JP2012145672A - Eyeglass lens and method for manufacturing the same - Google Patents

Eyeglass lens and method for manufacturing the same Download PDF

Info

Publication number
JP2012145672A
JP2012145672A JP2011002747A JP2011002747A JP2012145672A JP 2012145672 A JP2012145672 A JP 2012145672A JP 2011002747 A JP2011002747 A JP 2011002747A JP 2011002747 A JP2011002747 A JP 2011002747A JP 2012145672 A JP2012145672 A JP 2012145672A
Authority
JP
Japan
Prior art keywords
region
value
lens
distance
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011002747A
Other languages
Japanese (ja)
Other versions
JP5749497B2 (en
Inventor
Yohei Suzuki
庸平 鈴木
Tadayuki Kaga
唯之 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011002747A priority Critical patent/JP5749497B2/en
Publication of JP2012145672A publication Critical patent/JP2012145672A/en
Application granted granted Critical
Publication of JP5749497B2 publication Critical patent/JP5749497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eyeglasses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eyeglass lens capable of suppressing image deformation when viewing the screen of a PC, and also capable of reducing the increase of thickness of the eyeglass lens.SOLUTION: The object-side surface of an eyeglass lens 10 includes: a first region 21 of which average surface refractive power along a vertical reference line Y is a first value D1; a second region 22 of which average surface refractive power is a second value D2; and a third region 23 of which average surface refractive power increases from the first value D1 to a third value D3 and decreases from the third value D3 to the second value D2 between the first region 21 and the second region 22. The first region 21 is included in a far-sight part 11, the second region 22 is included in a short-sight part 12, and the third region 23 includes an intermediate part 13. Accordingly, the eyeglass lens can be provided to suppress deformation of a screen of a PC and the like mostly viewed via the intermediate part 13 and have thin thickness.

Description

本発明は、眼鏡用レンズおよびその製造方法に関するものである。   The present invention relates to a spectacle lens and a method for manufacturing the same.

特許文献1には、累進屈折力レンズに必然的に生じる像の歪みやボケを減少させ、装用感を向上させることができる累進屈折力レンズを提供することが記載されている。そのため、特許部文献1においては、外面と内面の両面を累進面とする両面累進レンズとすると共に、外面の面加入度をマイナスとし、外面と内面の平均面屈折力分布が相似になるように累進面形状を設計することが記載されている。すなわち、累進屈折力レンズの累進面は、古くは外面側に形成されていたが、その累進面を内面側に形成することによって、飛躍的に光学性能が向上することが判明した。この内面累進レンズの理論を応用し、さらに光学性能を向上させるために、特許文献1においては、外面と内面の両方に累進屈折面を形成した両面累進レンズとすると共に、外面の平均面屈折力を遠用部から近用部にかけて連続的に減少するように設定している。両面累進レンズの外面の平均面屈折力の変化をマイナスとする、即ち外面の面加入度をマイナスとすることにより、近用部の倍率差を小さくして、歪みを減少させることができる。   Patent Document 1 describes providing a progressive power lens that can reduce image distortion and blur that inevitably occur in a progressive power lens, and can improve wearing comfort. Therefore, in Patent Document 1, a double-sided progressive lens in which both the outer surface and the inner surface are progressive surfaces is used, the surface addition of the outer surface is negative, and the average surface refractive power distribution of the outer surface and the inner surface is similar. Designing a progressive surface shape is described. In other words, the progressive surface of the progressive power lens has been formed on the outer surface in the old days, but it has been found that the optical performance is dramatically improved by forming the progressive surface on the inner surface side. In order to apply the theory of the inner surface progressive lens and further improve the optical performance, in Patent Document 1, a double-sided progressive lens in which a progressive refractive surface is formed on both the outer surface and the inner surface and an average surface refractive power of the outer surface are used. Is set to decrease continuously from the distance portion to the near portion. By making the change in the average surface refractive power of the outer surface of the double-sided progressive lens negative, that is, by making the surface addition power of the outer surface negative, the magnification difference in the near portion can be reduced and the distortion can be reduced.

特開2004−4436号公報(要約、段落番号0010、0011)Japanese Patent Application Laid-Open No. 2004-4436 (Summary, paragraph numbers 0010 and 0011)

両面累進レンズを用いた眼鏡により、遠用部と近用部との倍率差を低減することができる。しかしながら、外面の平均面屈折力を遠用部から近用部にかけて連続的に減少するように設定するため、内面累進レンズや外面累進レンズと比べてレンズが厚くなりやすい。このため、累進屈折力レンズに必然的に生じる像の歪みを軽減するとともに、レンズの厚みを抑制し、さらに装着感も良好な眼鏡用レンズが求められている。   With the glasses using the double-sided progressive lens, the magnification difference between the distance portion and the near portion can be reduced. However, since the average surface refractive power of the outer surface is set to continuously decrease from the distance portion to the near portion, the lens tends to be thicker than the inner surface progressive lens and the outer surface progressive lens. For this reason, there is a need for a spectacle lens that reduces image distortion that inevitably occurs in a progressive-power lens, suppresses the thickness of the lens, and provides a good wearing feeling.

本発明の一態様は、物体側の面が、主注視線(主子午線)または垂直基準線に沿った平均面屈折力が第1の値の第1の領域と、平均面屈折力が第2の値の第2の領域と、第1の領域と第2の領域との間で、平均面屈折力が前記第1の値から第3の値に増加し、第3の値から第2の値に減少する第3の領域とを含む、眼鏡用レンズである。眼鏡用レンズを通して得られる像は、傾向としてはレンズ度数が大きくなると倍率は大きくなり、物体側の面の平均面屈折力が小さくなれば倍率は小さくなる。したがって、この眼鏡用レンズにおいては、第1の領域と第2の領域との間にある第3の領域で平均面屈折力を変えることにより、眼鏡用レンズの倍率の変化を局所的に制御できる。したがって、多く用いられる視野範囲がある程度特定される用途において、その視野範囲での像のゆれや歪みを軽減でき、さらに、凸面高さおよび縁厚が小さく、実質的な厚みが薄い眼鏡レンズを提供できる。   In one embodiment of the present invention, the object-side surface includes a first region having a first average surface refractive power along a main gazing line (main meridian) or a vertical reference line, and a second average surface refractive power. The average surface power increases from the first value to the third value between the second region with the value of 1, and between the first region and the second region, and from the third value to the second value. And a third region that decreases in value. An image obtained through a spectacle lens tends to increase in magnification when the lens power increases, and decreases as the average surface refractive power of the object-side surface decreases. Therefore, in this spectacle lens, the change in the magnification of the spectacle lens can be locally controlled by changing the average surface refractive power in the third region between the first region and the second region. . Therefore, in applications where the field of view that is frequently used is specified to some extent, it is possible to reduce image fluctuations and distortions in the field of view, and to provide a spectacle lens with a small convex height and edge thickness, and a substantial thickness. it can.

そのような用途の1つはパーソナルコンピュータ(PC)の操作である。近年、PCの操作に多くの時間を費やすユーザー(装着者)が増えている。遠用部と近用部とを有する多焦点レンズの装着者がPCの画面を見るときは、遠用部と近用部との間で徐々に度数が変化する中間部を通して画面を見ることが多い。したがって、遠用部から近用部に至る部分に第3の領域を設定することにより、PCの画面を見やすい眼鏡用多焦点レンズであって、薄いレンズを提供できる。   One such application is the operation of a personal computer (PC). In recent years, an increasing number of users (wearers) spend a lot of time operating PCs. When a wearer of a multifocal lens having a distance portion and a near portion looks at the screen of the PC, he / she can see the screen through an intermediate portion where the frequency gradually changes between the distance portion and the near portion. Many. Therefore, by setting the third region in the portion from the distance portion to the near portion, it is a multifocal lens for eyeglasses that is easy to see the screen of the PC, and a thin lens can be provided.

すなわち、本発明の典型的な眼鏡用レンズは、主に遠距離の物体を見るときに使用する遠用部と、主に近距離の物体を見るときに使用する近用部と、遠用部と近用部との間で徐々に度数が変化する中間部とを含み、物体側の面の第1の領域は遠用部の少なくとも一部であり、第2の領域は近用部の少なくとも一部であり、第3の領域は第1の領域と第2の領域との間に位置し、平均面屈折力は第1の値から第3の値に増加し、第3の値から第2の値に減少する。これにより、遠用部に含まれる第1の領域を通して得られる像と、近用部に含まれる第2の領域を通して得られる像との間に倍率差があっても、それらの間の第3の領域を通して得られる像の歪みを低減できる。   That is, a typical spectacle lens according to the present invention mainly includes a distance portion used when viewing an object at a long distance, a near portion used mainly when viewing an object at a short distance, and a distance portion. And the intermediate portion gradually changing in frequency between the near portion and the near portion, the first region of the object side surface is at least a portion of the far portion, and the second region is at least the near portion And the third region is located between the first region and the second region, the average surface power increases from the first value to the third value, and from the third value to the second value. Decrease to a value of 2. As a result, even if there is a magnification difference between the image obtained through the first region included in the distance portion and the image obtained through the second region included in the near portion, the third difference between the images is obtained. The distortion of the image obtained through the region can be reduced.

