JP2012146734A - Semiconductor device, manufacturing method of the same and packaged body - Google Patents

Semiconductor device, manufacturing method of the same and packaged body Download PDF

Info

Publication number
JP2012146734A
JP2012146734A JP2011002034A JP2011002034A JP2012146734A JP 2012146734 A JP2012146734 A JP 2012146734A JP 2011002034 A JP2011002034 A JP 2011002034A JP 2011002034 A JP2011002034 A JP 2011002034A JP 2012146734 A JP2012146734 A JP 2012146734A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor substrate
semiconductor device
back surface
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011002034A
Other languages
Japanese (ja)
Inventor
Takeshi Matsumoto
健 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011002034A priority Critical patent/JP2012146734A/en
Publication of JP2012146734A publication Critical patent/JP2012146734A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

PROBLEM TO BE SOLVED: To relax stress applied to a semiconductor substrate included in a semiconductor integrated circuit chip when the semiconductor integrated circuit chip is bonded to a packaging board with an encapsulation resin, thereby reducing variation in semiconductor element characteristics caused by stress and achieving efficient heat radiation during a circuit operation.SOLUTION: A semiconductor device includes a semiconductor circuit formation layer 2 formed on a surface of a semiconductor substrate 1, transistors formed in the semiconductor circuit formation layer 2 and included in a semiconductor circuit, and electrodes 5 formed on the semiconductor circuit formation layer 2 and electrically connected with the semiconductor circuit. Further, the semiconductor device comprises a recess 7 formed on a rear face side of the semiconductor substrate 1 and a metal film 6 formed on the rear face including the recess 7. For example, the electrodes 5 and pad electrodes 9 of a wiring board body 8 are thermal compression bonded and the semiconductor device is bonded to a wiring board with an encapsulation resin 10.

Description

本発明は半導体装置、特に小型化、高密度実装に適した半導体装置の構造と、その半導体装置の製造方法に関するものである。   The present invention relates to a semiconductor device, in particular, a structure of a semiconductor device suitable for miniaturization and high-density mounting, and a method for manufacturing the semiconductor device.

最近、携帯電話をはじめとするエレクトロニクス製品は、小型軽量化や高機能化が進行しており、このような製品に搭載される半導体集積回路についても小型、高密度に実装することができるパッケージ方式が強く要求されている。これに応えるパッケージ形態の一つとして例えばウェハレベルCSP(Chip Size Package)がある。これはウェハを個片に切断して得られた半導体チップの大きさがそのままパッケージの大きさとなるものであり、またその厚さも非常に薄くすることができる。このような理由でウェハレベルCSPはプリント基板などへの小型、高密度実装に適するものである。   Recently, electronic products such as mobile phones have become smaller and lighter and more advanced, and the semiconductor integrated circuits mounted in such products can be packaged in a compact and high-density manner. Is strongly demanded. For example, a wafer level CSP (Chip Size Package) is one of the package forms that meet this demand. In this case, the size of the semiconductor chip obtained by cutting the wafer into individual pieces becomes the size of the package as it is, and the thickness can be made very thin. For this reason, the wafer level CSP is suitable for small and high density mounting on a printed circuit board.

図10(a)は従来のウェハレベルCSPを配線基板に実装した構造を示す断面図である。図10(a)において、Si(GaAsなども可能)からなる半導体基板50の表面上には半導体回路形成層51が形成されている。半導体回路形成層51の内部構成は図示していないが、トランジスタや配線が層間絶縁膜で分離されて設けられている。そして配線の最上層には電気信号の入出力を行うための電極パッドが形成され、電極パッドはポリイミド樹脂層を含む表面保護膜で囲まれるとともにその上面は表面保護膜から露出している。   FIG. 10A is a cross-sectional view showing a structure in which a conventional wafer level CSP is mounted on a wiring board. In FIG. 10A, a semiconductor circuit forming layer 51 is formed on the surface of a semiconductor substrate 50 made of Si (GaAs or the like is also possible). Although the internal configuration of the semiconductor circuit formation layer 51 is not shown, transistors and wirings are provided separated by an interlayer insulating film. An electrode pad for inputting and outputting electric signals is formed on the uppermost layer of the wiring. The electrode pad is surrounded by a surface protective film including a polyimide resin layer, and its upper surface is exposed from the surface protective film.

半導体回路形成層51上には上記の電極パッドから表面保護膜上に引き出された再配線層52が設けられている。再配線層52の端子形成部分にはCuなどからなるメタルポスト53が形成され、その頂上部には外部接続端子としてはんだなどからなる金属バンプ55が接合されている。そして再配線層52およびメタルポスト53の周囲および半導体回路形成層51の上面は封止樹脂層54で覆われている。   On the semiconductor circuit formation layer 51, a rewiring layer 52 is provided which is drawn from the electrode pad to the surface protective film. A metal post 53 made of Cu or the like is formed on the terminal forming portion of the rewiring layer 52, and a metal bump 55 made of solder or the like is joined to the top of the post as an external connection terminal. The periphery of the rewiring layer 52 and the metal post 53 and the upper surface of the semiconductor circuit forming layer 51 are covered with a sealing resin layer 54.

ウェハレベルCSPは以上のような構造を有している。一方このような半導体集積回路を実装するための実装基板は配線基板56上に電極57を有する。CSP構造の半導体集積回路装置側の金属バンプ55と電極57とは熱圧着されて電気的接合が形成され、さらに半導体集積回路装置と配線基板56との間に封止樹脂58が注入され両者が接合されている。   The wafer level CSP has the above structure. On the other hand, a mounting substrate for mounting such a semiconductor integrated circuit has an electrode 57 on a wiring substrate 56. The metal bump 55 and the electrode 57 on the semiconductor integrated circuit device side of the CSP structure are thermocompression bonded to form an electrical connection, and a sealing resin 58 is injected between the semiconductor integrated circuit device and the wiring board 56, and both of them are injected. It is joined.

上に述べたウェハレベルCSPのパッケージ構造については例えば特許文献1に記載されている。   The wafer level CSP package structure described above is described in Patent Document 1, for example.

特開2005−158929号公報JP 2005-158929 A

ウェハレベルCSPのような構造を持つ半導体装置は図10(a)に示したように、通常実装用の配線基板56に封止樹脂58によって接合される。この封止樹脂は一般にアンダーフィルと呼ばれ金属バンプ55と配線基板側の電極57との機械的接続を補強し信頼性を高めるためにほとんどの場合に必要とされるものである。しかしながら本願発明者らによればこの従来の構造には以下のような問題点があることが判明した。   A semiconductor device having a structure like a wafer level CSP is bonded to a wiring substrate 56 for normal mounting by a sealing resin 58 as shown in FIG. This sealing resin is generally called underfill and is required in most cases in order to reinforce the mechanical connection between the metal bump 55 and the electrode 57 on the wiring board side and enhance the reliability. However, the present inventors have found that this conventional structure has the following problems.

まず第1に、封止樹脂58は百数十度以上の温度下で熱硬化されるが、その時の封止樹脂の熱収縮によって半導体基板50(ここでは半導体ウェハを切断して個片化されたダイまたはチップ)が封止樹脂58側から大きな応力を受け、その応力は半導体基板50が室温にもどった時も残留する。図10(b)は例えば半導体基板50の表面部が封止樹脂58側から受ける応力分布を示す模式図である。X軸は半導体基板50の中心からの距離、Y軸は応力の大きさを示す。半導体基板50の表面部には直交座標軸に沿った3方向に応力成分が働くが図10(b)ではそのうちの主要な応力として半導体基板50の表面に垂直な応力成分(Y軸方向)のみを示し、上向き(矢印方向)を正としている。   First, the sealing resin 58 is thermally cured at a temperature of a few hundred degrees or more, but the semiconductor substrate 50 (here, the semiconductor wafer is cut into pieces by thermal contraction of the sealing resin at that time). The die or chip) receives a large stress from the sealing resin 58 side, and the stress remains even when the semiconductor substrate 50 returns to room temperature. FIG. 10B is a schematic diagram showing a stress distribution that the surface portion of the semiconductor substrate 50 receives from the sealing resin 58 side, for example. The X axis represents the distance from the center of the semiconductor substrate 50, and the Y axis represents the magnitude of stress. Although stress components act on the surface portion of the semiconductor substrate 50 in three directions along the orthogonal coordinate axes, only the stress component perpendicular to the surface of the semiconductor substrate 50 (Y-axis direction) is the main stress in FIG. 10B. The upward direction (arrow direction) is positive.

図10(b)のように封止樹脂58の接合応力は半導体基板50を封止樹脂側に引き上げる方向に働き、しかも封止樹脂58の材料特性に起因して応力の大きさは半導体基板面内で分布を持っている。半導体基板50の中央部において応力が大きく、中央部からの距離が大きくなるに従って、つまり周辺部に向かって単調に減少する。このような応力は単に半導体基板50に応力を発生させるに留まらず、半導体集積回路を構成するトランジスタにその特性変動をもたらす。しかも応力の大きさに図10(b)に示すような半導体基板内分布があることによって同一構造のトランジスタであってもその特性が半導体基板50の中央部で設計値からの変化が大きく、周辺部に向かって特性変化が小さくなるという分布を持つ。   As shown in FIG. 10B, the bonding stress of the sealing resin 58 acts in the direction of pulling up the semiconductor substrate 50 to the sealing resin side, and the magnitude of the stress is due to the material characteristics of the sealing resin 58. Have a distribution within. The stress is large in the central portion of the semiconductor substrate 50 and decreases monotonously toward the peripheral portion as the distance from the central portion increases. Such stress not only generates stress in the semiconductor substrate 50 but also causes variation in characteristics of the transistors constituting the semiconductor integrated circuit. Moreover, since the stress is distributed in the semiconductor substrate as shown in FIG. 10B, the characteristics of the transistor having the same structure vary greatly from the design value in the central portion of the semiconductor substrate 50, and the peripheral It has a distribution that the characteristic change becomes smaller toward the part.

