage obtained by adding a surge voltage to the AC power supply voltage or the AC output voltage. As a result, the withstand voltage of the IGBT requires a high withstand voltage product that can withstand this voltage, and the cooling device becomes large.
Accordingly, an object of the present invention is to moderate reverse recovery and reduce the amount of noise generated, to reduce loss at the time of reverse recovery, and to reduce noise generation amount and switching loss at the time of switching.

上述の課題を解決するために、第1の発明においては、コンデンサを2個直列接続したコンデンサ直列回路と、第1及び第2の双方向スイッチを2個直列接続した第1の双方向スイッチ直列回路と、を交流電源と並列に接続し、前記コンデンサ直列回路内部の直列接続点と前記第1の双方向スイッチ直列回路内部の直列接続点との間に第3の双方向スイッチを、前記第1の双方向スイッチ又は前記第2の双方向スイッチと並列に負荷を、各々接続し、前記交流電源と基本波周波数が等しく且つ電圧の低い交流電圧を前記負荷に供給する。   In order to solve the above-described problem, in the first invention, a capacitor series circuit in which two capacitors are connected in series and a first bidirectional switch series in which two first and second bidirectional switches are connected in series. A third bidirectional switch between the series connection point inside the capacitor series circuit and the series connection point inside the first bidirectional switch series circuit, A load is connected in parallel with one bidirectional switch or the second bidirectional switch, and an AC voltage having a fundamental frequency equal to that of the AC power source and a low voltage is supplied to the load.

第2の発明においては、第1の発明における前記コンデンサ直列回路と中間タップ付変圧器巻線を並列接続し、前記中間タップと前記コンデンサ直列回路内部の接続点とを接続する。   In the second invention, the capacitor series circuit in the first invention and the transformer winding with the intermediate tap are connected in parallel, and the intermediate tap and the connection point inside the capacitor series circuit are connected.

第3の発明においては、第1又は第2の発明における前記第1〜第3の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御によりパルス列化するに際し、各パルスはコンデンサ直列回路の一方のコンデンサ電圧を出力する第1ステップ波形と前記コンデンサ直列回路全体の電圧を出力する第2ステップ波形との合成波形として出力する制御手段を備える。   In the third invention, when the first to third bidirectional switches in the first or second invention are controlled to be turned on / off, and each half cycle period of the AC power source is converted into a pulse train by high frequency PWM control, each pulse is Control means for outputting a composite waveform of a first step waveform for outputting one capacitor voltage of the capacitor series circuit and a second step waveform for outputting the voltage of the entire capacitor series circuit is provided.

第4の発明においては、コンデンサを2個直列接続したコンデンサ直列回路と、第1及び第2の双方向スイッチを2個直列接続した双方向スイッチ直列回路とを負荷と並列に接続し、前記コンデンサ直列回路内部の接続点と前記双方向スイッチ直列回路内部の接続点との間に第3の双方向スイッチを、前記第1の双方向スイッチ又は前記第2の双方向スイッチと並列に交流電源とリアクトルとの直列回路を、各々接続し、前記交流電源と基本波周波数が等しく且つ電圧が高い交流電圧を前記負荷に供給する。   In a fourth aspect of the invention, a capacitor series circuit in which two capacitors are connected in series and a bidirectional switch series circuit in which two first and second bidirectional switches are connected in series are connected in parallel with a load, and the capacitor A third bidirectional switch is connected between a connection point inside the series circuit and a connection point inside the bidirectional switch series circuit, and an AC power supply is connected in parallel with the first bidirectional switch or the second bidirectional switch. A series circuit with a reactor is connected to each other, and an AC voltage having the same fundamental frequency as that of the AC power source and a high voltage is supplied to the load.

第5の発明においては、第4の発明における前記コンデンサ直列回路と中間タップ付変圧器巻線とを並列接続し、前記中間タップと前記コンデンサ直列回路内部の接続点とを接続する。   In the fifth invention, the capacitor series circuit and the transformer winding with an intermediate tap in the fourth invention are connected in parallel, and the intermediate tap and a connection point inside the capacitor series circuit are connected.

第6の発明においては、第4又は第5の発明における前記第1〜第3の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御により前記リアクトル電流を制御し、前記コンデンサ直列回路を電流パルスで充電し、前記交流電源の電圧よりも高い電圧を得るに際し、各電流パルスはコンデンサ直列回路の一方のコンデンサを充電する第1期間と前記コンデンサ直列回路全体を充電する第2期間とを備える。   In a sixth aspect of the invention, the first to third bidirectional switches in the fourth or fifth aspect of the invention are turned on and off, the reactor current is controlled by high-frequency PWM control during each half cycle period of the AC power supply, When the capacitor series circuit is charged with a current pulse and a voltage higher than the voltage of the AC power supply is obtained, each current pulse charges a first period during which one capacitor of the capacitor series circuit is charged and a first period during which the entire capacitor series circuit is charged. 2 periods.

第7の発明においては、コンデンサを2個直列接続した第1のコンデンサ直列回路と、第1及び第2の双方向スイッチを2個直列接続した第1の双方向スイッチ直列回路と、交流電源とを並列に接続し、前記第1のコンデンサ直列回路内部の接続点と前記第1の双方向スイッチ直列回路内部の直列接続点との間に第3の双方向スイッチを接続した降圧形交流チョッパ回路と、コンデンサを2個直列接続した第2のコンデンサ直列回路と、第4及び第5の双方向スイッチを2個直列接続した第2の双方向スイッチ直列回路とを負荷と並列に接続し、前記第2のコンデンサ直列回路内部の接続点と前記第2の双方向スイッチ直列回路内部の直列接続点との間に第6の双方向スイッチを接続した昇圧形交流チョッパ回路と、を備え、前記第1の双方向スイッチ直列回路内部の直列接続点と前記第2の双方向スイッチ直列回路内部の直列接続点との間にリアクトルを、第1の双方向スイッチ直列回路の一端と第2の双方向スイッチ直列回路の一端とを、各々接続し、前記降圧形交流チョッパ回路の動作により前記交流電源と基本波周波数が等しく且つ電圧が前記交流電源より低い交流電圧を負荷に供給し、前記昇圧形交流チョッパ回路の動作により前記交流電源と基本波周波数が等しく且つ電圧が前記交流電源より高い交流電圧を前記負荷に供給する。   In the seventh invention, a first capacitor series circuit in which two capacitors are connected in series, a first bidirectional switch series circuit in which two first and second bidirectional switches are connected in series, an AC power source, Are connected in parallel, and a step-down AC chopper circuit in which a third bidirectional switch is connected between a connection point inside the first capacitor series circuit and a series connection point inside the first bidirectional switch series circuit And a second capacitor series circuit in which two capacitors are connected in series and a second bidirectional switch series circuit in which two fourth and fifth bidirectional switches are connected in series are connected in parallel with the load, A step-up AC chopper circuit in which a sixth bidirectional switch is connected between a connection point inside the second capacitor series circuit and a series connection point inside the second bidirectional switch series circuit, 1 bidirectional switch A reactor is connected between the series connection point inside the series circuit and the series connection point inside the second bidirectional switch series circuit, and one end of the first bidirectional switch series circuit and the second bidirectional switch series circuit One end is connected to each other, and by the operation of the step-down AC chopper circuit, an AC voltage having the same fundamental frequency as that of the AC power source and a voltage lower than that of the AC power source is supplied to the load. Thus, an AC voltage having the same fundamental frequency as that of the AC power supply and a voltage higher than that of the AC power supply is supplied to the load.