この眼鏡用レンズにおいては、使用者側の面(内面)が累進面になるが、使用者側の面も、物体側の第1の領域、第2の領域および第3の領域のそれぞれに対面する、主注視線(主子午線)または垂直基準線に沿った平均面屈折力(平均面屈折力の絶対値)が第4の値の第4の領域と、平均面屈折力が第5の値の第5の領域と、第4の領域と第5の領域との間で、平均面屈折力が第4の値から第6の値に増加し、第6の値から第5の値に減少する第6の領域とを含む。第6の領域に遠用部が含まれる場合は、第6の領域において第4の値から第6の値に増加する際に、第4の値から第7の値を経て第6の値に達する。   In this spectacle lens, the user-side surface (inner surface) is a progressive surface, but the user-side surface also faces each of the first, second, and third regions on the object side. A fourth region where the average surface power (absolute value of the average surface power) along the main gazing line (main meridian) or vertical reference line is the fourth value, and the average surface power is the fifth value. The average surface refractive power increases from the fourth value to the sixth value and decreases from the sixth value to the fifth value between the fifth region, the fourth region, and the fifth region. And a sixth region. When the sixth area includes the distance portion, when the sixth area increases from the fourth value to the sixth value, the fourth value changes from the fourth value to the sixth value. Reach.

この眼鏡用レンズにおいては、当該眼鏡用レンズのアイポイント(フィッティングポイント)を原点として上下に延び、アイポイントに対して上方に正の座標をおくと、第1の領域と第3の領域との境界点(以下、第1ポイントともいう)Yaと、平均面屈折力が第3の値である点(以下、第3ポイントともいう)Ycと、第3の領域と第2の領域との境界点(以下、第2ポイントともいう)Ybとが、以下(1)式の条件を満たす。ただし、以下の式において単位はmmである。
Ya>Yc>Yb・・・(1)
In this spectacle lens, when the eye point (fitting point) of the spectacle lens extends up and down and a positive coordinate is placed above the eye point, the first region and the third region The boundary between the boundary point (hereinafter also referred to as the first point) Ya, the point where the average surface refractive power is the third value (hereinafter also referred to as the third point) Yc, and the third region and the second region The point (hereinafter also referred to as the second point) Yb satisfies the condition of the following expression (1). In the following formula, the unit is mm.
Ya>Yc> Yb (1)

眼鏡仕様によるが、典型的には、点Yc(第3ポイント)において、物体側の平均面屈折力(ベースカーブ)が極大値(第3の値)になることが多い。   Although it depends on spectacles specifications, typically, at the point Yc (third point), the average surface refractive power (base curve) on the object side often has a maximum value (third value).

境界点(第1ポイント)Yaが下にあるほど、レンズを薄型にしやすい。したがって、境界点Yaは以下(2)式の条件を満たすことが好ましい。
Ya≦15・・・(2)
The lower the boundary point (first point) Ya, the easier it is to make the lens thinner. Therefore, the boundary point Ya preferably satisfies the condition of the following expression (2).
Ya ≦ 15 (2)

また、PCを見る際に好適な眼鏡を得るためには、第3ポイントYcがPCの画面の上端近傍を見る位置となり、第2ポイントYbがPCの画面の下端近傍を見る位置となることが好ましい。このため、第3ポイントYcは以下(3)式の条件を満たし、第2ポイントYbは以下(4)式の条件を満たすことが好ましい。
−5≦Yc≦10・・・(3)
−25≦Yb≦−5・・・(4)
Further, in order to obtain glasses suitable for viewing a PC, the third point Yc is a position for viewing the vicinity of the upper end of the PC screen, and the second point Yb is a position for viewing the vicinity of the lower end of the PC screen. preferable. For this reason, it is preferable that the third point Yc satisfies the condition of the following expression (3), and the second point Yb satisfies the condition of the expression (4) below.
−5 ≦ Yc ≦ 10 (3)
−25 ≦ Yb ≦ −5 (4)

第1ポイントと第3ポイントとの距離が短すぎると物体側の面のベースカーブが急激に変化するので遠用部分に不自然な歪みが生ずるおそれがある。また、PCの画面を視界に収めるために第3ポイントと第2ポイントとの距離をある程度確保する必要がある。したがって、第1ポイントYa、第3ポイントYc、第2ポイントYbは、以下(5)式および(6)式の条件を満たすことが好ましい。
Ya−Yc≧4・・・(5)
Yc−Yb≧10・・・(6)
If the distance between the first point and the third point is too short, the base curve of the surface on the object side changes abruptly, which may cause unnatural distortion in the distance portion. Further, it is necessary to secure a certain distance between the third point and the second point in order to keep the PC screen in view. Therefore, the first point Ya, the third point Yc, and the second point Yb preferably satisfy the conditions of the following expressions (5) and (6).
Ya-Yc ≧ 4 (5)
Yc−Yb ≧ 10 (6)

この眼鏡用レンズにおいては、第1の値をD1とし、第2の値をD2とし、さらに、第3の値をD3としたときに、以下(7)式の条件を満たすようにすることが好ましい。なお、単位はディオプタである。
MAX(D1、D2)+1≦D3≦(n−1)/0.015・・・(7)
In this spectacle lens, when the first value is D1, the second value is D2, and the third value is D3, the following equation (7) should be satisfied. preferable. The unit is a diopter.
MAX (D1, D2) + 1 ≦ D3 ≦ (n−1) /0.015 (7)

nは素材の屈折率である。MAX(D1、D2)は、D1とD2の内、値が大きい方を選ぶ関数である。   n is the refractive index of the material. MAX (D1, D2) is a function that selects the larger one of D1 and D2.

第3の領域の倍率補正効果を得るためには、第3の値D3は第1の値D1および第2の値D2に対し少なくとも1Dは大きいことが望ましい。一方、第3の値D3が44を超えると物体側の面の曲率が大きくなりすぎて諸収差が大きくなる。また、眼鏡用レンズとして眼鏡フレームに嵌める大きさが確保できなくなる。なお、第1の値D1および第2の値D2は同じであっても異なっていてもよい。   In order to obtain the magnification correction effect of the third region, it is desirable that the third value D3 is at least 1D larger than the first value D1 and the second value D2. On the other hand, if the third value D3 exceeds 44, the curvature of the object side surface becomes too large and various aberrations increase. In addition, it is impossible to secure a size for fitting into a spectacle frame as a spectacle lens. The first value D1 and the second value D2 may be the same or different.

本発明の他の態様は、上記眼鏡用レンズと、眼鏡用レンズを装着した眼鏡フレームとを有する眼鏡である。この眼鏡は、薄くコンパクトであるとともに、PCを操作する際の像のゆれが少ないなどの特定の用途において安定した像が得られる。   Another aspect of the present invention is spectacles having the spectacle lens and a spectacle frame on which the spectacle lens is mounted. The eyeglasses are thin and compact, and a stable image can be obtained in specific applications such as little image fluctuation when operating a PC.

本発明のさらに他の態様は、眼鏡用レンズの製造方法である。この製造方法は、主注視線または垂直基準線に沿った平均面屈折力が第1の値の第1の領域と、平均面屈折力が第2の値の第2の領域と、第1の領域と第2の領域との間で、平均面屈折力が第1の値から第3の値に増加し、第3の値から第2の値に減少する第3の領域とを備えた物体側の面を形成することを有する。   Yet another embodiment of the present invention is a method for manufacturing a spectacle lens. The manufacturing method includes: a first region having a first average surface refractive power along a main gaze line or a vertical reference line; a second region having a second average surface refractive power; An object comprising a third region between the region and the second region, wherein the average surface power increases from the first value to the third value and decreases from the third value to the second value To form a side surface.

この製造方法によれば、眼鏡用レンズ全体ではなく、限定された第3の領域を介して見た像の歪みが小さく、薄い眼鏡用レンズを得ることができる。   According to this manufacturing method, it is possible to obtain a thin spectacle lens with small distortion of an image viewed through the limited third region, not the entire spectacle lens.

この製造方法は、さらに、物体側の面を形成することと前後し、または同時に、主に遠距離の物体を見るときに使用する遠用部と、主に近距離の物体を見るときに使用する近用部と、遠用部と近用部との間で徐々に度数が変化する中間部とを備えた使用者側の面を形成することを含み、物体側の面の第1の領域は遠用部の少なくとも一部と対面し、第2の領域は近用部の少なくとも一部と対面するようにすることが望ましい。   This manufacturing method is further used to form the object-side surface, and at the same time, or at the same time, mainly used for viewing long-distance objects, and mainly for viewing short-distance objects. Forming a user-side surface having a near-use portion and an intermediate portion whose power gradually changes between the distance-use portion and the near-use portion, and a first region of the object-side surface It is desirable to face at least part of the distance portion and the second area face at least part of the near portion.