このようにトランジスタ特性が半導体基板50(チップ)上において分布を有すると、半導体回路上の形成位置に依存した異なる特性で個々のトランジスタが動作を行うので、半導体集積回路装置全体としての特性が設計仕様の許容範囲を満たさなくなり、製造歩留まりを低下させる大きな要因となる。   When the transistor characteristics are distributed on the semiconductor substrate 50 (chip) in this way, the individual transistors operate with different characteristics depending on the formation position on the semiconductor circuit, so that the characteristics of the entire semiconductor integrated circuit device are designed. It becomes the big factor which falls within the tolerance | permissible_range of a specification, and falls a manufacturing yield.

第2に、図10(a)のような実装形態では半導体集積回路装置は半導体基板50の裏面が露出したまま半ばベアチップ実装されるので外部への放熱はされ易いが、それでも高速動作が要求される半導体装置やトランジスタなどの素子数が極めて多い高密度微細半導体装置などでは動作中に発生する熱の放熱効率が不十分となり、半導体基板50の温度が上昇して回路が誤動作を起こす可能性が予想される。   Secondly, in the mounting form as shown in FIG. 10A, the semiconductor integrated circuit device is mounted on a bare chip with the back surface of the semiconductor substrate 50 exposed, so that it is easy to radiate heat to the outside, but still requires high speed operation. In a high-density fine semiconductor device having a very large number of elements such as a semiconductor device or a transistor, the heat dissipation efficiency of heat generated during operation becomes insufficient, and the temperature of the semiconductor substrate 50 rises and the circuit may malfunction. is expected.

本発明は上記問題点に鑑み、半導体装置を実装基板に封止樹脂を用いて接合させた時、その封止樹脂から半導体装置を構成している半導体基板に印加される応力を緩和し、半導体基板内の応力分布を低減させ、応力分布による半導体素子特性のバラツキを低減させることができる半導体装置、およびそれに加えて半導体装置の回路動作中に十分外部に放熱することが可能な半導体装置、さらにそれら半導体装置を製造するための方法を提供することを主な目的とするものである。   In view of the above problems, the present invention relaxes stress applied to a semiconductor substrate constituting a semiconductor device from the sealing resin when the semiconductor device is bonded to a mounting substrate using a sealing resin. Semiconductor device capable of reducing stress distribution in substrate and reducing variation in semiconductor element characteristics due to stress distribution, and semiconductor device capable of sufficiently dissipating heat to outside during circuit operation of semiconductor device, and The main object is to provide a method for manufacturing these semiconductor devices.

上記課題を解決するための本願発明に係る半導体装置は、半導体基板と、前記半導体基板の表面上に形成された半導体回路形成層と、前記半導体回路形成層内に形成されて、半導体回路を構成するトランジスタと、前記半導体回路形成層の上に形成され、前記半導体回路と電気的に接続された電極と、前記半導体基板の裏面側に形成された凹部とを備える。   A semiconductor device according to the present invention for solving the above problems comprises a semiconductor substrate, a semiconductor circuit forming layer formed on a surface of the semiconductor substrate, and a semiconductor circuit formed in the semiconductor circuit forming layer. A transistor formed on the semiconductor circuit formation layer and electrically connected to the semiconductor circuit, and a recess formed on the back side of the semiconductor substrate.

この半導体装置には上記の構成に加えて、前記半導体基板の裏面上に金属膜が形成されていてもよく、その金属膜の材料は具体的にアルミニウムもしくは窒化アルミニウムから構成される材料とすることができる。そして一つの形態の半導体装置では前記凹部は前記半導体基板の一部を除去して形成されている。また他の形態の半導体装置では前記凹部は前記金属膜に形成される。   In addition to the above configuration, this semiconductor device may have a metal film formed on the back surface of the semiconductor substrate, and the material of the metal film is specifically made of aluminum or aluminum nitride. Can do. In one embodiment of the semiconductor device, the recess is formed by removing a part of the semiconductor substrate. In another embodiment of the semiconductor device, the recess is formed in the metal film.

さらに半導体基板上の単位面積当たりに占める凹部の面積は、前記半導体基板の面内において分布を有するように形成されていることが望ましい。またそのような凹部のうち多くの場合、半導体基板上の単位面積当たりに占める凹部の面積が、前記半導体基板の中央部から周辺部に向かって減少するように形成されていることが特に望ましい。   Furthermore, it is desirable that the area of the concave portion per unit area on the semiconductor substrate is formed so as to have a distribution in the plane of the semiconductor substrate. Further, in many cases, it is particularly desirable that the area of the concave portion per unit area on the semiconductor substrate is formed so as to decrease from the central portion toward the peripheral portion of the semiconductor substrate.

本発明に係るさらに他の形態の半導体装置では、前記半導体基板の少なくとも裏面から表面まで貫通すると共に、導電性材料からなるプラグが形成される。半導体基板の裏面上に金属膜が形成されている場合、前記プラグは前記金属膜に接触していることが望ましい。   In still another embodiment of the semiconductor device according to the present invention, a plug made of a conductive material is formed while penetrating from at least the back surface to the front surface of the semiconductor substrate. When a metal film is formed on the back surface of the semiconductor substrate, the plug is preferably in contact with the metal film.

次に上記の課題を解決するための本発明に係る半導体装置の製造方法は、半導体基板の表面上に、半導体回路を構成するトランジスタを含む半導体回路形成層を形成する工程と、前記半導体回路形成層の上に、前記半導体回路と電気的に接続された電極を形成する工程と、前記半導体基板の裏面側に凹部を形成する工程とを含む。   Next, a manufacturing method of a semiconductor device according to the present invention for solving the above-described problems includes a step of forming a semiconductor circuit forming layer including a transistor constituting a semiconductor circuit on a surface of a semiconductor substrate, and the semiconductor circuit formation Forming an electrode electrically connected to the semiconductor circuit on the layer; and forming a recess on the back side of the semiconductor substrate.

この製造方法には、前記半導体基板の裏面上に金属膜を形成する工程を含んでいてもよい。また前記凹部を形成する一つの方法は、前記半導体基板の裏面部を選択的に除去して形成することである。凹部は金属膜にも形成できるがその場合、前記半導体基板の裏面を研磨し、前記半導体基板を薄化する工程と、前記半導体基板の薄化の後、前記半導体基板の裏面上に金属膜を形成する工程と、前記金属膜を選択的に除去して凹部を形成する工程とを含むようにすることが望ましい。   This manufacturing method may include a step of forming a metal film on the back surface of the semiconductor substrate. One method for forming the recess is to selectively remove the back surface of the semiconductor substrate. The recess can also be formed in the metal film. In that case, the back surface of the semiconductor substrate is polished, and the semiconductor substrate is thinned. After the thinning of the semiconductor substrate, the metal film is formed on the back surface of the semiconductor substrate. It is desirable to include a step of forming and a step of selectively removing the metal film to form a recess.

半導体装置に前記プラグを形成する場合は、前記半導体基板の裏面から、少なくとも前記半導体基板を選択的にエッチングし、前記半導体基板の裏面から表面まで貫通する開口を形成する工程と、前記開口に導電性材料を埋め込む工程とで形成できる。   When forming the plug in a semiconductor device, a step of selectively etching at least the semiconductor substrate from the back surface of the semiconductor substrate to form an opening penetrating from the back surface to the surface of the semiconductor substrate; And a step of embedding a conductive material.

本発明に係る半導体装置は、それが備える前記電極と、配線基板上に形成されたパッド電極とが接合され、且つ前記半導体装置と前記配線基板との間に樹脂が充填されて、前記半導体装置と前記配線基板が接合されている実装体とされうる。その時本発明による半導体装置は上記課題を解決するために特に有効となる。   In the semiconductor device according to the present invention, the electrode included in the semiconductor device and a pad electrode formed on the wiring substrate are bonded, and a resin is filled between the semiconductor device and the wiring substrate. And a mounting body to which the wiring board is bonded. At that time, the semiconductor device according to the present invention is particularly effective for solving the above-described problems.

上に述べたように本発明に係る半導体装置は、特に半導体基板の裏面側に形成された凹部を有している。例えば配線基板に半導体装置を実装するに際して、これら両者を接合するために用いる樹脂から半導体基板に対して応力が加えられた場合、凹部が存在するために半導体基板はその応力に応じて容易に変形するため、応力が開放されて低減する。   As described above, the semiconductor device according to the present invention has a recess formed particularly on the back side of the semiconductor substrate. For example, when a semiconductor device is mounted on a wiring board, if a stress is applied to the semiconductor substrate from the resin used to join them, the semiconductor substrate is easily deformed according to the stress because there is a recess. Therefore, the stress is released and reduced.

また本発明による凹部は、半導体基板上の単位面積当たりに占める面積が半導体基板の面内において分布を有するように形成される。従って外部からの応力に分布がある場合であっても、その応力の大きさに応じて半導体基板上の単位面積当たりに占める凹部の面積の分布を調整し、応力が半導体基板面内に亘って均一となるように低減させることが可能である。このようにして本発明によれば外部応力に起因するトランジスタなど半導体素子の特性の変動およびそのバラツキを抑制し半導体装置の誤動作などを防止することができる。   Further, the recess according to the present invention is formed such that the area per unit area on the semiconductor substrate has a distribution in the plane of the semiconductor substrate. Therefore, even if there is a distribution of stress from the outside, the distribution of the area of the recesses per unit area on the semiconductor substrate is adjusted according to the magnitude of the stress, and the stress is distributed over the surface of the semiconductor substrate. It can be reduced to be uniform. As described above, according to the present invention, it is possible to suppress a variation in characteristics of semiconductor elements such as a transistor due to an external stress and variations thereof and to prevent malfunction of the semiconductor device.

さらに本発明に係る半導体装置は、半導体基板の裏面上に金属膜を有する。この金属膜は半導体回路で発生する熱を速やかに伝導し外部へ放出する。これにより、動作中の半導体装置の温度上昇を抑制して誤動作を防止する。   Furthermore, the semiconductor device according to the present invention has a metal film on the back surface of the semiconductor substrate. This metal film quickly conducts heat generated in the semiconductor circuit and releases it to the outside. As a result, the temperature rise of the semiconductor device in operation is suppressed to prevent malfunction.

(a)は本発明に係る半導体装置および該半導体装置を配線基板に接合した実装体の断面図、(b)は本発明に係る半導体装置に印加された応力のチップ内分布を示す図、(c)は本発明に係る半導体装置に形成されたトランジスタの特性変動率のチップ内分布を示す図。(A) is sectional drawing of the mounting body which joined the semiconductor device which concerns on this invention, and this semiconductor device to the wiring board, (b) is a figure which shows the distribution in the chip | tip of the stress applied to the semiconductor device which concerns on this invention, FIG. 6C is a diagram showing a distribution within a chip of a characteristic variation rate of a transistor formed in a semiconductor device according to the present invention. 図1(a)の断面に対応するチップの切断線を示す図。The figure which shows the cutting line of the chip | tip corresponding to the cross section of Fig.1 (a). 本発明に係る半導体装置の半導体基板裏面に形成される溝状凹部パターンを示す図。The figure which shows the groove-shaped recessed part pattern formed in the semiconductor substrate back surface of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の半導体基板裏面に形成される溝状凹部パターンを示す図。The figure which shows the groove-shaped recessed part pattern formed in the semiconductor substrate back surface of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の半導体基板裏面に形成される溝状凹部パターンを示す図。The figure which shows the groove-shaped recessed part pattern formed in the semiconductor substrate back surface of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の半導体基板裏面に形成される凹部パターンを示す図。The figure which shows the recessed part pattern formed in the semiconductor substrate back surface of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の断面構造における変形例を示す図。FIG. 10 is a view showing a modification of the cross-sectional structure of the semiconductor device according to the present invention. 本発明に係る半導体装置の製造方法を示す工程断面図。Process sectional drawing which shows the manufacturing method of the semiconductor device which concerns on this invention. 本発明に係る半導体装置の半導体基板裏面に形成される凹部の断面形状を示す図。The figure which shows the cross-sectional shape of the recessed part formed in the semiconductor substrate back surface of the semiconductor device which concerns on this invention. (a)は従来の構造を有する半導体装置を配線基板に実装した時の断面図、(b)は従来の半導体装置に印加された応力のチップ内分布を示す図。(A) is sectional drawing when the semiconductor device which has the conventional structure is mounted in a wiring board, (b) is a figure which shows the distribution in a chip | tip of the stress applied to the conventional semiconductor device.

以下、本発明について図面を参照しながら詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1(a)は、本発明に係る半導体装置を配線基板に接合して形成された実装体を示す断面図である。図1(a)において、シリコン単結晶基板などのような半導体基板1の表面上に所定の半導体回路が形成された半導体回路形成層2が設けられている。図1(a)には半導体回路形成層2の内部構造を図示していないが、半導体回路形成層2の最下層から半導体基板1の表面部にかけてトランジスタなど複数の半導体能動素子が形成されている。そしてトランジスタの上層には、必要に応じて容量素子、抵抗素子が設けられている。それと共にこれら素子の上層に金属配線、層間絶縁膜からなる多層配線構造が形成されている。
(Embodiment 1)
FIG. 1A is a cross-sectional view showing a mounting body formed by bonding a semiconductor device according to the present invention to a wiring board. In FIG. 1A, a semiconductor circuit forming layer 2 in which a predetermined semiconductor circuit is formed is provided on the surface of a semiconductor substrate 1 such as a silicon single crystal substrate. Although the internal structure of the semiconductor circuit formation layer 2 is not shown in FIG. 1A, a plurality of semiconductor active elements such as transistors are formed from the lowermost layer of the semiconductor circuit formation layer 2 to the surface portion of the semiconductor substrate 1. . A capacitor element and a resistor element are provided on the upper layer of the transistor as necessary. At the same time, a multilayer wiring structure composed of a metal wiring and an interlayer insulating film is formed above these elements.

半導体回路形成層2の上には半導体装置外部との信号入出力を行うためのボンディングパッド3が形成され、半導体回路を構成する上記多層配線、例えば最上層の金属配線と電気的に接続されている。図1(a)ではボンディングパッド3は半導体基板1上の2箇所しか示されない。これは図2のように半導体基板1の平面上において、周辺部に沿って複数のボンディングパッド3が配列される半導体装置を想定し、そのB−B‘線の断面を図1(a)が示すためである。このボンディングパッド3は通常Al合金膜からなる。半導体回路層2の上面は、例えばプラズマCVD法で形成されたシリコン窒化膜を主体とする厚い保護膜4で被覆され、前記ボンディングパッド3の上面は開口によって露出している。   A bonding pad 3 for performing signal input / output with the outside of the semiconductor device is formed on the semiconductor circuit formation layer 2 and is electrically connected to the multilayer wiring, for example, the uppermost metal wiring constituting the semiconductor circuit. Yes. In FIG. 1A, only two bonding pads 3 on the semiconductor substrate 1 are shown. This assumes a semiconductor device in which a plurality of bonding pads 3 are arranged along the peripheral portion on the plane of the semiconductor substrate 1 as shown in FIG. 2, and FIG. It is for showing. The bonding pad 3 is usually made of an Al alloy film. The upper surface of the semiconductor circuit layer 2 is covered with a thick protective film 4 mainly composed of a silicon nitride film formed by, for example, plasma CVD, and the upper surface of the bonding pad 3 is exposed through an opening.

ボンディングパッド3上には、例えばSn−Ag系のはんだからなる突起形状のバンプ5が形成され、ボンディングパッド3と電気的に接続している。バンプ5の材料ははんだの他、メッキ法で形成されるAuやCuなども可能である。さらに本実施形態に係る半導体装置においては半導体基板1の裏面の所定の位置に溝形状の凹部7が形成されるとともにアルミニウム(Al)あるいは窒化アルミニウム(AlN)などからなる金属膜6が形成される。金属膜6の膜厚は凹部7内部が完全に埋められることがなく、金属膜6の表面が凹部7の断面形状を反映する形状を有する程度に薄い膜厚とする。   On the bonding pad 3, a bump 5 having a protruding shape made of, for example, Sn—Ag solder is formed and electrically connected to the bonding pad 3. The material of the bump 5 can be Au, Cu, or the like formed by plating in addition to solder. Furthermore, in the semiconductor device according to the present embodiment, a groove-shaped recess 7 is formed at a predetermined position on the back surface of the semiconductor substrate 1 and a metal film 6 made of aluminum (Al) or aluminum nitride (AlN) is formed. . The thickness of the metal film 6 is set so thin that the inside of the recess 7 is not completely filled and the surface of the metal film 6 has a shape reflecting the cross-sectional shape of the recess 7.

以上述べた部分が本発明による半導体装置の構成であり、図1(a)に示す半導体装置はウエハをダイシング工程で個片化して得た1チップ(またはダイ)の状態であるとする。   The above-described portion is the configuration of the semiconductor device according to the present invention, and the semiconductor device shown in FIG. 1A is in a state of one chip (or die) obtained by dividing a wafer into pieces in a dicing process.

このような半導体装置を実装するための配線基板の主な構成要素は配線基板本体8であり、その表面にはパッド電極9とパッド電極9に接続する銅配線(不図示)が形成されている。特に半導体素子数の大きい大規模な集積回路を実装する場合には、図示しないが配線基板本体8の内部にも多層配線が形成され、また図1(a)に示すように例えばそれら配線に接続する突起電極11がパッド電極9とは反対側の面に設けられる。この配線基板は図1(a)に示すような1個の半導体装置のみを搭載するものに限らず、互いに異なる形態のパッケージに内蔵された複数の半導体装置を搭載するものであってもよい。   A main component of a wiring board for mounting such a semiconductor device is a wiring board body 8, on which a pad electrode 9 and a copper wiring (not shown) connected to the pad electrode 9 are formed. . Particularly when a large-scale integrated circuit having a large number of semiconductor elements is mounted, a multilayer wiring is also formed inside the wiring board main body 8 (not shown). For example, as shown in FIG. The protruding electrode 11 is provided on the surface opposite to the pad electrode 9. The wiring board is not limited to mounting only one semiconductor device as shown in FIG. 1 (a), and may be mounted with a plurality of semiconductor devices incorporated in packages of different forms.

パッド電極9のそれぞれは半導体装置のバンプ5と対向する位置に設けられており、百数十度以上の温度での熱圧着により対応する両者が電気的に接合される。さらに半導体装置(半導体チップ)と配線基板本体8との間に封止樹脂(アンダーフィル)10を充填して接合させ、バンプ接続を強化している。封止樹脂10の材料として例えば通常のエポキシ系樹脂、酸化シリコンフィラー、カップリング剤、着色剤などの混合物を使用することができ、充填後百数十度以上の温度で熱硬化させる。   Each of the pad electrodes 9 is provided at a position facing the bump 5 of the semiconductor device, and the corresponding two are electrically joined by thermocompression bonding at a temperature of hundreds of degrees or more. Further, a sealing resin (underfill) 10 is filled and bonded between the semiconductor device (semiconductor chip) and the wiring board main body 8 to strengthen the bump connection. As a material for the sealing resin 10, for example, a mixture of a normal epoxy resin, a silicon oxide filler, a coupling agent, a colorant, and the like can be used, and the resin is thermally cured at a temperature of hundreds of degrees or more after filling.

図1(b)は本発明に係る実装体(図1(a))において、半導体基板1に印加されるチップ内応力分布を示す図である。図のX軸は半導体基板1の中心を原点として原点からの距離を示し、Y軸は応力の、半導体基板1の表面に垂直な成分を示す。矢印は応力の向きを表し、上方すなわち半導体基板1から封止樹脂10に向かう方向を正としている。時1(b)が示す応力はトランジスタが形成される半導体基板1の表面部、図1(a)のA−A‘線上のレベルにおける応力であり、またバンプ5の位置より内側の半導体基板領域における応力を示す。   FIG. 1B is a diagram showing an intra-chip stress distribution applied to the semiconductor substrate 1 in the mounting body (FIG. 1A) according to the present invention. The X axis in the figure indicates the distance from the origin with the center of the semiconductor substrate 1 as the origin, and the Y axis indicates the stress component perpendicular to the surface of the semiconductor substrate 1. The arrow indicates the direction of stress, and the upper direction, that is, the direction from the semiconductor substrate 1 toward the sealing resin 10 is positive. The stress indicated by time 1 (b) is the stress at the surface portion of the semiconductor substrate 1 where the transistor is formed, the level on the line AA ′ of FIG. 1 (a), and the semiconductor substrate region inside the position of the bump 5 The stress in is shown.

図1(b)によれば、封止樹脂10の方向へ向かう応力は従来の半導体装置の場合と同様に半導体基板1の中央部で大きく、中央部から周辺部に向かって減少するように働く(例えば図10(a)、(b)参照)。しかしその大きさの絶対値は従来の半導体装置の場合と比較してかなり減少し、従って中央部と周辺部との応力差も減少して応力分布が一様な状態に近い。この結果は以下のような理由に基づくと考えられる。   As shown in FIG. 1B, the stress in the direction of the sealing resin 10 is large at the central portion of the semiconductor substrate 1 as in the case of the conventional semiconductor device, and works to decrease from the central portion toward the peripheral portion. (See, for example, FIGS. 10A and 10B). However, the absolute value of the magnitude is considerably reduced as compared with the case of the conventional semiconductor device. Therefore, the stress difference between the central portion and the peripheral portion is also reduced, and the stress distribution is almost uniform. This result is considered to be based on the following reasons.

半導体装置と配線基板との間に封止樹脂を充填した後、例えばそれを硬化させるために高温に加熱すると封止樹脂が収縮することによって、大きい応力が封止樹脂方向に半導体基板の表面に生じる。これは収縮する封止樹脂が半導体基板を封止樹脂方向に引き上げようとする力に抗して、半導体基板が、自ら変形しないように初期の形状を維持しようとするために生ずる。しかし、本発明に係る半導体装置では半導体基板の裏面に凹部が設けられたことにより、半導体基板構成材料(例えばシリコン単結晶)固有の弾性率は不変であるけれども見かけ上の弾性率が減少する。基板の見かけ上の弾性率が小さい場合には、封止樹脂の収縮変形に追随して半導体基板も容易に変形できるようになり、収縮応力が開放される。   After the sealing resin is filled between the semiconductor device and the wiring board, for example, when the resin is heated to a high temperature in order to cure it, the sealing resin contracts, so that a large stress is applied to the surface of the semiconductor substrate in the direction of the sealing resin. Arise. This occurs because the shrinking sealing resin tries to maintain the initial shape so that the semiconductor substrate does not deform itself against the force of pulling up the semiconductor substrate in the direction of the sealing resin. However, in the semiconductor device according to the present invention, since the concave portion is provided on the back surface of the semiconductor substrate, the apparent elastic modulus is reduced although the intrinsic elastic modulus of the semiconductor substrate constituent material (for example, silicon single crystal) is unchanged. When the apparent elastic modulus of the substrate is small, the semiconductor substrate can be easily deformed following the shrinkage deformation of the sealing resin, and the shrinkage stress is released.

本発明においては半導体基板裏面に凹部を形成するだけでなく、図1(a)に一例として示すようにその凹部7の密度が半導体基板1の中央部で大きく、周辺部で小さくなるように形成する。半導体基板の、凹部の密度が高い領域は見かけ上の弾性率が小さく変形が容易であり、その密度が小さい領域は見かけ上の弾性率が大きく変形し難い。従ってより大きい応力の発生すべき領域(半導体基板中央部)に、より高密度に凹部を配置して応力の緩和の程度を高くすると、半導体基板内の応力分布を均一化することができる。   In the present invention, not only the recesses are formed on the back surface of the semiconductor substrate, but also the density of the recesses 7 is increased at the central portion of the semiconductor substrate 1 and decreased at the peripheral portion as shown as an example in FIG. To do. A region having a high density of recesses in the semiconductor substrate has a small apparent elastic modulus and can be easily deformed, and a region having a low density has a large apparent elastic modulus and is difficult to deform. Therefore, if the recesses are arranged at a higher density in a region where the greater stress is to be generated (the central portion of the semiconductor substrate) to increase the degree of stress relaxation, the stress distribution in the semiconductor substrate can be made uniform.

半導体基板に印加される応力分布を均一にすることは、半導体回路を構成するトランジスタ特性の半導体基板(チップ)内分布の均一性を改善する。図1(c)は図1(a)に示す半導体装置が有するトランジスタにおける、応力によるトランジスタ特性変動率(特性の基準値からの変動値/特性の基準値:単位%)の半導体基板内分布を示す図である。横軸は半導体基板1の中心からの距離を示し、縦軸はトランジスタ特性変動率であり、半導体基板の表面に垂直な応力成分に対応する変動率である。さらに図1(c)は半導体回路が複数のMOS型トランジスタで構成される場合の図であり、トランジスタ特性としては例えばキャリアのチャンネル移動度やドレイン電流、相互コンダクタンスgmなどを挙げることができる。図1(c)には本発明に係る半導体装置に対する特性変動率分布(曲線a:Pチャネル型、曲線b:Nチャネル型)と従来の半導体装置に対する特性変動率分布(曲線c:Pチャネル型、曲線d:Nチャネル型)を示す。 Making the stress distribution applied to the semiconductor substrate uniform improves the uniformity of the distribution in the semiconductor substrate (chip) of the transistor characteristics constituting the semiconductor circuit. FIG. 1C shows the distribution in the semiconductor substrate of the transistor characteristic variation rate (variation value from characteristic reference value / characteristic reference value: unit%) due to stress in the transistor included in the semiconductor device shown in FIG. FIG. The horizontal axis indicates the distance from the center of the semiconductor substrate 1, and the vertical axis indicates the transistor characteristic variation rate, which is the variation rate corresponding to the stress component perpendicular to the surface of the semiconductor substrate. Further, FIG. 1C is a diagram in the case where the semiconductor circuit is composed of a plurality of MOS transistors, and examples of transistor characteristics include carrier channel mobility, drain current, and mutual conductance g m . FIG. 1C shows a characteristic variation rate distribution (curve a: P channel type, curve b: N channel type) for a semiconductor device according to the present invention and a characteristic variation rate distribution (curve c: P channel type) for a conventional semiconductor device. , Curve d: N channel type).

本発明に係る半導体装置に印加される応力が緩和されたことに対応して、トランジスタの特性変動率は従来の半導体装置より小さく、またその分布の均一性もより改善されている。従って半導体基板(チップ)のほぼ全面を占有する半導体回路内の位置に依存してトランジスタの特性がばらつき、半導体集積回路全体としての特性が設計仕様値を満たさなくなる不良発生が防止され、製造歩留まりが向上する。なお、Pチャネル型とNチャネル型では同じ応力に対する変動方向が反対である。またNチャネル型よりPチャネル型の方が特性変動率が小さいが、これはPチャネル型トランジスタは垂直応力より半導体基板表面に平行な応力に敏感であるためと考えられる。   Corresponding to the relaxation of the stress applied to the semiconductor device according to the present invention, the characteristic variation rate of the transistor is smaller than that of the conventional semiconductor device, and the uniformity of the distribution is further improved. Therefore, the transistor characteristics vary depending on the position in the semiconductor circuit that occupies almost the entire surface of the semiconductor substrate (chip), preventing the occurrence of defects in which the characteristics of the semiconductor integrated circuit as a whole do not meet the design specification values, and the manufacturing yield is increased. improves. In the P channel type and the N channel type, the direction of variation with respect to the same stress is opposite. In addition, the P-channel type has a smaller characteristic variation rate than the N-channel type. This is considered because the P-channel type transistor is more sensitive to stress parallel to the surface of the semiconductor substrate than to normal stress.

図1(a)のように本発明に係る半導体装置は、半導体基板1の裏面に凹部7と共に金属膜6を備える。金属膜6は熱伝導率が半導体基板1より高いため、半導体装置の動作中に発生する熱を外部に効率的に放出することができる。特に凹部7を形成したことによって金属膜6の表面積が増大し、従来の半導体装置より放熱効率が向上するので温度上昇によって半導体回路が誤動作することを抑制できる。   As shown in FIG. 1A, the semiconductor device according to the present invention includes a metal film 6 together with a recess 7 on the back surface of the semiconductor substrate 1. Since the metal film 6 has a higher thermal conductivity than the semiconductor substrate 1, heat generated during operation of the semiconductor device can be efficiently released to the outside. In particular, the formation of the recess 7 increases the surface area of the metal film 6 and improves the heat dissipation efficiency as compared with the conventional semiconductor device. Therefore, the malfunction of the semiconductor circuit due to the temperature rise can be suppressed.

半導体基板1の裏面の凹部は半導体基板1に印加される応力の大きさの分布に応じて、平面的に種々の分布パターンに形成することができる。図3〜図7は、半導体基板1(チップ)裏面に形成される凹部の平面パターンを示す図であり、応力が半導体基板1の中央部で大きく、周辺部で小さく働く場合の例である。これらの図の半導体基板1はチップ全体の形状を示し、ほぼ正方形である。   The recesses on the back surface of the semiconductor substrate 1 can be formed in various distribution patterns on a plane according to the distribution of the magnitude of stress applied to the semiconductor substrate 1. 3 to 7 are diagrams showing a planar pattern of the recesses formed on the back surface of the semiconductor substrate 1 (chip), and are examples in which the stress is large in the central portion of the semiconductor substrate 1 and small in the peripheral portion. The semiconductor substrate 1 in these drawings shows the shape of the entire chip and is substantially square.

まず、図3(a)に示す凹部21は、半導体基板1の裏面の中央部ほど狭ピッチ、周辺部ほど広ピッチで、チップの一方向の辺に平行に伸びる線状の溝である。この凹部は、少なくとも凹部21の延びる方向と交差する方向、例えば凹部21の方向に垂直な方向の応力分布を緩和することができる。図3(b)に示す凹部22は、チップの一端から他端まで延びる複数の線状の溝がチップの中央部ほど狭ピッチ、周辺部ほど広ピッチで互いに平行に形成され、しかもこのような線状の溝が異なる2方向に形成されて交差(図では互いに直交)するパターンを有する。   First, the recesses 21 shown in FIG. 3A are linear grooves extending in parallel with one side of the chip with a narrower pitch at the center of the back surface of the semiconductor substrate 1 and a wider pitch at the peripheral part. The recess can relieve stress distribution in a direction that intersects at least the direction in which the recess 21 extends, for example, a direction perpendicular to the direction of the recess 21. In the recess 22 shown in FIG. 3 (b), a plurality of linear grooves extending from one end to the other end of the chip are formed in parallel with each other at a narrower pitch at the center of the chip and at a wider pitch at the peripheral part. Linear grooves are formed in two different directions and have a pattern that intersects (in the figure, orthogonal to each other).

図4(a)に示す凹部23はチップの裏面の中央部ほど狭ピッチ、周辺部ほど広ピッチで形成される線状の溝からなる。さらに線状の溝は複数の相似な矩形を形成し、チップの中央部には寸法の小さい矩形が多数配置され、周辺部には寸法の大きい矩形が中央部より少ない数で配置される。図4(b)に示す凹部24は図4(a)に示した凹部23が有するパターンを45°回転させたパターンを有する。   The recesses 23 shown in FIG. 4A are formed of linear grooves formed with a narrower pitch at the center of the back side of the chip and a wider pitch at the peripheral part. Further, the linear groove forms a plurality of similar rectangles, and a large number of small-sized rectangles are arranged in the center portion of the chip, and a smaller number of large-sized rectangles are arranged in the peripheral portion than the central portion. The recess 24 shown in FIG. 4B has a pattern obtained by rotating the pattern of the recess 23 shown in FIG.

図5(a)に示す凹部25は線状の溝であり、具体的にはチップ1の裏面の中心に溝状凹部で形成される最小の矩形が配置され、外側に向かってその矩形を囲むようにより大きい矩形が同心で順次形成されたパターンを有する。一般的には複数の矩形パターンが溝からなる凹部で描画され、大きい矩形がそれより小さい矩形を囲むパターンであればよい。また溝が形成するパターンは矩形だけでなく多角形であってもよい。図5(b)に示す凹部26もまた線状の溝であり、溝からなる複数の円が同心円状に配置されたパターンを有する。図5(b)の場合は最小の円の中心がチップの中心と一致するように配置されている。   The recess 25 shown in FIG. 5A is a linear groove. Specifically, a minimum rectangle formed by the groove-like recess is arranged at the center of the back surface of the chip 1 and surrounds the rectangle toward the outside. Thus, a larger rectangle has a pattern formed concentrically and sequentially. In general, a plurality of rectangular patterns may be drawn in a concave portion formed of a groove, and a large rectangle may be a pattern surrounding a smaller rectangle. The pattern formed by the grooves may be not only a rectangle but also a polygon. The concave portion 26 shown in FIG. 5B is also a linear groove, and has a pattern in which a plurality of circles composed of grooves are arranged concentrically. In the case of FIG. 5B, the center of the smallest circle is arranged so as to coincide with the center of the chip.

図3(a)〜図5(b)に示したように半導体基板1の裏面に溝パターンを形成する場合、具体的にその溝幅を10μm〜100μmとし、溝の深さを半導体基板1の厚さの1/30〜1/3程度(半導体基板1の厚さが300μm程度であれば10μm〜100μm)とすることが望ましい。   When the groove pattern is formed on the back surface of the semiconductor substrate 1 as shown in FIG. 3A to FIG. 5B, the groove width is specifically set to 10 μm to 100 μm, and the groove depth is set to the depth of the semiconductor substrate 1. The thickness is preferably about 1/30 to 1/3 of the thickness (10 μm to 100 μm if the thickness of the semiconductor substrate 1 is about 300 μm).

図6(a)に示す半導体基板1の裏面には、チップの中央部ほど小さく周辺部ほど大きい、半導体基板1自体からなる多角形(8角形)の島状領域が複数形成されている。そしてそれら島状領域の間が凹部27となる。図6(b)に示す凹部28を含むパターンは図6(a)における多角形を円としたものである。   On the back surface of the semiconductor substrate 1 shown in FIG. 6 (a), a plurality of polygonal (octagonal) island-like regions made of the semiconductor substrate 1 itself are formed which are smaller in the center portion of the chip and larger in the peripheral portion. Then, a recess 27 is formed between the island regions. The pattern including the concave portion 28 shown in FIG. 6B is obtained by making the polygon in FIG. 6A into a circle.

半導体基板1の裏面に形成するパターンを図3(b)および図4(a)〜図6(b)に示すパターンにすることにより、半導体基板1上の単位面積当たりに占める各凹部の面積(または各凹部の半導体基板1上での占有面積率)はチップの中央部で大きく周辺部に向かうどの方向へも小さくなる。図1の凹部7のような溝状の凹部に対しては「凹部の密度」と説明したが、これは上記の半導体基板上の単位面積当たりに占める凹部の面積、または凹部の半導体基板上での占有面積率と等価である。半導体基板1に印加される応力が半導体基板1上で中心対称である場合は、上記各図に示されたパターンを有する凹部がチップ全体にわたる応力の緩和に有効に働く。凹部は特に半導体基板1の対角線の交点をチップの中心とし、この中心を通りチップの平面に垂直な軸の回りの所定の角度の回転に関して回転対称となるパターンに形成することが望ましい。図3(b)、図4(a)〜図6(b)のパターンは90°回転対象である。また半導体基板1に印加される応力がチップの中央部を通りチップの互いに直交する各辺に平行な帯状領域において大きい場合は図3(b)の凹部22を、また中央部を通る2本の対角線を含む帯状領域において大きい場合は図4(b)の凹部24を採用することによって特に有効に応力を緩和することができる。   By forming the pattern formed on the back surface of the semiconductor substrate 1 into the patterns shown in FIGS. 3B and 4A to 6B, the area of each concave portion per unit area on the semiconductor substrate 1 ( Or, the area ratio of each recess on the semiconductor substrate 1 is large at the center of the chip and small in any direction toward the periphery. The groove-like recesses such as the recesses 7 in FIG. 1 have been described as “the density of the recesses”, but this is the area of the recesses per unit area on the semiconductor substrate, or Is equivalent to the occupied area ratio. When the stress applied to the semiconductor substrate 1 is centrosymmetric on the semiconductor substrate 1, the concave portions having the patterns shown in the above drawings effectively work to alleviate the stress over the entire chip. The recesses are preferably formed in a pattern that is rotationally symmetric with respect to rotation at a predetermined angle around an axis that passes through this center and is perpendicular to the plane of the chip, with the intersection of the diagonal lines of the semiconductor substrate 1 as the center of the chip. The patterns shown in FIGS. 3B and 4A to 6B are to be rotated by 90 °. When the stress applied to the semiconductor substrate 1 is large in the band-shaped region passing through the center portion of the chip and parallel to the mutually orthogonal sides of the chip, the recess 22 in FIG. When it is large in the band-shaped region including the diagonal line, the stress can be relieved particularly effectively by adopting the concave portion 24 of FIG.

図1(a)に本発明に係る半導体装置の一例を示したが、この他種々の変形が可能である。図7(a)は本発明による半導体装置の第1の変形例を示す断面図である。この半導体装置は図1(a)に説明した半導体装置において、半導体基板1(チップ)の周辺部に導電性材料からなるプラグ30を形成したものである。プラグ30は半導体回路形成層2の上面から半導体基板1の裏面まで貫通し金属膜6に接触するように設けられる。このような構造を有するプラグ30を設けることによって、半導体回路形成層2内に設けられた多層配線層や半導体基板1の表面部に設けられたMOS型トランジスタからの発熱の一部を熱伝導性の高いプラグ30に吸収し、速やかに金属膜6に導き放熱させることができる。   FIG. 1A shows an example of a semiconductor device according to the present invention, but various other modifications are possible. FIG. 7A is a cross-sectional view showing a first modification of the semiconductor device according to the present invention. This semiconductor device is obtained by forming a plug 30 made of a conductive material in the periphery of the semiconductor substrate 1 (chip) in the semiconductor device described in FIG. The plug 30 is provided so as to penetrate from the upper surface of the semiconductor circuit forming layer 2 to the back surface of the semiconductor substrate 1 and to contact the metal film 6. By providing the plug 30 having such a structure, a part of heat generated from the multilayer wiring layer provided in the semiconductor circuit forming layer 2 or the MOS transistor provided on the surface portion of the semiconductor substrate 1 is thermally conductive. Can be absorbed by the high plug 30 and promptly led to the metal film 6 for heat dissipation.

図7(a)のプラグ30は半導体回路形成層2の上面から形成されているが、少なくとも半導体基板1の表面から裏面まで形成されていればよい。またこのプラグ30の平面形状は円形や矩形、あるいは帯状、チップの周辺部を一周にわたって取り巻くリング状などが可能である。導電性材料としてはタングステンや銅などが使用できる。   The plug 30 in FIG. 7A is formed from the upper surface of the semiconductor circuit formation layer 2, but it is sufficient that it is formed at least from the front surface to the back surface of the semiconductor substrate 1. Further, the planar shape of the plug 30 may be a circle, a rectangle, a band, or a ring around the periphery of the chip. As the conductive material, tungsten, copper, or the like can be used.

図7(b)は本発明による半導体装置の第2の変形例を示す断面図である。この半導体装置では半導体基板1の裏面に図1(a)の金属膜6より厚い金属膜31が設けられる一方で、例えば実装体の厚さ制限を考慮し、半導体装置を所定の一定の厚さに揃えるために半導体基板1の厚さを図1(a)のものより薄くされる。そして金属膜31の表面に凹部32が、配線基板に半導体装置が接合された時に半導体基板1に印加される応力の大きさの分布に応じた密度分布あるいは面積分布で形成される。このような構造を有する半導体装置では、凹部32によって半導体基板1と金属膜31との複合基板の見かけ上の弾性率を低減させることができるので、図1(a)に示す半導体装置と同様な応力緩和効果が得られる。また、金属膜31が厚いのでより放熱効率が向上するという利点も存在する。   FIG. 7B is a cross-sectional view showing a second modification of the semiconductor device according to the present invention. In this semiconductor device, a metal film 31 thicker than the metal film 6 shown in FIG. 1A is provided on the back surface of the semiconductor substrate 1. On the other hand, the thickness of the mounting body is taken into consideration, for example. Therefore, the thickness of the semiconductor substrate 1 is made thinner than that shown in FIG. Then, the recesses 32 are formed on the surface of the metal film 31 with a density distribution or an area distribution corresponding to the distribution of the magnitude of stress applied to the semiconductor substrate 1 when the semiconductor device is bonded to the wiring board. In the semiconductor device having such a structure, the apparent elastic modulus of the composite substrate of the semiconductor substrate 1 and the metal film 31 can be reduced by the recess 32, and therefore, similar to the semiconductor device shown in FIG. A stress relaxation effect is obtained. Further, since the metal film 31 is thick, there is an advantage that the heat dissipation efficiency is further improved.

(実施形態2)
図8は、本発明の第2の実施形態に係る半導体装置の製造方法を示す工程断面図である。図8の製造工程の対象とする半導体装置は図1(a)に示す半導体装置である。まず、図8(a)に示すように、シリコン単結晶基板のような半導体基板1上に半導体回路形成層2を通常の微細加工を含む拡散工程を用いて形成する。図8に示す半導体基板1は図1(a)とは異なり、ウェハ状態の基板である。第1の実施形態において述べたように、半導体回路形成層2の最下層から半導体基板1の表面部にかけてトランジスタなど複数の半導体能動素子が形成されている。そしてトランジスタの上層には、必要に応じて容量素子、抵抗素子が設けられる。それと共に各金属配線、層間絶縁膜からなる多層配線構造が形成される。
(Embodiment 2)
FIG. 8 is a process cross-sectional view illustrating the semiconductor device manufacturing method according to the second embodiment of the present invention. The semiconductor device that is the object of the manufacturing process of FIG. 8 is the semiconductor device shown in FIG. First, as shown in FIG. 8A, a semiconductor circuit formation layer 2 is formed on a semiconductor substrate 1 such as a silicon single crystal substrate by using a diffusion process including normal fine processing. A semiconductor substrate 1 shown in FIG. 8 is a substrate in a wafer state, unlike FIG. As described in the first embodiment, a plurality of semiconductor active elements such as transistors are formed from the lowermost layer of the semiconductor circuit formation layer 2 to the surface portion of the semiconductor substrate 1. A capacitor element and a resistor element are provided on the upper layer of the transistor as necessary. At the same time, a multilayer wiring structure composed of each metal wiring and an interlayer insulating film is formed.

次に半導体回路形成層2の上に、例えばAl合金膜からなるボンディングパッド3を形成し、上記多層配線、例えば最上層の金属配線と電気的に接続する。その後ボンディングパッド3および半導体回路層2上に、例えばプラズマCVD法でシリコン窒化膜を主体とする厚い保護膜4を堆積し、ボンディングパッド3の上面に開口を形成してボンディングパッド3の表面を露出させる。   Next, a bonding pad 3 made of, for example, an Al alloy film is formed on the semiconductor circuit formation layer 2 and electrically connected to the multilayer wiring, for example, the uppermost metal wiring. Thereafter, a thick protective film 4 mainly composed of a silicon nitride film is deposited on the bonding pad 3 and the semiconductor circuit layer 2 by, for example, plasma CVD, and an opening is formed on the upper surface of the bonding pad 3 to expose the surface of the bonding pad 3. Let

次に図8(b)に示すようにボンディングパッド3上に外部と電気信号の入出力を行うために例えばSn−Ag系のはんだからなるバンプ5を形成する。このバンプ5ははんだ以外にAuバンプ、Cuバンプとすることができる。AuやCuを用いる場合は、ボンディングパッド3上に開口を有するレジストパターンを形成し電解メッキ法を用いて開口内にAuまたはCuを選択的に堆積させる。   Next, as shown in FIG. 8B, bumps 5 made of, for example, Sn-Ag solder are formed on the bonding pads 3 in order to input / output electric signals to / from the outside. The bump 5 can be an Au bump or a Cu bump in addition to the solder. In the case of using Au or Cu, a resist pattern having an opening is formed on the bonding pad 3, and Au or Cu is selectively deposited in the opening using an electrolytic plating method.

この後、図8(c)に示すようにバンプ5および保護膜4が形成された表面に接着層41を塗布し、接着層41を介して半導体基板1と少なくとも同サイズの支持基板40を貼り合わせ固定する。支持基板40としてはその後の加工工程における機械的衝撃に耐え得るように硬質の材料で構成されることが望ましい。しかしながら可撓性の有機樹脂テープなどを半導体基板1の支持体にしてもよい。次いで半導体基板1の裏面が上方を向くように表裏反転し、必要に応じて半導体基板1の裏面を研磨して薄化する。これは後にパッケージに組み込まれた形態の半導体装置を配線基板に表面実装した時の実装体積を減少させ小型化する場合に必要とされるものである。   Thereafter, as shown in FIG. 8C, an adhesive layer 41 is applied to the surface on which the bumps 5 and the protective film 4 are formed, and a support substrate 40 of at least the same size as the semiconductor substrate 1 is pasted via the adhesive layer 41. Align and fix. The support substrate 40 is preferably made of a hard material so that it can withstand mechanical impacts in subsequent processing steps. However, a flexible organic resin tape or the like may be used as the support for the semiconductor substrate 1. Next, the semiconductor substrate 1 is turned upside down so that the back surface of the semiconductor substrate 1 faces upward, and the back surface of the semiconductor substrate 1 is polished and thinned as necessary. This is necessary when the semiconductor device of the form incorporated in the package is mounted on the surface of the wiring board to reduce the mounting volume and reduce the size.

次に図8(d)に示すように裏面に図示しないが所定の開口パターンを有するレジスト膜を形成する。その後、レジスト膜のパターンをマスクとして半導体基板1を選択的にエッチング・除去して凹部7を形成する。このエッチングには薬液によるウェットエッチングやプラズマエッチングを使用する。あるいはまた、凹部が図3(a)、(b)に示すような単純な直線パターンの組み合わせである場合は、ダイシング用ホイールを用いて半導体基板1の裏面を研削・除去することで形成することもできる。   Next, as shown in FIG. 8D, a resist film having a predetermined opening pattern (not shown) is formed on the back surface. Thereafter, the semiconductor substrate 1 is selectively etched and removed using the resist film pattern as a mask to form a recess 7. For this etching, chemical chemical wet etching or plasma etching is used. Alternatively, when the concave portion is a combination of simple linear patterns as shown in FIGS. 3A and 3B, it is formed by grinding and removing the back surface of the semiconductor substrate 1 using a dicing wheel. You can also.

凹部7はその目的によって様々な断面形状に加工される。図9は凹部の断面形状を具体的に例示する図である。図9(a)の凹部7aは矩形断面を有し、半導体基板1の見かけ上の弾性率を大きく低減させることができるので、応力を大幅に緩和するときに有効である。この凹部7aは、半導体基板1の裏面上に形成したレジスト膜42をマスクとして異方性プラズマエッチングで形成される。図9(b)の凹部7bはV字状断面を有し、応力をそれほど緩和する必要のない場合に有効である。この凹部7bは半導体基板1の裏面結晶面方位にも依存するが、面方位が(100)の場合、レジスト膜42をマスクとして異方性ウェットエッチングを用いて容易に形成することができる。図9(c)の凹部7cはU字状断面を有し、凹部7aおよび7bの中間程度の応力緩和が要求される場合に有効である。凹部7cは、レジスト膜42をマスクとして等方性のウェットエッチング、等方性のプラズマエッチングで形成できる。   The recess 7 is processed into various cross-sectional shapes depending on the purpose. FIG. 9 is a diagram specifically illustrating the cross-sectional shape of the recess. The recess 7a in FIG. 9A has a rectangular cross section, and the apparent elastic modulus of the semiconductor substrate 1 can be greatly reduced, so that it is effective for greatly relieving stress. The recess 7a is formed by anisotropic plasma etching using the resist film 42 formed on the back surface of the semiconductor substrate 1 as a mask. The concave portion 7b in FIG. 9B has a V-shaped cross section, and is effective when it is not necessary to relieve stress so much. Although the recess 7b also depends on the back crystal plane orientation of the semiconductor substrate 1, when the plane orientation is (100), the recess 7b can be easily formed by anisotropic wet etching using the resist film 42 as a mask. The recess 7c in FIG. 9C has a U-shaped cross section, and is effective when stress relaxation about the middle between the recesses 7a and 7b is required. The recess 7c can be formed by isotropic wet etching or isotropic plasma etching using the resist film 42 as a mask.

図9は半導体基板1に凹部を形成する場合であるが、図7(b)の半導体装置のように金属膜31に形成される凹部32の断面形状に矩形、V字、U字状断面を採用しても同様の効果が得られることは言うまでもない。   FIG. 9 shows a case where a recess is formed in the semiconductor substrate 1, but the cross-sectional shape of the recess 32 formed in the metal film 31 is rectangular, V-shaped, or U-shaped as in the semiconductor device of FIG. It goes without saying that the same effect can be obtained even if it is adopted.

凹部7を形成した後、半導体基板1の裏面上にスパッタリング法などによりAlを主成分とする合金膜、AlN膜などの金属膜6を堆積する。堆積膜厚は凹部7の形状が金属膜6の表面形状に転写される程度の薄い膜厚とする。場合によっては金属膜6が半導体基板1の表面部に与える応力の影響を小さくするため、スパッタリングにおける半導体基板1の温度、膜の堆積速度、Arガス圧などを調整することが望ましい。金属膜6の堆積後は必要に応じて数百度以下で熱処理を行う。   After forming the recess 7, a metal film 6 such as an alloy film mainly composed of Al or an AlN film is deposited on the back surface of the semiconductor substrate 1 by a sputtering method or the like. The deposited film thickness is set so thin that the shape of the recess 7 is transferred to the surface shape of the metal film 6. In some cases, it is desirable to adjust the temperature of the semiconductor substrate 1 in sputtering, the deposition rate of the film, the Ar gas pressure, etc. in order to reduce the influence of the stress exerted on the surface portion of the semiconductor substrate 1 by the metal film 6. After the metal film 6 is deposited, heat treatment is performed at several hundred degrees or less as necessary.

上記以降の製造工程は図示していないが、金属膜6の堆積後、支持基板40を装着したまま支持基板40と共にウェハ状態の半導体装置にダイシングを行い、個片化して独立したチップ状とする。次いで接着層41を溶解して支持基板40を分離することによって半導体装置が完成する。さらに図1(a)に示すようにチップ状態の半導体装置のバンプ5と対応する配線基板のパッド電極9とを対向させて熱圧着した後、半導体装置と配線基板本体8との間に封止樹脂10を液体状態で注入し熱硬化させて、半導体装置と配線基板との接合を確実なものとする。   Although the subsequent manufacturing steps are not shown, after the metal film 6 is deposited, the semiconductor device in the wafer state is diced together with the support substrate 40 while the support substrate 40 is mounted, and is separated into individual chips. . Next, the adhesive layer 41 is dissolved to separate the support substrate 40, thereby completing the semiconductor device. Further, as shown in FIG. 1A, the bump 5 of the semiconductor device in a chip state and the corresponding pad electrode 9 of the wiring board are thermocompression-bonded, and then sealed between the semiconductor device and the wiring board body 8. The resin 10 is injected in a liquid state and thermally cured to ensure the bonding between the semiconductor device and the wiring board.

配線基板と半導体装置との接合は、まずパッド電極9を含む配線基板本体8上全面にシート状の封止樹脂を貼り付けた後、半導体装置のバンプ5とパッド電極9とを熱圧着すると同時に封止樹脂を溶融・熱硬化させる方法で行ってもよい。   For joining the wiring board and the semiconductor device, first, a sheet-like sealing resin is attached to the entire surface of the wiring board body 8 including the pad electrode 9, and then the bump 5 and the pad electrode 9 of the semiconductor device are thermocompression bonded. You may carry out by the method of melt | dissolving and thermosetting sealing resin.

本実施形態の製造方法は図1(a)の半導体装置に関して説明した。しかしながら図7(a)の半導体装置を製造するときは、例えば図8(c)の工程を終了後プラグ30に対応する開口パターンを有するレジスト膜を半導体基板1の裏面に形成し、レジスト膜をマスクとして半導体基板1の裏面から半導体基板1および半導体回路層2を順次選択的にエッチングしてゆき、両者を貫通する開口を形成する。その後レジスト膜を除去し、形成した開口内にWやCuなどの導電性材料を埋め込み、その後、図8(d)の工程を実施すればよい。   The manufacturing method of the present embodiment has been described with reference to the semiconductor device of FIG. However, when manufacturing the semiconductor device of FIG. 7A, for example, after the process of FIG. 8C is completed, a resist film having an opening pattern corresponding to the plug 30 is formed on the back surface of the semiconductor substrate 1, and the resist film is formed. The semiconductor substrate 1 and the semiconductor circuit layer 2 are sequentially and selectively etched from the back surface of the semiconductor substrate 1 as a mask, and an opening penetrating both is formed. Thereafter, the resist film is removed, a conductive material such as W or Cu is embedded in the formed opening, and then the step of FIG.

図7(b)の半導体装置を製造するときは、例えば図8(c)の工程において半導体基板1の裏面を研磨して半導体基板1を薄化し、次に比較的厚い金属膜31を堆積する。続いて金属膜31の表面にダイシング用ホイールで溝状の凹部32を形成するか、またはフォトリソ工程と選択的エッチングにより凹部32を形成すればよい。   When the semiconductor device of FIG. 7B is manufactured, for example, in the step of FIG. 8C, the back surface of the semiconductor substrate 1 is polished to thin the semiconductor substrate 1, and then a relatively thick metal film 31 is deposited. . Subsequently, a groove-like recess 32 may be formed on the surface of the metal film 31 with a dicing wheel, or the recess 32 may be formed by a photolithography process and selective etching.

なお第1および第2の実施形態では、シリコン窒化膜を主体とする無機材料の保護膜4と、保護膜4の開口に形成されたバンプを有する半導体装置を直接配線基板(実装基板)に接合する例を示した。しかし本発明は、図10に示すように表面保護膜上が封止樹脂層で覆われたウェハレベルCSP構造の半導体装置にも適用することができる。また、半導体基板材料としてシリコンの他GaAsなどにしてもよい。   In the first and second embodiments, a semiconductor device having an inorganic material protective film 4 mainly composed of a silicon nitride film and a bump formed in an opening of the protective film 4 is directly bonded to a wiring substrate (mounting substrate). An example to do. However, the present invention can also be applied to a semiconductor device having a wafer level CSP structure in which the surface protective film is covered with a sealing resin layer as shown in FIG. In addition to silicon, GaAs may be used as the semiconductor substrate material.

本発明は、半導体基板が露出した半導体集積回路のチップ自体または半導体基板が半ば露出するような小型パッケージの形態の半導体集積回路を実装基板に封止樹脂を介して接合する場合に適している。また、ゲート長が65nm以下であり特性が応力の影響を受けやすいMOS型トランジスタ、チャネル領域に積極的に応力を印加して特性を制御しているMOS型トランジスタ、Hf酸化膜系の高誘電率ゲート絶縁膜を有するMOS型トランジスタを含む半導体集積回路、多層配線の層間絶縁膜として、機械的に脆弱な低誘電率多孔性絶縁膜を用いる半導体集積回路に適用して有用なものである。   The present invention is suitable for bonding a semiconductor integrated circuit chip itself from which the semiconductor substrate is exposed or a semiconductor integrated circuit in the form of a small package in which the semiconductor substrate is partially exposed to a mounting substrate via a sealing resin. Further, a MOS type transistor whose gate length is 65 nm or less and whose characteristics are easily affected by stress, a MOS type transistor whose characteristics are controlled by positively applying stress to the channel region, and a high dielectric constant of the Hf oxide film system The present invention is useful when applied to a semiconductor integrated circuit including a MOS transistor having a gate insulating film, and a semiconductor integrated circuit using a mechanically fragile low dielectric constant porous insulating film as an interlayer insulating film for multilayer wiring.

1 半導体基板
2 半導体回路形成層
3 ボンディングパッド
4 保護膜
5 バンプ
6、31 金属膜
7、7a、7b、7c、21、22、23、24、25、26、27、28、32 凹部
8 配線基板本体
9 パッド電極
10 封止樹脂
11 突起電極
30 プラグ
40 支持基板
41 接着層
42 レジスト膜
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Semiconductor circuit formation layer 3 Bonding pad 4 Protective film 5 Bump 6, 31 Metal film 7, 7a, 7b, 7c, 21, 22, 23, 24, 25, 26, 27, 28, 32 Recessed part 8 Wiring board Main body 9 Pad electrode 10 Sealing resin 11 Protruding electrode 30 Plug 40 Support substrate 41 Adhesive layer 42 Resist film

Claims (15)

半導体基板と、
前記半導体基板の表面上に形成された半導体回路形成層と、
前記半導体回路形成層内に形成されて、半導体回路を構成するトランジスタと、
前記半導体回路形成層の上に形成され、前記半導体回路と電気的に接続された電極と、
前記半導体基板の裏面側に形成された凹部と
を備えたことを特徴とする半導体装置。
A semiconductor substrate;
A semiconductor circuit forming layer formed on the surface of the semiconductor substrate;
A transistor that is formed in the semiconductor circuit formation layer and forms a semiconductor circuit;
An electrode formed on the semiconductor circuit formation layer and electrically connected to the semiconductor circuit;
A semiconductor device comprising: a recess formed on the back side of the semiconductor substrate.
前記半導体基板の裏面上に金属膜が形成されていることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a metal film is formed on a back surface of the semiconductor substrate. 前記凹部は前記半導体基板の一部を除去して形成されていることを特徴とする請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the recess is formed by removing a part of the semiconductor substrate. 前記凹部は前記金属膜に形成されていることを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the recess is formed in the metal film. 前記半導体基板上の単位面積当たりに占める前記凹部の面積は、前記半導体基板の面内において分布を有するように設定されていることを特徴とする請求項1〜4のいずれかに記載の半導体装置。   5. The semiconductor device according to claim 1, wherein an area of the concave portion per unit area on the semiconductor substrate is set to have a distribution in a plane of the semiconductor substrate. . 前記半導体基板上の単位面積当たりに占める前記凹部の面積は、前記半導体基板の中央部から周辺部に向かって減少するように設定されていることを特徴とする請求項5に記載の半導体装置。   The semiconductor device according to claim 5, wherein an area of the concave portion per unit area on the semiconductor substrate is set so as to decrease from a central portion to a peripheral portion of the semiconductor substrate. 前記半導体基板の少なくとも裏面から表面まで貫通すると共に、導電性材料からなるプラグが形成されていることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein a plug made of a conductive material is formed while penetrating at least from the back surface to the front surface of the semiconductor substrate. 前記半導体基板の少なくとも裏面から表面まで貫通すると共に、導電性材料からなるプラグが形成され、前記プラグは前記金属膜に接触していることを特徴とする請求項2に記載の半導体装置。   3. The semiconductor device according to claim 2, wherein a plug made of a conductive material is formed while penetrating at least from the back surface to the front surface of the semiconductor substrate, and the plug is in contact with the metal film. 前記金属膜はアルミニウムもしくは窒化アルミニウムからなることを特徴とする請求項2、4または8のいずれかに記載の半導体装置。   9. The semiconductor device according to claim 2, wherein the metal film is made of aluminum or aluminum nitride. 半導体基板の表面上に、半導体回路を構成するトランジスタを含む半導体回路形成層を形成する工程と、
前記半導体回路形成層の上に、前記半導体回路と電気的に接続された電極を形成する工程と、
前記半導体基板の裏面側に凹部を形成する工程と
を含むことを特徴とする半導体装置の製造方法。
Forming a semiconductor circuit forming layer including a transistor constituting the semiconductor circuit on the surface of the semiconductor substrate;
Forming an electrode electrically connected to the semiconductor circuit on the semiconductor circuit formation layer;
And a step of forming a recess on the back surface side of the semiconductor substrate.
前記半導体基板の裏面上に金属膜を形成する工程を含むことを特徴とする請求項10に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 10, further comprising a step of forming a metal film on a back surface of the semiconductor substrate. 前記半導体基板の裏面側に凹部を形成する工程は、前記半導体基板の裏面部を選択的に除去して凹部を形成する工程であることを特徴とする請求項10または11に記載の半導体装置の製造方法。   12. The step of forming a recess on the back surface side of the semiconductor substrate is a step of selectively removing the back surface portion of the semiconductor substrate to form a recess. Production method. 前記半導体基板の裏面を研磨し、前記半導体基板を薄化する工程と、前記半導体基板の薄化の後、前記半導体基板の裏面上に金属膜を形成する工程とをさらに含み、前記半導体基板の裏面側に凹部を形成する工程は、前記金属膜を選択的に除去して凹部を形成する工程であることを特徴とする請求項10に記載の半導体装置の製造方法。   Polishing the back surface of the semiconductor substrate and thinning the semiconductor substrate; and after thinning the semiconductor substrate, further comprising forming a metal film on the back surface of the semiconductor substrate, The method for manufacturing a semiconductor device according to claim 10, wherein the step of forming a recess on the back surface side is a step of selectively removing the metal film to form a recess. 前記半導体基板の裏面から、少なくとも前記半導体基板を選択的にエッチングし、前記半導体基板の裏面から表面まで貫通する開口を形成する工程と、前記開口に導電性材料を埋め込んでプラグを形成する工程とをさらに含むことを特徴とする請求項10または11に記載の半導体装置の製造方法。   Selectively etching at least the semiconductor substrate from the back surface of the semiconductor substrate to form an opening penetrating from the back surface to the front surface of the semiconductor substrate; and forming a plug by embedding a conductive material in the opening. The method of manufacturing a semiconductor device according to claim 10, further comprising: 請求項1〜6のいずれかに記載の半導体装置が備える前記電極と、配線基板上に形成されたパッド電極とが接合され、且つ前記半導体装置と前記配線基板との間に樹脂が充填されて、前記半導体装置と前記配線基板が接合されていることを特徴とする実装体。   The electrode included in the semiconductor device according to claim 1 and a pad electrode formed on the wiring substrate are bonded, and a resin is filled between the semiconductor device and the wiring substrate. The mounting body, wherein the semiconductor device and the wiring board are joined.
JP2011002034A 2011-01-07 2011-01-07 Semiconductor device, manufacturing method of the same and packaged body Pending JP2012146734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002034A JP2012146734A (en) 2011-01-07 2011-01-07 Semiconductor device, manufacturing method of the same and packaged body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002034A JP2012146734A (en) 2011-01-07 2011-01-07 Semiconductor device, manufacturing method of the same and packaged body

Publications (1)

Publication Number Publication Date
JP2012146734A true JP2012146734A (en) 2012-08-02

Family

ID=46790037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002034A Pending JP2012146734A (en) 2011-01-07 2011-01-07 Semiconductor device, manufacturing method of the same and packaged body

Country Status (1)

Country Link
JP (1) JP2012146734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064953A1 (en) * 2013-10-30 2015-05-07 하나마이크론(주) Method for manufacturing electronic component
WO2023105920A1 (en) * 2021-12-08 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064953A1 (en) * 2013-10-30 2015-05-07 하나마이크론(주) Method for manufacturing electronic component
KR101532618B1 (en) * 2013-10-30 2015-07-09 하나 마이크론(주) Method for manufacturing electronic component
CN105874580A (en) * 2013-10-30 2016-08-17 哈纳米克罗恩公司 Method for manufacturing electronic component
WO2023105920A1 (en) * 2021-12-08 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US11670577B2 (en) Chip package with redistribution structure having multiple chips
US11626372B2 (en) Metal-free frame design for silicon bridges for semiconductor packages
CN111613612B (en) Semiconductor package including embedded surface mount device and method of forming the same
US20180076179A1 (en) Stacked type chip package structure and manufacturing method thereof
TWI593082B (en) Semiconductor device and method of manufactures
TWI556349B (en) Semiconductor device structure and fabricating method thereof
TWI662667B (en) Package structure and manufacturing method thereof
TW201739032A (en) Package structure
TW201535603A (en) Integrated circuits protected by substrates with cavities, and methods of manufacture
US10332844B2 (en) Manufacturing method of package structure
JP2004056093A (en) Semiconductor device and method of manufacturing the semiconductor device
KR102480685B1 (en) Semiconductor devices and methods of manufacture
US10163800B2 (en) Package structure with dummy feature in passivation layer
US20230099787A1 (en) Semiconductor package and method of fabricating the same
JP2014072487A (en) Semiconductor device and manufacturing method of the same
TW201931557A (en) Stacked package and a manufacturing method of the same
KR20210057853A (en) Semiconductor package and method of fabricating the same
TW201642428A (en) Silicon interposer and fabrication method thereof
US9153510B2 (en) Semiconductor device and method of manufacturing the same
JP2012146734A (en) Semiconductor device, manufacturing method of the same and packaged body
KR101824727B1 (en) Manufacturing Method of Semiconductor Device and Semiconductor Device Thereof
KR101411810B1 (en) Semiconductor device and fabricating method thereof
US8603911B2 (en) Semiconductor device and fabrication method thereof
CN220400576U (en) Device package and semiconductor package
JP4946693B2 (en) Semiconductor device