第8の発明においては、第7の発明における前記第1のコンデンサ直列回路と第1の中間タップ付変圧器とを、前記第2のコンデンサ直列回路と第2の中間タップ付変圧器とを、各々並列接続し、前記第1の中間タップ付変圧器巻線の中間タップと前記第1のコンデンサ直列回路内部の直列接続点とを、前記第2の中間タップ付変圧器巻線の中間タップと前記第2のコンデンサ直列回路内部の直列接続点とを、各々接続する。   In an eighth invention, the first capacitor series circuit and the first intermediate tap transformer in the seventh invention, the second capacitor series circuit and the second intermediate tap transformer, The intermediate taps of the first intermediate tap transformer winding and the series connection point inside the first capacitor series circuit are respectively connected in parallel, and the intermediate tap of the second intermediate tap transformer winding is The second connection point in the second capacitor series circuit is connected to each other.

第9の発明においては、第7又は第8の発明における前記第1〜第3の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御によりパルス列化するに際し、各パルスは第1のコンデンサ直列回路の一方のコンデンサ電圧を出力する第1ステップ波形と前記第1のコンデンサ直列回路全体の電圧を出力する第2ステップ波形との合成波形として出力する第1の制御手段を備える。   In the ninth invention, when the first to third bidirectional switches in the seventh or eighth invention are turned on / off, and each half cycle period of the AC power supply is converted into a pulse train by high-frequency PWM control, each pulse is First control means is provided for outputting as a combined waveform of a first step waveform for outputting one capacitor voltage of the first capacitor series circuit and a second step waveform for outputting the voltage of the entire first capacitor series circuit. .

第10の発明においては、第7〜第9の発明における前記第4〜第6の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御により前記リアクトル電流を制御し、前記第2のコンデンサ直列回路を電流パルスで充電し、前記交流電源の電圧よりも高い電圧を得るに際し、各電流パルスは第2のコンデンサ直列回路の一方のコンデンサを充電する第1期間と前記コンデンサ直列回路全体を充電する第2期間とを有する第2の制御手段を備える。   In a tenth invention, the fourth to sixth bidirectional switches in the seventh to ninth inventions are controlled to be turned on / off, the reactor current is controlled by high-frequency PWM control during each half cycle period of the AC power supply, When the second capacitor series circuit is charged with a current pulse and a voltage higher than the voltage of the AC power supply is obtained, each current pulse is charged with a first period for charging one capacitor of the second capacitor series circuit and the capacitor series. A second control unit having a second period for charging the entire circuit.

本発明では、IGBTがオンしてダイオード動作のIGBTを逆回復させる時の電圧及びIGBT(スイッチング素子)がオンオフする時の電圧を第1ステップとして交流電源電圧又は交流出力電圧の半分程度の電圧とし、第2ステップとして交流電源電圧又は交流出力電圧そのものとしている。このため、ダイオード動作のIGBTの逆回復時又はIGBT(スイッチング素子)オフ時にスイッチング素子に印加される電圧を小さく抑制することができる。
この結果、ダイオード動作のIGBTの逆回復時の電圧が低い電圧となり、逆回復時のサージ電圧が低く抑制され、逆回復損失が低減する。さらにIGBT(スイチング素子)のスイッチング時の電圧変化量が半分程度となり、ノイズ発生量が低減する。
In the present invention, the voltage when the IGBT is turned on and reversely recovering the diode-operated IGBT and the voltage when the IGBT (switching element) is turned on and off are set to about half of the AC power supply voltage or the AC output voltage as the first step. In the second step, the AC power supply voltage or the AC output voltage itself is used. For this reason, the voltage applied to the switching element at the time of reverse recovery of the diode-operated IGBT or when the IGBT (switching element) is turned off can be reduced.
As a result, the voltage at the time of reverse recovery of the diode-operated IGBT becomes a low voltage, the surge voltage at the time of reverse recovery is suppressed low, and the reverse recovery loss is reduced. Furthermore, the amount of voltage change at the time of switching of the IGBT (switching element) is about half, and the amount of noise generation is reduced.

本発明の第1の実施例を示す回路図である。1 is a circuit diagram showing a first embodiment of the present invention. 図1の動作波形例1である。It is the operation | movement waveform example 1 of FIG. 図1の動作波形例2である。It is the operation | movement waveform example 2 of FIG. 本発明の第2の実施例を示す回路図である。It is a circuit diagram which shows the 2nd Example of this invention. 本発明の第3の実施例を示す回路図である。It is a circuit diagram which shows the 3rd Example of this invention. 図5の動作波形例である。6 is an operation waveform example of FIG. 5. 本発明の第4の実施例を示す回路図である。It is a circuit diagram which shows the 4th Example of this invention. 従来例を示す回路図である。It is a circuit diagram which shows a prior art example.

本発明の要点は、双方向スイッチを直列接続した双方向スイッチ直列回路とコンデンサを直列接続したコンデンサ直列回路とを交流電源と並列接続し、双方向スイッチ直列回路内部の直列接続点とコンデンサ直列回路内部の直列接続点との間にさらに双方向スイッチを接続した降圧形交流チョッパ回路構成で、スイッチング時にスイッチング素子に印加される電圧として交流電源の半分を第1ステップで印加し、第2ステップで交流電源電圧そのものが印加されるように制御している点である。   The gist of the present invention is that a bidirectional switch series circuit in which bidirectional switches are connected in series and a capacitor series circuit in which capacitors are connected in series are connected in parallel with an AC power source, and the series connection point and the capacitor series circuit inside the bidirectional switch series circuit. In a step-down AC chopper circuit configuration in which a bidirectional switch is further connected between the internal series connection point, half of the AC power supply is applied in the first step as the voltage applied to the switching element during switching, and in the second step. The control is such that the AC power supply voltage itself is applied.