本発明のさらに他の態様は、度数の異なる遠用部と近用部とを含む眼鏡用多焦点レンズを設計する装置である。この装置は、遠用部および近用部を含む使用者側の面を設定する第1のユニットと、主注視線または垂直基準線に沿った平均面屈折力が第1の値の第1の領域、平均面屈折力が第2の値の第2の領域、さらに、第1の領域と第2の領域との間で、平均面屈折力が第1の値から第3の値に増加し、第3の値から第2の値に減少する第3の領域を含む物体側の面を設定する第2のユニットとを有する。第2のユニットは、第1の領域が遠用部の少なくとも一部と対面し、第2の領域が近用部の少なくとも一部と対面するように物体側の面を設定する。この装置は、さらに、物体側の面および使用者側の面を含む眼鏡用多焦点レンズを通して見た様子をシミュレーションするユニットを有していてもよい。   Yet another aspect of the present invention is an apparatus for designing a multifocal lens for spectacles including a distance portion and a near portion having different powers. The apparatus includes a first unit for setting a user-side surface including a distance portion and a near portion, and a first unit whose average surface refractive power along a main gaze line or a vertical reference line is a first value. The average surface power increases from the first value to the third value in the region, the second region where the average surface power is the second value, and between the first region and the second region. And a second unit for setting an object-side surface including a third region that decreases from the third value to the second value. The second unit sets the object-side surface such that the first region faces at least a part of the distance portion and the second region faces at least a portion of the near portion. The apparatus may further include a unit for simulating a state viewed through a multifocal lens for spectacles including an object side surface and a user side surface.

眼鏡の一例を示す斜視図。The perspective view which shows an example of spectacles. 図2(a)は眼鏡用多焦点レンズの一方のレンズを模式的に示す平面図、図2(b)はその断面図。2A is a plan view schematically showing one lens of a multifocal lens for spectacles, and FIG. 2B is a cross-sectional view thereof. 本発明の実施例の眼鏡用レンズの面屈折力を示す図。The figure which shows the surface refractive power of the lens for spectacles of the Example of this invention. 実施例の眼鏡用レンズの面屈折力分布および収差分布を示す図。The figure which shows the surface refractive power distribution and aberration distribution of the lens for spectacles of an Example. 図5(a)は実施例の眼鏡用レンズの面屈折力を示す図、図5(b)は比較例1の眼鏡用レンズの面屈折力を示す図、図5(c)は比較例2の眼鏡用レンズの面屈折力を示す図。5A is a diagram showing the surface refractive power of the spectacle lens of the example, FIG. 5B is a diagram showing the surface refractive power of the spectacle lens of Comparative Example 1, and FIG. The surface refractive power of the lens for eyeglasses of FIG. 実施例の眼鏡用レンズ、および比較例1〜2の眼鏡用レンズの設計データを纏めて示す図。The figure which shows collectively the design data of the spectacles lens of an Example, and the spectacles lens of Comparative Examples 1-2. 実施例の眼鏡用レンズ、および比較例1〜2の眼鏡用レンズの倍率差を示す図。The figure which shows the magnification difference of the lens for spectacles of an Example, and the lens for spectacles of Comparative Examples 1-2. 実施例の眼鏡用レンズと、比較例2の眼鏡用レンズとの凸面高さを示す図。The figure which shows the convex surface height of the lens for spectacles of an Example, and the lens for spectacles of the comparative example 2. FIG. 眼鏡用レンズの製造方法の一例を説明するためのフローチャート。The flowchart for demonstrating an example of the manufacturing method of the lens for spectacles. 眼鏡用レンズの設計装置の一例の概略構成を示す図。The figure which shows schematic structure of an example of the design apparatus of the lens for spectacles.

図1は、眼鏡の一例を斜視図にて示している。図2(a)は、本発明の実施形態の眼鏡用多焦点レンズの一方のレンズを平面図にて模式的に示している。図2(b)は、本発明の実施例の眼鏡用多焦点レンズの一方のレンズを断面図にて模式的に示している。   FIG. 1 is a perspective view showing an example of eyeglasses. FIG. 2A schematically shows one lens of the multifocal lens for spectacles of the embodiment of the present invention in a plan view. FIG. 2B schematically shows one of the multifocal lenses for spectacles according to the embodiment of the present invention in a cross-sectional view.

なお、本例では、使用者側(ユーザー側、着用者側、眼球側)からみて、左側を左、右側を右として説明する。また、以下において左眼用レンズ10Lおよび右眼用レンズ10Rに共通する構成については眼鏡用レンズ10として説明する。左眼用のレンズ10Lおよび右眼用のレンズ10Rは基本的には左右対称の構成である。   In this example, as viewed from the user side (user side, wearer side, eyeball side), the left side is left and the right side is right. Hereinafter, a configuration common to the left-eye lens 10L and the right-eye lens 10R will be described as the spectacle lens 10. The left-eye lens 10L and the right-eye lens 10R are basically symmetrical structures.

この眼鏡1は、左眼用および右眼用の左右一対の眼鏡用レンズ10Lおよび10Rと、レンズ10Lおよび10Rをそれぞれ装着した眼鏡フレーム20とを有している。眼鏡用レンズ10(10Lおよび10R)は、それぞれ、眼鏡用多焦点レンズ、より具体的には、累進多焦点レンズ(累進屈折力レンズ)である。眼鏡用レンズ10の基本的な形状は物体側に凸のメニスカスレンズである。眼鏡用レンズ10は、物体側の面(凸面、以下外面ともいう)19Aと、眼球側(使用者側)の面(凹面、以下内面ともいう)19Bとを含む。   The spectacles 1 includes a pair of left and right spectacle lenses 10L and 10R for left eye and right eye, and a spectacle frame 20 on which the lenses 10L and 10R are respectively mounted. The spectacle lenses 10 (10L and 10R) are spectacle multifocal lenses, and more specifically, progressive multifocal lenses (progressive power lenses). The basic shape of the spectacle lens 10 is a meniscus lens convex on the object side. The eyeglass lens 10 includes an object-side surface (convex surface, also referred to as an outer surface) 19A and an eyeball-side (user side) surface (a concave surface, also referred to as an inner surface) 19B.

眼鏡用レンズ10は内面累進レンズであり、内面19Bは、上方に遠距離の物を見るための視野部分である遠用部11を含み、下方に遠用部11と異なる度数(屈折力)の近距離の物を見るための視野部分である近用部12を含む。さらに、眼鏡用レンズ10の内面19Bは、これら遠用部11と近用部12とを連続的に屈折力が変化するように連結する中間部(累進部分)13を含む。   The spectacle lens 10 is an inner surface progressive lens, and the inner surface 19B includes a distance portion 11 which is a visual field portion for viewing an object at a long distance upward, and has a power (refractive power) different from that of the distance portion 11 below. It includes a near portion 12 which is a visual field portion for viewing an object at a short distance. Furthermore, the inner surface 19B of the spectacle lens 10 includes an intermediate portion (progressive portion) 13 that connects the distance portion 11 and the near portion 12 so that the refractive power continuously changes.

従来の内面累進レンズや外面累進レンズでは、近用部を通して見る像の倍率が遠用部を通して見る像の倍率よりも大きいので、中間部を通して見る像は、近用部側がより水平方向に伸ばされる。このため、正方形の像が上底よりも下底が長い台形に見える。PCの画面など、眼鏡をかけた状態で長時間にわたり見るものが中間部13を通して得られる像であることは多い。このとき、中間部を通して得られる像が台形に見え、像がひずむ印象を与える要因となり、眼鏡の装用感が低下する。   In the conventional inner surface progressive lens and outer surface progressive lens, the magnification of the image viewed through the near portion is larger than the magnification of the image viewed through the distance portion, so that the near portion side of the image viewed through the intermediate portion is stretched in the horizontal direction. . For this reason, the square image looks like a trapezoid whose bottom is longer than the top. What is viewed over a long period of time with glasses on, such as a PC screen, is often an image obtained through the intermediate section 13. At this time, the image obtained through the intermediate portion looks like a trapezoid, which gives an impression that the image is distorted, and the wearing feeling of the glasses decreases.

すなわち、眼鏡レンズの倍率Mは近似的に以下の式で表わされる。
M = Ms×Mp・・・(8)
That is, the magnification M of the spectacle lens is approximately expressed by the following equation.
M = Ms × Mp (8)

ここで、Msはシェープ・ファクター、Mpはパワー・ファクターと呼ばれる。レンズ基材の屈折率をn、レンズの物体側の面のベースカーブ(面屈折力)をD(ディオプトリ、ディオプタ)、レンズの眼球側の面の頂点(内側頂点)から眼球までの距離をL、内側頂点の屈折力(内側頂点屈折力)をP(度数S)、レンズ中心の厚みをtとすると、MpおよびMsは、以下のように表される。
Ms = 1/(1−D×t/n) ・・・(9)
Mp = 1/(1−L×P) ・・・(10)
Here, Ms is called a shape factor, and Mp is called a power factor. The refractive index of the lens substrate is n, the base curve (surface refractive power) of the object side surface of the lens is D (diopter, diopter), and the distance from the vertex (inner vertex) of the lens eyeball side surface to the eyeball is L Mp and Ms are expressed as follows, where P (frequency S) is the refractive power of the inner vertex (inner vertex refractive power) and t is the thickness of the lens center.
Ms = 1 / (1-D × t / n) (9)
Mp = 1 / (1-L × P) (10)

なお、式(9)および(10)の計算にあたっては、ベースカーブDおよび内側頂点屈折力Pについてはディオプトリ(D)を、また、厚みtおよび距離Lについてはメートル(m)を用いる。   In calculating the equations (9) and (10), diopter (D) is used for the base curve D and the inner vertex power P, and meters (m) are used for the thickness t and the distance L.

したがって、式(8)は、以下のようになる。
M={1/(1−D×t/n)}×{1/(1−L×P)}・・・(8)
Therefore, Formula (8) becomes as follows.
M = {1 / (1-D × t / n)} × {1 / (1-L × P)} (8)

この式(8)からわかるように、屈折力Pが大きくなると倍率Mも大きくなり、加入度が加わる近用部12の方が像の倍率Mが大きくなる。   As can be seen from this equation (8), as the refractive power P increases, the magnification M also increases, and the magnification M of the image increases in the near portion 12 to which the addition is added.

遠用部11と近用部12との倍率差を低減する両面累進レンズを用いた眼鏡においては、遠用部11のベースカーブに対して近用部12のベースカーブを小さくすることにより中間部13を通して得られる像が台形に見えたり、像の倍率が変化したりすることを軽減しようとしている。しかしながら、近用部12の断面形状を眼鏡用レンズに適したメニスカスレンズの状態を維持するために相対的に遠用部11のベースカーブを大きくする必要があり、結果的に眼鏡用レンズの凸面高さ(サグ値)が大きく、内面累進レンズや外面累進レンズと比べてレンズが厚くなる。このため、眼鏡の装着感をさらに改善するためには凸面高さが小さく、中間部13における像の倍率変化の少ない眼鏡用レンズが求められている。   In eyeglasses using a double-sided progressive lens that reduces the magnification difference between the distance portion 11 and the near portion 12, the intermediate portion is obtained by making the base curve of the near portion 12 smaller than the base curve of the distance portion 11. The image obtained through 13 looks to be trapezoidal or the magnification of the image is changed. However, in order to maintain the state of the meniscus lens suitable for the spectacle lens as the cross-sectional shape of the near portion 12, it is necessary to relatively increase the base curve of the distance portion 11, resulting in the convex surface of the spectacle lens. The height (sag value) is large, and the lens becomes thicker than the inner surface progressive lens and the outer surface progressive lens. For this reason, in order to further improve the wearing feeling of spectacles, there is a demand for a spectacle lens with a small convex surface height and a small change in image magnification at the intermediate portion 13.

図3に、本発明の実施形態に係る眼鏡用レンズ10の外面(物体側の面)19Aおよび内面(使用者側の面、眼球側の面)19Bの垂直基準線Yに沿った面屈折力(平均面屈折力)の変化を示している。この眼鏡用レンズの処方10は、度数Sが+3.00、加入度addが2.00である。また、レンズ基材の屈折率は1.67であり、中心厚は1.1mm以上、縁厚は0.5mm以上、中心厚+縁厚は3.2mm以上となるように設計されたものである。た、内面19Bがいずれの箇所においても凸とならない条件で、外面19Aの面屈折力が最も小さくなる、すなわち、薄型となるように設計している。   FIG. 3 shows the surface refractive power along the vertical reference line Y of the outer surface (object side surface) 19A and the inner surface (user side surface, eyeball side surface) 19B of the spectacle lens 10 according to the embodiment of the present invention. The change in (average surface refractive power) is shown. This spectacle lens prescription 10 has a power S of +3.00 and an addition add of 2.00. The refractive index of the lens substrate is 1.67, the center thickness is 1.1 mm or more, the edge thickness is 0.5 mm or more, and the center thickness + edge thickness is 3.2 mm or more. is there. Further, the surface refractive power of the outer surface 19A is designed to be the smallest, that is, to be thin, under the condition that the inner surface 19B is not convex in any part.

垂直基準線Yは、図2に示すように眼鏡用レンズ10のアイポイント(フィッティングポイント)Peを通る垂直な基準線であり、アイポイントPeを原点(0点)として上方が正、下方が負の垂直座標の基準線である。なお、眼鏡用レンズ10の垂直方向の基準線として、遠方視・中間視・近方視をするときに視野の中心となるレンズ上の位置を結んだ主注視線(主子午線)Y´が用いられることがある。   The vertical reference line Y is a vertical reference line passing through the eye point (fitting point) Pe of the spectacle lens 10 as shown in FIG. 2, and the upper point is positive and the lower part is negative with the eye point Pe as the origin (0 point). This is the reference line for the vertical coordinate. As a reference line in the vertical direction of the spectacle lens 10, a main gazing line (main meridian) Y ′ connecting positions on the lens that becomes the center of the field of view when performing far vision, intermediate vision, and near vision is used. May be.

図3の実線が、眼鏡用レンズ10の外面19Aの平均面屈折力の変化を示し、破線が内面19Bの平均面屈折力の変化を示している。この眼鏡用レンズ10は内面累進レンズであり、内面19Bは、主に遠距離の物体を見るときに使用する遠用部11と、主に近距離の物体を見るときに使用する近用部12と、遠用部11と近用部12との間で徐々に度数が変化する中間部13を含む。   The solid line in FIG. 3 shows the change in the average surface power of the outer surface 19A of the spectacle lens 10, and the broken line shows the change in the average surface power of the inner surface 19B. The spectacle lens 10 is an inner surface progressive lens, and the inner surface 19B has a distance portion 11 mainly used when viewing an object at a long distance and a near portion 12 mainly used when looking at an object at a short distance. And an intermediate portion 13 in which the power gradually changes between the distance portion 11 and the near portion 12.

眼鏡用レンズ10の外面(物体側の面)19Aは、平均面屈折力が第1の値D1の第1の領域21と、平均面屈折力が第2の値D2の第2の領域22と、第1の領域21と第2の領域22との間で、平均面屈折力が第1の値D1から第3の値D3に増加し、第3の値D3から第2の値D2に減少する第3の領域23とを含む。外面19Aの第1の領域21は内面19Bの遠用部11の一部と対面し、第2の領域22は近用部12と対面している。外面19Aの第3の領域23は、第1の領域21および第2の領域22の間で、内面19Bの遠用部11の下側と中間部13とに対面している。   The outer surface (object-side surface) 19A of the spectacle lens 10 includes a first region 21 having an average surface refractive power of a first value D1, and a second region 22 having an average surface refractive power of a second value D2. The average surface refractive power increases from the first value D1 to the third value D3 and decreases from the third value D3 to the second value D2 between the first region 21 and the second region 22. 3rd area | region 23 to be included. The first region 21 of the outer surface 19A faces a part of the distance portion 11 of the inner surface 19B, and the second region 22 faces the near portion 12. The third region 23 of the outer surface 19A faces the lower side of the distance portion 11 and the intermediate portion 13 of the inner surface 19B between the first region 21 and the second region 22.

この眼鏡用レンズ10において、第1の値D1および第2の値D2は5D(ディオプタ)であり、第3の値D3は7Dである。また、アイポイントPe(Y=0)に対して、第1の領域21と第3の領域23との境界点(第1ポイント)P1のY座標Yaは4(Ya=4)であり、第3の領域23において平均面屈折力が極大値(第3の値)D3となる点(第3ポイント)P3のY座標Ycは−4(Yc=−4)であり、第3の領域23と第2の領域22との境界点(第2ポイント)P2のY座標Ybは−14(Yb=−14)である。   In the eyeglass lens 10, the first value D1 and the second value D2 are 5D (diopter), and the third value D3 is 7D. Further, with respect to the eye point Pe (Y = 0), the Y coordinate Ya of the boundary point (first point) P1 between the first region 21 and the third region 23 is 4 (Ya = 4), The Y coordinate Yc of the point (third point) P3 where the average surface refractive power becomes the maximum value (third value) D3 in the third region 23 is −4 (Yc = −4). The Y coordinate Yb of the boundary point (second point) P2 with the second region 22 is −14 (Yb = −14).

内面19Bは、さらに、外面19Aの第1の領域21、第2の領域22および第3の領域23のそれぞれに対応して、平均面屈折力が第4の値D4の第4の領域24と、平均面屈折力が第5の値D5の第5の領域25と、第4の領域24と第5の領域25との間で平均面屈折力が第4の値D4から第6の値D6に増加し、第6の値D6から第5の値D5に減少する第6の領域26とを含む。また、この眼鏡用レンズ10においては、第6の領域26に遠用部11が含まれるので、第6の領域26において第4の値D4から第6の値D6に増加する際に、第4の値D4から第7の値D7を経て第6の値D6に達している。   The inner surface 19B further corresponds to each of the first region 21, the second region 22, and the third region 23 of the outer surface 19A, and the fourth region 24 having an average surface refractive power of the fourth value D4. The average surface power between the fourth region 24 and the fifth region 25 is between the fourth value D4 and the sixth value D6. And a sixth region 26 that decreases from the sixth value D6 to the fifth value D5. Further, in the spectacle lens 10, since the distance portion 11 is included in the sixth region 26, when the fourth value D4 increases from the fourth value D4 to the sixth value D6 in the sixth region 26, the fourth region 26 The value D4 reaches the sixth value D6 via the seventh value D7.

この眼鏡用レンズ10において、第4の値D4は2D、第5の値D5は0D、第6の値D6は3.2D、第7の値D7は3Dである。第4の領域24と第6の領域26との境界点(第4ポイント)P4のY座標は第1ポイントP1のY座標Yaと同じであり、第6の領域26において平均面屈折力が極大値(第6の値)D6となる点(第6ポイント)P6のY座標は第3ポイントのY座標Ycと同じであり、第6の領域26と第5の領域25との境界点(第5ポイント)P5のY座標は第2ポイントのY座標Ybと同じである。第7の値D7の第7ポイントP7のY座標は、遠用部11と中間部13との境界であり、この眼鏡用レンズ10においてはアイポイントPeと同じ座標(Y=0)である。   In this spectacle lens 10, the fourth value D4 is 2D, the fifth value D5 is 0D, the sixth value D6 is 3.2D, and the seventh value D7 is 3D. The Y coordinate of the boundary point (fourth point) P4 between the fourth region 24 and the sixth region 26 is the same as the Y coordinate Ya of the first point P1, and the average surface refractive power is maximum in the sixth region 26. The Y coordinate of the point (sixth point) P6 that becomes the value (sixth value) D6 is the same as the Y coordinate Yc of the third point, and the boundary point (first point) between the sixth region 26 and the fifth region 25 5 points) The Y coordinate of P5 is the same as the Y coordinate Yb of the second point. The Y coordinate of the seventh point P7 of the seventh value D7 is the boundary between the distance portion 11 and the intermediate portion 13, and in the eyeglass lens 10, it is the same coordinate (Y = 0) as the eye point Pe.

図4は、眼鏡用レンズ10の物体側の面(外面)19A、眼球側の面(使用者側の面、内面)19Bおよび物体側の面および眼球側の面を通して見たときの収差分布および等価球面度数分布を示している。   FIG. 4 shows an aberration distribution when viewed through the object-side surface (outer surface) 19A, eyeball-side surface (user-side surface, inner surface) 19B, object-side surface, and eyeball-side surface of the eyeglass lens 10. An equivalent spherical power distribution is shown.

図3に示すように、この眼鏡用レンズ10の第3の領域23に注目すると、まず、遠用部11の内部にある第1ポイントP1から遠用部11と中間部13との境界である第7ポイントP7(アイポイントPe)までの範囲23aにおいては、度数Sが変わらず、外面19Aの面屈折力(ベースカーブ)Dが増加(曲率が増加、曲率半径が減少)する。したがって、式(8)によれば、像の倍率が徐々に増加する。   As shown in FIG. 3, when attention is paid to the third region 23 of the spectacle lens 10, first, it is a boundary between the distance portion 11 and the intermediate portion 13 from the first point P <b> 1 inside the distance portion 11. In the range 23a up to the seventh point P7 (eye point Pe), the power S does not change and the surface refractive power (base curve) D of the outer surface 19A increases (the curvature increases and the curvature radius decreases). Therefore, according to equation (8), the magnification of the image gradually increases.

第7ポイントP7から、ベースカーブが最大になる第3ポイントP3までの範囲23bにおいては、中間部13になるので度数Sが徐々に増加し、ベースカーブDが徐々に増加する。したがって、像の倍率の増加傾向が大きくなる。   In the range 23b from the seventh point P7 to the third point P3 where the base curve is maximum, the frequency S is gradually increased and the base curve D is gradually increased because the intermediate portion 13 is reached. Therefore, the increasing tendency of the image magnification becomes large.

第3ポイントP3から、近用部12との境界である第2ポイントP2までの範囲23cにおいては、度数Sが徐々に増加し、ベースカーブDが徐々に減少する。したがって、この範囲23cにおいては、像の倍率の変化が抑制される。このため、ベースカーブDが最大となる第6ポイントP6から第2ポイントP2の範囲23cでPCの画面などが見られるようにすれば、画面の変形、ゆれなどを抑制できる。   In a range 23c from the third point P3 to the second point P2, which is a boundary with the near portion 12, the frequency S gradually increases and the base curve D gradually decreases. Therefore, in this range 23c, a change in image magnification is suppressed. For this reason, if the PC screen or the like can be seen in the range 23c from the sixth point P6 to the second point P2 where the base curve D is maximized, screen deformation and shaking can be suppressed.

したがって、第1ポイントP1の座標Ya、第2ポイントP2の座標Ybおよび第3ポイントP3の座標Ycは以下の条件を満たすことが望ましい。なお、以下の式において単位はmmである。
Ya>Yc>Yb・・・(1)
Accordingly, it is desirable that the coordinate Ya of the first point P1, the coordinate Yb of the second point P2, and the coordinate Yc of the third point P3 satisfy the following conditions. In the following formula, the unit is mm.
Ya>Yc> Yb (1)

(1)式の条件は、ベースカーブDがピークとなる第3ポイントP3が遠用部11と中間部13との境界P1と、中間部13と近用部12との境界P2との間に位置することを示す。   The condition of the expression (1) is that the third point P3 at which the base curve D reaches a peak is between the boundary P1 between the distance portion 11 and the intermediate portion 13 and the boundary P2 between the intermediate portion 13 and the near portion 12. Indicates that it is located.

境界点(第1ポイント)P1が下にあるほど、レンズを薄型にしやすい。一方、上述したように第3の領域の第3ポイントP3と第2ポイントP2との間23cが像の倍率変化が小さい部分であり、第1ポイントP1がアイポイントPeに近いと、像の倍率変化の小さな部分23cを広く確保しにくい。したがって、第1ポイントP1は以下(2)式の条件を満たすことが好ましい。
Ya≦15・・・(2)
The lower the boundary point (first point) P1, the easier it is to make the lens thinner. On the other hand, as described above, the portion 23c between the third point P3 and the second point P2 in the third region is a portion where the change in the magnification of the image is small, and if the first point P1 is close to the eye point Pe, the magnification of the image It is difficult to secure a wide change portion 23c. Therefore, it is preferable that the first point P1 satisfies the condition of the following expression (2).
Ya ≦ 15 (2)

第1ポイントP1はさらに以下の条件を満たすことが望ましい。
0≦Ya≦15・・・(2´)
It is desirable that the first point P1 further satisfies the following conditions.
0 ≦ Ya ≦ 15 (2 ′)

第3ポイントP3と第2ポイントP2との間23cの像の倍率変化が小さいので、PCの画面を見るのに好適な眼鏡用レンズ10にするためには、第3ポイントP3がPCの画面の上端近傍を見る位置となり、第2ポイントP2がPCの画面の下端近傍を見る位置となることが好ましい。このため、それぞれの座標YcおよびYbは以下(3)式および(4)式の条件を満たすことが望ましい。
−5≦Yc≦10・・・(3)
−25≦Yb≦−5・・・(4)
Since the change in the magnification of the image of the image 23c between the third point P3 and the second point P2 is small, the third point P3 is displayed on the PC screen in order to make the spectacle lens 10 suitable for viewing the PC screen. It is preferable that the position near the upper end is viewed, and the second point P2 is a position viewed near the lower end of the PC screen. For this reason, it is desirable that the respective coordinates Yc and Yb satisfy the conditions of the following expressions (3) and (4).
−5 ≦ Yc ≦ 10 (3)
−25 ≦ Yb ≦ −5 (4)

また、第1ポイントP1と第3ポイントP3との間23aおよび23bは、上述したように像の倍率変化の傾向が比較的大きくなる領域であり、領域23aおよび23bの長さが短すぎると像の倍率変化の傾向が大きくなり、見にくくなる。一方、領域23aおよび23bの長さが長すぎると、PCの画面を見るのに適した第3ポイントP3と第2ポイントP2との間の領域23cの長さが短くなる。したがって、第1ポイントP1の座標Ya、第3ポイントP3の座標Yc、第2ポイントP2の座標Ybは、以下(5)式および(6)式の条件を満たすことが好ましい。
Ya−Yc≧4・・・(5)
Yc−Yb≧10・・・(6)
Further, the areas 23a and 23b between the first point P1 and the third point P3 are areas in which the tendency of the image magnification change is relatively large as described above. If the lengths of the areas 23a and 23b are too short, the image The tendency of the change in magnification increases, making it difficult to see. On the other hand, if the lengths of the areas 23a and 23b are too long, the length of the area 23c between the third point P3 and the second point P2 suitable for viewing the PC screen becomes short. Therefore, it is preferable that the coordinate Ya of the first point P1, the coordinate Yc of the third point P3, and the coordinate Yb of the second point P2 satisfy the conditions of the following expressions (5) and (6).
Ya-Yc ≧ 4 (5)
Yc−Yb ≧ 10 (6)

第3ポイントP3におけるベースカーブDの値D3は、領域23cにおけるベースカーブDの値D3から値D2への変化が、度数Sの増加による像の倍率変化を抑制できる程度に確保できる値であればよい。具体的には、以下の(7)式の条件を満たすことが望ましい。
MAX(D1、D2)+1≦D3≦(n−1)/0.015・・・(7)
The value D3 of the base curve D at the third point P3 is a value that can ensure that the change from the value D3 of the base curve D to the value D2 in the region 23c can suppress the change in magnification of the image due to the increase in the frequency S. Good. Specifically, it is desirable to satisfy the condition of the following expression (7).
MAX (D1, D2) + 1 ≦ D3 ≦ (n−1) /0.015 (7)

すなわち、第3の値D3は、第1の値D1および第2の値D2よりも1D以上大きくならないと、ベースカーブDの増加および減少を伴う第3の領域23が形成できない。第3の値D3の最大値は、以下のように眼鏡用レンズとしての幅を確保することで決定できる。   That is, if the third value D3 is not larger than the first value D1 and the second value D2 by 1D or more, the third region 23 accompanied with the increase and decrease of the base curve D cannot be formed. The maximum value of the third value D3 can be determined by securing the width as a spectacle lens as follows.

まず、累進屈折力レンズを用いた眼鏡においては、フレームの天地幅を30mm以上とすることが推奨されている。この際、物体側の面の曲率半径を15mm以下とすると、必要なフレーム径を確保できなくなるおそれがある。したがって、第3の値D3がとりうる最大値Dmaxは以下(11)式を満たすようにすることが好ましい。単位はディオプタである。
Dmax=(n−1)/r=(n−1)/0.015・・・(11)
First, in spectacles using a progressive power lens, it is recommended that the vertical width of the frame is 30 mm or more. At this time, if the curvature radius of the object-side surface is set to 15 mm or less, a necessary frame diameter may not be secured. Therefore, it is preferable that the maximum value Dmax that the third value D3 can take satisfies the following expression (11). The unit is diopter.
Dmax = (n−1) / r = (n−1) /0.015 (11)

ここで、nはレンズ素材の屈折率、rは物体側の面の曲率半径(m)である。     Here, n is the refractive index of the lens material, and r is the radius of curvature (m) of the object side surface.

上記(11)式において、レンズ素材の屈折率nを1.662とすると、最大値Dmaxは以下(12)式になる。
Dmax=(1.662−1)×1000/15≒44.13(D)・・・(12)
In the above equation (11), when the refractive index n of the lens material is 1.661, the maximum value Dmax is expressed by the following equation (12).
Dmax = (1.662-1) × 1000 / 15≈44.13 (D) (12)

本例の眼鏡用レンズ10は上記の条件(1)〜(7)を満たしている。   The eyeglass lens 10 of this example satisfies the above conditions (1) to (7).

図5に、本例の眼鏡用レンズ10の外面19Aおよび19Bの平均面屈折力の変化(図5(a))を、比較例1(内面累進レンズ)(図5(b))と、比較例2(両面累進レンズ、物体側の面の面加入度をマイナスとしたもの(外面逆加入)(図5(c))と比較して示している。これらの眼鏡用レンズは、図6に実施例、比較例1および比較例2の設計条件を示すように、眼鏡仕様が同一のレンズである。   FIG. 5 compares the change in average surface refractive power of the outer surfaces 19A and 19B (FIG. 5A) of the spectacle lens 10 of this example with that of Comparative Example 1 (inner surface progressive lens) (FIG. 5B). This is shown in comparison with Example 2 (double-sided progressive lens, in which the surface addition on the object side surface is negative (outside reverse addition) (FIG. 5 (c)). As shown in the design conditions of Example, Comparative Example 1 and Comparative Example 2, the lenses have the same spectacles specifications.

図7は、実施例の眼鏡用レンズ、および比較例1〜2の眼鏡用レンズのそれぞれについて、第3ポイントP3における倍率と、第2ポイントP2における倍率と、倍率差とを纏めて示している。この図からわかるように、実施例の眼鏡用レンズ10の倍率差が最も小さく、倍率差を縮めることを1つの目的としている比較例2の両面累進レンズと比べても、第3ポイントP3と第2ポイントP2との間の領域23cに限れば、実施例の眼鏡レンズ10の倍率差が最も小さい。したがって、PCの画面を見るといった用途に限定すれば、実施例の眼鏡用レンズ10は、像が台形状に見えるといった感覚を軽減でき、装着感のよい眼鏡を提供できる。   FIG. 7 collectively shows the magnification at the third point P3, the magnification at the second point P2, and the magnification difference for each of the spectacle lens of the example and the spectacle lenses of Comparative Examples 1 and 2. . As can be seen from this figure, the third point P3 and the third point P3 are the same as those of the double-sided progressive lens of Comparative Example 2 in which the magnification difference of the eyeglass lens 10 of the example is the smallest and the objective is to reduce the magnification difference. As long as it is limited to the region 23c between the two points P2, the difference in magnification of the spectacle lens 10 of the example is the smallest. Therefore, if limited to applications such as viewing a PC screen, the spectacle lens 10 of the embodiment can reduce the feeling that the image looks like a trapezoid and can provide spectacles with a good wearing feeling.

本例の眼鏡用レンズ10が両面累進レンズに対して倍率差が小さい1つの要因は、図5(a)と図5(c)とを比較すると分かるように、第3の領域23においてベースカーブDを増加減少させているためにピーク値(第3の値)D3の値を加入度に対して大きくできることである。本例の眼鏡用レンズ10であれば、ピーク値D3をさらに大きくすることにより倍率差のさらに小さな眼鏡用レンズ10を提供できる。   One factor that the spectacle lens 10 of this example has a small magnification difference with respect to the double-sided progressive lens is that the base curve in the third region 23 can be understood by comparing FIG. 5A and FIG. Since D is increased or decreased, the peak value (third value) D3 can be increased with respect to the addition. With the spectacle lens 10 of this example, the spectacle lens 10 with a smaller magnification difference can be provided by further increasing the peak value D3.

図8は、実施例のレンズと比較例2の厚みを比較した図であって、Y座標と物体側の面の凸面高さ(Z座標、サグ値)との関係を示している。本図に示すように、本例の眼鏡用レンズ10に対して、比較例2の両面累進レンズは、近用部12におけるベースカーブDを本例の眼鏡用レンズ10と同じ設計にした場合、遠用部11におけるベースカーブDの値が大きくなる。このため、遠用部11の曲率が大きくなり、そのため、遠用部11の眼鏡レンズの厚み(アイポイントPeに対する凸面高さ)が大きくなる。一方、本例の眼鏡用レンズ10であれば、遠用部11のベースカーブDを近用部12と同じに設定することが可能であり、比較例1の内面累進レンズと同程度の厚み(凸面高さ)の眼鏡用レンズであって、倍率差の小さな眼鏡用レンズを提供できる。したがって、さらに装着感のよい眼鏡1を提供できる。   FIG. 8 is a diagram comparing the thicknesses of the lens of Example and Comparative Example 2, and shows the relationship between the Y coordinate and the convex surface height (Z coordinate, sag value) of the object side surface. As shown in the figure, in contrast to the spectacle lens 10 of the present example, the double-sided progressive lens of Comparative Example 2 has the same design as the spectacle lens 10 of the present example in the base curve D in the near portion 12. The value of the base curve D in the distance portion 11 increases. For this reason, the curvature of the distance portion 11 increases, and therefore the thickness of the spectacle lens of the distance portion 11 (the height of the convex surface with respect to the eye point Pe) increases. On the other hand, in the case of the eyeglass lens 10 of this example, the base curve D of the distance portion 11 can be set to be the same as that of the near portion 12, and the same thickness as the inner surface progressive lens of the comparative example 1 ( It is possible to provide a spectacle lens with a small difference in magnification. Therefore, it is possible to provide the glasses 1 with a better wearing feeling.

なお、本例の眼鏡用レンズ10においては、遠用部11のベースカーブDと近用部12のベースカーブDとを同一にする必要はない。したがって、設計によっては、比較例1の内面累進レンズよりもさらに薄い(凸面高さの小さい)眼鏡用レンズを提供できる可能性がある。   In the eyeglass lens 10 of this example, the base curve D of the distance portion 11 and the base curve D of the near portion 12 need not be the same. Therefore, depending on the design, there is a possibility of providing a spectacle lens that is thinner (smaller in convex height) than the inner surface progressive lens of Comparative Example 1.

また、本例の眼鏡用レンズ10において、遠用部11を通して見た像の倍率と近用部12を通してみた像の倍率との差を縮めるように設計することも可能である。そのような眼鏡用レンズは、図5(a)および(c)を合体させたような設計になり、PCの画面を見るのに適した領域23cにおける倍率差をさらに縮小できる。しかしながら、遠用部11の設計は比較例2の両面累進レンズと同じになるので、眼鏡用レンズ全体の凸面高さは比較例2と同様になる。したがって、PCの画面を見るのに適した領域23cの倍率差の軽減効果に対して眼鏡用レンズの厚みを薄くできるという効果は奏するが、全体の凸面高さは比較例2とほぼ同じになる可能性がある。   Further, the spectacle lens 10 of the present example can be designed so as to reduce the difference between the magnification of the image viewed through the distance portion 11 and the magnification of the image viewed through the near portion 12. Such a spectacle lens is designed such that FIGS. 5A and 5C are combined, and the magnification difference in the region 23c suitable for viewing the screen of the PC can be further reduced. However, since the design of the distance portion 11 is the same as that of the double-sided progressive lens of the comparative example 2, the convex surface height of the entire spectacle lens is the same as that of the comparative example 2. Therefore, although the effect of reducing the thickness of the spectacle lens can be achieved with respect to the effect of reducing the magnification difference in the region 23c suitable for viewing the PC screen, the overall convex surface height is substantially the same as that of the comparative example 2. there is a possibility.

図9は、眼鏡用レンズ10の設計および製造方法の一例を示すフローチャートである。まず、ステップ51において、眼鏡処方より、内面19Bの遠用部11と近用部12の平均面屈折力を含む内面累進面の基本的な形状を決める。ステップ52において、眼鏡処方(眼鏡仕様)と用途などの条件(処方)に基づいて外面19Aの上端(第1ポイント)P1、極大値をとる点(第3ポイント)P3および下端(第2ポイント)P2の座標を決める。そして、ステップ53において、ステップ51で決めた内面19Bの平均面屈折力に対して第3の領域23、特に、像の倍率差を小さくしたい領域23cにおける倍率差を考慮して外面19AのベースカーブDの形状を決定する。   FIG. 9 is a flowchart showing an example of a design and manufacturing method of the spectacle lens 10. First, in step 51, the basic shape of the inner surface progressive surface including the average surface refractive power of the distance portion 11 and the near portion 12 of the inner surface 19B is determined from the spectacle prescription. In step 52, the upper end (first point) P1 of the outer surface 19A based on the spectacle prescription (spectacle spec) and the conditions (prescription) such as use, the point at which the maximum value is taken (third point) P3, and the lower end (second point) Determine the coordinates of P2. In step 53, the base curve of the outer surface 19A is taken into consideration in the third region 23, particularly in the region 23c where the difference in image magnification is desired to be reduced, with respect to the average surface refractive power of the inner surface 19B determined in step 51. Determine the shape of D.

さらに、ステップ54において外面19AのベースカーブDにしたがって、内面累進面の性能が発揮されるように内面19Bの形状を決定する。そして、ステップ55において、外面19Aおよび内面19Bを含む眼鏡用レンズ10を成形する。   Further, in step 54, the shape of the inner surface 19B is determined so that the performance of the inner surface progressive surface is exhibited according to the base curve D of the outer surface 19A. In step 55, the spectacle lens 10 including the outer surface 19A and the inner surface 19B is molded.

図10は、眼鏡用レンズの設計装置70の一例の概略構成を示している。この設計装置70は、第1ないし第3のユニット(機能)71〜73を含む。第1のユニット71は、眼鏡処方に基づいて遠用部11および近用部12を含む累進面を設定するユニットである。第2のユニット72は、外面19Aに第1の領域21、第2の領域22および第3の領域23を設定し、第1の領域21の値D1と、第2の領域22の値D2と、第3の領域23のピークの値D3とを決める。第2のユニット72では、第1の領域21は遠用部11に含まれ、第2の領域22は近用部12に含まれ、第3の領域23は中間部(累進部)13を含むように領域を設定する。   FIG. 10 shows a schematic configuration of an example of a spectacle lens design apparatus 70. The design apparatus 70 includes first to third units (functions) 71 to 73. The first unit 71 is a unit that sets a progressive surface including the distance portion 11 and the near portion 12 based on the spectacle prescription. The second unit 72 sets the first region 21, the second region 22, and the third region 23 on the outer surface 19 </ b> A, and the value D <b> 1 of the first region 21 and the value D <b> 2 of the second region 22 The peak value D3 of the third region 23 is determined. In the second unit 72, the first region 21 is included in the distance portion 11, the second region 22 is included in the near portion 12, and the third region 23 includes the intermediate portion (progression portion) 13. Set the area as follows.

第3のユニット73は、上述のように設計された眼鏡用レンズ10Lおよび10Rを、装着者(ユーザー)が通して見た様子をシミュレーションするユニットである。このユニット73の一例は画像表示装置であり、ヘッドマウントディスプレイなどを用いて左右の倍率差が縮小された矯正視力を仮想的に体験することができる。   The third unit 73 is a unit that simulates how the wearer (user) sees the spectacle lenses 10L and 10R designed as described above. An example of the unit 73 is an image display device, and it is possible to virtually experience the corrected visual acuity in which the difference between the left and right magnifications is reduced using a head mounted display or the like.

この設計装置70を用いることにより、ユーザーは、眼鏡の販売店において、ユーザーが望む用途において主に見る像の歪やゆれの度合いを体験できる。したがって、この設計装置70を用いることにより、上述のように設計された眼鏡1によって快適な視野が得られることをユーザーが体験できる。   By using this design device 70, the user can experience the degree of distortion and shaking of the image mainly seen in the application desired by the user at the eyeglass dealer. Therefore, by using this design device 70, the user can experience that a comfortable visual field can be obtained with the glasses 1 designed as described above.

なお、本実施形態では、眼鏡用累進多焦点(累進屈折力)レンズを例にとって説明したが、本発明は、累進多焦点レンズに限定されるものではない。本発明は、二重焦点(バイフォーカル)レンズや、さらに中間度数を付けた三重焦点(トライフォーカル)レンズなどにも適用可能である。   In the present embodiment, a progressive multifocal (progressive refractive power) lens for spectacles has been described as an example, but the present invention is not limited to a progressive multifocal lens. The present invention can also be applied to a bifocal lens, a trifocal lens with an intermediate power, and the like.

1 眼鏡、10、10L、10R 眼鏡用レンズ
11 遠用部、 12 近用部、13 中間部(累進部分)
21 第1の領域、 22 第2の領域、 23 第3の領域
19A 物体側の面、 19B 眼球側の面
20 フレーム、 70 眼鏡用レンズの設計装置
DESCRIPTION OF SYMBOLS 1 Glasses, 10, 10L, 10R Glasses lens 11 Distance part, 12 Near part, 13 Middle part (progressive part)
21 1st area | region, 22 2nd area | region, 23 3rd area | region 19A Object side surface, 19B Eyeball side surface 20 Frame, 70 Lens design apparatus

Claims (10)

物体側の面が、
主注視線または垂直基準線に沿った平均面屈折力が第1の値の第1の領域と、
前記平均面屈折力が第2の値の第2の領域と、
前記第1の領域と前記第2の領域との間で、前記平均面屈折力が前記第1の値から第3の値に増加し、前記第3の値から前記第2の値に減少する第3の領域と、
を含む眼鏡用レンズ。
The object side surface is
A first region having an average surface power along the main line of sight or vertical reference line of a first value;
A second region where the average surface power is a second value;
Between the first region and the second region, the average surface power increases from the first value to a third value and decreases from the third value to the second value. A third region;
Eyeglass lenses including
請求項1において、
主に遠距離の物体を見るときに使用する遠用部と、主に近距離の物体を見るときに使用する近用部と、前記遠用部と前記近用部との間で徐々に度数が変化する中間部とを含み、
前記物体側の面の前記第1の領域は前記遠用部の少なくとも一部であり、前記第2の領域は前記近用部の少なくとも一部である、眼鏡用レンズ。
In claim 1,
The distance used mainly when looking at objects at long distances, the near part used mainly when looking at objects at short distances, and the frequency gradually between the distance and near parts Including an intermediate part that changes,
The eyeglass lens, wherein the first region of the object side surface is at least a part of the distance portion, and the second region is at least a portion of the near portion.
請求項1または2において、
使用者側の面は、前記物体側の面の前記第1の領域、前記第2の領域および前記第3の領域のそれぞれに対面する、前記平均面屈折力が第4の値の第4の領域と、前記平均面屈折力が第5の値の第5の領域と、前記第4の領域と前記第5の領域との間で前記平均面屈折力が前記第4の値から前記第6の値に増加し、前記第6の値から前記第5の値に減少する第6の領域とを含む、眼鏡用レンズ。
In claim 1 or 2,
A user-side surface faces each of the first region, the second region, and the third region of the object-side surface, and the average surface refractive power is a fourth value having a fourth value. The average surface power between the fourth value and the sixth value between the fourth value and the fifth value. And a sixth region that increases to the value and decreases from the sixth value to the fifth value.
請求項1ないし3のいずれかにおいて、当該眼鏡用レンズのアイポイントを原点とする前記垂直基準線上の前記第1の領域と前記第3の領域との境界点Yaと、前記平均面屈折力が前記第3の値である点Ycと、前記第3の領域と前記第2の領域との境界点Ybとは以下の条件を満たす、眼鏡用レンズ。
Ya>Yc>Yb
Ya≦15
−5≦Yc≦10
−25≦Yb≦−5
ただし、単位はmmである。
4. The boundary point Ya between the first region and the third region on the vertical reference line with the eye point of the spectacle lens as the origin, and the average surface refractive power according to claim 1. The lens for spectacles, wherein the point Yc which is the third value and the boundary point Yb between the third region and the second region satisfy the following conditions.
Ya>Yc> Yb
Ya ≦ 15
−5 ≦ Yc ≦ 10
−25 ≦ Yb ≦ −5
However, the unit is mm.
請求項4において、前記点Ya、YcおよびYbは以下の条件を満たす、眼鏡用レンズ。
Ya−Yc≧4
Yc−Yb≧10
5. The spectacle lens according to claim 4, wherein the points Ya, Yc, and Yb satisfy the following conditions.
Ya-Yc ≧ 4
Yc−Yb ≧ 10
請求項1ないし5のいずれかにおいて、前記第1の値をD1とし、前記第2の値をD2とし、前記第3の値をD3としたとき、以下の条件を満たす、眼鏡用レンズ。
MAX(D1、D2)+1≦D3≦(n−1)/0.015
ただし、単位はディオプタであり、nは素材の屈折率であり、MAX(D1、D2)は、D1とD2の内、値が大きい方を選ぶ関数である。
6. The spectacle lens according to claim 1, wherein when the first value is D1, the second value is D2, and the third value is D3, the following condition is satisfied.
MAX (D1, D2) + 1 ≦ D3 ≦ (n−1) /0.015
However, the unit is diopter, n is the refractive index of the material, and MAX (D1, D2) is a function that selects the larger one of D1 and D2.
眼鏡用レンズの製造方法であって、
主注視線または垂直基準線に沿った平均面屈折力が第1の値の第1の領域と、
前記平均面屈折力が第2の値の第2の領域と、
前記第1の領域と前記第2の領域との間で、前記平均面屈折力が前記第1の値から第3の値に増加し、前記第3の値から前記第2の値に減少する第3の領域と、
を備えた物体側の面を形成することを有する、眼鏡用レンズの製造方法。
A method for manufacturing a spectacle lens,
A first region having an average surface power along the main line of sight or vertical reference line of a first value;
A second region where the average surface power is a second value;
Between the first region and the second region, the average surface power increases from the first value to a third value and decreases from the third value to the second value. A third region;
A method for manufacturing a spectacle lens, comprising: forming an object-side surface comprising:
請求項7において、前記物体側の面を形成することと前後し、または同時に、主に遠距離の物体を見るときに使用する遠用部と、主に近距離の物体を見るときに使用する近用部と、前記遠用部と前記近用部との間で徐々に度数が変化する中間部とを備えた使用者側の面を形成することを含み、
前記物体側の面の前記第1の領域は前記遠用部の少なくとも一部と対面し、前記第2の領域は前記近用部の少なくとも一部と対面する、眼鏡用レンズの製造方法。
8. The distance portion used mainly for viewing a long-distance object and used mainly for viewing a short-distance object at the same time as forming the object-side surface or at the same time. Forming a user-side surface comprising a near portion and an intermediate portion in which the power gradually changes between the distance portion and the near portion;
The method for manufacturing a spectacle lens, wherein the first region of the object-side surface faces at least a part of the distance portion, and the second region faces at least a portion of the near portion.
度数の異なる遠用部と近用部とを含む眼鏡用多焦点レンズを設計する装置であって、
前記遠用部および前記近用部を含む使用者側の面を設定する第1のユニットと、
主注視線または垂直基準線に沿った平均面屈折力が第1の値の第1の領域と、前記平均面屈折力が第2の値の第2の領域と、前記第1の領域と前記第2の領域との間で、前記平均面屈折力が前記第1の値から第3の値に増加し、前記第3の値から前記第2の値に減少する第3の領域とを含む物体側の面を設定する第2のユニットであって、前記第1の領域が前記遠用部の少なくとも一部と対面し、前記第2の領域が前記近用部の少なくとも一部と対面するように前記物体側の面を設定する第2のユニットとを有する装置。
An apparatus for designing a multifocal lens for spectacles including a distance portion and a near portion having different powers,
A first unit for setting a user side surface including the distance portion and the near portion;
A first region having an average surface power along a main gaze line or a vertical reference line having a first value; a second region having an average surface power of a second value; the first region; A third region in which the average surface power increases from the first value to the third value and decreases from the third value to the second value between the second region and the second region; A second unit for setting an object-side surface, wherein the first region faces at least a part of the distance portion, and the second region faces at least a portion of the near portion. And a second unit for setting the object-side surface.
請求項9において、前記使用者側の面および前記物体側の面を備えた前記眼鏡用多焦点レンズを通して見た様子をシミュレーションするユニットを有する、装置。   10. The apparatus according to claim 9, further comprising a unit that simulates a state viewed through the multifocal lens for spectacles provided with the user-side surface and the object-side surface.
JP2011002747A 2011-01-11 2011-01-11 Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof Expired - Fee Related JP5749497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002747A JP5749497B2 (en) 2011-01-11 2011-01-11 Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002747A JP5749497B2 (en) 2011-01-11 2011-01-11 Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015098680A Division JP2015143889A (en) 2015-05-14 2015-05-14 Eyeglass lens and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2012145672A true JP2012145672A (en) 2012-08-02
JP5749497B2 JP5749497B2 (en) 2015-07-15

Family

ID=46789309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002747A Expired - Fee Related JP5749497B2 (en) 2011-01-11 2011-01-11 Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP5749497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106385A (en) * 2012-11-28 2014-06-09 Hoya Lense Manufacturing Philippine Inc Progressive power lens and method of designing progressive power lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201993A (en) * 2004-01-14 2005-07-28 Pentax Corp Progressive refracting power lens
JP2006323129A (en) * 2005-05-19 2006-11-30 Tokai Kogaku Kk Progressive refracting-power lens and its manufacturing method
WO2011000845A1 (en) * 2009-06-30 2011-01-06 Essilor International (Compagnie Generale D'optique) Method of and apparatus for designing an optical lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201993A (en) * 2004-01-14 2005-07-28 Pentax Corp Progressive refracting power lens
JP2006323129A (en) * 2005-05-19 2006-11-30 Tokai Kogaku Kk Progressive refracting-power lens and its manufacturing method
WO2011000845A1 (en) * 2009-06-30 2011-01-06 Essilor International (Compagnie Generale D'optique) Method of and apparatus for designing an optical lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106385A (en) * 2012-11-28 2014-06-09 Hoya Lense Manufacturing Philippine Inc Progressive power lens and method of designing progressive power lens

Also Published As

Publication number Publication date
JP5749497B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
US7914145B2 (en) Progressive power lens and manufacturing method therefor
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
US8807746B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP5805407B2 (en) Progressive power lens
JP5897260B2 (en) Progressive power lens and design method thereof
WO2013137179A1 (en) Eyeglass lens and bifocal eyeglasses
JP2013218004A (en) Progressive refractive power lens and method of designing progressive refractive power lens
JP5822483B2 (en) Eyeglass lenses
JP5789108B2 (en) Progressive power lens and design method thereof
EP2498120A1 (en) Progressive-power lens
JP4243335B2 (en) Progressive power lens
JP5749497B2 (en) Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof
JP5832765B2 (en) Progressive power lens and design method thereof
JP2014106385A (en) Progressive power lens and method of designing progressive power lens
JP2015143889A (en) Eyeglass lens and method for manufacturing the same
JP6095271B2 (en) Lens set, lens design method, and lens manufacturing method
JP6126772B2 (en) Progressive power lens
JP2006178245A (en) Spectacle lens for for astigmatism correction
JP6109872B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP4530207B2 (en) Design method of spectacle lens used for frame having bending angle and spectacle lens used for frame having bending angle
KR100705120B1 (en) Progressive refractive power lens and production method therefor
JP4034191B2 (en) Progressive power lens
JP2015135529A (en) Method for manufacturing progressive refractive power lens
JP2013182250A (en) Lens set, lens design method, and lens manufacture method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees