JP2012146469A - Redox flow battery, redox flow battery cell, and cell stack for redox flow battery - Google Patents

Redox flow battery, redox flow battery cell, and cell stack for redox flow battery Download PDF

Info

Publication number
JP2012146469A
JP2012146469A JP2011003464A JP2011003464A JP2012146469A JP 2012146469 A JP2012146469 A JP 2012146469A JP 2011003464 A JP2011003464 A JP 2011003464A JP 2011003464 A JP2011003464 A JP 2011003464A JP 2012146469 A JP2012146469 A JP 2012146469A
Authority
JP
Japan
Prior art keywords
electrode
groove
electrolyte
flow
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011003464A
Other languages
Japanese (ja)
Inventor
Toshikazu Shibata
俊和 柴田
Takahiro Kumamoto
貴浩 隈元
Hideki Miyawaki
秀旗 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011003464A priority Critical patent/JP2012146469A/en
Publication of JP2012146469A publication Critical patent/JP2012146469A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow battery (RF battery) in which electrolyte solution flows easily and uniformly into an electrode, and to provide an RF battery cell suitable for the configuration member of this battery, and a cell stack for the RF battery.SOLUTION: The RF battery comprises a cell stack where a battery cell 10 including a positive electrode 14 to which a positive electrode electrolyte is distributed, a negative electrode 15 to which a negative electrode electrolyte is distributed, and a barrier membrane 101 interposed between both electrode 14, 15, and a frame 12 having a bipolar plate 121 are stacked alternately. Both electrode 14, 15 consist, respectively, of an electrode 1A where a plurality of distribution grooves (lateral grooves) 2A are provided in parallel to intersect the distribution direction of the electrolyte substantially perpendicularly. Since the distribution grooves (lateral grooves) 2A exist to block the flow of the electrolyte, the passing electrolyte is reduced effectively without contributing to the battery reaction.

Description

本発明は、レドックスフロー電池(以下、RF電池と呼ぶことがある)、このRF電池の構成部材に適したRF電池用セルスタック、RF電池セルに関するものである。特に、電極内に均等に電解液が流れ易いRF電池に関するものである。   The present invention relates to a redox flow battery (hereinafter sometimes referred to as an RF battery), an RF battery cell stack suitable for a component of the RF battery, and an RF battery cell. In particular, the present invention relates to an RF battery in which an electrolytic solution easily flows in an electrode.

瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池として、RF電池が利用されている。また、太陽光発電、風力発電といった新エネルギーに対して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを目的とした蓄電池として、RF電池が期待されている。   RF batteries are used as large-capacity storage batteries for the purpose of instantaneous voltage drop, power failure countermeasures, and load leveling. In addition, RF batteries are expected as storage batteries for the purpose of smoothing output fluctuations, storing surplus power, leveling loads, etc., for new energy such as solar power generation and wind power generation.

RF電池100は、図5に示す構成が代表的であり、正極電極104を内蔵する正極セル102と、負極電極105を内蔵する負極セル103と、両セル102,103間に介在されて両セル102,103を分離すると共にイオンを透過する隔膜101とを具えるセルを具える。また、RF電池100は、各極セル102,103で電池反応に利用される各極電解液を貯留する各極タンク106,107と、各極セル102,103と各極タンク106,107との間で電解液を移送する流通路となる配管108〜111とを具える。各極電解液は、配管108,109に設置されたポンプ112,113を利用して、各極セル102,103に循環供給される。上記電解液には、酸化還元により価数が変化する金属イオン、例えば、バナジウムイオンを含有する水溶液が利用される。なお、図5のセル内の実線矢印は、充電、破線矢印は、放電を意味する。   The RF battery 100 is typically configured as shown in FIG. 5, and includes a positive electrode cell 102 incorporating a positive electrode 104, a negative electrode cell 103 incorporating a negative electrode 105, and both cells 102, 103 interposed between both cells 102, 103. A cell is provided that includes a diaphragm 101 that separates and transmits ions. In addition, the RF battery 100 stores the electrode electrolytes 106 and 107 that store the electrode electrolytes used for the battery reaction in the electrode cells 102 and 103, and distributes the electrolyte solution between the electrode cells 102 and 103 and the electrode tanks 106 and 107. The pipes 108 to 111 are provided. The electrode electrolytes are circulated and supplied to the electrode cells 102 and 103 by using pumps 112 and 113 installed in the pipes 108 and 109, respectively. As the electrolytic solution, an aqueous solution containing a metal ion whose valence is changed by oxidation-reduction, for example, vanadium ion is used. In addition, the solid line arrow in the cell of FIG. 5 means charging, and the broken line arrow means discharging.

RF電池100は、代表的には、上記セルを複数積層させたセルスタックと呼ばれる形態が利用される(特許文献1の図9参照)。セルスタック200には、図6に示すフレーム122が利用される。フレーム122は、各極電極104,105が表裏に配置される双極板121の外周に設けられている。セルスタック200は、双極板121を有するフレーム122、正極電極104、隔膜101、負極電極105、双極板121を有するフレーム122、…と順に繰り返し積層され、代表的には、この積層体の両側を一対のエンドプレート210で挟み、長ボルトなどの締付部材220によりエンドプレート210を締め付けることで構成される。   The RF battery 100 typically uses a form called a cell stack in which a plurality of the cells are stacked (see FIG. 9 of Patent Document 1). For the cell stack 200, a frame 122 shown in FIG. 6 is used. The frame 122 is provided on the outer periphery of the bipolar plate 121 where the electrode electrodes 104 and 105 are arranged on the front and back sides. The cell stack 200 is repeatedly laminated in order of a frame 122 having a bipolar plate 121, a positive electrode 104, a diaphragm 101, a negative electrode 105, a frame 122 having a bipolar plate 121, etc. It is configured by sandwiching between a pair of end plates 210 and tightening the end plate 210 with a tightening member 220 such as a long bolt.

上記フレーム122は、その表裏を貫通する各極電解液の給液孔123,124及び排液孔125,126と、その一面に設けられ、給液孔123に連続する液導入溝及び排液孔125に連続する液排出溝と、その他面に設けられ、給液孔124に連続する液導入溝及び排液孔126に連続する液排出溝とを具える。上記液導入溝・液排出溝を利用して、双極板121の一面に配置された正極電極104に正極電解液が供給・排出され、他面に配置された負極電極105に負極電解液が供給・排出される。複数のフレーム122を積層することで、給液孔123(124)及び排液孔125(126)は各極電解液の流路を構成し、この流路は配管108〜111に適宜接続される。また、積層したフレーム122間にOリングなどのシール部材127を配置して、セルスタック200を構成する上記各部材の隙間から電解液の漏洩を防止している。   The frame 122 is provided on one surface of the electrode electrolyte supply holes 123 and 124 and the drain holes 125 and 126 penetrating the front and back surfaces thereof, and is continuous with the liquid introduction groove and the drain hole 125 that are continuous with the liquid supply hole 123. A liquid discharge groove, a liquid introduction groove provided on the other surface and continuous with the liquid supply hole 124 and a liquid discharge groove continuous with the liquid discharge hole 126 are provided. Using the liquid introduction groove / liquid discharge groove, the positive electrode electrolyte is supplied to and discharged from the positive electrode 104 disposed on one surface of the bipolar plate 121, and the negative electrode electrolyte is supplied to the negative electrode 105 disposed on the other surface.・ It is discharged. By laminating a plurality of frames 122, the liquid supply hole 123 (124) and the drainage hole 125 (126) constitute a flow path for each electrolytic solution, and this flow path is appropriately connected to the pipes 108 to 111. . In addition, a seal member 127 such as an O-ring is disposed between the stacked frames 122 to prevent leakage of the electrolyte solution from the gaps between the above members that constitute the cell stack 200.

上記フレーム122において矩形状の双極板121の対向する周縁側領域にそれぞれ、上記液導入溝や液排出溝に繋がる整流溝(図示せず)が上記周縁に沿って設けられた構成が代表的である(特許文献1の図1,2参照)。整流溝は、上記液導入溝からの電解液を上記周縁に沿って広げたり、電極からの電解液を液排出溝に集約したりする機能を有する。   In the frame 122, a configuration in which a rectifying groove (not shown) connected to the liquid introduction groove and the liquid discharge groove is provided along the peripheral edge in each of the opposing peripheral side regions of the rectangular bipolar plate 121 is typical. Yes (see FIGS. 1 and 2 of Patent Document 1). The rectifying groove has a function of expanding the electrolytic solution from the liquid introducing groove along the peripheral edge and concentrating the electrolytic solution from the electrode into the liquid discharging groove.

各極電極104,105には、炭素繊維からなるカーボンフェルト製のものが利用されている(特許文献1,2)。特許文献2では、図6に示すように、電極の一面(特許文献2では、隔膜101側の面)に、電解液の流通方向(矩形状の電極の対辺間を繋ぐ方向。図6では上下方向)に平行に設けられた複数の流通溝104sを具えるものを開示している。   For each electrode 104, 105, carbon felt made of carbon fiber is used (Patent Documents 1, 2). In Patent Document 2, as shown in Fig. 6, the flow direction of the electrolyte solution (the direction connecting the opposite sides of the rectangular electrode on one side of the electrode (the surface on the side of the diaphragm 101 in Patent Document 2). And a plurality of flow grooves 104s provided in parallel to (direction).

特開2002-367659号公報Japanese Patent Laid-Open No. 2002-367659 特開2002-246035号公報Japanese Patent Laid-Open No. 2002-246035

RF電池では、電極内に電解液が均一的に流れ易く、かつこの電解液が電極で十分に電池反応が行えることが望まれる。   In the RF battery, it is desired that the electrolytic solution easily flows uniformly in the electrode, and that the electrolytic solution can sufficiently perform a battery reaction in the electrode.

上述のように電解液の流通方向に平行な流通溝(以下、縦溝と呼ぶ)を複数具える電極(以下、縦溝有り電極と呼ぶ)では、電解液が当該縦溝部分を流れ易いため、この溝加工が施されていない一様な表面を有する電極(以下、溝無し電極と呼ぶ)と比較して、電極の圧力損失や電極に加えられる圧力のばらつきを低減できる。そのため、電極の全体に亘って電解液の流れを均一的にし易い。また、この電極では、上記圧力損失が主として上記流通溝の断面形状により決められるため、電極における電解液の流量分布を制御し易い(流量のばらつきを小さくし易い)。   As described above, in an electrode having a plurality of flow grooves (hereinafter referred to as vertical grooves) parallel to the flow direction of the electrolytic solution (hereinafter referred to as vertical grooves), the electrolyte easily flows through the vertical groove portion. As compared with an electrode having a uniform surface not subjected to groove processing (hereinafter referred to as a grooveless electrode), pressure loss of the electrode and variation in pressure applied to the electrode can be reduced. Therefore, it is easy to make the flow of the electrolyte uniform over the entire electrode. Further, in this electrode, since the pressure loss is mainly determined by the cross-sectional shape of the flow groove, it is easy to control the flow rate distribution of the electrolytic solution in the electrode (to easily reduce the variation in flow rate).

しかし、上記流通溝(縦溝)部分が電極の他の部分に比較して電解液が流れ易いことから、電解液が電池反応に寄与せずに通過する可能性がある。そのため、内部抵抗(電池内の電気抵抗)が上昇する可能性がある。   However, since the electrolytic solution flows more easily in the flow groove (vertical groove) portion than in other portions of the electrode, the electrolytic solution may pass without contributing to the battery reaction. Therefore, internal resistance (electrical resistance in the battery) may increase.

また、長期の使用により上記流通溝(縦溝)の一部が詰まったり、溝の形成不良などといった欠陥があると、この欠陥を有する溝以外の別の流通溝に電解液が余分に流れる可能性がある。電極の一部に電解液が余分に流れる領域が生じると、上記欠陥部分よりも下流側の領域では、溝無し電極よりも電解液が流れ難くなる可能性がある。このように電解液の流れに差が生じることで、電解液の流れが遅い箇所では、活物質が不足して過充電となり、この過充電の副反応により、正極では酸素、負極では水素が発生する可能性がある。上記酸素は、電極を含むRF電池の構成部材を酸化させる恐れがあり、これらの構成部材の寿命を短くする原因となり得る。   In addition, if there is a defect such as clogging of the distribution groove (vertical groove) due to long-term use or formation failure of the groove, the electrolyte may flow to another distribution groove other than the groove having this defect. There is sex. If a region where the electrolytic solution flows excessively in a part of the electrode is generated, the electrolytic solution may be less likely to flow than the grooveless electrode in a region downstream of the defective portion. As a result of the difference in the flow of the electrolyte, the active material is insufficient and overcharge occurs at the location where the flow of the electrolyte is slow. Oxygen is generated at the positive electrode and hydrogen is generated at the negative electrode due to this overcharge side reaction. there's a possibility that. The oxygen may oxidize the constituent members of the RF battery including the electrodes, and may cause the life of these constituent members to be shortened.

そこで、本発明の目的の一つは、電極内に均一的に電解液が流れ易く、電池反応が十分に行えるRF電池を提供することにある。また、本発明の他の目的は、上記RF電池の構成部材に好適なRF電池セル、及びRF電池用セルスタックを提供することにある。   Accordingly, one of the objects of the present invention is to provide an RF battery in which an electrolyte can easily flow uniformly in an electrode and a battery reaction can be sufficiently performed. Another object of the present invention is to provide an RF battery cell and an RF battery cell stack suitable for the constituent members of the RF battery.

本発明は、電極に具える流通溝の形成方向を従来の縦溝有り電極と異ならせることで、上記目的を達成する。   The present invention achieves the above-mentioned object by making the forming direction of the flow grooves provided in the electrodes different from those of the conventional vertical grooved electrodes.

本発明のレドックスフロー電池セルは、正極電解液が流通される正極電極と、負極電解液が流通される負極電極と、これら両電極の間に介在される隔膜とを具える。上記電極は、その表面に少なくとも一つの電解液の流通溝を有する。上記流通溝のうち、少なくとも一つは、その長手方向が前記電解液の流通方向に対して、実質的に直交するように設けられた横溝である。   The redox flow battery cell of the present invention includes a positive electrode through which a positive electrode electrolyte is circulated, a negative electrode through which a negative electrode electrolyte is circulated, and a diaphragm interposed between these two electrodes. The electrode has at least one electrolyte flow channel on its surface. At least one of the flow grooves is a horizontal groove provided so that the longitudinal direction thereof is substantially perpendicular to the flow direction of the electrolyte solution.

本発明レドックスフロー電池用セルスタックは、上記本発明レドックスフロー電池セルと、以下のフレームとが交互に複数積層されてなる。このフレームは、上記電池セルに具える各極電極が表裏に配置される双極板の外周に設けられて、上記各極電極への電解液の供給及び上記各極電極からの電解液の排出を行う。   The cell stack for the redox flow battery of the present invention is formed by alternately stacking a plurality of the above-described redox flow battery cells of the present invention and the following frames. This frame is provided on the outer periphery of a bipolar plate in which each electrode provided in the battery cell is arranged on the front and back sides, and supplies the electrolyte to each electrode and discharges the electrolyte from each electrode. Do.

本発明レドックスフロー電池は、上記本発明レドックスフロー電池用セルスタックと、上記セルスタックに具える上記各極電極に供給する各極電解液を貯留する各極タンクと、上記セルスタックと上記各極タンクとの間で上記各極電解液を移送する流通路とを具える。   The redox flow battery of the present invention includes the cell stack for the redox flow battery of the present invention, each electrode tank storing each electrode electrolyte supplied to each electrode provided in the cell stack, the cell stack, and each electrode. And a flow passage for transferring each of the electrode electrolytes to and from the tank.

上記本発明によれば、横溝が電解液の流れを阻止するように存在するため、電池反応に寄与せずに通過する電解液を効果的に低減する、或いは実質的に無くすことができる。従って、本発明によれば、電極で電池反応を十分に行え、上記電解液の素通りに伴う内部抵抗の上昇が生じ難く、後述する試験例に示すように内部抵抗を小さくできる。また、横溝部分は、電極の他の部分と比較して電解液が流れ易い。そのため、電解液の流通も良好に行える上に、横溝に流れた電解液の圧力が横溝の長手方向に沿って均一的になり易い。従って、横溝の長手方向の一部に欠陥があった場合でも、この欠陥以外の箇所では、電解液が十分に流れることから、当該横溝の下流側領域にも電解液が十分に行き渡ることができる。即ち、本発明は、電極内で電解液の滞留が生じ難く、滞留に伴う電解液の流量のばらつきが生じ難い。このような本発明によれば、電極内に局所的に活物質が不足した状態が生じ難く、活物質不足による過充電、及びこの過充電に伴う副反応も生じ難い。更に、横溝に電解液が十分に流通可能なため、電極内の電解液の充電深度が均一化されることから、電極内で局所的に電解液の充電深度が上昇することを防止できる。このことからも、本発明は、過充電や過充電に伴う副反応が生じ難い。   According to the present invention, since the lateral groove exists so as to prevent the flow of the electrolytic solution, it is possible to effectively reduce or substantially eliminate the electrolytic solution that passes without contributing to the battery reaction. Therefore, according to the present invention, the battery reaction can be sufficiently performed by the electrode, the internal resistance is hardly increased due to the passage of the electrolytic solution, and the internal resistance can be reduced as shown in a test example described later. In addition, the electrolytic solution easily flows in the lateral groove portion as compared with other portions of the electrode. For this reason, the electrolyte can be distributed well, and the pressure of the electrolyte flowing in the lateral groove tends to be uniform along the longitudinal direction of the lateral groove. Therefore, even when there is a defect in a part of the longitudinal direction of the lateral groove, the electrolytic solution sufficiently flows in a portion other than the defect, so that the electrolytic solution can be sufficiently distributed to the downstream region of the lateral groove. . That is, according to the present invention, it is difficult for the electrolytic solution to stay in the electrode, and variations in the flow rate of the electrolytic solution due to the stay are unlikely to occur. According to the present invention, a state in which the active material is locally insufficient in the electrode is unlikely to occur, and overcharge due to the lack of active material and side reactions associated with this overcharge are unlikely to occur. Furthermore, since the electrolyte solution can sufficiently flow through the lateral groove, the depth of charge of the electrolyte solution in the electrode is made uniform, so that the depth of charge of the electrolyte solution can be prevented from locally increasing in the electrode. Also from this fact, the present invention is less likely to cause side reactions associated with overcharge and overcharge.

従って、上記本発明によれば、(1)電極内を電解液が均一的に流れることができる、(2)過充電を防止して、電解液の充電深度を均一化することができる、(3)過充電の副反応により電極などのRF電池の構成部材の酸化劣化などを抑制し、RF電池の構成部材の長寿命化を図ることができる、といった優れた効果を有する。また、上記劣化の抑制により、メンテナンスの頻度を少なくでき、本発明RF電池は、管理し易い上に、信頼性が高い。   Therefore, according to the present invention, (1) the electrolyte solution can flow uniformly in the electrode, (2) the overcharge can be prevented, and the charge depth of the electrolyte solution can be made uniform. 3) It has an excellent effect of suppressing the oxidative deterioration of the RF battery components such as electrodes due to the overcharge side reaction and extending the life of the RF battery components. In addition, the frequency of maintenance can be reduced by suppressing the deterioration, and the RF battery of the present invention is easy to manage and has high reliability.

本発明において電極は、横溝部分と横溝部分以外の領域とを具え、横溝部分が電解液の流通促進箇所として機能し、横溝部分以外の領域は、代表的には、電極において横溝の長手方向に沿って電極の全体に電解液が行き渡ることを促進する整流箇所として機能する。   In the present invention, the electrode has a lateral groove portion and a region other than the lateral groove portion, and the lateral groove portion functions as a flow promoting portion of the electrolyte, and the region other than the lateral groove portion is typically in the longitudinal direction of the lateral groove in the electrode. Along with this, it functions as a rectification point that promotes the electrolyte to spread throughout the electrode.

本発明において電極は、代表的には、矩形状が挙げられる。その他、多角形状、円形状、楕円形状、レーストラック状などとしてもよいが、RF電池全体における電極の占有率やRF電池を設置した際のスペースなどを考慮すると、矩形状が利用し易いと考えられる。   In the present invention, the electrode typically has a rectangular shape. In addition, a polygonal shape, a circular shape, an elliptical shape, a racetrack shape, and the like may be used. However, considering the electrode occupancy ratio in the entire RF battery and the space when the RF battery is installed, the rectangular shape is considered easy to use. It is done.

本発明において電解液の流通方向とは、上記矩形状や多角形状の電極において対向する二辺(周縁)を繋ぐ方向とする。代表的には、上下方向、或いは左右方向が挙げられる。円形状、楕円形状の電極では、径方向が挙げられる。   In the present invention, the flow direction of the electrolyte is a direction connecting two opposite sides (peripheries) in the rectangular or polygonal electrodes. Typically, the up-down direction or the left-right direction can be mentioned. In the case of a circular or elliptical electrode, the radial direction may be mentioned.

本発明の一形態として、上記横溝における上記流通方向に対する傾斜角が90°±10°である形態が挙げられる。   As one form of this invention, the form whose inclination | tilt angle with respect to the said flow direction in the said horizontal groove is 90 degrees +/- 10 degrees is mentioned.

上記傾斜角が0°又は180°に近づくと、従来の縦溝有り電極と同様に、電解液が電池反応に寄与せずに通過する可能性がある。従って、上記傾斜角は90°±10°が好ましい。傾斜角が90°に近いほど(例えば、90°±5°以内)、電池反応に寄与せずに通過する電解液の低減効果が高いと考えら、90°が最も好ましいと考えられる。   When the tilt angle approaches 0 ° or 180 °, the electrolyte solution may pass without contributing to the battery reaction as in the case of the conventional fluted electrode. Therefore, the inclination angle is preferably 90 ° ± 10 °. As the inclination angle is closer to 90 ° (for example, within 90 ° ± 5 °), 90 ° is considered to be most preferable because the effect of reducing the electrolyte solution that passes without contributing to the battery reaction is high.

本発明の一形態として、上記横溝を複数具え、これら横溝が平行に設けられた形態が挙げられる。   As one form of this invention, the form which provided the said horizontal groove in multiple numbers and these horizontal grooves were provided in parallel is mentioned.

上記横溝は、一つでもよいが、複数具えた電極では、上述のように電解液の流通促進箇所(横溝部分)と、整流箇所(横溝部分以外の領域)とが交互に配置されるため、電解液の流通の促進と整流とを繰り返し行える。その結果、電解液は電極内をより均一に流れることができる。   The number of the transverse grooves may be one, but in the case of a plurality of electrodes, as described above, the electrolyte circulation promotion locations (lateral groove portions) and the rectification locations (regions other than the lateral groove portions) are alternately arranged. It is possible to repeatedly promote and rectify the flow of the electrolyte. As a result, the electrolytic solution can flow more uniformly in the electrode.

本発明の一形態として、上記流通溝のうち、少なくとも一つは、その長手方向が上記電解液の流通方向に実質的に平行するように設けられた縦溝であり、上記電極は、上記横溝及び上記縦溝により区切られる複数の領域を有する形態が挙げられる。   As one aspect of the present invention, at least one of the flow grooves is a vertical groove whose longitudinal direction is substantially parallel to the flow direction of the electrolyte solution, and the electrode is the horizontal groove. And the form which has several area | region divided by the said vertical groove is mentioned.

電極が横溝のみを具える形態とすることができるが、上記形態のように横溝に加えて縦溝をも具える形態とすることで、上述した横溝による種々の効果に加えて、縦溝の効果:圧力損失の低減をも有することができる。また、上記形態のRF電池は、圧力損失が少ないため、各極電解液の供給に利用されるポンプの動力を小さくでき、システム効率が高い。   The electrode can be configured to have only a lateral groove. However, in addition to the various effects of the lateral groove described above, the vertical groove can be formed by providing the longitudinal groove in addition to the lateral groove as in the above embodiment. Effect: Can also have a reduction in pressure loss. Moreover, since the RF battery of the said form has few pressure losses, the motive power of the pump utilized for supply of each electrolyte solution can be made small, and system efficiency is high.

本発明の一形態として、上記横溝及び上記縦溝を複数具え、これら横溝及び縦溝が格子状に交差した形態が挙げられる。   As one form of this invention, the said horizontal groove and the said vertical groove are provided with two or more, and the form which these horizontal grooves and the vertical grooves cross | intersected in the grid | lattice form is mentioned.

上記形態によれば、上述のように横溝を複数具える効果、即ち、電解液の流通の促進と整流との繰り返しによる電解液の流れの均一化に加えて、縦溝により圧力損失の低減を図ることができる。また、縦溝一つあたりに横溝との交点が複数存在し、各交点で、縦溝部分を流れてきた電解液の少なくとも一部は横溝の長手方向に沿って流れる。従って、上記形態によれば、従来の縦溝有り電極と比較して、電池反応に寄与せずに通過する電解液を効果的に低減でき、電極全体で電池反応を行えると期待される。   According to the above aspect, in addition to the effect of providing a plurality of lateral grooves as described above, that is, in addition to the uniform flow of the electrolytic solution by repeating the circulation and rectification of the electrolytic solution, the longitudinal grooves can reduce the pressure loss. Can be planned. In addition, there are a plurality of intersections with the lateral grooves per longitudinal groove, and at each intersection, at least a part of the electrolyte flowing through the longitudinal groove portion flows along the longitudinal direction of the lateral grooves. Therefore, according to the said form, compared with the conventional electrode with a longitudinal groove, the electrolyte solution which passes without contributing to a battery reaction can be reduced effectively, and it is anticipated that a battery reaction can be performed by the whole electrode.

本発明レドックスフロー電池は、電極内に均等に電解液が流れ易い。本発明レドックスフロー電池セル及びレドックスフロー電池用セルスタックは、上記本発明レドックスフロー電池の構成部材に好適に利用できる。   In the redox flow battery of the present invention, the electrolyte easily flows evenly in the electrode. The redox flow battery cell of the present invention and the cell stack for redox flow battery can be suitably used for the constituent member of the redox flow battery of the present invention.

図1(A)は、実施形態1のRF電池に具える電極がフレームに配置された状態を示す概略平面図、図1(B)は、この電極のB-B断面図、図1(C)は、この電極及びフレームの配置状態を説明する分解斜視図である。FIG. 1 (A) is a schematic plan view showing a state in which an electrode included in the RF battery of Embodiment 1 is arranged on a frame, FIG. 1 (B) is a BB cross-sectional view of this electrode, and FIG. FIG. 3 is an exploded perspective view for explaining an arrangement state of the electrodes and the frame. 図2は、横溝が設けられた電極を具えるRF電池と、縦溝が設けられた電極を具えるRF電池とにおいて、単位時間に対する電極の単位面積当たりの電解液の流量と内部抵抗との関係を示すグラフである。FIG. 2 shows the relationship between the flow rate of the electrolyte solution per unit area of the electrode and the internal resistance per unit time in an RF battery including an electrode provided with a lateral groove and an RF battery including an electrode provided with a vertical groove. It is a graph which shows a relationship. 図3(A)は、実施形態2のRF電池に具える電極がフレームに配置された状態を示す概略平面図、図3(B)は、この電極のB-B断面図である。FIG. 3 (A) is a schematic plan view showing a state in which the electrodes included in the RF battery of Embodiment 2 are arranged on the frame, and FIG. 3 (B) is a cross-sectional view of this electrode taken along the line BB. 図4(A)は、実施形態3のRF電池に具える電極がフレームに配置された状態を示す概略平面図、図4(B)は、この電極のB-B断面図、図4(C)は、この電極のC-C断面図である。FIG. 4 (A) is a schematic plan view showing a state where the electrodes included in the RF battery of Embodiment 3 are arranged on the frame, FIG. 4 (B) is a BB cross-sectional view of this electrode, and FIG. 4 (C) is FIG. 4 is a CC cross-sectional view of this electrode. 図5は、RF電池の動作原理を示す説明図である。FIG. 5 is an explanatory diagram showing the operation principle of the RF battery. 図6は、従来のRF電池に具えるセルスタックの概略構成図である。FIG. 6 is a schematic configuration diagram of a cell stack included in a conventional RF battery.

以下、図面を参照して、実施形態のレドックスフロー電池(RF電池)、この電池に具えるRF電池セル、及びRF電池用セルスタックを説明する。図において同一符号は、同一名称物を示す。   Hereinafter, a redox flow battery (RF battery), an RF battery cell included in the battery, and a cell stack for an RF battery will be described with reference to the drawings. In the figure, the same reference numeral indicates the same name object.

本発明RF電池の基本的構成は図5,図6に示す従来のRF電池と同様である。即ち、正極電解液が流通される正極電極14と、負極電解液が流通される負極電極15と、両電極14,15の間に介在される隔膜(代表的にはイオン交換膜)101とを具える電池セル10を具える。より具体的には、このRF電池は、各極電極14,15が表裏に配置される双極板121を有するフレーム12と上記電池セル10とが交互に積層されてなるセルスタック(図6)と、各極電極14,15に供給する各極電解液を貯留する各極タンク(図5)と、上記セルスタックと上記各極タンクとに接続されて上記電解液の流通路となる配管(図5)とを具える。このRF電池は、バナジウムイオンなどの金属イオンを活物質に含有する硫酸溶液などの電解液を上記各極タンクから上記セルスタックに供給して電池反応を行う。そして、このRF電池は、代表的には、交流/直流変換器を介して、発電部(例えば、一般の発電所(火力、水力、原子力、風力、太陽光など)の他、一般家屋や集合住宅などを含む各所に設けられた太陽光発電機、風力発電機などの分散電源を含む)と負荷(一般家庭、プラント、工場などの需要家)とに接続され、発電部を電力供給源として充電を行い、負荷を電力提供対象として放電を行う。本発明RF電池は、このように発電部と負荷との間に組みつけられて電力系統の一要素に利用される。   The basic configuration of the RF battery of the present invention is the same as that of the conventional RF battery shown in FIGS. That is, a positive electrode 14 through which a positive electrolyte solution is circulated, a negative electrode 15 through which a negative electrode electrolyte solution is circulated, and a diaphragm (typically an ion exchange membrane) 101 interposed between both electrodes 14 and 15 A battery cell 10 is provided. More specifically, this RF battery has a cell stack (FIG. 6) in which the battery cell 10 and the frame 12 having the bipolar plate 121 on which the electrode electrodes 14 and 15 are arranged on the front and back are alternately stacked. In addition, each electrode tank (FIG. 5) for storing each electrode electrolyte supplied to each electrode 14, 15 and a pipe (FIG. 5) connected to the cell stack and each electrode tank and serving as a flow path for the electrolyte solution 5) with. In this RF battery, an electrolytic solution such as a sulfuric acid solution containing metal ions such as vanadium ions as an active material is supplied from the electrode tanks to the cell stack to perform a battery reaction. This RF battery typically has an AC / DC converter through a power generation unit (e.g., a general power plant (thermal power, hydropower, nuclear power, wind power, solar power, etc.), a general house or a collective. Connected to solar power generators (including distributed power supplies such as wind power generators installed in various places including houses) and loads (customers such as ordinary households, plants, factories, etc.) and using the power generation unit as a power supply source Charging is performed and discharging is performed with the load as a power supply target. The RF battery of the present invention is assembled between the power generation unit and the load as described above and used as one element of the power system.

本発明RF電池の特徴とするところは、電池セル10の構成部材である電極1Aの形状にある。以下、この電極1Aを中心に説明し、その他の構成については詳細な説明を省略する。   The RF battery of the present invention is characterized by the shape of the electrode 1A that is a constituent member of the battery cell 10. Hereinafter, the description will be focused on the electrode 1A, and detailed description of other components will be omitted.

[実施形態1]
(構成)
図1を参照して、実施形態1のRF電池セルに具える電極1Aを説明する。
[Embodiment 1]
(Constitution)
An electrode 1A included in the RF battery cell of Embodiment 1 will be described with reference to FIG.

上記正極電極14,負極電極15に利用される電極1Aは、矩形状の板材であり、その一面(例えば、隔膜101に接する側の面)に電解液の流通溝2Aを複数具える。各流通溝2Aはいずれも、電極1Aの対向する二辺(ここでは左右に配置された上下方向に延びる周縁)間を繋ぐように、一方の周縁から他方の周縁に向かって左右方向に延びる直線状に形成され、等間隔に並列されている。なお、図1及び後述する図3,図4の流通溝の数は例示である。   The electrode 1A used for the positive electrode 14 and the negative electrode 15 is a rectangular plate material, and includes a plurality of electrolytic solution flow grooves 2A on one surface (for example, the surface in contact with the diaphragm 101). Each of the flow grooves 2A is a straight line extending in the left-right direction from one periphery to the other periphery so as to connect two opposing sides of the electrode 1A (here, the periphery extending in the up-down direction disposed on the left and right). Are formed in parallel with each other at regular intervals. Note that the number of flow grooves in FIG. 1 and FIGS. 3 and 4 to be described later is merely an example.

そして、各流通溝2Aはいずれも、その長手方向が電解液の流通方向に対して、直交するように設けられた横溝である。ここでは、電解液の流通方向は、電極1Aの対向する二辺(ここでは左右方向に延びる周縁)間を繋ぐ方向(ここでは上下方向)としている。従って、各流通溝2Aは、電極1Aにおいて別の対向する二辺(ここでは上下に配置されて左右方向に延びる周縁)に平行に設けられている。このような横溝を複数具えることで、電極1Aの表面は、横溝と当該横溝が形成されていない矩形状の領域(以下、整流領域と呼ぶ)3Aとが交互に配置された形状である。   Each flow groove 2A is a horizontal groove provided such that its longitudinal direction is perpendicular to the flow direction of the electrolyte. Here, the flow direction of the electrolytic solution is a direction (here, the vertical direction) connecting the two opposite sides (here, the peripheral edge extending in the left-right direction) of the electrode 1A. Accordingly, each flow groove 2A is provided in parallel with another opposing two sides (here, a peripheral edge arranged vertically and extending in the left-right direction) in electrode 1A. By providing a plurality of such lateral grooves, the surface of the electrode 1A has a shape in which the lateral grooves and rectangular regions (hereinafter referred to as rectifying regions) 3A in which the lateral grooves are not formed are alternately arranged.

電極1Aは、矩形枠状のフレーム12に囲まれた矩形状の双極板121に配置されて利用される。フレーム12には、表裏を貫通する給液孔(正極電極14では給液孔123,負極電極15では給液孔124)及び排液孔(正極電極14では排液孔125,負極電極15では排液孔126)が設けられている。また、フレーム12の一面(図1(A)では表面)には、正極給液孔123に連続する液導入溝123i、及び正極排液孔125に連続する液排出溝125oが設けられ、他面(図1(A)では裏面)には、負極給液孔124に連続する液導入溝124i、及び負極排液孔126に連続する液排出溝126oが設けられている。上記双極板121に配置された電極1Aは、給液孔123,124から液導入溝123i,124iを介して、各極電解液が供給される。供給された電解液は、電池反応に利用され、その後、電極1Aから液排出溝125o,126oを介して排液孔125,126から排出される。   The electrode 1A is used by being disposed on a rectangular bipolar plate 121 surrounded by a rectangular frame 12. The frame 12 has a liquid supply hole (a liquid supply hole 123 for the positive electrode 14 and a liquid supply hole 124 for the negative electrode 15) and a liquid discharge hole (a liquid discharge hole 125 for the positive electrode 14 and a liquid discharge hole 125 for the negative electrode 15). A liquid hole 126) is provided. Further, on one surface of the frame 12 (the front surface in FIG. 1A), a liquid introduction groove 123i continuous with the positive electrode supply hole 123 and a liquid discharge groove 125o continuous with the positive electrode drain hole 125 are provided. A liquid introduction groove 124 i continuous with the negative electrode liquid supply hole 124 and a liquid discharge groove 126 o continuous with the negative electrode liquid discharge hole 126 are provided on the back surface (in FIG. 1A). The electrode 1A disposed on the bipolar plate 121 is supplied with each electrolyte from the liquid supply holes 123 and 124 through the liquid introduction grooves 123i and 124i. The supplied electrolyte is used for the battery reaction, and then discharged from the drain holes 125 and 126 through the liquid discharge grooves 125o and 126o from the electrode 1A.

電極1Aが双極板121に配置された状態において電極の流通方向は、上記給液孔123,124及び排液孔125,126の形成位置により規定することができる。例えば、図1(A)に示すように給液孔123,124及び排液孔125,126がフレーム12の異なる領域(ここでは上下の領域)に形成されている場合、当該両領域を繋ぐ方向(ここでは上下方向)が挙げられる。例えば、給液孔123,124及び排液孔125,126がフレーム12の同じ領域(上方領域のみ、など)に形成されている場合は、給液孔123,124に連続する液導入溝123i,124iの開口部が位置する領域と、排液孔125,126に連続する液排出溝125o,126oの開口部が位置する領域とを繋ぐ方向が挙げられる。   In a state where the electrode 1A is disposed on the bipolar plate 121, the flow direction of the electrode can be defined by the formation positions of the liquid supply holes 123 and 124 and the drainage holes 125 and 126. For example, when the liquid supply holes 123 and 124 and the drainage holes 125 and 126 are formed in different regions (here, upper and lower regions) of the frame 12 as shown in FIG. Direction). For example, when the liquid supply holes 123 and 124 and the drain holes 125 and 126 are formed in the same region of the frame 12 (only the upper region, etc.), the openings of the liquid introduction grooves 123i and 124i that are continuous with the liquid supply holes 123 and 124 are positioned. And the region where the openings of the liquid discharge grooves 125o and 126o continuous to the drain holes 125 and 126 are located.

なお、ここでは、フレーム12において対向する各領域(図1(A)では上下の領域)に給液孔123,124及び排液孔125,126がそれぞれ設けられた形態を示すが、給液孔123,124及び排液孔125,126がフレームの同じ側の領域(図1(A)において上方領域のみ、下方領域のみ、左方領域のみ、右方領域のみのいずれか)に設けられる形態もある。また、ここでは、給液孔123,124及び排液孔125,126をそれぞれ一つずつ具える形態を示すが、給液孔123,124及び排液孔125,126をそれぞれ複数具える形態もある。   Here, although the liquid supply holes 123 and 124 and the drainage holes 125 and 126 are respectively provided in respective regions (upper and lower regions in FIG. 1A) in the frame 12, the liquid supply holes 123 and 124 and the drainage are shown. There is also a form in which the holes 125 and 126 are provided in the region on the same side of the frame (in FIG. 1A, only the upper region, only the lower region, only the left region, or only the right region). In addition, here, a mode in which each of the liquid supply holes 123 and 124 and the liquid discharge holes 125 and 126 is provided is shown, but there is also a mode in which a plurality of liquid supply holes 123 and 124 and a plurality of liquid discharge holes 125 and 126 are provided.

上記流通溝(横溝)2Aの断面形状、長手方向の形状は、適宜選択することができる。例えば、断面形状は、矩形状、半円状、V字状などが挙げられる。長手方向の形状は、上記直線状の他、波形状、ジグザグ形状などとすることができる。波形状などの直線以外の形状の場合、流通溝の長手方向とは、波形やジグザグの振幅の中心を通る直線に沿った方向とする。流通溝(横溝)2Aの溝幅、深さ、個数、各溝を形成する間隔は適宜選択することができる。また、複数の流通溝を具える場合、各溝の断面形状、溝幅、深さを異ならせた形態とすることができる。更に、流通溝(横溝)2Aは、電極1Aの両面に設けた形態とすることができる。両面に流通溝を具える場合、各面における流通溝(横溝)2Aの断面形状などの仕様、配置位置、個数などが異なっていてもよい。これら断面形状、長手方向の形状、溝幅、深さ、個数、形成位置に関する内容は、後述する実施形態3の流通溝(縦溝)2Cについても同様である。   The cross-sectional shape and the longitudinal shape of the flow groove (lateral groove) 2A can be selected as appropriate. For example, examples of the cross-sectional shape include a rectangular shape, a semicircular shape, and a V shape. The shape in the longitudinal direction can be a wave shape, a zigzag shape, or the like, in addition to the linear shape. In the case of a shape other than a straight line such as a wave shape, the longitudinal direction of the circulation groove is a direction along a straight line passing through the center of the waveform or the zigzag amplitude. The groove width, depth, number of circulation grooves (lateral grooves) 2A, and intervals for forming each groove can be selected as appropriate. Moreover, when providing a some distribution | circulation groove | channel, it can be set as the form which varied the cross-sectional shape, groove width, and depth of each groove | channel. Further, the flow grooves (lateral grooves) 2A can be provided on both surfaces of the electrode 1A. When the flow grooves are provided on both surfaces, the specifications such as the cross-sectional shape of the flow grooves (lateral grooves) 2A on each surface, the arrangement position, the number, etc. may be different. The contents relating to the cross-sectional shape, the shape in the longitudinal direction, the groove width, the depth, the number, and the formation position are the same for the flow groove (vertical groove) 2C of the third embodiment to be described later.

電極1Aには、公知の材質のもの、代表的には、炭素繊維から構成されるカーボンフェルト製のものが利用できる。そして、所望の素材に、プレス加工、切削、ラインエンボス加工などの適宜な方法により、流通溝2Aを形成するとよい。   As the electrode 1A, a known material, typically, a carbon felt made of carbon fiber can be used. Then, the flow groove 2A may be formed in a desired material by an appropriate method such as press working, cutting, or line embossing.

(電解液の流れ)
上記電極1Aを具えるRF電池を運転すると、給液孔123(124)から液導入溝123i(124i)を経て電極1Aに電解液が供給される。液導入溝123i(124i)の開口部を経た電解液は、電極1Aの周縁(図1(A)では、下辺縁)からその周縁に沿って整流領域3Aの全体に広がる。即ち、当該領域3Aは、整流部として機能する。整流領域3A内の電解液は、ここでは矢印で示すように下方から上方に向かって進行する。上記整流領域3Aを経た電解液が流通溝2Aに達すると、流通溝2A部分の方が当該領域3Aよりも電解液が流れ易いため、流通溝2Aの長手方向(図1(A)では左右方向)に沿って電解液が流れる。即ち、流通溝2Aは、電解液の流通の促進部として機能する。上記流通溝2Aを経た電解液は、当該流通溝2Aよりも下流側の整流領域3Aで上述のように当該領域3Aの全体に広がる。電解液は、この整流と流通の促進とを繰り返しながら、上方に向かい、最終的に液排出溝125o(126o)で集約されて排液孔125(126)から排出される。
(Electrolyte flow)
When the RF battery including the electrode 1A is operated, the electrolytic solution is supplied from the liquid supply hole 123 (124) to the electrode 1A through the liquid introduction groove 123i (124i). The electrolytic solution that has passed through the opening of the liquid introduction groove 123i (124i) spreads from the periphery of the electrode 1A (the lower edge in FIG. 1A) to the entire rectification region 3A along the periphery. That is, the region 3A functions as a rectifying unit. The electrolyte solution in the rectifying region 3A advances from below to above as indicated by an arrow here. When the electrolytic solution having passed through the rectifying region 3A reaches the flow groove 2A, the flow direction of the flow groove 2A (the left-right direction in FIG. ) The electrolyte flows along. That is, the flow groove 2A functions as a flow promoting part for the electrolytic solution. The electrolyte solution that has passed through the flow groove 2A spreads over the entire region 3A as described above in the rectification region 3A on the downstream side of the flow groove 2A. The electrolytic solution is directed upward while repeating this rectification and promotion of circulation, and is finally collected in the liquid discharge groove 125o (126o) and discharged from the drain hole 125 (126).

(効果)
上記RF電池によれば、流通溝(横溝)2Aにより、電解液の進行が一旦阻止された状態になるため、電池反応に寄与せずに電極1Aを通過する電解液を効果的に低減することができる。また、流通溝(横溝)2A部分は、整流領域3Aよりも電解液が流れ易いことで、このRF電池は、全体として電解液の良好な流通を確保することができる。更に、流通溝(横溝)2Aの一部に欠陥が存在しても、当該流通溝(横溝)2Aにおいてこの欠陥以外の箇所では電解液が良好に流れることができる上に、この電解液が当該流通溝(横溝)2Aの下流側の整流領域3Aに達して、当該領域3A全体に広がることで、上記欠陥の下流側領域にも電解液を行き渡ることができる。従って、上記RF電池は、電池反応を十分に行え、内部抵抗の上昇を抑制することができる。
(effect)
According to the RF battery, since the flow of the electrolytic solution is once blocked by the flow groove (lateral groove) 2A, it is possible to effectively reduce the electrolytic solution that passes through the electrode 1A without contributing to the battery reaction. Can do. In addition, since the electrolytic solution flows more easily in the flow groove (lateral groove) 2A portion than in the rectifying region 3A, this RF battery can ensure a good flow of the electrolytic solution as a whole. Furthermore, even if there is a defect in a part of the flow groove (lateral groove) 2A, the electrolyte solution can flow well in the flow groove (lateral groove) 2A other than the defect, and the electrolyte solution By reaching the rectifying region 3A on the downstream side of the flow groove (lateral groove) 2A and spreading over the entire region 3A, the electrolyte can be distributed to the downstream region of the defect. Therefore, the RF battery can sufficiently perform a battery reaction and suppress an increase in internal resistance.

また、上記RF電池では、電極内で電解液が滞留し難く、電解液の流量が局所的に異なることを抑制できる。その結果、過充電を抑制できる。更に、上記RF電池では、流通溝(横溝)2Aを通過する際に電解液の充電深度が均一化されることで、電解液の充電深度が局所的に異なることを抑制できる。このことからも、上記RF電池は、過充電を抑制できる。その他、上記RF電池では、電極1A自体が整流機能を有することで、フレーム12に整流溝を設ける必要が無い、或いは整流溝の形状を簡略化することができると期待される。   Further, in the RF battery, it is difficult for the electrolytic solution to stay in the electrode, and the flow rate of the electrolytic solution can be suppressed from being locally different. As a result, overcharge can be suppressed. Furthermore, in the RF battery, the charging depth of the electrolytic solution is made uniform when passing through the flow groove (lateral groove) 2A, so that the charging depth of the electrolytic solution can be prevented from being locally different. Also from this, the RF battery can suppress overcharge. In addition, in the RF battery, it is expected that the electrode 12A itself has a rectifying function, so that it is not necessary to provide a rectifying groove in the frame 12, or the shape of the rectifying groove can be simplified.

更に、上記RF電池は、電極内に電解液を均一的に流すことができる上に、過充電の副反応に伴うRF電池の構成部材の酸化劣化などを抑制して、当該構成部材の長寿命化を図ることができる。特に、上記RF電池では、複数の流通溝(横溝)2Aを具えることで、上述した種々の効果が十分に得られると考えられる。   Furthermore, the RF battery can flow the electrolyte uniformly in the electrode, and further suppress the oxidative deterioration of the constituent parts of the RF battery due to the side reaction of the overcharge, so that the long life of the constituent parts is achieved. Can be achieved. In particular, it is considered that the above-described various effects can be sufficiently obtained by providing the plurality of flow grooves (lateral grooves) 2A in the RF battery.

[試験例]
電解液の流通方向に直交する流通溝が設けられた電極(以下、横溝有り電極と呼ぶ)を具えるRF電池と、電解液の流通方向に平行な流通溝が設けられた縦溝有り電極を具えるRF電池とを作製し、電池内の内部抵抗を測定した。その結果を図2に示す。
[Test example]
An RF battery including an electrode provided with a flow groove perpendicular to the flow direction of the electrolyte (hereinafter referred to as a lateral groove electrode) and a vertical groove electrode provided with a flow groove parallel to the flow direction of the electrolyte A prepared RF battery was fabricated, and the internal resistance in the battery was measured. The result is shown in FIG.

この試験で用いた横溝有り電極及び縦溝有り電極は、流通溝の形成方向が異なる以外の点は、同様の構成(電極の材質、溝の断面形状、溝幅、深さ、個数)とし、各電極の面積はいずれも、500cm2とした。上記電極を用いて、図6に示すようなセルスタックを作製し、単位時間(min)当たりに供給する電解液(ここでは、バナジウム硫酸溶液を使用)の量を変化させた。ここでは、電極の単位面積当たりの電解液量(ミリリットル(ml=cc)/cm2)が0.4ml/cm2,0.6ml/cm2,0.8ml/cm2となるように、電解液量を変化させた。そして、各電解液量における1セルあたりの内部抵抗(セル抵抗率:Ω・cm2/セル)を以下のように求めた。作製した各セルスタックを用いて電流密度:70mA/cm2での定電流充放電を行い、充放電時の端子電圧を測定し、端子電圧の測定値の推移からセル抵抗率を求めた。その結果を表1,図2に示す。 The electrodes with horizontal grooves and vertical grooves used in this test have the same configuration (electrode material, groove cross-sectional shape, groove width, depth, number) except that the formation direction of the flow grooves is different. The area of each electrode was 500 cm 2 . A cell stack as shown in FIG. 6 was prepared using the above electrode, and the amount of electrolyte solution (here, vanadium sulfate solution used) supplied per unit time (min) was changed. Here, the amount of electrolytic solution per unit area of the electrode (milliliter (ml = cc) / cm 2 ) is 0.4 ml / cm 2 , 0.6 ml / cm 2 , 0.8 ml / cm 2. Changed. Then, the internal resistance per cell (cell resistivity: Ω · cm 2 / cell) in each electrolyte amount was determined as follows. Each cell stack produced was subjected to constant current charge / discharge at a current density of 70 mA / cm 2 , the terminal voltage at the time of charge / discharge was measured, and the cell resistivity was determined from the transition of the measured value of the terminal voltage. The results are shown in Table 1 and FIG.

Figure 2012146469
Figure 2012146469

表1,図2に示すように、単位時間に対する電極の単位面積当たりの電解液量が多いほど、内部抵抗が小さくなっている。特に、横溝有り電極を具えるRF電池は、縦溝有り電極を具えるRF電池よりも電気抵抗が小さいことが分かる。このような結果となった理由として、上述のように横溝有り電極は、縦溝有り電極よりも電解液が良好に流れるためであると考えられる。   As shown in Table 1 and FIG. 2, the larger the amount of electrolyte solution per unit area of the electrode per unit time, the smaller the internal resistance. In particular, it can be seen that an RF battery having a lateral grooved electrode has a lower electrical resistance than an RF battery having a vertical grooved electrode. The reason for this result is considered to be that the electrode with lateral grooves flows better than the electrode with vertical grooves as described above.

[実施形態2]
実施形態1では、電極1Aに設けられた流通溝2Aが電解液の流通方向に直交する形態を説明した。その他、図3に示す電極1Bのように、流通溝2Bが電解液の流通方向に対して非直交に交差するように設けられた形態が挙げられる。ここでも、電極1Bを中心に説明し、その他の重複する構成及び効果は詳細な説明を省略する。
[Embodiment 2]
In the first embodiment, the configuration in which the flow groove 2A provided in the electrode 1A is orthogonal to the flow direction of the electrolytic solution has been described. In addition, like the electrode 1B shown in FIG. 3, a configuration in which the flow grooves 2B are provided so as to intersect non-orthogonally with respect to the flow direction of the electrolytic solution can be mentioned. Here, the description will focus on the electrode 1B, and detailed description of other overlapping configurations and effects will be omitted.

電極1Bもその一面に、一方の周縁から他方の周縁に向かって、複数の直線状の流通溝2Bを等間隔に並列に具える。特に、各流通溝2Bはいずれも、その長手方向が電解液の流通方向(ここでは上下方向)に対して非直交に交差するように設けられた溝である。即ち、各流通溝2Bは、電極1Bにおいて対向する二辺(ここでは上下に配置されて左右方向に延びる周縁)に対して交差するように設けられている。ここでは、各流通溝2Bにおいて流通方向(図3(A)において二点鎖線で示す)に対する傾斜角θを81°としている。このような傾斜角θが90°±10°を満たす流通溝2Bも横溝と呼ぶ。特に、ここでは、給液孔123(124)と排液孔125(126)とがほぼ対角位置に設けられており、流通溝2Bは、各極給液孔から各極排液孔へのほぼ対角方向に向かって、同じ向きに傾斜している。図3(A)に示す紙面手前側:正極側では、流通溝2Bは、給液孔123から排液孔125に向かって左上がりに傾斜し、紙面奥側:負極では、図示していないが、流通溝2Bは、給液孔124から排液孔126に向かって右上がりに傾斜する。従って、両極電極が積層された状態で透視すると、各極電極の流通溝2Bが交差された状態である。また、流通溝2B間に形成される整流領域3Bは、台形状或いは平行四辺形状である。   The electrode 1B also includes a plurality of linear flow grooves 2B arranged in parallel at equal intervals from one peripheral edge to the other peripheral edge. In particular, each of the flow grooves 2B is a groove provided such that its longitudinal direction intersects non-orthogonally with the flow direction of the electrolyte solution (the vertical direction here). That is, each circulation groove 2B is provided so as to intersect two opposite sides (here, a peripheral edge arranged vertically and extending in the left-right direction) in the electrode 1B. Here, the inclination angle θ with respect to the distribution direction (indicated by a two-dot chain line in FIG. 3A) in each distribution groove 2B is set to 81 °. Such a flow groove 2B that satisfies the inclination angle θ of 90 ° ± 10 ° is also referred to as a transverse groove. In particular, here, the liquid supply hole 123 (124) and the drainage hole 125 (126) are provided at substantially diagonal positions, and the flow groove 2B is formed from each electrode liquid supply hole to each electrode drainage hole. It is inclined in the same direction almost diagonally. On the front side of the paper shown in FIG. 3 (A): on the positive electrode side, the flow groove 2B is inclined upward from the liquid supply hole 123 toward the drain hole 125, and on the back side of the paper: the negative electrode is not shown in the figure. The flow groove 2B is inclined upward from the liquid supply hole 124 toward the liquid discharge hole 126. Therefore, when seen through in a state where the bipolar electrodes are stacked, the flow grooves 2B of the polar electrodes are crossed. The rectifying region 3B formed between the flow grooves 2B has a trapezoidal shape or a parallelogram shape.

上記流通溝2Bの傾斜角θは90°±10°の範囲で適宜選択することができる。また、流通溝2Bの傾斜の向きも適宜選択することができる。その他、流通溝2Bのように流通方向に対して非直交に交差する溝と、実施形態1で説明した流通溝2Aのように直交する溝とを組み合せた形態とすることができる。   The inclination angle θ of the flow groove 2B can be appropriately selected within a range of 90 ° ± 10 °. Further, the direction of inclination of the flow groove 2B can also be selected as appropriate. In addition, a groove that intersects non-orthogonally with respect to the flow direction, such as the flow groove 2B, and a groove that is orthogonal to the flow groove 2A described in the first embodiment can be combined.

上記電極1Bを具えるRF電池も、実施形態1と同様に、流通溝(横溝)2Bにより、電池反応に寄与せずに電極1Bを通過する電解液を効果的に低減できる。   Similarly to the first embodiment, the RF battery including the electrode 1B can effectively reduce the electrolyte passing through the electrode 1B without contributing to the battery reaction by the flow groove (lateral groove) 2B.

[実施形態3]
実施形態1,2では、電極1A,1Bに設けられた流通溝2A,2Bの電解液の流通方向に対する傾斜角が90°±10°である形態を説明した。その他、図4に示す電極1Cのように、電解液の流通方向に直交する流通溝(横溝)2Aと、電解液の流通方向に平行な流通溝(縦溝)2Cとの双方を具える形態が挙げられる。ここでも、電極1Cを中心に説明し、その他の重複する構成及び効果は詳細な説明を省略する。
[Embodiment 3]
In the first and second embodiments, the mode in which the inclination angle of the flow grooves 2A and 2B provided in the electrodes 1A and 1B with respect to the flow direction of the electrolyte is 90 ° ± 10 ° has been described. In addition, as in the electrode 1C shown in FIG. 4, a configuration including both a flow groove (lateral groove) 2A perpendicular to the flow direction of the electrolyte and a flow groove (vertical groove) 2C parallel to the flow direction of the electrolyte Is mentioned. Here, the description will be focused on the electrode 1C, and detailed description of other overlapping configurations and effects will be omitted.

電極1Cは、実施形態1で説明した電極1Aと同様に、その一面に、対向する二辺(ここでは左右に配置されて上下方向に延びる周縁)の一方の周縁から他方の周縁に向かって、左右方向に延びる複数の直線状の流通溝(横溝)2Aを等間隔に並列に具える。かつ、電極1Cでは、別の対向する二辺(ここでは上下に配置されて左右方向に延びる周縁)の一方の周縁から他方の周縁に向かって、上下方向に延びる複数の直線状の流通溝2Cを等間隔に具える。これら流通溝2Cは、電解液の流通方向に対して平行に設けられた縦溝である。即ち、電極1Cは、電極1Cの各周縁に平行に複数の流通溝2A,2Cを具え、これら流通溝2A,2Cが直交するように設けられていることで、電極1Cの表面は、市松模様になっている。両溝2A,2Cで囲まれる矩形状の領域が整流領域3Cとなる。   The electrode 1C is similar to the electrode 1A described in the first embodiment, on one surface thereof, from one periphery of two opposing sides (here, a periphery extending in the vertical direction in the left and right directions) toward the other periphery, A plurality of linear flow grooves (lateral grooves) 2A extending in the left-right direction are provided in parallel at equal intervals. In addition, in the electrode 1C, a plurality of linear flow grooves 2C extending in the vertical direction from one peripheral edge of another two opposite sides (peripheral edges arranged in the vertical direction and extending in the left-right direction here) toward the other peripheral edge. At equal intervals. These flow grooves 2C are vertical grooves provided in parallel to the flow direction of the electrolytic solution. That is, the electrode 1C is provided with a plurality of flow grooves 2A, 2C in parallel with the peripheral edges of the electrode 1C, and the flow grooves 2A, 2C are provided so as to be orthogonal to each other, so that the surface of the electrode 1C has a checkered pattern. It has become. A rectangular region surrounded by both grooves 2A and 2C is a rectifying region 3C.

ここでは、流通溝(横溝)2Aと流通溝(縦溝)2Cとが直交する形態を説明したが、両溝2A,2Cを適宜な傾斜角を有する溝として、電極の表面がダイヤ模様となるようにしてもよい。また、流通溝(横溝)2A及び流通溝(縦溝)2Cの個数は、整流部3Cの面積が過小にならない範囲で適宜選択できる。更に、流通溝(横溝)2Aと流通溝(縦溝)2Cとで、断面形状、溝幅、溝の深さなどを異ならせることができる。   Here, the form in which the flow grooves (lateral grooves) 2A and the flow grooves (longitudinal grooves) 2C are orthogonal to each other has been described, but both the grooves 2A and 2C are grooves having an appropriate inclination angle, and the electrode surface has a diamond pattern. You may do it. Further, the number of the flow grooves (lateral grooves) 2A and the flow grooves (vertical grooves) 2C can be appropriately selected as long as the area of the rectifying unit 3C is not excessively small. Further, the cross-sectional shape, groove width, groove depth, and the like can be made different between the flow groove (lateral groove) 2A and the flow groove (vertical groove) 2C.

上記電極1Cを具えるRF電池を運転した場合、給液孔123(124)から液導入溝123i(124i)を経て電極1Cに供給された電解液の一部は、実施形態1で説明したように周縁(図4(A)では下辺縁)に沿って各整流領域3Cの全体に広がり、実施形態1と同様に流通溝(横溝)2Aによる電解液の流通の促進と整流領域3Cによる整流とを繰り返して下流側の排液孔125(126)に向かう。   When an RF battery including the electrode 1C is operated, a part of the electrolyte supplied to the electrode 1C from the liquid supply hole 123 (124) through the liquid introduction groove 123i (124i) is as described in the first embodiment. And the entire rectification region 3C along the periphery (the lower edge in FIG. 4 (A)), and in the same way as in the first embodiment, the flow of the electrolyte by the flow groove (lateral groove) 2A and the rectification by the rectification region 3C To the downstream drainage hole 125 (126).

一方、給液孔123(124)から液導入溝123i(124i)を経て電極1Cに供給された電解液の他部は、流通溝(縦溝)2Cを流れる。但し、流通溝(縦溝)2Cを流れる電解液は、従来の縦溝有り電極と異なり、流通溝(横溝)2Aとの交点に達すると、流通溝(横溝)2Aの長手方向(図4(A)では左右方向)に沿って流れ、流通溝(横溝)2Aに流れた電解液は、当該流通溝(横溝)2Aの下流側の整流領域3Cに導入される。このように電極1Cでは、流通溝(縦溝)2Cを流れる電解液は、流通溝(横溝)2Aとの交点ごとにその流れが緩和されながら、排液孔125(126)に向かう。   On the other hand, the other part of the electrolyte supplied from the liquid supply hole 123 (124) to the electrode 1C through the liquid introduction groove 123i (124i) flows through the flow groove (vertical groove) 2C. However, the electrolyte flowing through the flow grooves (vertical grooves) 2C, unlike the conventional electrodes with vertical grooves, when reaching the intersection with the flow grooves (lateral grooves) 2A, the longitudinal direction of the flow grooves (lateral grooves) 2A (FIG. 4 ( In A), the electrolytic solution that flows along the horizontal direction) and flows into the flow groove (lateral groove) 2A is introduced into the rectification region 3C on the downstream side of the flow groove (lateral groove) 2A. Thus, in the electrode 1C, the electrolyte flowing through the flow groove (vertical groove) 2C is directed toward the drain hole 125 (126) while the flow is relaxed at each intersection with the flow groove (lateral groove) 2A.

上記電極1Cを具えるRF電池は、流通溝(縦溝)2Cを具えていながらも、実施形態1と同様に流通溝(横溝)2Bにより、電池反応に寄与せずに電極1Cを通過する電解液を効果的に低減できる。特に、電極1Cでは、流通溝(縦溝)2Cにより、実施形態1と比較して電解液の流通の促進を図り、電解液の圧力損失や電極の加圧状態のばらつきを低減し易いと期待される。このことから、上記電極1Cを具えるRF電池は、電極の全体に亘って電解液の流れをより均一的にし易いと期待される。また、圧力損失を低減できることで、このRF電池は、電解液を流す際のセルの許容圧力を低減できる、ポンプ動力を低減できる、といった効果も得られると期待される。   Although the RF battery including the electrode 1C includes a flow groove (vertical groove) 2C, the flow groove (lateral groove) 2B, as in the first embodiment, allows the electrolysis to pass through the electrode 1C without contributing to the battery reaction. The liquid can be effectively reduced. In particular, in the electrode 1C, the flow groove (vertical groove) 2C is expected to facilitate the flow of the electrolyte compared to the first embodiment, and to easily reduce the pressure loss of the electrolyte and the variation in the pressure state of the electrode. Is done. From this, the RF battery including the electrode 1C is expected to make the flow of the electrolyte more uniform over the entire electrode. In addition, since the pressure loss can be reduced, the RF battery is expected to have the effect of reducing the allowable pressure of the cell when flowing the electrolyte and reducing the pump power.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、流通溝の数・傾斜角、溝の形成間隔、流通溝の形成面などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the number / inclination angle of the circulation grooves, the groove formation interval, the formation surface of the circulation grooves, and the like can be appropriately changed.

本発明RF電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした用途、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした用途などに好適に利用できる。本発明RF電池用セルスタック及び本発明RF電池セルは、上記本発明RF電池の構成部材に好適に利用することができる。   The RF battery of the present invention is used for new energy generation such as solar power generation and wind power generation for the purpose of stabilizing fluctuations in power generation output, storing electricity when surplus generated power, leveling load, etc. It can be suitably used for purposes such as power supply leveling and power level reduction. The cell stack for an RF battery of the present invention and the RF battery cell of the present invention can be suitably used as a constituent member of the RF battery of the present invention.

1A,1B,1C 電極 2A,2B 流通溝(横溝) 2C 流通溝(縦溝)
3A,3B,3C 整流領域
10 電池セル 12 フレーム 14 正極電極 15 負極電極
100 レドックスフロー電池 101 隔膜 102 正極セル 103 負極セル
104 正極電極 104s 流通溝 105 負極電極 106 正極タンク
107 負極タンク 108,109,110,111 配管 112,113 ポンプ
121 双極板 122 フレーム 123 正極給液孔 123i,124i 液導入溝
124 負極給液孔 125 正極排液孔 125o,126o 液排出溝 126 負極排液孔
127 シール部材
200 セルスタック 210 エンドプレート 220 締付部材
1A, 1B, 1C Electrode 2A, 2B Flow groove (horizontal groove) 2C Flow groove (vertical groove)
3A, 3B, 3C rectification region
10 Battery cells 12 Frame 14 Positive electrode 15 Negative electrode
100 Redox flow battery 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell
104 Positive electrode 104s Distribution groove 105 Negative electrode 106 Positive tank
107 Negative electrode tank 108,109,110,111 Piping 112,113 Pump
121 Bipolar plate 122 Frame 123 Positive electrode supply hole 123i, 124i Liquid introduction groove
124 Negative electrode feed hole 125 Positive electrode drain hole 125o, 126o Liquid drain groove 126 Negative electrode drain hole
127 Seal member
200 Cell stack 210 End plate 220 Tightening member

Claims (7)

正極電解液が流通される正極電極と、負極電解液が流通される負極電極と、これら両電極の間に介在される隔膜とを具えるレドックスフロー電池セルであって、
前記電極は、その表面に少なくとも一つの電解液の流通溝を有し、
前記流通溝のうち、少なくとも一つは、その長手方向が前記電解液の流通方向に対して、実質的に直交するように設けられた横溝であることを特徴とするレドックスフロー電池セル。
A redox flow battery cell comprising a positive electrode through which a positive electrode electrolyte is circulated, a negative electrode through which a negative electrode electrolyte is circulated, and a diaphragm interposed between the two electrodes,
The electrode has at least one electrolyte flow channel on its surface;
At least one of the flow grooves is a lateral groove provided so that the longitudinal direction thereof is substantially orthogonal to the flow direction of the electrolyte solution.
前記横溝は、前記流通方向に対する傾斜角が90°±10°であることを特徴とする請求項1に記載のレドックスフロー電池セル。   2. The redox flow battery cell according to claim 1, wherein the lateral groove has an inclination angle of 90 ° ± 10 ° with respect to the flow direction. 前記横溝を複数具え、これら横溝が平行に設けられていることを特徴とする請求項1又は2に記載のレドックスフロー電池セル。   3. The redox flow battery cell according to claim 1, wherein a plurality of the lateral grooves are provided, and the lateral grooves are provided in parallel. 前記流通溝のうち、少なくとも一つは、その長手方向が前記電解液の流通方向に実質的に平行するように設けられた縦溝であり、
前記電極は、前記横溝及び前記縦溝により区切られる複数の領域を有することを特徴とする請求項1〜3のいずれか1項に記載のレドックスフロー電池セル。
At least one of the flow grooves is a vertical groove provided such that its longitudinal direction is substantially parallel to the flow direction of the electrolyte solution,
4. The redox flow battery cell according to claim 1, wherein the electrode has a plurality of regions partitioned by the horizontal groove and the vertical groove.
前記横溝及び前記縦溝をそれぞれ複数具え、これら横溝及び縦溝が格子状に交差していることを特徴とする請求項4に記載のレドックスフロー電池セル。   5. The redox flow battery cell according to claim 4, wherein a plurality of the horizontal grooves and the vertical grooves are provided, and the horizontal grooves and the vertical grooves intersect in a lattice pattern. 請求項1〜5のいずれか1項に記載のレドックスフロー電池セルと、
前記各極電極が表裏に配置される双極板の外周に設けられて、前記各極電極への電解液の供給及び前記各極電極からの電解液の排出を行うフレームとが交互に複数積層されてなることを特徴とするレドックスフロー電池用セルスタック。
Redox flow battery cell according to any one of claims 1 to 5,
A plurality of frames are provided on the outer periphery of the bipolar plate disposed on the front and back of each electrode, and a plurality of frames for alternately supplying the electrolyte to each electrode and discharging the electrolyte from each electrode. A cell stack for a redox flow battery.
請求項6に記載のレドックスフロー電池用セルスタックと、前記セルスタックに具える前記各極電極に供給する各極電解液を貯留する各極タンクと、前記セルスタックと前記各極タンクとの間で前記各極電解液を移送する流通路とを具えることを特徴とするレドックスフロー電池。   7. The cell stack for the redox flow battery according to claim 6, each electrode tank storing each electrode electrolyte supplied to each electrode provided in the cell stack, and between the cell stack and each electrode tank A redox flow battery comprising a flow path for transferring each of the electrode electrolytes.
JP2011003464A 2011-01-11 2011-01-11 Redox flow battery, redox flow battery cell, and cell stack for redox flow battery Pending JP2012146469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003464A JP2012146469A (en) 2011-01-11 2011-01-11 Redox flow battery, redox flow battery cell, and cell stack for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003464A JP2012146469A (en) 2011-01-11 2011-01-11 Redox flow battery, redox flow battery cell, and cell stack for redox flow battery

Publications (1)

Publication Number Publication Date
JP2012146469A true JP2012146469A (en) 2012-08-02

Family

ID=46789872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003464A Pending JP2012146469A (en) 2011-01-11 2011-01-11 Redox flow battery, redox flow battery cell, and cell stack for redox flow battery

Country Status (1)

Country Link
JP (1) JP2012146469A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145451A1 (en) * 2013-03-15 2014-09-18 The Paper Battery Company, Inc. Energy storage structures and fabrication methods thereof
CN104393308A (en) * 2014-10-20 2015-03-04 中国东方电气集团有限公司 Bipolar plate and flow battery
WO2016189970A1 (en) * 2015-05-27 2016-12-01 住友電気工業株式会社 Redox flow battery
WO2018105155A1 (en) * 2016-12-07 2018-06-14 住友電気工業株式会社 Bipolar plate, cell stack, and redox flow battery
JP2018519619A (en) * 2015-04-30 2018-07-19 スタンダード エナジー カンパニー リミテッドStandard Energy Co., Ltd. Redox flow battery
CN109037725A (en) * 2018-06-20 2018-12-18 浙江大学 A kind of flow battery improving electrolyte distributing homogeneity and electrode structure and method
WO2019021441A1 (en) * 2017-07-27 2019-01-31 住友電気工業株式会社 Cell frame, cell stack, and redox flow battery
JP2020507895A (en) * 2017-02-10 2020-03-12 ツェーエムブルー プロイェクト アーゲー Flow electrode unit and use thereof, redox flow battery system and use thereof, method of manufacturing flow electrode unit, operation method of redox flow battery system
WO2021220960A1 (en) * 2020-04-28 2021-11-04 東洋エンジニアリング株式会社 Redox flow cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014145451A1 (en) * 2013-03-15 2014-09-18 The Paper Battery Company, Inc. Energy storage structures and fabrication methods thereof
US9831533B2 (en) 2013-03-15 2017-11-28 The Paper Battery Co. Energy storage structures and fabrication methods thereof
CN104393308A (en) * 2014-10-20 2015-03-04 中国东方电气集团有限公司 Bipolar plate and flow battery
JP2018519619A (en) * 2015-04-30 2018-07-19 スタンダード エナジー カンパニー リミテッドStandard Energy Co., Ltd. Redox flow battery
CN107615546A (en) * 2015-05-27 2018-01-19 住友电气工业株式会社 Redox flow batteries
US20180159163A1 (en) * 2015-05-27 2018-06-07 Sumitomo Electric Industries, Ltd. Redox flow battery
WO2016189970A1 (en) * 2015-05-27 2016-12-01 住友電気工業株式会社 Redox flow battery
JPWO2016189970A1 (en) * 2015-05-27 2018-03-15 住友電気工業株式会社 Redox flow battery
JPWO2018105155A1 (en) * 2016-12-07 2019-10-24 住友電気工業株式会社 Bipolar plate, cell stack, and redox flow battery
WO2018105155A1 (en) * 2016-12-07 2018-06-14 住友電気工業株式会社 Bipolar plate, cell stack, and redox flow battery
JP2020507895A (en) * 2017-02-10 2020-03-12 ツェーエムブルー プロイェクト アーゲー Flow electrode unit and use thereof, redox flow battery system and use thereof, method of manufacturing flow electrode unit, operation method of redox flow battery system
JP7101690B2 (en) 2017-02-10 2022-07-15 ツェーエムブルー エネルギー アーゲー Distribution electrode unit and its use, redox flow battery system and its use, distribution electrode unit manufacturing method, redox flow battery system operation method
JP6525120B1 (en) * 2017-07-27 2019-06-05 住友電気工業株式会社 Cell frame, cell stack, and redox flow battery
CN110268566A (en) * 2017-07-27 2019-09-20 住友电气工业株式会社 Unit framework, unit group and redox flow batteries
WO2019021441A1 (en) * 2017-07-27 2019-01-31 住友電気工業株式会社 Cell frame, cell stack, and redox flow battery
CN109037725A (en) * 2018-06-20 2018-12-18 浙江大学 A kind of flow battery improving electrolyte distributing homogeneity and electrode structure and method
CN109037725B (en) * 2018-06-20 2023-06-02 浙江大学 Flow battery capable of improving distribution uniformity of electrolyte, electrode structure and method
WO2021220960A1 (en) * 2020-04-28 2021-11-04 東洋エンジニアリング株式会社 Redox flow cell

Similar Documents

Publication Publication Date Title
JP2012146469A (en) Redox flow battery, redox flow battery cell, and cell stack for redox flow battery
KR102272748B1 (en) Bipolar plates, cell frames, cell stacks, and redox flow batteries
KR101667123B1 (en) Flow battery with mixed flow
US20180159163A1 (en) Redox flow battery
WO2016208482A1 (en) Bipolar plate, cell frame, cell stack and redox-flow battery
CN106997956B (en) Fluid flow assembly and fuel cell stack containing same
JP6701514B2 (en) Redox flow battery electrode and redox flow battery
KR20110124283A (en) Electrode for a flow battery
CN104838042B (en) The reagent flow raceway groove of electrolyzer application
TW201622223A (en) Electrolyte-circulating battery
WO2018105155A1 (en) Bipolar plate, cell stack, and redox flow battery
JP3642697B2 (en) Fluid flow battery cell
WO2014083387A1 (en) Back plate-electrode-membrane assembly for a redox, flow energy storage electrochemical cell
JP7121930B6 (en) Bipolar plates, cell frames, battery cells, cell stacks, and redox flow batteries
WO2024022419A1 (en) Polar plate combined flow channel for hydrogen fuel cell
JP6525120B1 (en) Cell frame, cell stack, and redox flow battery
TW202036971A (en) Battery cell, cell stack and redox flow battery
JP7461614B2 (en) Bipolar plate, cell frame, battery cell, cell stack, and redox flow battery
JP7281094B2 (en) Bipolar plates, cell frames, cell stacks, and redox flow batteries
WO2022153615A1 (en) Battery cell, cell stack, and redox flow battery system
JPWO2018092216A1 (en) Cell frame, cell stack, and redox flow battery
KR20200116557A (en) Cell Frame, Battery Cell, Cell Stack, and Redox Flow Cell
TW202046546A (en) Battery cell, cell stack and redox flow battery