また、双方向スイッチを直列接続した双方向スイッチ直列回路とコンデンサを直列接続したコンデンサ直列回路を負荷と並列接続し、双方向スイッチ直列回路のいずれかの双方向スイッチと並列に交流電源とリアクトルの直列回路を接続した昇圧形交流チョッパ回路構成で、スイッチング時にスイッチング素子に印加される電圧として負荷電圧の半分を第1ステップで印加し、第2ステップで負荷電圧そのものが印加されるように制御している点である。   In addition, a bidirectional switch series circuit in which bidirectional switches are connected in series and a capacitor series circuit in which capacitors are connected in series are connected in parallel with the load, and the AC power supply and the reactor are connected in parallel with one of the bidirectional switches in the bidirectional switch series circuit. In a boost AC chopper circuit configuration with a series circuit connected, half of the load voltage is applied in the first step as the voltage applied to the switching element during switching, and the load voltage itself is controlled in the second step. It is a point.

図1に、本発明の第1の実施例を示す。逆阻止形IGBTS1aとS1bを逆並列接続した第1の双方向スイッチと、逆阻止形IGBTS2aとS2bを逆並列接続した第2の双方向スイッチとを直列接続した双方向スイッチ直列回路と、コンデンサC1とC2を直列接続したコンデンサ直列回路と、交流電源Vsとを並列接続し、双方向スイッチ直列回路内部の直列接続点とコンデンサ直列回路内部の直列接続点との間に逆阻止形IGBTS3aとS3bを逆並列接続した第3の双方向スイッチを、第2の双方向スイッチと並列に負荷LDを接続した降圧形交流チョッパ回路である。また、コンデンサC1とC2の電圧は、電圧検出器VD1を介して、制御回路CNTに接続される。   FIG. 1 shows a first embodiment of the present invention. A bidirectional switch series circuit in which a first bidirectional switch in which reverse blocking IGBTs 1a and S1b are connected in anti-parallel and a second bidirectional switch in which reverse blocking IGBTs 2a and S2b are connected in anti-parallel are connected in series, and capacitor C1 A capacitor series circuit in which C2 and C2 are connected in series and an AC power supply Vs are connected in parallel, and reverse blocking IGBTs 3a and S3b are connected between the series connection point inside the bidirectional switch series circuit and the series connection point inside the capacitor series circuit. This is a step-down AC chopper circuit in which a third bidirectional switch connected in reverse parallel is connected to a load LD in parallel with the second bidirectional switch. The voltages of the capacitors C1 and C2 are connected to the control circuit CNT via the voltage detector VD1.

この様な構成における動作図を図2及び図3に示す。図2は交流電源Vsの極性が正の場合の動作例、図3は交流電源Vsの極性が負の場合の動作例である。いずれの場合も負荷LDに供給される交流電圧の基本波周波数は、交流電源の周波数と同じである。図2から判るように負荷LDの電流がIGBTS2bを介して還流しているモードでIGBTS3aをオンさせるとIGBTS2bがコンデンサC2の電圧で逆回復してオフとなると共に負荷LDにはコンデンサC2の電圧が印加される。次にIGBTS1aをオンさせるとIGBTS3aがコンデンサC1の電圧で逆回復してオフとなり、負荷LDにはコンデンサC1の電圧とC2の電圧の和(交流電源電圧)が印加される。   Operation diagrams in such a configuration are shown in FIGS. FIG. 2 shows an operation example when the polarity of the AC power supply Vs is positive, and FIG. 3 shows an operation example when the polarity of the AC power supply Vs is negative. In any case, the fundamental frequency of the AC voltage supplied to the load LD is the same as the frequency of the AC power supply. As can be seen from FIG. 2, when the IGBT TS3a is turned on in a mode in which the current of the load LD is circulating through the IGBTTS2b, the IGBTTS2b is reversely recovered by the voltage of the capacitor C2 and turned off, and the voltage of the capacitor C2 is applied to the load LD. Applied. Next, when the IGBTTS1a is turned on, the IGBTTS3a is reversely recovered by the voltage of the capacitor C1 and turned off, and the sum of the voltage of the capacitor C1 and the voltage of C2 (AC power supply voltage) is applied to the load LD.

この状態から、IGBTS1aをオフさせると、負荷LDにはコンデンサC2の電圧がIGBTS3aを介して供給される。次にIGBTS3aをオフし、IGBTS2bをオンさせると、負荷電流はIGBTS2bで還流し、負荷LDの電圧は零となる。これらの動作の結果、負荷LDに印加される電圧波形は図示のようにスイッチング過程で、一旦コンデンサC2の電圧を経由して電源電圧又は零電圧となる。ここで、IGBTS3aをオンした後IGBTS1aをオンさせるまでの時間差、及びIGBTS1aをオフしてからIGBTS3aをオフさせるまでの時間差は、IGBTのスイッチング時間より少し長い時間であれば良く、およそ数マイクロ秒で良い。また、コンデンサC1とC2は交流電源電圧を2分割する役割を持たせるため、ほぼ等しい静電容量とする。従って、図2に示すように交流電源電圧をViとすると、コンデンサC1、C2の電圧はVi/2となる。 When the IGBTTS1a is turned off from this state, the voltage of the capacitor C2 is supplied to the load LD via the IGBTTS3a. Next, when the IGBT TS 3a is turned off and the IGBT TS 2b is turned on, the load current is circulated in the IGBT TS 2b, and the voltage of the load LD becomes zero. As a result of these operations, the voltage waveform applied to the load LD becomes a power supply voltage or zero voltage once via the voltage of the capacitor C2 in the switching process as shown in the figure. Here, the time difference from turning on the IGBT TS 3a to turning on the IGBT TS 1a and the time difference from turning off the IGBT TS 1a to turning off the IGBT TS 3a may be a little longer than the switching time of the IGBT. good. Capacitors C1 and C2 have substantially the same capacitance in order to have a role of dividing the AC power supply voltage into two. Therefore, when the AC power supply voltage is Vi as shown in FIG. 2, the voltages of the capacitors C1 and C2 are Vi / 2.

電圧検出器VD1はコンデンサC1とC2の電圧差を検出し、これを制御回路CNT1に送り、制御回路CNT1ではこの差が大きくなった場合には装置を停止させ、保護する。
交流電源Vsの極性が正の場合、IGBTS2bを逆回復させる場合はコンデンサC2の放電量が多いのでコンデンサC2の電圧が低くなるが、IGBTS3aを逆回復させる場合はコンデンサC1の放電量が多いのでコンデンサC1の電圧が低くなる。従って、逆回復させための電荷はほぼ同じとなる。IGBTS3aをオンした後IGBTS1aをオンさせるまでの時間、及びIGBTS1aをオフしてからIGBTS3aをオフさせるまでの時間を大きくすればコンデンサC2の電圧はC1の電圧より低下する。
The voltage detector VD1 detects the voltage difference between the capacitors C1 and C2 and sends it to the control circuit CNT1. When the difference becomes large, the control circuit CNT1 stops and protects the device.
When the polarity of the AC power supply Vs is positive, when the IGBT TS2b is reversely recovered, the discharge amount of the capacitor C2 is large, so the voltage of the capacitor C2 is low. However, when the IGBTTS3a is reversely recovered, the discharge amount of the capacitor C1 is large. The voltage of C1 becomes low. Therefore, the charges for reverse recovery are almost the same. If the time from turning on the IGBT TS 3a to turning on the IGBT TS 1a and the time from turning off the IGBT TS 1a to turning off the IGBT TS 3a are increased, the voltage of the capacitor C2 is lowered from the voltage of the C1.

図3は交流電源Vsの極性が負の場合の動作例である。図3から判るように負荷LDの電流がIGBTS2aを介して還流しているモードでIGBTS3bをオンさせるとIGBTS2aがコンデンサC2の電圧で逆回復してオフとなると共に負荷LDにはコンデンサC2の電圧が印加される。次にIGBTS1bをオンさせるとIGBTS3bがコンデンサC1の電圧で逆回復してオフとなり、負荷LDにはコンデンサC1の電圧とC2の電圧の和(交流電源電圧)が印加される。この状態から、IGBTS1bをオフさせると、負荷LDにはコンデンサC2の電圧がIGBTS3bを介して供給される。次にIGBTS3bをオフし、IGBTS2aをオンさせると、負荷電流はIGBTS2aで還流し、負荷LDの電圧は零となる。   FIG. 3 shows an operation example when the polarity of the AC power supply Vs is negative. As can be seen from FIG. 3, when the IGBT TS 3b is turned on in a mode in which the current of the load LD is circulating through the IGBT 2a, the IGBT TS 2a is reversely recovered by the voltage of the capacitor C2 and turned off, and the voltage of the capacitor C2 is applied to the load LD. Applied. Next, when the IGBTTS1b is turned on, the IGBTTS3b is reversely recovered by the voltage of the capacitor C1 and turned off, and the sum of the voltage of the capacitor C1 and the voltage of C2 (AC power supply voltage) is applied to the load LD. When the IGBTTS1b is turned off from this state, the voltage of the capacitor C2 is supplied to the load LD via the IGBTTS3b. Next, when the IGBT TS 3b is turned off and the IGBT TS 2a is turned on, the load current circulates in the IGBT TS 2a, and the voltage of the load LD becomes zero.

これらの動作の結果、負荷LDに印加される電圧は図示のようにスイッチング過程で、一旦コンデンサC2の電圧を経由して電源電圧又は零電圧となる。IGBTS3bをオフした後IGBTS1bをオンさせるまでの時間、及びIGBTS1bをオフしてからIGBTS3bをオフさせるまでの時間を大きくすれば、コンデンサC1の電圧に比べてC2の電圧は低下する。また、負荷電圧は双方向スイッチ1と2のオンオフの比率を変えることにより調整できることは、従来と同様である。 As a result of these operations, the voltage applied to the load LD becomes a power supply voltage or zero voltage once via the voltage of the capacitor C2 in the switching process as shown in the figure. If the time from turning off the IGBT TS 3b to turning on the IGBT TS 1b and the time from turning off the IGBT TS 1b to turning off the IGBT TS 3b are increased, the voltage of the C2 is lowered as compared with the voltage of the capacitor C1. The load voltage can be adjusted by changing the on / off ratio of the bidirectional switches 1 and 2 as in the conventional case.

図4に、本発明の第2の実施例を示す。第1の実施例との違いは、コンデンサC1、C2と並列に中間タップ付変圧器BALの巻線が接続されている点である。
第1の実施例での説明のように、交流電源Vsの極性が正の場合、IGBTS3aをオンした後IGBTS1aをオンさせるまでの時間、及びIGBTS1aをオフしてからIGBTS3aをオフさせるまでの時間を大きくすればコンデンサC2の電圧はC1の電圧より低下する。また、交流電源Vsの極性が負の場合、IGBTS3bをオフした後IGBTS1bをオンさせるまでの時間、及びIGBTS1bをオフしてからIGBTS3bをオフさせるまでの時間を大きくすれば、コンデンサC1の電圧に比べてC2の電圧は低下する。
FIG. 4 shows a second embodiment of the present invention. The difference from the first embodiment is that the winding of the intermediate tap transformer BAL is connected in parallel with the capacitors C1 and C2.
As described in the first embodiment, when the polarity of the AC power supply Vs is positive, the time from turning on the IGBT TS 3a to turning on the IGBT TS 1a, and the time from turning off the IGBT TS 1a to turning off the IGBT TS 3a. If it is increased, the voltage of the capacitor C2 will be lower than the voltage of C1. Further, when the polarity of the AC power source Vs is negative, if the time from turning off the IGBT TS 3b to turning on the IGBT TS 1b and the time from turning off the IGBT TS 1b to turning off the IGBT TS 3b are increased, the voltage is compared with the voltage of the capacitor C1. As a result, the voltage of C2 decreases.

このコンデンサC1の電圧とC2の電圧との電圧差が大きすぎると、本発明の目的である逆回復時の損失低減とノイズ低減の効果が低下してしまう。本実施例は、この課題を解決するための実施例である。中間タップ付の変圧器BALをコンデンサC1とC2との直列回路と並列接続し、中間タップとコンデンサ直列回路内部の直列接続点とを接続することにより、双方向スイッチの制御状態に影響されずに、各コンデンサ電圧を均等にすることができる。ここで、タップ位置を調整することにより、各双方向スイッチへの印加電圧の調整と発生損失の調整が可能となる。 If the voltage difference between the voltage of the capacitor C1 and the voltage of C2 is too large, the effects of reducing loss and noise during reverse recovery, which are the objects of the present invention, are reduced. The present embodiment is an embodiment for solving this problem. By connecting the transformer BAL with an intermediate tap in parallel with the series circuit of the capacitors C1 and C2, and connecting the intermediate tap and the series connection point inside the capacitor series circuit, the control state of the bidirectional switch is not affected. Each capacitor voltage can be equalized. Here, by adjusting the tap position, it is possible to adjust the voltage applied to each bidirectional switch and the generated loss.

図5に、本発明の第3の実施例を示す。交流電源Vsの電圧Viを昇圧して、交流電源電圧より高い電圧を負荷LDに供給する回路である。逆阻止形IGBTS4aとS4bを逆並列接続して構成した第4の双方向スイッチと逆阻止形IGBTS5aとS5bを逆並列接続して構成した第5の双方向スイッチとを直列接続した第2の双方向スイッチ直列回路と、コンデンサC3とC4を直列接続した第2のコンデンサ直列回路と、負荷LDとが並列接続される。また、第2の双方向スイッチ直列回路内部の直列接続点と第2のコンデンサ直列回路内部の直列接続点との間に逆阻止形IGBTS6aとS6bを逆並列接続して構成した第6の双方向スイッチを、第5の双方向スイッチと並列に交流電源VsとリアクトルL1を、各々接続する。コンデンサC3とC4の電圧は電圧検出器VD2を介して制御回路CNT2に入力される。   FIG. 5 shows a third embodiment of the present invention. This circuit boosts the voltage Vi of the AC power supply Vs and supplies a voltage higher than the AC power supply voltage to the load LD. A second bidirectional switch in which a fourth bidirectional switch configured by connecting the reverse blocking IGBTs 4a and S4b in reverse parallel and a fifth bidirectional switch configured by connecting the reverse blocking IGBTs 5a and S5b in reverse parallel are both connected in series. A direction switch series circuit, a second capacitor series circuit in which capacitors C3 and C4 are connected in series, and a load LD are connected in parallel. In addition, a sixth bidirectional configuration in which reverse blocking IGBTs 6a and S6b are connected in reverse parallel between a series connection point inside the second bidirectional switch series circuit and a series connection point inside the second capacitor series circuit. The switch is connected to the AC power source Vs and the reactor L1 in parallel with the fifth bidirectional switch. The voltages of the capacitors C3 and C4 are input to the control circuit CNT2 via the voltage detector VD2.

この様な構成における動作を図6に示す。交流電源Vsの極性が正の場合の動作図である。IGBTS5aをオンすると、交流電源Vs→リアクトルL1→IGBTS5aの経路で電流が流れ、リアクトルL1にエネルギーが蓄積される。次にIGBTS5aをオフして、IGBTS6aをオンすると、リアクトルL1の電流はコンデンサC4に充電される。次にIGBT6aをオフしてIGBTS4bをオンするとリアクトルL1の電流は、IGBTS4b→コンデンサC3→コンデンサC4→交流電源Vs→リアクトルL1の経路でコンデンサC3とC4を充電する。次にIGBTS4bをオフしてIGBTS6aをオンするとコンデンサC4が充電される。
これらの動作の結果、第2の双方向スイッチ直列回路内部の直列接続点Uの電圧波形は負荷電圧の半分の電圧で段差を持った波形となる。
The operation in such a configuration is shown in FIG. It is an operation | movement figure in case the polarity of alternating current power supply Vs is positive. When the IGBTTS 5a is turned on, a current flows through the path of the AC power supply Vs → the reactor L1 → the IGBTTS 5a, and energy is accumulated in the reactor L1. Next, when the IGBTTS 5a is turned off and the IGBTTS 6a is turned on, the current of the reactor L1 is charged in the capacitor C4. Next, when the IGBT 6a is turned off and the IGBT TS 4b is turned on, the current of the reactor L1 charges the capacitors C3 and C4 through a path of IGBTTS4b → capacitor C3 → capacitor C4 → AC power supply Vs → reactor L1. Next, when the IGBT TS4b is turned off and the IGBTTS 6a is turned on, the capacitor C4 is charged.
As a result of these operations, the voltage waveform at the series connection point U in the second bidirectional switch series circuit becomes a waveform having a step at half the load voltage.

交流電源Vsの極性が負の場合の動作も同様である。IGBTS5bをオンすると、交流電源Vs→IGBTS5b→リアクトルL1の経路で電流が流れ、リアクトルL1にエネルギーが蓄積される。次にIGBTS5bをオフして、IGBTS6bをオンすると、リアクトルL1の電流はコンデンサC4に充電される。次にIGBT6bをオフしてIGBTS4aをオンするとリアクトルL1の電流は、交流電源Vs→コンデンサC4→コンデンサC3→IGBTS4a→リアクトルL1の経路でコンデンサC4とC3を充電する。次にIGBTS4aをオフしてIGBTS6bをオンするとコンデンサC4が充電される。これらの動作の結果、第2の双方向スイッチ直列回路内部の直列接続点Uの電圧波形は図6の波形を負側に反転させた負荷電圧の半分の電圧で段差を持った波形となる。   The operation when the polarity of the AC power supply Vs is negative is the same. When the IGBTTS 5b is turned on, a current flows through the path of the AC power source Vs → IGBTS5b → reactor L1, and energy is accumulated in the reactor L1. Next, when IGBTTS5b is turned off and IGBTTS6b is turned on, the current of reactor L1 is charged in capacitor C4. Next, when the IGBT 6b is turned off and the IGBT TS 4a is turned on, the current of the reactor L1 charges the capacitors C4 and C3 through the path of the AC power source Vs → capacitor C4 → capacitor C3 → IGBTTS 4a → reactor L1. Next, when the IGBTTS 4a is turned off and the IGBTTS 6b is turned on, the capacitor C4 is charged. As a result of these operations, the voltage waveform at the series connection point U inside the second bidirectional switch series circuit becomes a waveform having a step with a half voltage of the load voltage obtained by inverting the waveform of FIG. 6 to the negative side.

この構成においても、第2のコンデンサ直列回路と並列に中間タップ付の変圧器を接続し、コンデンサ直列回路内部の直列接続点と中間タップを接続することにより、コンデンサC3とC4の電圧をバランスさせることができる。電圧検出器VD2はコンデンサC3とC4の電圧アバランスを検出して制御回路CNT2に入力され、装置を保護する。その他の動作は、実施例1及び2と同様である。また、負荷電圧は双方向スイッチ4と5のオンオフの比率を変えることにより調整できることは、従来と同様である。   Also in this configuration, a transformer with an intermediate tap is connected in parallel with the second capacitor series circuit, and the voltage of the capacitors C3 and C4 is balanced by connecting the series connection point inside the capacitor series circuit and the intermediate tap. be able to. The voltage detector VD2 detects the voltage balance between the capacitors C3 and C4 and is input to the control circuit CNT2 to protect the device. Other operations are the same as those in the first and second embodiments. The load voltage can be adjusted by changing the on / off ratio of the bidirectional switches 4 and 5 as in the conventional case.

図7に、本発明の第4の実施例を示す。図1の降圧形交流チョッパ回路と図5の昇圧形交流チョッパ回路を組合せて、負荷に交流電源電圧より低い電圧から高い電圧まで広範囲の交流電圧を供給するようにしたものである。
降圧形交流チョッパ回路部は、逆阻止形IGBTS1aとS1bを逆並列接続した第1の双方向スイッチと、逆阻止形IGBTS2aとS2bを逆並列接続した第2の双方向スイッチとを直列接続した第1の双方向スイッチ直列回路と、コンデンサC1とC2を直列接続した第1のコンデンサ直列回路と、交流電源Vsとを並列接続し、双方向スイッチ直列回路内部の直列接続点とコンデンサ直列回路内部の直列接続点との間に逆阻止形IGBTS3aとS3bを逆並列接続した第3の双方向スイッチを、接続し、第1の双方向スイッチ直列回路内部の直列接続点がリアクトルL1の一方の端子に接続される。
FIG. 7 shows a fourth embodiment of the present invention. The step-down AC chopper circuit of FIG. 1 and the step-up AC chopper circuit of FIG. 5 are combined to supply a wide range of AC voltages from a voltage lower than the AC power supply voltage to a higher voltage.
The step-down AC chopper circuit unit includes a first bidirectional switch in which reverse blocking IGBTs 1a and S1b are connected in reverse parallel and a second bidirectional switch in which reverse blocking IGBTs 2a and S2b are connected in reverse parallel. A bidirectional switch series circuit, a first capacitor series circuit in which capacitors C1 and C2 are connected in series, and an AC power supply Vs are connected in parallel, and a series connection point in the bidirectional switch series circuit and a capacitor series circuit A third bidirectional switch in which reverse blocking IGBTs 3a and S3b are connected in reverse parallel to each other is connected to the series connection point, and the series connection point in the first bidirectional switch series circuit is connected to one terminal of the reactor L1. Connected.

昇圧形交流チョッパ回路部は、逆阻止形IGBTS4aとS4bを逆並列接続して構成した第4の双方向スイッチと逆阻止形IGBTS5aとS5bを逆並列接続して構成した第5の双方向スイッチとを直列接続した第2の双方向スイッチ直列回路と、コンデンサC3とC4を直列接続した第2のコンデンサ直列回路と、負荷LDとが並列接続され、第2の双方向スイッチ直列回路内部の直列接続点と第2のコンデンサ直列回路内部の直列接続点との間に逆阻止形IGBTS6aとS6bを逆並列接続して構成した第6の双方向スイッチを、接続し、第2の双方向スイッチ直列回路内部の直列接続点がリアクトルL1の他端に接続された構成である。第1のコンデンサ直列回路と並列に第1の中間タップ付変圧器を、第2のコンデンサ直列回路と並列に第2の中間タップ付変圧器を接続する構成は、第1〜第3の実施例と同様に適用できる。   The step-up AC chopper circuit unit includes a fourth bidirectional switch configured by connecting reverse blocking IGBTs 4a and S4b in reverse parallel, and a fifth bidirectional switch configured by connecting reverse blocking IGBTs 5a and S5b in reverse parallel. Are connected in series, a second capacitor series circuit in which capacitors C3 and C4 are connected in series, and a load LD are connected in parallel. A sixth bidirectional switch configured by connecting anti-blocking IGBTs 6a and S6b in reverse parallel connection between the point and the series connection point in the second capacitor series circuit, and connecting the second bidirectional switch series circuit An internal series connection point is connected to the other end of the reactor L1. The configuration in which the first intermediate tap transformer is connected in parallel with the first capacitor series circuit, and the second intermediate tap transformer is connected in parallel with the second capacitor series circuit is the first to third embodiments. Can be applied as well.

この様な構成において、降圧動作は、第4の双方向スイッチをオンさせた状態で、実施例1又は2と同様に双方向スイッチ1〜3をオンオフ制御させることより、負荷LDには交流電源電圧より低い交流電圧が供給される。また、昇圧動作は、第1の双方向スイッチをオンさせた状態で、双方向スイッチ4〜6を実施例3と同様にオンオフ制御することにより、交流電源電圧より高い交流電圧が負荷LDに供給される。
尚、上記実施例には双方向スイッチとして逆阻止形IGBTを逆並列接続した例を示したが、ダイオードと逆耐圧のないスイッチ素子を組合せた構成でも実現可能である。
また、出力電圧制御をベースに説明したが、電力制御でも同様に実現できる。
In such a configuration, the step-down operation is performed by turning on and off the bidirectional switches 1 to 3 in the same manner as in the first or second embodiment with the fourth bidirectional switch turned on. An AC voltage lower than the voltage is supplied. In the step-up operation, with the first bidirectional switch turned on, the bidirectional switches 4 to 6 are controlled to be turned on / off in the same manner as in the third embodiment, so that an AC voltage higher than the AC power supply voltage is supplied to the load LD. Is done.
In the above embodiment, an example is shown in which reverse blocking IGBTs are connected in reverse parallel as bidirectional switches. However, the present invention can also be realized by combining a diode and a switch element having no reverse breakdown voltage.
Further, although the output voltage control has been described as a base, the same can be realized by power control.

本発明は、交流電源電圧を降圧又は昇圧して負荷に供給する電源回路に関するものであり、交流電圧調整器(AVR)、交流電力調整器(APR)などへの適用が可能である。   The present invention relates to a power supply circuit that steps down or boosts an AC power supply voltage and supplies it to a load, and can be applied to an AC voltage regulator (AVR), an AC power regulator (APR), and the like.

Vs・・・交流電源 LD・・・負荷
Ci,Co、C1〜C4・・・コンデンサ L1・・・リアクトル
S1a、S1b、S2a、S2b、S3a、S3b・・・逆阻止形IGBT
S4a、S4b、S5a、S5b、S6a、S6b・・・逆阻止形IGBT
VD1、VD2・・・電圧検出器 CNT1、CNT2・・・制御回路
BAL・・・中間タップ付変圧器
Vs: AC power supply LD: Load Ci, Co, C1 to C4: Capacitor L1: Reactor S1a, S1b, S2a, S2b, S3a, S3b ... Reverse blocking IGBT
S4a, S4b, S5a, S5b, S6a, S6b ... Reverse blocking IGBT
VD1, VD2 ... Voltage detector CNT1, CNT2 ... Control circuit BAL ... Transformer with intermediate tap

Claims (10)

コンデンサを2個直列接続したコンデンサ直列回路と、第1及び第2の双方向スイッチを2個直列接続した第1の双方向スイッチ直列回路と、を交流電源と並列に接続し、前記コンデンサ直列回路内部の直列接続点と前記第1の双方向スイッチ直列回路内部の直列接続点との間に第3の双方向スイッチを、前記第1の双方向スイッチ又は前記第2の双方向スイッチと並列に負荷を、各々接続し、前記交流電源と基本波周波数が等しく且つ電圧の低い交流電圧を前記負荷に供給することを特徴とする交流電源装置。   A capacitor series circuit in which two capacitors are connected in series and a first bidirectional switch series circuit in which two first and second bidirectional switches are connected in series are connected in parallel with an AC power source, and the capacitor series circuit A third bidirectional switch is connected in parallel with the first bidirectional switch or the second bidirectional switch between an internal series connection point and a series connection point inside the first bidirectional switch series circuit. An AC power supply apparatus, wherein loads are connected to each other, and an AC voltage having a fundamental frequency equal to that of the AC power supply and a low voltage is supplied to the load. 前記コンデンサ直列回路と中間タップ付変圧器巻線を並列接続し、前記中間タップと前記コンデンサ直列回路内部の直列接続点とを接続することを特徴とする請求項1に記載の交流電源装置。   2. The AC power supply device according to claim 1, wherein the capacitor series circuit and the transformer winding with an intermediate tap are connected in parallel, and the intermediate tap and a series connection point inside the capacitor series circuit are connected. 前記第1〜第3の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御によりパルス列化するに際し、各パルスはコンデンサ直列回路の一方のコンデンサ電圧を出力する第1ステップ波形と前記コンデンサ直列回路全体の電圧を出力する第2ステップ波形との合成波形として出力する制御手段を備えることを特徴とする請求項1又は2に記載の交流電源装置。   A first step waveform for outputting one capacitor voltage of the capacitor series circuit when each of the first to third bidirectional switches is turned on and off and each half cycle period of the AC power source is converted to a pulse train by high frequency PWM control. 3. The AC power supply apparatus according to claim 1, further comprising a control unit that outputs a combined waveform of the second step waveform that outputs the voltage of the entire capacitor series circuit and the second step waveform. 4. コンデンサを2個直列接続したコンデンサ直列回路と、第1及び第2の双方向スイッチを2個直列接続した第1の双方向スイッチ直列回路とを負荷と並列に接続し、前記コンデンサ直列回路内部の直列接続点と前記第1の双方向スイッチ直列回路内部の直列接続点との間に第3の双方向スイッチを、前記第1の双方向スイッチ又は前記第2の双方向スイッチと並列に交流電源とリアクトルとの直列回路を、各々接続し、前記交流電源と基本波周波数が等しく且つ電圧が高い交流電圧を前記負荷に供給することを特徴とする交流電源装置。   A capacitor series circuit in which two capacitors are connected in series and a first bidirectional switch series circuit in which two first and second bidirectional switches are connected in series are connected in parallel with a load, An AC power supply is connected in parallel with the first bidirectional switch or the second bidirectional switch between the series connection point and the series connection point in the first bidirectional switch series circuit. And an AC power supply apparatus, characterized in that an AC voltage having a fundamental frequency equal to and higher than that of the AC power supply is supplied to the load. 前記コンデンサ直列回路と中間タップ付変圧器巻線とを並列接続し、前記中間タップと前記コンデンサ直列回路内部の直列接続点とを接続することを特徴とする請求項4に記載の交流電源装置。   5. The AC power supply device according to claim 4, wherein the capacitor series circuit and a transformer winding with an intermediate tap are connected in parallel, and the intermediate tap and a series connection point inside the capacitor series circuit are connected. 前記第1〜第3の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御により前記リアクトル電流を制御し、前記コンデンサ直列回路を電流パルスで充電し、前記交流電源の電圧よりも高い電圧を得るに際し、各電流パルスはコンデンサ直列回路の一方のコンデンサを充電する第1期間と前記コンデンサ直列回路全体を充電する第2期間とを備える制御手段とすることを特徴とする請求項4又は5に記載の交流電源装置。   The on-off control of the first to third bidirectional switches, the reactor current is controlled by high frequency PWM control during each half cycle period of the AC power supply, the capacitor series circuit is charged with current pulses, and the voltage of the AC power supply is controlled. When obtaining a higher voltage, each current pulse is a control means comprising a first period for charging one capacitor of a capacitor series circuit and a second period for charging the entire capacitor series circuit. Item 6. The AC power supply device according to Item 4 or 5. コンデンサを2個直列接続した第1のコンデンサ直列回路と、第1及び第2の双方向スイッチを2個直列接続した第1の双方向スイッチ直列回路と、交流電源とを並列に接続し、前記第1のコンデンサ直列回路内部の直列接続点と前記第1の双方向スイッチ直列回路内部の直列接続点との間に第3の双方向スイッチを接続した降圧形交流チョッパ回路と、コンデンサを2個直列接続した第2のコンデンサ直列回路と、第4及び第5の双方向スイッチを2個直列接続した第2の双方向スイッチ直列回路とを負荷と並列に接続し、前記第2のコンデンサ直列回路内部の直列接続点と前記第2の双方向スイッチ直列回路内部の直列接続点との間に第6の双方向スイッチを接続した昇圧形交流チョッパ回路と、を備え、前記第1の双方向スイッチ直列回路内部の直列接続点と前記第2の双方向スイッチ直列回路内部の直列接続点との間にリアクトルを、第1の双方向スイッチ直列回路の一端と第2の双方向スイッチ直列回路の一端とを、各々接続し、前記降圧形交流チョッパ回路の動作により前記交流電源と基本波周波数が等しく且つ電圧が前記交流電源より低い交流電圧を負荷に供給し、前記昇圧形交流チョッパ回路の動作により前記交流電源と基本波周波数が等しく且つ電圧が前記交流電源より高い交流電圧を前記負荷に供給することを特徴とする交流電源装置。   A first capacitor series circuit in which two capacitors are connected in series; a first bidirectional switch series circuit in which two first and second bidirectional switches are connected in series; and an AC power supply connected in parallel; A step-down AC chopper circuit in which a third bidirectional switch is connected between a series connection point in the first capacitor series circuit and a series connection point in the first bidirectional switch series circuit, and two capacitors A second capacitor series circuit connected in series and a second bidirectional switch series circuit in which two fourth and fifth bidirectional switches are connected in series are connected in parallel with a load, and the second capacitor series circuit A step-up AC chopper circuit in which a sixth bidirectional switch is connected between an internal series connection point and a series connection point inside the second bidirectional switch series circuit, and the first bidirectional switch In series circuit A reactor between a series connection point of the first bidirectional switch series circuit and a series connection point in the second bidirectional switch series circuit, and one end of the first bidirectional switch series circuit and one end of the second bidirectional switch series circuit, The AC power supply is connected to the load by the operation of the step-down AC chopper circuit and the fundamental frequency is equal to that of the AC power supply and the voltage is lower than that of the AC power supply, and the AC power supply is operated by the operation of the boost AC chopper circuit. And an AC power supply device that supplies an AC voltage having a fundamental frequency equal to that of the AC power supply to the load. 前記第1のコンデンサ直列回路と第1の中間タップ付変圧器巻線とを、前記第2のコンデンサ直列回路と第2の中間タップ付変圧器巻線とを、各々並列接続し、前記第1の中間タップ付変圧器巻線の中間タップと前記第1のコンデンサ直列回路内部の直列接続点とを、前記第2の中間タップ付変圧器巻線の中間タップと前記第2のコンデンサ直列回路内部の直列接続点とを、各々接続することを特徴とする請求項7に記載の交流電源装置。   The first capacitor series circuit and the first intermediate tapped transformer winding are connected in parallel with the second capacitor series circuit and the second middle tapped transformer winding, respectively. The intermediate tap of the transformer winding with the intermediate tap and the series connection point inside the first capacitor series circuit are connected to the intermediate tap of the transformer winding with the second intermediate tap and the inside of the second capacitor series circuit. The AC power supply device according to claim 7, wherein the series connection points are connected to each other. 前記第1〜第3の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御によりパルス列化するに際し、各パルスは第1のコンデンサ直列回路の一方のコンデンサ電圧を出力する第1ステップ波形と前記第1のコンデンサ直列回路全体の電圧を出力する第2ステップ波形との合成波形として出力する第1の制御手段を備えることを特徴とする請求項7又は8に記載の交流電源装置。   When the first to third bidirectional switches are turned on / off and each half cycle period of the AC power supply is converted into a pulse train by high-frequency PWM control, each pulse outputs one capacitor voltage of the first capacitor series circuit. 9. The AC power supply according to claim 7, further comprising: a first control unit that outputs a combined waveform of a one-step waveform and a second step waveform that outputs a voltage of the entire first capacitor series circuit. apparatus. 前記第4〜第6の双方向スイッチをオンオフ制御し、交流電源の各半サイクル期間を高周波PWM制御により前記リアクトル電流を制御し、前記第2のコンデンサ直列回路を電流パルスで充電し、前記交流電源の電圧よりも高い電圧を得るに際し、各電流パルスは第2のコンデンサ直列回路の一方のコンデンサを充電する第1期間と前記コンデンサ直列回路全体を充電する第2期間とを有する第2の制御手段を備えることを特徴とする請求項7〜9のいずれか1項に記載の交流電源装置。   The on-off control of the fourth to sixth bidirectional switches is performed, the reactor current is controlled by high-frequency PWM control during each half cycle period of the AC power supply, the second capacitor series circuit is charged with current pulses, and the AC In obtaining a voltage higher than the voltage of the power supply, each current pulse has a second control period having a first period for charging one capacitor of the second capacitor series circuit and a second period for charging the entire capacitor series circuit. The AC power supply device according to any one of claims 7 to 9, further comprising means.
JP2011002351A 2011-01-07 2011-01-07 AC power supply Expired - Fee Related JP5732857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002351A JP5732857B2 (en) 2011-01-07 2011-01-07 AC power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002351A JP5732857B2 (en) 2011-01-07 2011-01-07 AC power supply

Publications (2)

Publication Number Publication Date
JP2012147528A true JP2012147528A (en) 2012-08-02
JP5732857B2 JP5732857B2 (en) 2015-06-10

Family

ID=46790523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002351A Expired - Fee Related JP5732857B2 (en) 2011-01-07 2011-01-07 AC power supply

Country Status (1)

Country Link
JP (1) JP5732857B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953251A1 (en) * 2013-01-30 2015-12-09 Fuji Electric Co., Ltd. Power conversion device
JP2017225330A (en) * 2016-06-14 2017-12-21 パナソニックIpマネジメント株式会社 Power converter circuit, power conversion device, power transmitter, power receiver and power transmission system
CN109963367A (en) * 2017-12-25 2019-07-02 佛山市顺德区美的电热电器制造有限公司 Electromagnetism cooking pot and its lightning surge protection control method and device
EP3979483A1 (en) * 2020-10-05 2022-04-06 Hitachi Energy Switzerland AG Transformer arrangement and method for voltage conversion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121374A (en) * 1980-02-26 1981-09-24 Toshiba Corp Inverter device
JPH03116686A (en) * 1989-09-29 1991-05-17 Toshiba Lighting & Technol Corp Discharge lamp lighting device
JPH089660A (en) * 1993-09-24 1996-01-12 Fuji Electric Co Ltd Ac power regulator
JPH10174437A (en) * 1996-12-05 1998-06-26 I Hitsutsu Kenkyusho:Kk Uninterruptible power supply system
JP2003230276A (en) * 2002-01-30 2003-08-15 Fuji Electric Co Ltd Control method for power converter
JP2010288415A (en) * 2009-06-15 2010-12-24 Fuji Electric Systems Co Ltd Three-level power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121374A (en) * 1980-02-26 1981-09-24 Toshiba Corp Inverter device
JPH03116686A (en) * 1989-09-29 1991-05-17 Toshiba Lighting & Technol Corp Discharge lamp lighting device
JPH089660A (en) * 1993-09-24 1996-01-12 Fuji Electric Co Ltd Ac power regulator
JPH10174437A (en) * 1996-12-05 1998-06-26 I Hitsutsu Kenkyusho:Kk Uninterruptible power supply system
JP2003230276A (en) * 2002-01-30 2003-08-15 Fuji Electric Co Ltd Control method for power converter
JP2010288415A (en) * 2009-06-15 2010-12-24 Fuji Electric Systems Co Ltd Three-level power converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2953251A1 (en) * 2013-01-30 2015-12-09 Fuji Electric Co., Ltd. Power conversion device
EP2953251A4 (en) * 2013-01-30 2016-11-16 Fuji Electric Co Ltd Power conversion device
JP2017225330A (en) * 2016-06-14 2017-12-21 パナソニックIpマネジメント株式会社 Power converter circuit, power conversion device, power transmitter, power receiver and power transmission system
CN109963367A (en) * 2017-12-25 2019-07-02 佛山市顺德区美的电热电器制造有限公司 Electromagnetism cooking pot and its lightning surge protection control method and device
EP3979483A1 (en) * 2020-10-05 2022-04-06 Hitachi Energy Switzerland AG Transformer arrangement and method for voltage conversion
WO2022073919A1 (en) * 2020-10-05 2022-04-14 Hitachi Energy Switzerland Ag Transformer arrangement and method for voltage conversion

Also Published As

Publication number Publication date
JP5732857B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5282855B2 (en) AC-AC converter
JP5788017B2 (en) Power converter
TWI538351B (en) Uninterruptible power supply device
CA2959451C (en) Inverter
JP5460835B1 (en) DC / DC voltage conversion apparatus and voltage conversion control method thereof
JP5631499B2 (en) Power converter
WO2014057883A1 (en) Direct power conversion device and method for controlling direct power conversion device
KR102441722B1 (en) Conversion device
WO2015045485A1 (en) Electric power conversion device
JP5939411B2 (en) Power converter
JP2013055794A (en) Power conversion device
JP5732857B2 (en) AC power supply
JP5362657B2 (en) Power converter
JPWO2013171800A1 (en) Power converter
JP6378828B2 (en) Converter and power conversion device using the same
JP5971685B2 (en) Power converter
JP2013085347A (en) Ac-dc converter
EP2824818B1 (en) Power converter
JP2019058019A (en) Electric power converter
JP6156575B2 (en) Power conditioner and control method thereof
JP6191542B2 (en) Power converter
US9293979B2 (en) Power conversion apparatus for converting an alternating current voltage to a direct current voltage
JP5850182B2 (en) Power converter
JP5769330B1 (en) Power converter
JP6412403B2 (en) Power supply device and air conditioner using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5732857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees