JP2012145289A - Air conditioning system using snow - Google Patents

Air conditioning system using snow Download PDF

Info

Publication number
JP2012145289A
JP2012145289A JP2011004966A JP2011004966A JP2012145289A JP 2012145289 A JP2012145289 A JP 2012145289A JP 2011004966 A JP2011004966 A JP 2011004966A JP 2011004966 A JP2011004966 A JP 2011004966A JP 2012145289 A JP2012145289 A JP 2012145289A
Authority
JP
Japan
Prior art keywords
air
snow
outside air
supply
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011004966A
Other languages
Japanese (ja)
Other versions
JP5623298B2 (en
Inventor
Kazuaki Iijima
和明 飯嶋
Seiki Yoshioka
誠記 吉岡
Kenchi Sasaki
賢知 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2011004966A priority Critical patent/JP5623298B2/en
Publication of JP2012145289A publication Critical patent/JP2012145289A/en
Application granted granted Critical
Publication of JP5623298B2 publication Critical patent/JP5623298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system using snow capable of drastically reducing operational energy when a cooling load in an intermediate period or the summer season is large by preventing the insufficient humidification of air feeding while effectively performing the outer air cooling using outer air during the intermediate period or the winter season.SOLUTION: A mechanical chamber 2 has: an outer air path 4 communicating with an outer air introduction port 3; a return air path 7 communicating with an air-conditioning objective chamber 6 via an return air intake 5; a mixing part 9 which makes the outer air path 4 divisionally communicate with the return air path 7; and an air-feeding path 11 which divisionally communicates with the mixing part 9 and communicates with the air-conditioning objective chamber 6 via an air-feeding wind path 10. A snow storage part 30 in which snow is deposited is disposed outdoors, a first step humidifier 12 which insulates and humidifies return air RA is disposed at the return air path 7, a cooling coil 15, a second step humidifier 14 which insulates and humidifies mixed air MA and an air-feeding fan 19 are disposed at the air-feeding path 11, an outer air fan 23 is disposed at the outer air path 4, an exhaust fan 27 is disposed at the air-conditioning objective chamber 6, outer air OA and snow-cooled outer air SOA are switched and guided to the outer air path 4, and the cold heat of snow-cooled water 36 is guided to the cooling coil 15.

Description

本発明は雪を用いた空調システムに関するものである。特に空調対象室の熱負荷が1年中多く発生し、人などの潜熱負荷が殆どなく、室内湿度許容範囲が厳しい場合に適用できる雪を用いた空調システムに関するものである。   The present invention relates to an air conditioning system using snow. In particular, the present invention relates to an air-conditioning system using snow that can be applied when a heat load in a room to be air-conditioned is generated throughout the year, there is almost no latent heat load of a person or the like, and the indoor humidity allowable range is severe.

インターネットデータセンターや電算機室等においては、機器からの発熱を除去し且つ所定の湿度を保持するようにして機器が正常に動作する環境の提供を図るために、空調機(冷房機)を通年で稼働して冷房及び湿度調整を行うようにしているが、インターネットデータセンターや電算機室等の機器は大量の熱を発するために、冷房機への還り空気温度は高く、そのため、還気を設定温度まで冷却して給気するのに年間を通して多大のエネルギ(電力)を消費している。   In Internet data centers, computer rooms, etc., air conditioners (coolers) are provided year-round to provide an environment in which equipment operates normally by removing heat generated from equipment and maintaining a predetermined humidity. However, since the devices such as the Internet data center and the computer room generate a lot of heat, the return air temperature to the air conditioner is high, so the return air is A large amount of energy (electric power) is consumed throughout the year to cool and supply air to the set temperature.

空調対象室内に大量の熱を発する電算機やサーバラックなどが存在しない、一般事務所ビルにおいては、外気を利用して還気の温度を低下し、冷却コイルでの冷凍機消費エネルギを低減するようにした外気利用空調システムがあり、例えば本特許出願人による特許文献1がある。特許文献1の外気利用空調システムは、空気調和機の内部に外気系に連通して外気OAを取り入れる第一の流通路と、還気系を介し空調対象室に連通して取入れた還気RAを加湿器により加湿する第二の流通路と、第一の流通路及び第二の流通路に連通すると共に給気系を介し前記空調対象室に連通する第三の流通路を備え、冷凍機に接続された冷却手段を前記第一の流通路と第二の流通路とに備えた構成としている。   In general office buildings where there are no computers or server racks that generate a large amount of heat in the air-conditioned room, the temperature of the return air is reduced by using outside air, and the energy consumed by the refrigerator in the cooling coil is reduced. There is an outside air-conditioning system that is configured as described above, for example, Patent Document 1 by the present applicant. The outside-air-use air conditioning system disclosed in Patent Document 1 includes a first air passage that communicates with the outside air system and incorporates outside air OA into the air conditioner, and a return air RA that is introduced into the air conditioning target room via the return air system. A second flow passage that humidifies the air flow by a humidifier, a third flow passage that communicates with the first flow passage and the second flow passage and communicates with the air-conditioning target chamber through an air supply system. The cooling means connected to is provided in the first flow path and the second flow path.

特開2007−064556号公報JP 2007-064556 A

特許文献1によれば、中間期(春季や秋季)及び冬季において、室温よりも低温である外気OAを利用することによって省エネルギを図ることができる。しかし、還気RAのみを加湿する方式であるため、加湿による冷却効果を最大限に利用することができないという問題がある共に、空調対象室内に大量の熱を発する電算機やサーバラックなどがあって大風量の外気による冷却が必要なところへ適用する場合、外気OAを取入れる割合を所定以上に増加した場合には給気SAの湿度が低下し、そのために外気OAの取入れが制限される問題があり、せっかくの外気冷熱が最大限利用できず、又、更なる給気SAの冷却が必要な場合には還気RA及び外気OAを冷凍機に接続した冷却手段で冷却することにより所要の給気温度を維持しているが、冷凍機の運転エネルギ(電力)が増大する場合が生じていた。   According to Patent Document 1, energy saving can be achieved by using the outside air OA having a temperature lower than room temperature in the intermediate period (spring or autumn) and winter. However, since only the return air RA is humidified, there is a problem that the cooling effect by humidification cannot be utilized to the maximum, and there are computers and server racks that generate a large amount of heat in the air-conditioned room. When applying to a place where cooling with a large amount of outside air is necessary, if the ratio of taking in the outside air OA is increased to a predetermined value or more, the humidity of the supply air SA decreases, and therefore, the intake of the outside air OA is restricted. If there is a problem and the extraneous air cooling heat cannot be utilized to the maximum extent, and further cooling of the supply air SA is necessary, it is necessary to cool the return air RA and the outside air OA with the cooling means connected to the refrigerator. However, there has been a case where the operating energy (electric power) of the refrigerator is increased.

本発明は上記実情に鑑み、中間期や冬季において、室内に大量の熱を発生する機器があり室内温湿度許容範囲が狭く管理が厳しい(例えば電算機室の場合、室内湿度の許容範囲を相対湿度±10%で管理する場合もある。)空調対象室内に外気を利用した外気冷房を行う場合に、大量の外気を混合することによる給気に対する加湿不足を防止することができると共に、加湿による冷却効果を最大限に利用できるようにし、又、中間期や夏季において、冷房負荷が大きくて外気混合冷却だけでは冷房能力が不足する際に、雪貯蔵部からの雪冷外気を還気に混合する、及び又は、雪貯蔵部からの雪冷水の冷熱を用いた冷却手段により給気SAを冷却するようにして雪の冷熱を有効に利用し、冷凍機のような冷熱供給装置の使用を最少限にして運転エネルギの大幅低減が図れるようにした、雪を用いた空調システムを提供することを目的としてなしたものである。   In view of the above situation, the present invention has a device that generates a large amount of heat indoors and has a narrow indoor temperature and humidity tolerance range and is strictly controlled in the intermediate period and winter season (for example, in the case of a computer room, the relative humidity range is relatively In some cases, the humidity is controlled at ± 10%.) When performing outdoor air cooling using the outside air in the air-conditioned room, it is possible to prevent insufficient humidification with respect to the supply air by mixing a large amount of outside air. In order to make the most of the cooling effect, and in the intermediate and summer seasons, when the cooling load is large and the cooling capacity is insufficient only with the outside air mixing cooling, the snow cooling outside air from the snow storage section is mixed with the return air. And / or use the cold heat of the snow effectively by cooling the supply air SA by the cooling means using the cold heat of the snow cold water from the snow storage unit, and minimize the use of the cold heat supply device such as a refrigerator. Driving to the limit Significant reduction in Nerugi was so attained, in which none for the purpose of providing an air conditioning system using the snow.

本発明の請求項1の雪を用いた空調システムは、機械室には、外気導入口に連通する第一の流通路である外気通路と、還気取入口を介し空調対象室に連通する第二の流通路である還気通路と、前記外気通路及び前記還気通路に外気通路及び還気通路とは区画された混合部を介して連通すると共に、前記混合部と区画され且つ給気風路を介し空調対象室に連通する第三の流通路である給気通路とを備え、
室外には、雪を堆積した雪貯蔵部を備え、
前記還気通路には、前記還気取入口からの還気を水により断熱加湿する1段目加湿手段を設置し、前記給気通路には、外気導入口からの外気と還気取入口からの還気が混合した混合気を水により断熱加湿する2段目加湿手段と、前記雪貯蔵部からの雪冷水が有する冷熱を供給可能な冷熱媒を循環流路に流す冷熱供給手段に接続された冷却コイルである冷却手段と、給気通路内の混合気を給気風路を介して空調対象室に送給する給気手段とを設置し、前記外気通路には、混合気の温湿度状態を調整するための外気を搬送する風量調整が可能な外気送給手段を設置し、前記空調対象室には、室内空気の一部を排気するための排気手段を設置し、前記外気導入口には、外気と前記雪貯槽部の雪により冷却した雪冷外気とを切り換えて供給し得る外気切換手段を設置した
ことを特徴とする雪を用いた空調システム、に係るものである。
In the air conditioning system using snow according to claim 1 of the present invention, the machine room communicates with the outside air passage which is the first flow passage communicating with the outside air inlet and the air conditioning target room via the return air intake. A return air passage that is a second flow passage, and the outside air passage and the return air passage communicated with the outside air passage and the return air passage through a mixing portion that is partitioned, and are separated from the mixing portion and an air supply air passage An air supply passage that is a third flow passage communicating with the air-conditioned room via
Outside the room, there is a snow storage section that accumulates snow,
The return air passage is provided with first-stage humidification means for adiabatic humidification of the return air from the return air intake with water, and the air supply passage is provided with the outside air from the outside air inlet and the return air intake. A second stage humidifying means for adiabatically humidifying the air-fuel mixture mixed with the return air, and a cold heat supply means for supplying a cooling medium capable of supplying the cold heat of the snow cold water from the snow storage section to the circulation channel. The cooling means is a cooling coil, and the air supply means for supplying the air-fuel mixture in the air supply passage to the air-conditioning target room through the air supply passage, and the temperature and humidity state of the air-fuel mixture is provided in the outside air passage An outside air supply means capable of adjusting the air volume for conveying outside air for adjusting the air volume is installed, and in the air conditioning target room, an exhaust means for exhausting a part of the indoor air is installed, and the outside air introduction port is provided. Is the outside air that can be switched between the outside air and the snow-cooled outside air cooled by the snow in the snow storage tank. Those of the air conditioning system, using the snow, characterized in that they have installed switch means.

又、本発明の請求項2の雪を用いた空調システムにおいては、前記冷却手段に接続される前記冷熱供給手段は、前記冷熱媒に対し、前記雪貯蔵部から外部に取り出した雪冷水の冷熱を熱交換器により、冷凍機により発生した冷熱を熱交換器により、それぞれ適宜伝熱させることが可能であることを特徴とする。   Further, in the air conditioning system using snow according to claim 2 of the present invention, the cold heat supply means connected to the cooling means cools the cold cold water taken out from the snow storage unit to the cold medium. The heat generated by the refrigerator and the heat generated by the refrigerator can be appropriately transferred by the heat exchanger.

又、本発明の請求項3の雪を用いた空調システムにおいては、1段目加湿手段の加湿量を還気取入口にて計測し演算された絶対湿度に応じて、外気送給手段の風量を混合部にて計測し演算されたエンタルピに応じて、2段目加湿手段の加湿量を給気風路にて計測し演算された絶対湿度に応じて、それぞれ制御する制御装置を有していることを特徴とする。   In the air conditioning system using snow according to claim 3 of the present invention, the air volume of the outside air supply means is measured according to the absolute humidity calculated by measuring the humidification quantity of the first stage humidification means at the return air intake. In accordance with the enthalpy measured and calculated in the mixing section, the humidification amount of the second-stage humidifying means is measured in the supply air passage, and the control device controls each according to the calculated absolute humidity It is characterized by that.

又、本発明の請求項4の雪を用いた空調システムにおいては、空調対象室へ給気風路内を送給される給気設定温湿度点のエンタルピと同エンタルピ線上にあり、且つ、給気風路内を送給される給気の設定絶対湿度まで加湿可能な2段目加湿手段入口最小絶対湿度点を境界点として設定し、還気設定温湿度点と前記境界点とを結んで境界点側に延長した直線により、T−Xa空気線図上の境界点左側領域を2分し、給気及び還気の設定絶対湿度まで加湿可能な1段目加湿手段入口最小絶対湿度点を各乾球温度毎にT−Xa空気線図上の境界点右側領域で結んだ曲線により、T−Xa空気線図上の境界点右側領域を2分することで、少なくともT−Xa空気線図上を前記境界点を頂点に持つ4つの領域に分けて、温湿度を測定し求めた外気の状態点が4つの領域の何れに含まれるかで運転モードを切り替える制御装置を備えることを特徴とする。   Further, in the air conditioning system using snow according to claim 4 of the present invention, the air supply system is located on the same enthalpy line as the enthalpy of the supply air set temperature / humidity point supplied to the air conditioning target room through the supply air passage. Set the minimum absolute humidity point at the entrance of the second-stage humidifier that can humidify to the set absolute humidity of the air supplied to the road as a boundary point, and connect the return air set temperature / humidity point and the boundary point to the boundary point The area extending to the left side of the boundary point on the T-Xa air diagram is divided in half by the straight line extended to the side, and the minimum absolute humidity point at the inlet of the first stage humidifier that can humidify to the set absolute humidity of the supply and return air is dried. By dividing the right region of the boundary point on the T-Xa air diagram into two parts by the curve connected at the boundary point right region of the T-Xa air diagram for each sphere temperature, at least on the T-Xa air diagram The state of the outside air obtained by measuring the temperature and humidity divided into four areas with the boundary point at the top There characterized in that it comprises a control unit for switching the operation mode either included in any of the four regions.

又、本発明の請求項5の雪を用いた空調システムにおいては、還気設定温湿度点と前記境界点とを結んで境界点側に延長した直線の上部領域に外気の状態点が含まれる場合には、1段目加湿手段はOFFとし、混合部の空気温度測定値により求められたエンタルピに基づき外気送給手段の風量を制御し、給気風路内の給気温湿度測定値により求められた絶対湿度に基づき2段目加湿手段の加湿量を制御する制御装置を備えることを特徴とする。   In the air conditioning system using snow according to claim 5 of the present invention, the outside air state point is included in an upper region of a straight line connecting the return air set temperature / humidity point and the boundary point and extending to the boundary point side. In this case, the first-stage humidifying means is turned OFF, the air volume of the outside air feeding means is controlled based on the enthalpy obtained from the air temperature measurement value of the mixing unit, and the air temperature and humidity measurement value in the supply air passage is obtained. And a control device for controlling the humidification amount of the second-stage humidification means based on the absolute humidity.

又、本発明の請求項6の雪を用いた空調システムにおいては、還気設定温湿度点と前記境界点とを結んで境界点側に延長した直線の下部領域に外気の状態点が含まれる場合には、還気取入口の還気温湿度測定値により求められた絶対湿度に基づき1段目加湿手段の加湿量を制御し、混合部の空気温度測定値により求められたエンタルピに基づき外気送給手段の風量を制御し、給気風路内の給気温湿度測定値により求められた絶対湿度に基づき2段目加湿手段の加湿量を制御する制御装置を備えることを特徴とする。   Further, in the air conditioning system using snow according to claim 6 of the present invention, the state point of the outside air is included in a straight lower region extending from the return air set temperature / humidity point and the boundary point to the boundary point side. In this case, the humidification amount of the first-stage humidification means is controlled based on the absolute humidity obtained from the return temperature humidity measurement value at the return air inlet, and the outside air is sent based on the enthalpy obtained from the air temperature measurement value of the mixing section. A control device is provided that controls the air volume of the supply means and controls the humidification amount of the second-stage humidification means based on the absolute humidity obtained from the measured value of the supplied air temperature and humidity in the supply air passage.

又、本発明の請求項7の雪を用いた空調システムにおいては、給気及び還気の設定絶対湿度まで加湿可能な2段目加湿手段入口最小絶対湿度点を各乾球温度毎にT−Xa空気線図上の境界点右側領域で結んだ曲線の上部領域に外気の状態点が含まれる場合には、給気風路内の給気温湿度測定値により求められた絶対湿度に基づき2段目加湿手段の加湿量を制御し、1段目加湿手段はOFFとし、給気風路内の給気温度に基づき、前記冷熱媒が有し前記冷却手段へ供給される供給熱量を制御する制御装置を備えることを特徴とする。   In the air conditioning system using snow according to claim 7 of the present invention, the minimum absolute humidity point at the inlet of the second stage humidifying means capable of humidifying to the set absolute humidity of the supply air and the return air is set to T− for each dry bulb temperature. When the outside air condition point is included in the upper area of the curve connected to the right area of the boundary point on the Xa air diagram, the second stage is based on the absolute humidity obtained from the measured air temperature and humidity in the air supply path. A controller for controlling the amount of humidification of the humidifying means, turning off the first-stage humidifying means, and controlling the amount of heat supplied by the cooling medium and supplied to the cooling means based on the supply air temperature in the supply air passage It is characterized by providing.

又、本発明の請求項8の雪を用いた空調システムにおいては、給気及び還気の設定絶対湿度まで加湿可能な2段目加湿手段入口最小絶対湿度点を各乾球温度毎にT−Xa空気線図上の境界点右側領域で結んだ曲線の下部領域に外気の状態点が含まれる場合には、還気取入口の還気温湿度測定値により求められた絶対湿度に基づいて1段目加湿手段の加湿量を制御し、混合部の空気温度測定値により求められたエンタルピに基づいて外気送給手段の風量を制御し、給気風路内の給気温湿度測定値により求められた絶対湿度に基づいて2段目加湿手段の加湿量を制御し、給気風路内の給気温度に基づき、前記冷熱媒が有し前記冷却手段へ供給される供給熱量を制御する制御装置を備えることを特徴とする。   In the air conditioning system using snow according to claim 8 of the present invention, the minimum absolute humidity point at the inlet of the second stage humidifying means capable of humidifying to the set absolute humidity of the supply air and the return air is set to T− for each dry bulb temperature. When the outside air state point is included in the lower area of the curve connected to the right side of the boundary point on the Xa air diagram, one step is based on the absolute humidity obtained from the measured return air temperature and humidity at the return air inlet. Control the humidification amount of the eye humidification means, control the air volume of the outside air supply means based on the enthalpy determined by the air temperature measurement value of the mixing section, and obtain the absolute value determined by the air temperature humidity measurement value in the supply air passage A control device is provided that controls the amount of humidification of the second-stage humidifying unit based on humidity and controls the amount of heat supplied by the cooling medium and supplied to the cooling unit based on the supply air temperature in the supply air passage. It is characterized by.

又、本発明の請求項9の雪を用いた空調システムにおいては、前記雪貯蔵部から外部に取り出した雪冷水が有する冷熱の利用可能を判断して、前記冷熱供給手段の循環流路を流れる前記冷熱媒への雪冷水が有する冷熱の供給を制御する雪冷水利用動作指令部を有することを特徴とする。   In the air conditioning system using snow according to claim 9 of the present invention, it is judged whether or not the cold heat of the snow cold water taken out from the snow storage part can be used, and flows through the circulation flow path of the cold heat supply means. It has a snow cold water utilization operation command part which controls supply of cold heat which snow cold water has to the cold heat medium.

又、本発明の請求項10の雪を用いた空調システムにおいては、外気の状態点がT−Xa空気線図上で請求項5乃至8の何れの場合にも当てはまらない場合では、雪冷外気を外気通路に供給する第1冷却と、前記冷熱供給手段の循環流路を流れる前記冷熱媒へ雪冷水が有する冷熱を供給する第2冷却と、冷熱が不足する場合に前記冷熱供給手段の循環流路を流れる前記冷熱媒へ冷凍機が発生する冷熱を供給する第3冷却とを行う最大負荷時対応指令部を有することを特徴とする。   In the air conditioning system using snow according to claim 10 of the present invention, if the outside air state point does not apply to any of the cases of claims 5 to 8 on the T-Xa air diagram, First cooling to supply the outside air passage, second cooling to supply the cold heat of the snow cooling water to the cooling medium flowing through the circulation flow path of the cold heat supply means, and circulation of the cold heat supply means when the cold heat is insufficient It has a command unit corresponding to a maximum load time for performing the third cooling for supplying the cooling heat generated by the refrigerator to the cooling medium flowing through the flow path.

本発明の外気利用空調システムによれば、中間期や冬季において外気を利用した外気冷房を行う際に、還気を加湿する1段目加湿器と、外気と還気の混合気を加湿する2段目加湿器を備えたことにより、給気の加湿不足を防止できると共に、加湿による冷却効果を利用することができ、外気利用による冷却効果を最大限に高められる効果がある。更に、中間期や夏季に、冷房負荷が大きくて外気混合冷却だけでは冷房能力が不足する際にも、雪貯蔵部からの雪冷外気を還気に混合し、及び又は、雪貯蔵部からの雪冷水の冷熱を用いた冷却手段により給気を冷却することにより、雪の冷熱を有効に利用して、冷凍機のような冷熱供給装置の使用を最少限にして運転エネルギの大幅低減が図れるという優れた効果を奏し得る。   According to the outside-air-use air conditioning system of the present invention, when performing outside-air cooling using outside air in an intermediate period or winter season, a first-stage humidifier that humidifies return air and a mixture of outside air and return air are humidified 2 By providing the stage humidifier, it is possible to prevent the supply air from being insufficiently humidified, to use the cooling effect by humidification, and to maximize the cooling effect by using outside air. Furthermore, in the intermediate period and summer, when the cooling load is large and the cooling capacity is insufficient only with the outside air mixed cooling, the snow cooling outside air from the snow storage section is mixed with the return air and / or from the snow storage section. By cooling the supply air with the cooling means using the cold energy of snow cold water, the cold energy of the snow can be effectively utilized, and the use of a cold heat supply device such as a refrigerator can be minimized to greatly reduce the operating energy. An excellent effect can be achieved.

本発明の雪を用いた空調システムの概略構成を示す側面図である。It is a side view showing a schematic structure of an air-conditioning system using snow of the present invention. 図1の雪を用いた空調システムに備える制御装置の一例と、運転モード1の領域の動作指令部及び運転モード2の領域の動作指令部の構成を示すブロック図である。It is a block diagram which shows an example of the control apparatus with which the air conditioning system using the snow of FIG. 1 is equipped, and the structure of the operation command part of the area | region of the operation mode 1, and the operation command part of the area | region of the operation mode 2. FIG. 図2の制御装置による運転モード1の領域の動作指令部及び運転モード2の領域の動作指令部を雪を用いた空調システムに備えた状態を示すブロック図である。It is a block diagram which shows the state provided with the operation command part of the area | region of the operation mode 1 by the control apparatus of FIG. 2, and the operation command part of the area | region of the operation mode 2 in the air conditioning system using snow. 運転モード3の領域の動作指令部の構成を示すブロック図である。4 is a block diagram illustrating a configuration of an operation command unit in an operation mode 3 region. FIG. 図4の運転モード3の領域の動作指令部と図6の運転モード4の領域の動作指令部を雪を用いた空調システムに備えた状態を示すブロック図である。FIG. 7 is a block diagram illustrating a state in which an operation command unit in the operation mode 3 region of FIG. 4 and an operation command unit in the operation mode 4 region of FIG. 6 are provided in an air conditioning system using snow. 運転モード4の領域の動作指令部の構成を示すブロック図である。6 is a block diagram showing a configuration of an operation command unit in a region of an operation mode 4. FIG. 運転モード5の領域の動作指令部の構成の一部を示すブロック図である。6 is a block diagram showing a part of the configuration of an operation command unit in the region of an operation mode 5. FIG. 図7aに書き切れない部分を取り出して示したブロック図である。It is the block diagram which took out and showed the part which cannot be written in FIG. 7a. 図7a、図7bの運転モード5の領域の動作指令部を雪を用いた空調システムに備えた状態を示すブロック図である。It is a block diagram which shows the state provided with the operation command part of the area | region of the operation mode 5 of FIG. 7a, FIG. 7b in the air conditioning system using snow. 雪冷水利用動作指示部の構成を示すブロック図である。It is a block diagram which shows the structure of a snow cold water utilization operation instruction | indication part. 図9の雪冷水利用動作指示部を雪を用いた空調システムに備えた状態を示すブロック図である。It is a block diagram which shows the state provided with the snow cold water utilization operation instruction | indication part of FIG. 9 in the air conditioning system using snow. 図1の雪を用いた空調システムにおける乾球温度と絶対湿度と等エンタルピと飽和曲線との関係を示す空気線図である。FIG. 2 is an air diagram showing a relationship among dry bulb temperature, absolute humidity, isoenthalpy, and saturation curve in the air conditioning system using snow of FIG. 1. 図1の雪を用いた空調システムにおける運転モードの算出方法を示すフローチャートである。It is a flowchart which shows the calculation method of the operation mode in the air conditioning system using the snow of FIG.

以下、本発明の実施の形態を図示例と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は雪を用いた空調システムの一実施例を示しており、雪を用いた空調システム1は、機械室2の内部に、外気ガラリ等である外気導入口3に連通する第一の流通路である外気通路4と、還気取入口5を介し空調対象室6に連通する第二の流通路である還気通路7と、外気通路4及び還気通路7に連通し外気OAと還気RAを混合して混合気MAとするための、外気側及び空調対象室とを仕切壁8で区画された混合部9と、混合部9内の混合気MAを導入して給気風路10を介し前記空調対象室6に給気SAを供給するケーシングで混合部9と区画された第三の流通路である給気通路11とを有している。   FIG. 1 shows an embodiment of an air-conditioning system using snow. The air-conditioning system 1 using snow communicates with the inside of the machine room 2 to the outside air inlet 3 which is an outside air louver or the like. The outside air passage 4 that is a road, the return air passage 7 that is the second flow passage communicating with the air-conditioning target chamber 6 via the return air inlet 5, the outside air passage 4 and the return air passage 7 are communicated with the outside air OA and returned. In order to mix the air RA into the air-fuel mixture MA, the mixing section 9 in which the outside air side and the air-conditioning target room are partitioned by the partition wall 8, and the air-fuel mixture MA in the mixing section 9 are introduced to supply the air flow path 10. And a supply section 11 which is a third flow path partitioned by a mixing section 9 and a casing for supplying the supply air SA to the air-conditioning target chamber 6.

前記還気通路7には還気取入口5からの還気RAを加湿して還気RA'とするための1段目加湿器12(1段目加湿手段)を設けている。例えば、機械室2の一部を断熱パネル13などで区画し、還気取入口5を一端部に、他端部には還気フィルタ7'を設けて還気通路7とし、還気取入口5と還気フィルタ7'との中間に1段目加湿器12を下部にドレンパンを付属させて設ける。この1段目加湿器12は水加湿器であり、加湿前後の還気は断熱変化する。V1は1段目加湿器12のスプレー量を調節するための1段目調節バルブである。尚、前記還気フィルタ7'は備えなくてもよい。   The return air passage 7 is provided with a first-stage humidifier 12 (first-stage humidification means) for humidifying the return air RA from the return air intake 5 into the return air RA ′. For example, a part of the machine room 2 is partitioned by a heat insulating panel 13 or the like, the return air intake 5 is provided at one end, and the other end is provided with a return air filter 7 ′ as a return air passage 7. 5 and the return air filter 7 'are provided with a first stage humidifier 12 with a drain pan attached to the lower part. The first stage humidifier 12 is a water humidifier, and the return air before and after humidification changes adiabatically. V1 is a first stage adjustment valve for adjusting the spray amount of the first stage humidifier 12. The return air filter 7 'may not be provided.

又、前記給気通路11はケーシングを有する空調機であり、前記給気通路11には、前記外気導入口3からの外気OAと還気取入口5から導入され1段目加湿器12で加湿された還気RA'が混合した混合気MAを加湿するための2段目加湿器14(2段目加湿手段)を下部にドレンパンを付属させて設ける。この2段目加湿器14は水加湿器であり、加湿前後の混合気MAは断熱変化する。V2は2段目加湿器14のスプレー量を調節するための2段目調節バルブである。上記1段目及び2段目加湿器12,14には、水スプレー、気化式加湿器、超音波加湿器、など加湿水を加熱しないで処理空気加湿前後で断熱変化になる、いわゆる水加湿を用いることができる。   The air supply passage 11 is an air conditioner having a casing, and is introduced into the air supply passage 11 from the outside air OA from the outside air inlet 3 and the return air inlet 5 and is humidified by the first-stage humidifier 12. A second-stage humidifier 14 (second-stage humidifying means) for humidifying the air-fuel mixture MA mixed with the returned air RA ′ is provided with a drain pan attached to the lower part. The second-stage humidifier 14 is a water humidifier, and the air-fuel mixture MA before and after humidification changes adiabatically. V2 is a second stage adjustment valve for adjusting the spray amount of the second stage humidifier 14. The first-stage and second-stage humidifiers 12 and 14 are so-called water humidifiers such as water sprays, vaporizer humidifiers, ultrasonic humidifiers, etc. that do not heat the humidified water and become adiabatic changes before and after treatment air humidification. Can be used.

前記給気通路11における2段目加湿器14の下流には、冷却手段を構成する冷却コイル15が設けられている。図1に示す冷却コイル15による冷却は、外気採り入れ・水噴霧加湿では給気SAが目標温度に達しない場合に冷却を行うためのものである。この冷却コイル15に冷熱媒を供給する冷熱供給手段には、循環ポンプP3により冷熱媒を循環させる循環流路16が設けられている。循環流路16には、その途中に雪冷水熱交換器38の2次側と、冷凍機発生冷熱熱交換器17の2次側と、冷熱媒の流量を制御するバルブV3とが設けられている。該冷凍機発生冷熱熱交換器17の1次側と冷凍機R2との間には、冷水ポンプP4で冷水を循環させる冷水循環流路18が設けられる。さらに冷水循環流路18には、冷水ポンプP4で搬送される冷水の一部又は全部を前記冷凍機発生冷熱熱交換器17からバイパスできるバイパス管と、該バイパス管に制御バルブV6とを設けている。   A cooling coil 15 constituting cooling means is provided downstream of the second-stage humidifier 14 in the air supply passage 11. The cooling by the cooling coil 15 shown in FIG. 1 is for performing cooling when the supply air SA does not reach the target temperature in outside air intake / water spray humidification. The cooling heat supply means for supplying a cooling medium to the cooling coil 15 is provided with a circulation channel 16 for circulating the cooling medium by a circulation pump P3. The circulation channel 16 is provided with a secondary side of the snow cold water heat exchanger 38, a secondary side of the refrigerator generated cold heat heat exchanger 17, and a valve V3 for controlling the flow rate of the cooling medium in the middle thereof. Yes. Between the primary side of the refrigerator-generated cold heat exchanger 17 and the refrigerator R2, a cold water circulation passage 18 for circulating cold water by a cold water pump P4 is provided. Further, the chilled water circulation channel 18 is provided with a bypass pipe that can bypass part or all of the chilled water conveyed by the chilled water pump P4 from the refrigerator-generated cold heat exchanger 17 and a control valve V6 in the bypass pipe. Yes.

前記給気通路11の冷却コイル15の下流には、給気通路11の給気SAを給気風路10へ送給するための給気ファン19(給気手段)が設けられている。図1の給気風路10は、前記給気通路11からの給気SAを床下部の空間20を介して前記空調対象室6に供給する場合を示している。これは、電算室やデータセンター等で多く見られるもので、サーバーラック、電算機等の機器21が発生する大量の熱で暖められ上昇する空気の流れを利用して、空調対象室6の熱くなった還気をいち早く還気取入口5及び排気手段へ導くことで、室内に空気が澱むことなく、有効な冷房が行われるように、冷たい空気を床から吹き出して、天井側で還気を取るようにしている。   An air supply fan 19 (air supply means) for supplying the air supply SA of the air supply passage 11 to the air supply air passage 10 is provided downstream of the cooling coil 15 of the air supply passage 11. An air supply air passage 10 in FIG. 1 shows a case where the air supply SA from the air supply passage 11 is supplied to the air-conditioning target chamber 6 through a space 20 below the floor. This is often seen in computer rooms, data centers, and the like, and the air in the air-conditioned room 6 is heated using the flow of air that is heated and raised by a large amount of heat generated by the equipment 21 such as server racks and computers. By quickly guiding the returned air to the return air intake 5 and the exhaust means, the air is blown out from the floor so that the air can be effectively cooled without stagnation in the room, and the return air is returned on the ceiling side. I try to take it.

前記外気通路4の上流側で外気導入口3の下流側には、外気フィルタ22が設けられると共に、外気フィルタ22の下流側には、外気導入口3からの新鮮な外気OAを取り入れて前記還気RA'と共に混合部9へ送給するようにした外気ファン23(外気送給手段)を設けている。   An outside air filter 22 is provided upstream of the outside air passage 4 and downstream of the outside air introduction port 3, and fresh outside air OA from the outside air introduction port 3 is taken in the downstream side of the outside air filter 22 to return the air. An outside air fan 23 (outside air feeding means) is provided so as to be fed to the mixing unit 9 together with the air RA ′.

また、空調対象室6の所要位置には、空調対象室6の室内空気の一部を排気EAとして外部へ排出するようにした排気口25を有する排気風路26が接続されており、該排気風路26には排気ファン27(排気手段)を設けている。排気ファン27は、室内機器の稼働状態の切替などにより外気OAを、空調対象室6を細分したエリア毎に多量/少量に逐一流動的に取り入れることによって、空調対象室6のうちのエリア毎に圧力差が生じることを防止するためのものである。   Further, an exhaust air passage 26 having an exhaust port 25 is connected to a required position of the air-conditioning target room 6 so that a part of the room air in the air-conditioning target room 6 is discharged to the outside as exhaust EA. The air passage 26 is provided with an exhaust fan 27 (exhaust means). The exhaust fan 27 is adapted to each area of the air-conditioning target room 6 by taking outside air OA into a large amount / a small amount for each area obtained by subdividing the air-conditioning target room 6 by switching the operating state of the indoor equipment. This is to prevent a pressure difference from occurring.

排気ファン27は排出する排気EAの流量がファンモータのインバータ制御器28によって制御されており、又、外気ファン23は吸引する外気OAの流量がファンモータのインバータ制御器29によって制御されており、外気ファン23による外気OAの単位時間あたりの吸引量に連動して、排気ファン27による排気EAの単位時間あたりの排出量が同等になるように、外気ファン23及び排気ファン27の回転数が制御されており、又、給気ファン19は常に一定の給気SAを前記空調対象室6に給気するようになっている。図1中、RAsは還気RAの乾球温度Tと相対湿度Hの検出器、RAs'は加湿された還気RA'の乾球温度Tと相対湿度Hの検出器、OAsは外気OAの乾球温度Tと相対湿度Hの検出器、Msは混合気MAの乾球温度Tと相対湿度Hの検出器、SAsは給気SAの乾球温度Tと相対湿度Hの検出器である。   The flow rate of exhaust EA discharged from the exhaust fan 27 is controlled by an inverter controller 28 of the fan motor, and the flow rate of external air OA sucked from the outside air fan 23 is controlled by the inverter controller 29 of the fan motor. The rotation speed of the outside air fan 23 and the exhaust fan 27 is controlled so that the amount of exhaust air EA discharged by the exhaust fan 27 per unit time is equal to the suction amount of the outside air OA per unit time by the outside air fan 23. The air supply fan 19 always supplies a constant supply air SA to the air-conditioning target chamber 6. In FIG. 1, RAs is a detector for the dry bulb temperature T and relative humidity H of the return air RA, RAs 'is a detector for the dry bulb temperature T and relative humidity H of the humidified return air RA', and OAs is the outside air OA. A detector for dry bulb temperature T and relative humidity H, Ms is a detector for dry bulb temperature T and relative humidity H of air-fuel mixture MA, and SAs is a detector for dry bulb temperature T and relative humidity H of supply air SA.

一方、室外には、雪を堆積した雪貯蔵部30を備えている。雪貯蔵部30は、降雪地域において従来から実施されている雪捨て場を一部改造したものである。雪捨て場に雪が堆積していない状態の構造を説明すると、敷地のある一方向に、開口が上側を向くようU字トラフ31を連続して直線状に配置した連続溝32を複数並行に形成し、その複数の連続溝32の底面に同じ向きに勾配を付けて、前記敷地のある一方向に直交する長手方向を有する地面を掘り込んで躯体とした雪山下部ピットに接続する。複数の前記連続溝32は、雪貯蔵部30の敷地にほぼ均等に所定の間隔をもって設置されている。この連続溝32の上部には、10cm以上堆積した雪のブリッジングが崩れる寸法よりも小さい隙間開口を有するグレーチングを備え、敷地全体の地面勾配を、前記連続溝32に向けて下がり勾配にしておく。前記雪山下部ピットの下方側面には、雪冷水36の取り出し管端が接続されている。この雪貯蔵部30の敷地上部に、雪33を積み上げることにより雪貯蔵部30全体を形成している。この雪貯蔵部30は、冬期に雪を積み上げておいて、中間期(春季や秋季)及び夏季に雪の冷熱を冷房に利用できるようにしたものであり、雪貯蔵部30の雪の冷熱を冷房に利用する際は、雪貯蔵部30に積まれた雪33の、連続溝32の直上部から、所定の間隔(例えば2m)をおいて、作業者が持ち運ぶホースなどから吐出する水を下向きに噴出して、雪山の雪33の一部を前記グレーチングが見えるまで溶かして、雪山の上方外気と前記連続溝32とが連通するように穴34を形成させる。   On the other hand, a snow storage unit 30 in which snow is accumulated is provided outside the room. The snow storage unit 30 is a partly modified snow dumping site that has been conventionally practiced in snowfall areas. Explaining the structure where no snow has accumulated in the snow dumping area, a plurality of continuous grooves 32 in which U-shaped troughs 31 are continuously arranged in a straight line so that the opening faces upward in one direction of the site are formed in parallel. Then, the bottom surfaces of the plurality of continuous grooves 32 are provided with gradients in the same direction, and the ground having a longitudinal direction perpendicular to one direction of the site is dug and connected to a snow mountain lower pit formed as a frame. The plurality of continuous grooves 32 are installed on the site of the snow storage unit 30 almost uniformly at a predetermined interval. The upper part of the continuous groove 32 is provided with a grating having a gap opening that is smaller than a dimension in which the bridging of snow accumulated 10 cm or more is broken, and the ground gradient of the entire site is made to be a downward slope toward the continuous groove 32. . An end of the snow cold water 36 is connected to the lower side of the lower pit of the snowy mountain. The snow storage unit 30 as a whole is formed by stacking snow 33 on the site of the snow storage unit 30. The snow storage unit 30 is configured to accumulate snow in the winter and to use the cold heat of the snow for cooling in the intermediate period (spring and autumn) and summer. When using for cooling, the water discharged from the hose etc. carried by the operator is directed downward from the upper part of the continuous groove 32 of the snow 33 loaded in the snow storage unit 30 at a predetermined interval (for example, 2 m). Then, a part of the snow 33 of the snowy mountain is melted until the grating is seen, and a hole 34 is formed so that the outside air above the snowy mountain and the continuous groove 32 communicate with each other.

更に、前記雪山下部ピットの上方側面には、雪貯蔵部30の平面視部分のみ地中埋設ダクトとなっている外気ダクト35の一端35aが接続され、該外気ダクト35には、雪外気ダンパーD1と外気ダンパーD2からなる外気切換手段を設けている。そして、雪外気ダンパーD1と外気ダンパーD2との間の外気ダクト35は、前記外気導入口3に連通されており、雪外気ダンパーD1と外気ダンパーD2の切り換えにより、雪33の穴34から連続溝32を通った雪冷外気SOAと、外気OAとを切り換えて前記外気ファン23により吸引し得るようになっている。SOAsは雪冷外気SOAの乾球温度Tと相対湿度Hの検出器である。   Further, one end 35a of an outside air duct 35, which is an underground duct only in a plan view of the snow storage portion 30, is connected to an upper side surface of the snow mountain lower pit, and a snow outside air damper D1 is connected to the outside air duct 35. And an outside air switching means comprising an outside air damper D2. An outside air duct 35 between the snow outside air damper D1 and the outside air damper D2 communicates with the outside air introduction port 3, and a continuous groove is formed from the hole 34 of the snow 33 by switching between the snow outside air damper D1 and the outside air damper D2. The snow-cooled outside air SOA 32 and the outside air OA can be switched and sucked by the outside air fan 23. SOAs are detectors for the dry-bulb temperature T and relative humidity H of the snow-cooled outside air SOA.

又、雪貯蔵部の下部に設けた雪山下部ピットで受けた雪解け水からなる雪冷水36は雪冷水槽37に重力落下もしくはポンプアップで移動して貯められており、前記循環流路16に設けた雪冷水熱交換器38の一次側と前記雪冷水槽37との間には雪冷水ポンプP2により雪冷水36を循環させる雪冷水循環流路39が設けられている。さらに雪冷水循環流路39には、雪冷水ポンプP2で搬送される雪冷水の一部又は全部を前記雪冷水熱交換器38からバイパスできるバイパス管と、該バイパス管に制御バルブV5とを設け、雪冷水循環流路本管にフィルタ40も設けている。   Further, the snow cold water 36 made of the melted snow received in the snow mountain lower pit provided at the lower part of the snow storage part is stored in the snow cold water tank 37 by gravity drop or pump-up and provided in the circulation channel 16. Between the primary side of the snow cold water heat exchanger 38 and the snow cold water tank 37, a snow cold water circulation passage 39 for circulating the snow cold water 36 by the snow cold water pump P2 is provided. Further, the snow cold water circulation passage 39 is provided with a bypass pipe that can bypass part or all of the snow cold water conveyed by the snow cold water pump P2 from the snow cold water heat exchanger 38, and a control valve V5 in the bypass pipe. In addition, a filter 40 is also provided in the snow cold water circulation channel main pipe.

又、前記雪冷水槽37には、ブライン冷凍機R1を有するバックアップ熱源が接続されていてもよい。このバックアップ熱源は、前記雪冷水槽37の雪冷水36の導入管近傍に往き帰り管を接続した、バックアップ雪冷水ポンプP5とフィルタ41を備えたバックアップ雪冷水循環流路42を備え、このバックアップ雪冷水循環流路42に2次側を設けたバックアップ熱交換器43の1次側とブライン冷凍機R1との間には、バックアップブラインポンプP1を備えたバックアップブライン循環流路44を設けている。さらにバックアップブライン循環流路44には、バックアップブラインポンプP1で搬送されるブラインの一部又は全部を前記バックアップ熱交換器43からバイパスできるバイパス管と、該バイパス管に制御バルブV4とを設けている。前記ブライン冷凍機R1は、前記冷水循環流路18の冷凍機R2が故障した場合、及び、雪冷水槽37内の雪冷水36の温度が所定温度以上に上昇した場合にバックアップとして作用するものである。このバックアップ熱源はなくても良く、前記冷水循環流路18の冷凍機R2を複数台バックアップで用意しておくことで代用しても可能である。Lは雪冷水槽37の雪冷水36の水位計、T1sは雪冷水槽37の雪冷水36の温度計、T2sは循環流路16の冷熱媒の温度計、T3sは冷水循環流路18の冷水の温度計、p1sは循環流路16の冷熱媒の圧力計である。   Further, a backup heat source having a brine refrigerator R1 may be connected to the snow cold water tank 37. The backup heat source includes a backup snow cold water circulation passage 42 including a backup snow cold water pump P5 and a filter 41, which is connected to a return pipe in the vicinity of the introduction pipe of the snow cold water 36 of the snow cold water tank 37. A backup brine circulation channel 44 having a backup brine pump P1 is provided between the primary side of the backup heat exchanger 43 provided with the secondary side in the cold water circulation channel 42 and the brine refrigerator R1. Further, the backup brine circulation passage 44 is provided with a bypass pipe that can bypass part or all of the brine conveyed by the backup brine pump P1 from the backup heat exchanger 43, and a control valve V4 in the bypass pipe. . The brine refrigerator R1 functions as a backup when the refrigerator R2 of the cold water circulation passage 18 fails and when the temperature of the snow cold water 36 in the snow cold water tank 37 rises above a predetermined temperature. is there. This backup heat source may not be provided, and can be substituted by preparing a plurality of refrigerators R2 of the cold water circulation passage 18 in backup. L is a water level gauge for the snow cold water 36 in the snow cold water tank 37, T1s is a thermometer for the snow cold water 36 in the snow cold water tank 37, T2s is a thermometer for the cooling medium in the circulation channel 16, and T3s is cold water in the cold water circulation channel 18. , P1s is a pressure gauge of the cooling medium of the circulation channel 16.

図1の雪を用いた空調システム1には、図2に示す制御装置が備えられている。図2中、C1は制御装置を構成する外気利用運転システムコントローラであり、この外気利用運転システムコントローラC1には、外気OAの温湿度が日射や風の影響を受けずに計測できるよう設けた図1の検出器OAsからの測定値(OA Tm,OA Hm)が入力されて外気状態点を演算している。更に、調整用PC等の制御監視機器45からは、給気条件(温度、相対湿度)、還気条件(温度、相対湿度)、1段目加湿器飽和効率、2段目加湿器飽和効率、設定絶対湿度、SAエンタルピ、RAエンタルピ、1段目加湿後条件(温度、相対湿度)=RA'、混合気エンタルピ=M'、1段目加湿限界線係数、2段目加湿限界線係数、等飽和効率線係数等が入力されている。   The air conditioning system 1 using snow of FIG. 1 includes the control device shown in FIG. In FIG. 2, C1 is an outside air operation system controller that constitutes a control device, and the outside air operation system controller C1 is provided so that the temperature and humidity of the outside air OA can be measured without being affected by solar radiation or wind. A measured value (OA Tm, OA Hm) from one detector OAs is input to calculate an outside air state point. Further, from the control and monitoring device 45 such as an adjustment PC, the supply air condition (temperature, relative humidity), the return air condition (temperature, relative humidity), the first stage humidifier saturation efficiency, the second stage humidifier saturation efficiency, Set absolute humidity, SA enthalpy, RA enthalpy, first stage post-humidification conditions (temperature, relative humidity) = RA ', mixture enthalpy = M', first stage humidification limit line coefficient, second stage humidification limit line coefficient, etc. Saturation efficiency line coefficient etc. are input.

そして、外気状態点や還気状態点の測定値から絶対湿度、エンタルピを算出して制御に利用するようにしている。ちなみに本明細書中では、空気の状態点を表現する各数値の記号は、乾球温度をT、相対湿度をH、絶対湿度をXa,エンタルピを(H)で表す。尚、上記検出及び算出には種々の方法が考えられ、検出器で検出した測定値を変換器に与え、変換器で得た必要な測定演算値(絶対湿度Xa、エンタルピ(H)等)を外気利用運転システムコントローラC1に与える方法、及び、外気利用運転システムコントローラC1に測定演算値(絶対湿度、エンタルピ等)の算出部を備えて算出する方法、更には、直接的に必要な測定値(絶対湿度、エンタルピ等)を専用の測定器で測定するようにした方法等が考えられる。   Then, the absolute humidity and enthalpy are calculated from the measured values of the outside air state point and the return air state point and used for control. By the way, in this specification, symbols of numerical values expressing air state points are T for dry bulb temperature, H for relative humidity, Xa for absolute humidity, and (H) for enthalpy. Various methods are conceivable for the detection and calculation, and the measurement value detected by the detector is given to the converter, and necessary measurement calculation values (absolute humidity Xa, enthalpy (H), etc.) obtained by the converter are given. A method of giving to the outside air operation system controller C1 and a method of calculating the calculation operation value (absolute humidity, enthalpy, etc.) in the outside air operation system controller C1 and further directly measuring the necessary measurement values ( (Absolute humidity, enthalpy, etc.) may be measured with a dedicated measuring instrument.

そして、上記のパラメータが入力される外気利用運転システムコントローラC1は、図11に示す乾球温度と絶対湿度と等エンタルピと飽和曲線との関係を示すT−Xa空気線による運転モードマップを作成し、複数の運転モードの領域を演算する演算部46を有している。演算部46は具体的には、図11において、空調対象室へ給気風路内を送給されるSAエンタルピと同エンタルピ線上にあり、且つ、給気風路内を送給される給気の設定絶対湿度まで加湿可能な2段目加湿手段入口最小絶対湿度点を境界点Mとして設定し、還気設定温湿度点と前記境界点Mとを結んで境界点側に延長した直線(境界線=RA−M)により、T−Xa空気線図上の境界点左側領域を2分し、給気及び還気の設定絶対湿度まで加湿可能な1段目加湿手段入口最小絶対湿度点を各乾球温度毎にT−Xa空気線図上の境界点右側領域で結んだ曲線(M−N)により、T−Xa空気線図上の境界点右側領域を2分することで、少なくともT−Xa空気線図上を前記境界点Mを頂点に持つ4つの運転モードの領域に分け、還気条件RAの絶対湿度Xaよりも大きく且つ1段目加湿後条件RA'と還気条件RAとを結ぶ線よりも大きい領域を、5個目の運転モードの領域として設定する。   Then, the outside air-operated operation system controller C1 to which the above parameters are inputted creates an operation mode map by the T-Xa air line indicating the relationship between the dry bulb temperature, the absolute humidity, the isoenthalpy, and the saturation curve shown in FIG. The computer 46 has a calculation unit 46 that calculates a plurality of operation mode regions. Specifically, the calculation unit 46 in FIG. 11 sets the supply air that is on the same enthalpy line as the SA enthalpy that is supplied to the air-conditioning target room through the supply air passage and that is supplied through the supply air passage. The minimum absolute humidity point at the entrance of the second stage humidifying means capable of humidifying up to absolute humidity is set as the boundary point M, and the return air set temperature / humidity point and the boundary point M are connected to extend to the boundary point side (boundary line = RA-M) divides the left side region of the boundary point on the T-Xa air diagram into two parts, and sets the minimum absolute humidity point at the inlet of the first stage humidifying means that can humidify to the set absolute humidity of the supply and return air for each dry bulb By dividing the right side region of the boundary point on the T-Xa air diagram into two parts by the curve (MN) connected at the right side region of the boundary point on the T-Xa air diagram for each temperature, at least the T-Xa air The diagram is divided into four operating mode areas with the boundary point M at the apex, and the return air condition RA An area larger than the large and the first-stage humidifier after conditions RA 'and return air condition line connecting the RA than relative humidity Xa, is set as an area of 5 th operation mode.

次に、運転領域マップのパラメータに基づいて、図11のT−Xa空気線図上で運転モード1〜5の領域に分割する意味合いについて説明する。   Next, the meaning of dividing into regions of operation modes 1 to 5 on the T-Xa air diagram of FIG. 11 based on the parameters of the operation region map will be described.

外気OAの状態点が運転モード1の領域にある場合には、還気RAと外気OAの混合を外気量ひいては排気を減じた還気量を各々調整することにより線分M−SA上に混合点を移動させることができる。点Mは2段目加湿器14の加湿冷却によって点SAに到達できる最遠の点なので、還気RAと外気OAの混合点を線分M−SA上とすることができれば、2段目加湿器14の加湿冷却によって混合点から点SAの状態とすることができる。即ち、外気OAの状態点と点RAとを結んだ直線が線分M−SAと交わる点に混合点が存在するような外気OA量の状態では、2段目加湿器14によって点SAの状態とすることができる。これを「混合2段目加湿単独運転」とする。   When the state point of the outside air OA is in the region of the operation mode 1, the mixture of the return air RA and the outside air OA is mixed on the line segment M-SA by adjusting the amount of the return air obtained by reducing the amount of outside air and hence the exhaust gas. The point can be moved. Since the point M is the farthest point that can reach the point SA by the humidification cooling of the second-stage humidifier 14, if the mixing point of the return air RA and the outside air OA can be on the line segment M-SA, the second-stage humidification The humidification and cooling of the vessel 14 can bring the state from the mixing point to the point SA. That is, in the state of the amount of outside air OA where the mixing point exists at the point where the straight line connecting the state point of the outside air OA and the point RA intersects the line segment M-SA, the state of the point SA is set by the second stage humidifier 14. It can be. This is referred to as “mixing second-stage humidification single operation”.

このとき、外気OAの状態が運転モード1の領域から更に低湿度あるいは高温度となり、直線RA−Mより水平に対する傾きが大きくなった場合、即ち外気OAの状態点が直線RA−Mよりも下側に来た場合には、点RAと外気OAの状態点とを結んだ直線は線分M−SAと交わらない。つまり、還気RAと外気OAを点SAと等エンタルピになるように混合しても、その線上で点Mよりも右下の状態となるため、2段目加湿器14の能力では点SAまで到達しない。これは、点Mが2段目加湿器14により点SAに到達できる飽和曲線から最遠の点であるからである。よって、外気OAの状態点が直線RA−Mよりも下側に来た場合には、上記「混合2段目加湿単独運転」では点RAから点SAの空気の状態を作ることはできない。   At this time, the state of the outside air OA is further lowered from the region of the operation mode 1 or the temperature is high, and the inclination with respect to the horizontal is larger than the straight line RA-M, that is, the state point of the outside air OA is lower than the straight line RA-M. When coming to the side, the straight line connecting the point RA and the state point of the outside air OA does not intersect the line segment M-SA. In other words, even if the return air RA and the outside air OA are mixed with the point SA so as to have the same enthalpy, the state becomes lower right than the point M on the line. Not reach. This is because the point M is the farthest point from the saturation curve that can reach the point SA by the second-stage humidifier 14. Therefore, when the state point of the outside air OA comes below the straight line RA-M, the air state from the point RA to the point SA cannot be created in the “mixed second-stage humidification single operation”.

上記直線RA−Mは図11のT−Xa空気線図上において1次の関数(Xa=a1×T+b1)で表すことができるため、この関数を使い、外気OAの状態を判断することができる。具体的には、外気OAが設定絶対湿度(直線SA−RA)より小さく、また設定SAのエンタルピより小さく、且つ外気乾球温度T、外気絶対湿度AHとしたとき、AH>=a1×T+b1であれば、外気OAの状態点が運転モード1の領域にあると判断して、前記「混合2段目加湿単独運転」を行う。   Since the straight line RA-M can be expressed by a linear function (Xa = a1 × T + b1) on the T-Xa air diagram of FIG. 11, the state of the outside air OA can be determined using this function. . Specifically, when the outside air OA is smaller than the set absolute humidity (straight line SA-RA), smaller than the enthalpy of the set SA, and the outside air dry bulb temperature T and the outside air absolute humidity AH, AH> = a1 × T + b1 If there is, it is determined that the state point of the outside air OA is in the region of the operation mode 1, and the “mixing second-stage humidification single operation” is performed.

又、外気の状態が運転モード2の領域にある場合には、まず点RAを1段目加湿器12によって加湿し、点RA'とする。そして点RA'と運転モード2の領域にある外気OAの状態点を結んだ直線は線分M−SAと交わることができるので、線分M−SA上となるように1段目加湿器12で加湿後の還気RA'と外気OAを混合すれば、あとは2段目加湿器14による加湿によって点SAに到達させることができる。これを「混合2段階加湿運転」とする。   When the outside air is in the operation mode 2 region, the point RA is first humidified by the first-stage humidifier 12 to be a point RA ′. Since the straight line connecting the point RA ′ and the state point of the outside air OA in the region of the operation mode 2 can intersect with the line segment M-SA, the first-stage humidifier 12 is placed on the line segment M-SA. If the return air RA ′ after humidification and the outside air OA are mixed, the point SA can be reached by humidification by the second-stage humidifier 14. This is referred to as “mixing two-stage humidification operation”.

直線RA'−Mは図11のT−Xa空気線図上において、1次の関数(Xa=a2×T+b2)で表すことができる。ここで、直線RA'−Mは、運転モード1,2と運転モード3,4とを分かつ境界線である。即ち、外気OAの状態がRA'−Mの右側の領域は、外気OAと還気RAの混合と加湿だけでは点SAには到達することができない領域であり、従ってこの領域では冷却コイル15による冷却が必要になる。ただし、加湿器の飽和効率、その他の条件(給気SA、還気RA)によって傾きa2は正負のいずれかとなる。よって、「混合2段階加湿運転」を実施する条件は、外気OAが設定SAのエンタルピより小さく、さらに外気乾球温度T、外気絶対湿度AHとしたとき、AH<a1×T+b1であり、且つa2>0の場合にAH≧a2×T+b2またはa2<0の場合にAH≦a2×T+b2となる場合である。   The straight line RA′-M can be represented by a linear function (Xa = a2 × T + b2) on the T-Xa air diagram of FIG. Here, the straight line RA′-M separates the operation modes 1 and 2 and the operation modes 3 and 4 and is a boundary line. That is, the region on the right side of the state of the outside air OA RA′-M is a region where the point SA cannot be reached only by mixing and humidifying the outside air OA and the return air RA. Cooling is required. However, the slope a2 is either positive or negative depending on the saturation efficiency of the humidifier and other conditions (supply air SA, return air RA). Therefore, the conditions for performing the “mixed two-stage humidification operation” are AH <a1 × T + b1 when the outside air OA is smaller than the enthalpy of the set SA, and the outside air dry bulb temperature T and the outside air absolute humidity AH, and a2 This is a case where AH ≧ a2 × T + b2 when> 0 or AH ≦ a2 × T + b2 when a2 <0.

上記したように、外気OAの状態点と還気RAとの直線でも、外気OAの状態点とRA'との直線でも線分M−SAと交わらない場合には、加湿及び外気OAの混合のみでは点RAから点SAまで到達することができない。この場合が運転モード3の領域、運転モード4の領域(白抜き)である。これらの領域では、冷却コイル15に雪冷水36による冷熱を供給して冷却し、それでも冷熱が不足する場合には最終的に冷凍機R2による冷熱により冷却することができる。   As described above, if the straight line between the state point of the outside air OA and the return air RA or the straight line between the state point of the outside air OA and RA ′ does not intersect the line segment M-SA, only the humidification and the mixing of the outside air OA are performed. Then, the point RA cannot be reached from the point SA. This is the region for operation mode 3 and the region for operation mode 4 (outlined). In these regions, the cooling coil 15 is cooled by supplying cold heat from the snow cold water 36, and if the cold heat is still insufficient, the cooling coil 15 can finally be cooled by the cold heat from the refrigerator R2.

まず、外気OAの状態が運転モード4の領域にある場合、すなわち、横軸に乾球温度、縦軸に絶対湿度をとったT−Xa空気線図上で曲線M−Nの線上またはその上部に外気OAの状態点がある場合には、曲線M−Nは、点SAに対する点Mのように、点SAから点RAまでの各点を到達点とした場合、その各点に到達できる飽和曲線から最遠の点の集合であるので、取り入れた外気OAをそのまま2段目加湿器14で(等エンタルピ変化で)加湿することで、直線SA−RA上に到達させることができる。その到達した点から点SAまでは冷却コイル15による冷熱冷却となる。これを「全外気2段目加湿単独運転」とする。   First, when the state of the outside air OA is in the region of the operation mode 4, that is, on the line of the curve MN or above it on the T-Xa air diagram in which the horizontal axis represents the dry bulb temperature and the vertical axis represents the absolute humidity. When there is a state point of the outside air OA, the curve MN is saturated so that each point can be reached when each point from the point SA to the point RA is an arrival point, like the point M with respect to the point SA. Since it is a set of points farthest from the curve, it is possible to reach the straight line SA-RA by humidifying the taken-in outside air OA as it is with the second-stage humidifier 14 (with an equal enthalpy change). From the reached point to the point SA, cooling by the cooling coil 15 is performed. This is referred to as “all outside air second-stage humidification single operation”.

このときの運転条件は、外気OAのエンタルピがSAエンタルピより大きく、RAエンタルピより小さくて、また設定絶対湿度より湿度が小さく、且つT−Xa空気線図上において曲線M−Nを任意の関数Xa=f3(T)で表したとき、外気乾球温度T、外気絶対湿度AHで、AH>f3(T)となる場合である。   The operating conditions at this time are as follows: the enthalpy of the outside air OA is larger than the SA enthalpy, smaller than the RA enthalpy, the humidity is smaller than the set absolute humidity, and the curve MN on the T-Xa air diagram is an arbitrary function Xa. = F3 (T) is a case where AH> f3 (T) with the outside air dry bulb temperature T and the outside air absolute humidity AH.

外気OAが設定絶対湿度より小さくRAエンタルピより小さい場合には、上記の運転モード1、2及び4に当てはまらず、この場合が運転モード3の領域となる。この場合には、まず還気RAを1段目加湿器12により還気RA'とする。次に、曲線M−Nが交わる点になるように加湿後の還気RA'と外気OAを混合する。このとき、横軸に乾球温度、縦軸に絶対湿度をとったT−Xa空気線図上において、還気RA'と外気OAの状態点を結んだ直線と曲線M−Nの交点を求め、その交点の乾球温度および絶対湿度となるように混合制御を行う。そして混合気MAを2段目加湿器14により直線SA−RA上の点まで到達させるために、冷却コイル15による冷熱冷却を行う。これを「混合2段階加湿+冷却器併用運転」とする。横軸に乾球温度、縦軸に絶対湿度をとったT−Xa空気線図上において曲線M−Nを任意の関数Xa=f3(T)で表すことができるので、還気RA'と外気OAの状態点を結んだ直線を1次の関数あるいは曲線で表したとき、その交点を算出することで混合後の乾球温度と絶対湿度を求めることができる。   When the outside air OA is smaller than the set absolute humidity and smaller than the RA enthalpy, the above operation modes 1, 2, and 4 are not applied, and this case is a region of the operation mode 3. In this case, first, the return air RA is changed to return air RA ′ by the first-stage humidifier 12. Next, the return air RA ′ after humidification and the outside air OA are mixed so that the curves MN intersect. At this time, on the T-Xa air diagram with the dry bulb temperature on the horizontal axis and the absolute humidity on the vertical axis, the intersection of the straight line connecting the return air RA ′ and the outside air OA and the curve MN is obtained. The mixing control is performed so that the dry bulb temperature and the absolute humidity at the intersection are obtained. Then, in order to cause the air-fuel mixture MA to reach a point on the straight line SA-RA by the second-stage humidifier 14, cooling with the cooling coil 15 is performed. This is referred to as “mixing two-stage humidification + cooler combined operation”. Since the curve MN can be expressed by an arbitrary function Xa = f3 (T) on the T-Xa air diagram in which the horizontal axis represents the dry bulb temperature and the vertical axis represents the absolute humidity, the return air RA ′ and the outside air When a straight line connecting the OA state points is represented by a linear function or curve, the dry bulb temperature and absolute humidity after mixing can be obtained by calculating the intersection.

上記した運転モード1〜4の領域に当てはまらない場合が運転モード5の領域に相当し、この領域では、利用が可能であれば雪貯蔵部30からの雪冷外気SOAを利用するため外気通路に供給する第1冷却を行い、更に、冷熱供給手段の循環流路16を流れる前記冷熱媒へ雪冷水が有する冷熱を供給する第2冷却を行い、それでも冷熱が不足する場合には、冷熱供給手段の循環流路16を流れる前記冷熱媒へ冷凍機が発生する冷熱を供給する第3冷却を行うことにより、給気SAを要求される給気温度に維持する。   The case where the above-described operation modes 1 to 4 do not apply corresponds to the operation mode 5 region. In this region, the snow-cooled outside air SOA from the snow storage unit 30 is used in the outside air passage if available. In the case where the first cooling to be supplied is performed, and the second cooling for supplying the cold heat of the snow cold water to the cooling medium flowing through the circulation flow path 16 of the cold heat supply means is performed. The supply air SA is maintained at the required supply air temperature by performing the third cooling that supplies the cold heat generated by the refrigerator to the cooling medium flowing through the circulation flow path 16.

次に、運転モードマップのパラメータに基づいて、運転モードマップを形成するT−Xa空気線図上で分割された運転モード1〜5の領域に対し、検出器OAsで計測した外気状態点を代入して運転モードを求める方法について、図12のフローチャートを参照して説明する。   Next, based on the parameters of the operation mode map, the outside air state point measured by the detector OAs is substituted for the regions of the operation modes 1 to 5 divided on the T-Xa air diagram forming the operation mode map. A method for obtaining the operation mode will be described with reference to the flowchart of FIG.

尚、図12のフローチャートでは、外気OAi計測値の絶対湿度Xaと給気設定値の絶対湿度Xaとを比較するステップにおいて、OAi(Xa)がSA(Xa)よりも小さいことで、外気冷房が行える条件の一つが満たされる。ここでNOならば、外気の冷熱がないので運転モード5に相当し、冷熱源を雪冷外気SOA及び又は雪冷水、更に冷凍機などの熱源に頼る。YESならば、次の外気OAi計測値のエンタルピOAi(H)と給気設定値SAのエンタルピSA(H)とを比較するステップにおいて、OAi(H)がSA(H)よりも小さいことで、前ステップと併せて初めて外気冷房が行える条件が整う。ここでNOならば、外気の冷熱がないので運転モード5に相当し、冷熱源を雪冷外気SOA及び又は雪冷水、更に冷凍機などの熱源に頼る。YESならば、次の外気OAi計測値のエンタルピOAi(H)と給気設定値SAのエンタルピSA(H)とを比較するステップにおいて、OAi(H)がSA(H)よりも小さいことで、外気OAiを還気RAに混合することで混合気を外気利用して直接冷却し、且つ水加湿を利用することで所定の給気設定値SAまで持っていく条件が整う。ここでNOならば、外気の冷熱が直接利用には少ないので運転モード3又は運転モード4に相当し、雪冷水槽37の雪冷水36の冷熱により冷却コイル15で冷却する、更には冷凍機R2による冷熱を用いて冷却する。YESならば、運転モード1又は運転モード2に相当し、雪冷外気SOAの利用、冷却コイル15による冷却を利用しなくてよい。そして、YESのフローを進めると、次の外気OAi計測値の絶対湿度OAi(Xa)と境界線である還気設定温湿度点と前記境界点とを結んで境界点側に延長した直線の絶対湿度値(Xa)=a1*OA(T)+b1とを比較するステップにおいて、OAi(Xa)が(Xa)=a1*OA(T)+b1よりも大きいことで、OAiを還気RAに混合することで混合気を外気利用して直接冷却し、且つ2段目加湿器を利用することで所定の給気設定値SAまで持っていく条件が整う。YESならば運転モード1に相当する。ここでNOならば、次のステップで外気OAi(H)が設定給気SA(H)のエンタルピより小さく、さらに外気OAiの乾球温度T、絶対湿度AHとしたとき、AH<a1×T+b1であり、且つa2>0の場合にAH≧a2×T+b2またはa2<0の場合にAH≦a2×T+b2となる場合には(YES)、運転モード2に相当し、NOの場合は運転モード3に相当する。   In the flowchart of FIG. 12, in the step of comparing the absolute humidity Xa of the outside air OAi measurement value and the absolute humidity Xa of the supply air setting value, OAi (Xa) is smaller than SA (Xa), so that the outside air cooling is performed. One of the possible conditions is met. If NO here, there is no cold of the outside air, which corresponds to the operation mode 5, and the cold heat source depends on the heat source such as the snow-cooled outside air SOA and / or snow cold water, and a refrigerator. If YES, in the step of comparing the enthalpy OAi (H) of the next outside air OAi measurement value with the enthalpy SA (H) of the supply air setting value SA, OAi (H) is smaller than SA (H), The condition that the outside air cooling can be performed only in combination with the previous step is established. If NO here, there is no cold of the outside air, which corresponds to the operation mode 5, and the cold heat source depends on the heat source such as the snow-cooled outside air SOA and / or snow cold water, and a refrigerator. If YES, in the step of comparing the enthalpy OAi (H) of the next outside air OAi measurement value with the enthalpy SA (H) of the supply air setting value SA, OAi (H) is smaller than SA (H), By mixing the outside air OAi with the return air RA, the air-fuel mixture is directly cooled by using the outside air, and the condition for bringing the air to the predetermined supply air setting value SA by using water humidification is established. If NO here, the cold air of the outside air is less for direct use, so it corresponds to the operation mode 3 or the operation mode 4 and is cooled by the cooling coil 15 by the cold heat of the snow cold water 36 in the snow cold water tank 37, and further the refrigerator R2 Cool using the cold heat from If YES, it corresponds to the operation mode 1 or the operation mode 2, and the use of the snow-cooled outside air SOA and the cooling by the cooling coil 15 do not have to be used. Then, when the flow of YES is advanced, the absolute humidity OAi (Xa) of the next outside air OAi measurement value, the return air set temperature / humidity point which is a boundary line, and the boundary line are extended to the boundary point side absolute In the step of comparing the humidity value (Xa) = a1 * OA (T) + b1, OAi (Xa) is larger than (Xa) = a1 * OA (T) + b1, so that OAi is mixed with the return air RA. As a result, the air-fuel mixture is directly cooled using the outside air, and the condition of bringing the air-fuel mixture to the predetermined air supply set value SA by using the second-stage humidifier is established. If YES, it corresponds to operation mode 1. If NO here, in the next step, when the outside air OAi (H) is smaller than the enthalpy of the set supply air SA (H), and when the outside air OAi has a dry bulb temperature T and an absolute humidity AH, AH <a1 × T + b1 Yes, if aH> a2 × T + b2 when a2> 0 or AH ≦ a2 × T + b2 when a2 <0 (YES), this corresponds to operation mode 2, and if NO, operation mode 3 Equivalent to.

外気OAs計測値のエンタルピOAi(H)と給気設定値SAのエンタルピSA(H)とを比較するステップにおいて、OAi(H)がSA(H)よりも大きい場合は運転モード5に相当し、この場合では外気OAiを還気RAに混合するのみでは冷熱が不足し、従ってこの場合には、雪冷外気SOAを利用するため外気通路に供給する第1冷却を行い、更に、冷熱供給手段の循環流路16を流れる前記冷熱媒へ雪冷水が有する冷熱を供給する第2冷却を行い、それでも冷熱が不足する場合には、冷熱供給手段の循環流路16を流れる前記冷熱媒へ冷凍機が発生する冷熱を供給する第3冷却を行う。   In the step of comparing the enthalpy OAi (H) of the outside air OAs measurement value and the enthalpy SA (H) of the supply air setting value SA, when OAi (H) is larger than SA (H), it corresponds to the operation mode 5; In this case, the cooling air is insufficient only by mixing the outside air OAi with the return air RA. Therefore, in this case, the first cooling supplied to the outside air passage is performed in order to use the snow-cooled outside air SOA, and further, the cooling heat supply means When the second cooling is performed to supply the cold heat of the snow chilled water to the cooling medium flowing through the circulation flow path 16 and the cold heat is still insufficient, a refrigerator is connected to the cooling heat medium flowing through the circulation flow path 16 of the cold heat supply means. Third cooling is performed to supply the generated cold energy.

次に、雪を用いた空調システム1の制御装置の作動について図2〜図10を参照して説明する。   Next, the operation of the control device of the air conditioning system 1 using snow will be described with reference to FIGS.

図2,図3に示す外気利用運転システムコントローラC1は、前記したように、検出器RAsで計測する還気RAの状態点や、検出器OAsで計測する外気OAの状態点である測定値が入力されており、これらの外気状態点や還気状態点の測定値から絶対湿度、エンタルピを算出して制御に利用するようにしている。又、前記C1においては、初期値あるいは運転開始時に設定する設定値や条件値である、給気条件(温度、相対湿度)、還気条件(温度、相対湿度)、1段目加湿器飽和効率、2段目加湿器飽和効率、還気取入れ口の設定絶対湿度、給気風路の設定絶対湿度、SAエンタルピ、RAエンタルピ、1段目加湿後条件(温度、相対湿度)=RA'、混合気エンタルピ=M'、1段目加湿限界線係数、2段目加湿限界線係数、等飽和効率線係数など、調整用PC(パーソナルコンピュータ)等の制御監視機器45から出力された、運転モードマップを作成するのに必要なパラメータを、演算部46で受け取り、演算部46はそれらの値により導かれる数値範囲と外気状態点の測定値とを比較して、運転モード1〜5の何れの領域に該当するかの演算を行う。更に、運転モードマップ上で外気温度がどの領域にあるかの判断結果に基づいて、各コントローラC2〜C6及びC7へ指令を与えるようになっている。空調対象室内の発熱負荷が大きく変更になり、給気SAの設定点が変更になったり、設備の変更によって空調対象室の温湿度条件となるはずの還気RAの設定点が変更になった場合には、運転モードマップのパラメータを更新する必要があるので、定期的に、調整用PC(パーソナルコンピュータ)等の制御監視機器45から設定値として与えられた還気条件(温度、相対湿度)と検出器RAsの計測値とを比較検証して、必要ならばパラメータを更新する。パラメータの更新は管理者による任意実施としている。   As described above, the outside-air operating system controller C1 shown in FIGS. 2 and 3 has a measured value that is a state point of the return air RA measured by the detector RAs and a state point of the outside air OA measured by the detector OAs. The absolute humidity and the enthalpy are calculated from the measured values of the outside air state point and the return air state point and used for control. In C1, the initial value or set values and condition values set at the start of operation are air supply conditions (temperature, relative humidity), return air conditions (temperature, relative humidity), and first stage humidifier saturation efficiency. 2nd stage humidifier saturation efficiency, return air intake setting absolute humidity, supply airway setting absolute humidity, SA enthalpy, RA enthalpy, 1st stage post-humidification conditions (temperature, relative humidity) = RA ', mixture The operation mode map output from the control monitoring device 45 such as an adjustment PC (personal computer), such as enthalpy = M ′, first stage humidification limit line coefficient, second stage humidification limit line coefficient, equal saturation efficiency line coefficient, etc. The calculation unit 46 receives parameters necessary for the creation, and the calculation unit 46 compares the numerical range derived from these values with the measured value of the outside air state point, and enters any region of the operation modes 1 to 5. Calculate whether it is applicable Cormorant. Furthermore, commands are given to the controllers C2 to C6 and C7 on the basis of the determination result of which region the outside air temperature is on the operation mode map. The heat generation load in the air-conditioned room has changed significantly, the set point of the supply air SA has changed, or the set point of the return air RA, which should be the temperature and humidity condition of the air-conditioned room, has changed due to equipment changes In this case, since it is necessary to update the parameters of the operation mode map, the return air condition (temperature, relative humidity) given as a set value from the control monitoring device 45 such as an adjustment PC (personal computer) regularly. And the measured value of the detector RAs are compared and verified, and the parameters are updated if necessary. The parameter is updated arbitrarily by the administrator.

図2に示すC2は、運転モード1の領域の動作指令部1−aを有するコントローラであり、該動作指令部1−aは、上位の外気利用運転システムコントローラC1から運転指示と、給気SA温湿度の設定値とを受け取り、1段目調節バルブV1にはV1指示部47を介してOFF指示を与え、2段目調節バルブV2に対しては絶対湿度演算部を有するV2指示部48を介して運転の信号を与え、且つV2指示部48には給気SAの温湿度の計測値(SA Tm,SA Hm)を与えて絶対湿度を算出し、その絶対湿度が設定絶対湿度になるように前記2段目調節バルブV2の開度を制御する。2段目加湿器14が稼動する場合は、そのどのモードでの稼動においても設定値が設定絶対湿度となるので、動作指令部1−aからの信号は運転か停止かの信号だけでよく、設定値の入力は不要である。更に、エンタルピ演算部を有するファン指示部49は、前記動作指令部1−aからの、混合気MAのエンタルピの設置値=SA条件のエンタルピ設定値を受け取り、実際の混合気MAの温湿度の計測値(M Tm,M Hm)を見ながら外気ファン23と排気ファン27の回転数を制御する。排気ファン27は、取り入れた外気量と同量を排気すればよいので、例えば外気ファン23と排気ファン27が同容量であれば、外気ファン23の回転数と同じに制御すればよく、あるいは室内外の差圧を計測し、その差圧を無くすように回転数を制御してもよい。   C2 shown in FIG. 2 is a controller having an operation command unit 1-a in the region of the operation mode 1. The operation command unit 1-a receives an operation instruction and an air supply SA from a higher-level outside air utilization operation system controller C1. The temperature / humidity setting value is received and an OFF instruction is given to the first stage adjustment valve V1 via the V1 instruction section 47, and a V2 instruction section 48 having an absolute humidity calculation section is provided to the second stage adjustment valve V2. An operation signal is given to the V2 indicator 48, and a measured value (S A Tm, SA Hm) of the temperature and humidity of the supply air SA is given to the V2 indicator 48 to calculate the absolute humidity so that the absolute humidity becomes the set absolute humidity. The opening degree of the second stage adjustment valve V2 is controlled. When the second-stage humidifier 14 is operated, the set value becomes the set absolute humidity in any mode of operation, so the signal from the operation command unit 1-a only needs to be a signal of operation or stop, It is not necessary to enter a set value. Further, the fan instruction unit 49 having an enthalpy calculation unit receives the enthalpy installation value of the mixture MA = the enthalpy setting value of the SA condition from the operation command unit 1-a, and determines the actual temperature and humidity of the mixture MA. The rotational speeds of the outside air fan 23 and the exhaust fan 27 are controlled while observing the measured values (MTm, MHm). The exhaust fan 27 only needs to exhaust the same amount as the amount of outside air taken in. Therefore, if the outside air fan 23 and the exhaust fan 27 have the same capacity, for example, the exhaust fan 27 may be controlled to be the same as the rotational speed of the outside air fan 23, or The outside differential pressure may be measured, and the rotational speed may be controlled so as to eliminate the differential pressure.

図2に示すC3は、運転モード2の領域の動作指令部2−aを有するコントローラであり、該動作指令部2−aは、上位の外気利用運転システムコントローラC1からの運転指示と、給気SAの温湿度の設定値を受け取り、V1指示部47に1段目調節バルブV1の一定開度指示を与え、V2指示部48には2段目調節バルブV2に運転の信号を与え、且つV2指示部48には給気SAの温湿度の計測値(SA Tm,SA Hm)を与えて絶対湿度を算出し、その絶対湿度が設定絶対湿度になるように2段目調節バルブV2の開度を制御する。ファン指示部49は、前記動作指令部2−aからの、混合気MAのエンタルピの設置値=SA条件のエンタルピ設定値を受け取り、実際の混合気MAの温湿度の計測値(M Tm,M Hm)を見ながら外気ファン23と排気ファン27の回転数を制御する。   C3 shown in FIG. 2 is a controller having an operation command unit 2-a in the region of the operation mode 2, and the operation command unit 2-a receives an operation instruction from an upper outside air operation system controller C1, an air supply The temperature / humidity setting value of SA is received, a constant opening degree instruction of the first stage control valve V1 is given to the V1 instruction section 47, an operation signal is given to the second stage regulation valve V2 to the V2 instruction section 48, and V2 The indication unit 48 is given a measured value (SA Tm, SA Hm) of the temperature and humidity of the supply air SA to calculate the absolute humidity, and the opening degree of the second stage control valve V2 so that the absolute humidity becomes the set absolute humidity. To control. The fan instruction unit 49 receives the installation value of the enthalpy of the mixture MA = the enthalpy setting value of the SA condition from the operation command unit 2-a, and the measured value of the temperature and humidity of the actual mixture MA (M Tm, M Hm), the rotational speeds of the outside air fan 23 and the exhaust fan 27 are controlled.

図4、図5に示すC4は、運転モード3の領域の動作指令部3−aを有するコントローラであり、動作指示部3−aは、図2の上位の外気利用運転システムコントローラC1からの運転指示と、混合気MAの温湿度の設定値を受け取り、1段目調節バルブV1に一定開度指示を与え、2段目調節バルブV2一定開度指示を与える。ファン指示部49は、前記動作指令部3−aからの、混合気MAのエンタルピの設置値=SA条件のエンタルピ設定値を受け取り、実際の混合気MAの温湿度の計測値(M Tm,M Hm)を見ながら外気ファン23と排気ファン27の回転数を制御する。この運転モード3の領域において、冷却温度が不足する場合には、雪貯蔵部30からの雪冷外気SOAを還気RAに混合することを組み合わせてもよく、また、それでも冷熱が不足する場合には冷却コイル15により雪冷水36の冷熱を用いて冷却し、更に不足する場合には最終的に冷凍機R2による冷熱により冷却することができる。ここで、雪貯蔵部30からの雪冷外気SOA及び雪冷水36を優先して用いることにより、冷凍サイクルの圧縮動力などの運転動力(エネルギ)を低減することができる。   C4 shown in FIGS. 4 and 5 is a controller having the operation command unit 3-a in the region of the operation mode 3, and the operation instruction unit 3-a operates from the upper outside air operation system controller C1 in FIG. An instruction and a set value of the temperature and humidity of the air-fuel mixture MA are received, a constant opening instruction is given to the first stage adjustment valve V1, and a constant opening instruction is given to the second stage adjustment valve V2. The fan instruction unit 49 receives the installation value of the enthalpy of the air-fuel mixture MA from the operation command unit 3-a = the enthalpy setting value of the SA condition, and the measured value of the temperature and humidity of the actual air-fuel mixture MA (M Tm, M Hm), the rotational speeds of the outside air fan 23 and the exhaust fan 27 are controlled. In the region of the operation mode 3, when the cooling temperature is insufficient, mixing of the snow-cooled outside air SOA from the snow storage unit 30 with the return air RA may be combined, and when the cooling is still insufficient. Can be cooled by the cooling coil 15 using the cold heat of the snow-cold water 36, and if it is still insufficient, it can be finally cooled by the cold heat of the refrigerator R2. Here, operation power (energy) such as compression power of the refrigeration cycle can be reduced by preferentially using the snow-cooled outside air SOA and the snow-cooled water 36 from the snow storage unit 30.

図6、図5に示すC5は、運転モード4の領域の動作指令部4−aを有するコントローラであり、該動作指示部4−aは、図2の上位の外気利用運転システムコントローラC1から運転指示と、給気SAの温湿度の設定値を受け取り、ファン指示部49へ一定回転数指示を与えて外気ファン23と排気ファン27を一定回転数制御する。V2指示部48には動作指示部4−aから運転の信号を与え、給気SAの温湿度の計測値(SA Tm,SA Hm)から絶対湿度を算出し、その絶対湿度が設定絶対湿度になるように2段目調節バルブV2の開度を制御する。この後、SAを計測する検出器SAsの計測値から、設定値に達するように冷熱供給手段の循環流路16の制御バルブV3の開度が制御される。この運転モード4の領域において、冷却温度が不足する場合には、雪貯蔵部30からの雪冷外気SOAを還気RAに混合することを組み合わせてもよく、また、それでも冷熱が不足する場合には冷却コイル15により雪冷水36の冷熱を用いて冷却し、更に不足する場合には最終的に冷凍機R2による冷熱により冷却することができる。ここで、雪貯蔵部30からの雪冷外気SOA及び雪冷水36を優先して用いることにより、冷凍サイクルの圧縮動力などの運転動力(エネルギ)を低減することができる。   C5 shown in FIGS. 6 and 5 is a controller having an operation command unit 4-a in the region of the operation mode 4, and the operation instruction unit 4-a is operated from the upper outside air operation system controller C1 in FIG. The instruction and the set value of the temperature and humidity of the supply air SA are received, and a constant rotation speed instruction is given to the fan instruction section 49 to control the outside air fan 23 and the exhaust fan 27 at a constant rotation speed. An operation signal is given to the V2 instruction unit 48 from the operation instruction unit 4-a, the absolute humidity is calculated from the measured value (S A Tm, SA Hm) of the supply air SA, and the absolute humidity becomes the set absolute humidity. Thus, the opening degree of the second stage adjustment valve V2 is controlled. Thereafter, the opening degree of the control valve V3 of the circulation channel 16 of the cold heat supply means is controlled so as to reach the set value from the measured value of the detector SAs that measures SA. In the region of the operation mode 4, when the cooling temperature is insufficient, mixing of the snow-cooled outside air SOA from the snow storage unit 30 with the return air RA may be combined, and when the cooling is still insufficient. Can be cooled by the cooling coil 15 using the cold heat of the snow-cold water 36, and if it is still insufficient, it can be finally cooled by the cold heat of the refrigerator R2. Here, operation power (energy) such as compression power of the refrigeration cycle can be reduced by preferentially using the snow-cooled outside air SOA and the snow-cooled water 36 from the snow storage unit 30.

図7a、図7b、図8に示すC6は、運転モード5の領域の動作指令部5−a(最大負荷時対応指令部)を有するコントローラであり、図2の上位の外気利用運転システムコントローラC1からの運転指示と、給気SAの温湿度の設定値を受け取り、V1指示部47による1段目調節バルブV1へのOFF指示、V2指示部48による2段目調節バルブV2へのOFF指示、ファン指示部49による外気ファン23、排気ファン27へのOFF指示、冷熱供給手段の循環流路16に備えた制御バルブV3の開度指示値を与えるようにしている(運転A〜D)。
管理者は、雪貯蔵部30の雪残量を目視により確認して雪冷外気系の利用判断を行い、利用可能な場合には手動スイッチ50をONとして以降の自動制御に引き渡す。この手動スイッチ50がONの場合には運転A〜Dの各運転が定常状態になると考えられる定常効果時間をカウントするデイリータイマー51の設定時間後に、運転Eの雪冷外気取り入れ運転にすすみ、同時にタイマー52の設定時間後の検出器SOAsの計測値により演算した雪冷外気状態点によって、その後の運転モードを更に判断する運転Fに進む。雪冷外気系運転開始時(運転E)は、雪外気ダンパーD1に開指示を与え、外気ダンパーD2に閉指示を与え、ファン指示部49では、混合気MAの温度測定値(M Tm)と湿度測定値(M Hm)から混合気MAのエンタルピ演算を行い、外気ファン23と排気ファン27に回転数の指示値を与えて雪冷外気SOAによる第1冷却を行う。このとき、V2指示部48は2段目調節バルブV2に開度指示値を与える。
C6 shown in FIG. 7a, FIG. 7b, and FIG. 8 is a controller having an operation command unit 5-a (maximum load response command unit) in the region of the operation mode 5, and is the upper outside air operation system controller C1 in FIG. From the operation instruction and the set value of the temperature and humidity of the supply air SA, the V1 instruction section 47 instructs the first stage adjustment valve V1 to turn off, the V2 instruction section 48 instructs the second stage adjustment valve V2 to turn off, An OFF instruction to the outside air fan 23 and the exhaust fan 27 by the fan instruction unit 49 and an opening instruction value of the control valve V3 provided in the circulation flow path 16 of the cold heat supply means are given (operations A to D).
The administrator visually confirms the remaining amount of snow in the snow storage unit 30 to make a use judgment of the snow-cooled outside air system, and when it is available, turns on the manual switch 50 and hands it over to the subsequent automatic control. When this manual switch 50 is ON, after the set time of the daily timer 51 that counts the steady effect time in which each of the operations A to D is considered to be in a steady state, the operation proceeds to the snow-cooled outside air intake operation of the operation E. Based on the snow-cooled outside air state point calculated from the measured value of the detector SOAs after the set time of the timer 52, the operation proceeds to operation F in which the subsequent operation mode is further determined. At the start of the snow-cooled outside air system operation (operation E), an open instruction is given to the snow outside air damper D1, a close instruction is given to the outside air damper D2, and the fan instruction section 49 determines the temperature measurement value (M Tm) of the mixture MA. The enthalpy calculation of the air-fuel mixture MA is performed from the humidity measurement value (M Hm), the rotation speed instruction values are given to the outside air fan 23 and the exhaust fan 27, and the first cooling by the snow-cooled outside air SOA is performed. At this time, the V2 instruction unit 48 gives an opening degree instruction value to the second stage adjustment valve V2.

運転E後(F運転)では、図7bに示すように、タイマー52により運転Eの定常効果時間を待った後、雪冷外気SOA(SnowOA)の温度測定値(SOA Tm)と湿度測定値(SOA Hm)より演算部53で雪冷外気SOAのエンタルピ演算を行い、雪冷外気SOAが運転モード1の領域にあるか、運転モード5の領域にあるかの判断を領域判断部54で行う。運転モード1の領域にあると判断された場合はV3指示部55にバルブV3のOFF指示を与え、雪冷外気運転を継続する。運転モード5の領域にあると判断された場合は、雪外気ダンパーD1の開指示と外気ダンパーD2の閉指示を与え、ファン指示部49には外気ファン23と排気ファン27への回転数指示を与え、V2指示部48には2段目調節バルブV2へのOFF指示を与え、冷却コイル15を備えた循環流路16のバルブV3には開度指示値を与え、このとき、雪貯蔵部30からの雪冷水36の冷熱を冷却手段の冷却コイル15に供給する第2冷却を行う。それでも冷熱が不足する場合には冷凍機R2の冷熱を冷却手段の冷却コイル15に供給する第3冷却を行う。   After the operation E (F operation), as shown in FIG. 7B, after the timer 52 waits for the steady effect time of the operation E, the temperature measurement value (SOA Tm) and the humidity measurement value (SOA) of the snow-cooled outside air SOA (SnowOA) are waited for. Hm), the calculation unit 53 calculates the enthalpy of the snow-cooled outside air SOA, and the region determination unit 54 determines whether the snow-cooled outside air SOA is in the operation mode 1 region or the operation mode 5 region. When it is determined that the vehicle is in the operation mode 1, the V3 instruction unit 55 is instructed to turn off the valve V3, and the snow-cooled outside air operation is continued. If it is determined that the vehicle is in the operation mode 5 region, an instruction to open the snow outside air damper D1 and an instruction to close the outside air damper D2 are given, and the rotation instruction to the outside air fan 23 and the exhaust fan 27 is given to the fan instruction section 49. In addition, an OFF instruction to the second stage adjusting valve V2 is given to the V2 indicator 48, and an opening degree instruction value is given to the valve V3 of the circulation channel 16 provided with the cooling coil 15. At this time, the snow storage part 30 2nd cooling which supplies the cold heat of the snow-cold water 36 from to the cooling coil 15 of a cooling means is performed. If the cold energy is still insufficient, the third cooling for supplying the cold heat of the refrigerator R2 to the cooling coil 15 of the cooling means is performed.

図9、図10に示すC7は、外気利用運転システムコントローラC1とは独立して前記雪冷水36による冷熱を利用して制御を行うための雪冷水利用動作指示部56を有するコントローラであり、該雪冷水利用動作指示部56では、雪冷水槽37の水位計Lで計測した水位や、温度計T1sで計測した雪冷水温度により雪冷水系の利用可能判断を行う。雪冷水系が利用可能な場合は、利用可能指示部57によりバルブV5のOFF指示(バイパス遮断)を与え、ポンプP2、P3へ指示値を与える。これにより、雪冷水槽37の雪冷水36による冷熱を利用した冷却が行われる。尚、上記雪冷水利用動作指示部56により雪冷水36の供給を行っている際には、前記雪冷外気SOAによる冷却が同時に行われる。雪冷水槽37の雪冷水36の温度が所定温度以上に上昇した場合には、パルブV4にOFF指示(バイパス遮断)を与え、ポンプP1、P5に指示値を与えてブライン冷凍機R1をONにし、ブライン冷凍機R1によるバックアップ冷却を行う。雪冷水系が利用不可の場合は、利用不可指示部58によりバルブV5のON指示(バイパス)を与え、バルブV6のOFF指示(バイパス遮断)を与え、ポンプP1、P2へ指示値を与え、冷凍機R2をONにして、冷凍機R2による冷却を行う。   C7 shown in FIG. 9 and FIG. 10 is a controller having a snow cold water use operation instruction unit 56 for performing control using the cold heat of the snow cold water 36 independently of the outside air use operation system controller C1. The snow cold water use operation instruction unit 56 determines whether the snow cold water system can be used based on the water level measured by the water level meter L of the snow cold water tank 37 and the snow cold water temperature measured by the thermometer T1s. When the snow chilled water system is available, the availability instruction unit 57 gives an instruction to turn off the valve V5 (bypass cutoff), and gives an instruction value to the pumps P2 and P3. Thereby, cooling using the cold heat by the snow cold water 36 of the snow cold water tank 37 is performed. In addition, when the snow cold water use operation instruction unit 56 supplies the snow cold water 36, the cooling with the snow cold outside air SOA is simultaneously performed. When the temperature of the snow cold water 36 in the snow cold water tank 37 rises above a predetermined temperature, an OFF instruction (bypass bypass) is given to the valve V4, an instruction value is given to the pumps P1, P5, and the brine refrigerator R1 is turned on. Then, backup cooling is performed by the brine refrigerator R1. When the snow chilled water system cannot be used, the unusable instruction unit 58 gives an ON instruction (bypass) for the valve V5, gives an OFF instruction (bypass bypass) for the valve V6, gives an instruction value to the pumps P1 and P2, and freezes The machine R2 is turned on and cooling by the refrigerator R2 is performed.

以下に、各運転モードの運転概要を説明する。
I)混合2段目加湿単独運転(運転モード1の領域での運転)
Below, the operation | movement outline | summary of each operation mode is demonstrated.
I) Mixed second stage humidification single operation (operation in the region of operation mode 1)

この場合は、運転モード1の領域の動作指令部1−aは外気利用運転システムコントローラC1から1段目調節バルブV1を閉止するOFF指令を受け、V1指示部47は1段目調節バルブV1をOFFとし、絶対湿度演算部を有するV2指示部48は運転の信号を2段目調節バルブV2に与え、且つV2指示部48には検出器SAmからの給気SAの計測値(SA Tm,SA Hm)を与えて絶対湿度を算出し、その絶対湿度が設定絶対湿度になるように前記2段目調節バルブV2の開度を制御する。2段目加湿器14が稼動する場合は、そのどのモードでの稼動においても設定値が設定絶対湿度となるので、外気利用運転システムコントローラC1からの信号は、初期調整時における設定値の入力のみでよい。更に、ファン指示部49は、前記動作指令部1−aから、混合気エンタルピM'の設定値、つまりM−SA線上にあるエンタルピ設定値を受け取り、検出器Mmによる実際の温湿度(M Tm,M Hm)から演算される混合気エンタルピM'計測値との偏差に基づき外気ファン23の回転数を制御する。   In this case, the operation command unit 1-a in the region of the operation mode 1 receives an OFF command for closing the first-stage adjustment valve V1 from the outside-air utilization operation system controller C1, and the V1 instruction unit 47 sets the first-stage adjustment valve V1. The V2 indicating unit 48 having the absolute humidity calculation unit is set to OFF and gives an operation signal to the second-stage adjusting valve V2, and the V2 indicating unit 48 has a measured value (SA Tm, SA) of the supply air SA from the detector SAm. Hm) is given to calculate the absolute humidity, and the opening degree of the second stage adjustment valve V2 is controlled so that the absolute humidity becomes the set absolute humidity. When the second-stage humidifier 14 is operated, the set value becomes the set absolute humidity in any mode of operation. Therefore, the signal from the outside air operation system controller C1 is only input of the set value at the time of initial adjustment. It's okay. Further, the fan instruction unit 49 receives the set value of the mixture enthalpy M ′, that is, the enthalpy set value on the M-SA line, from the operation command unit 1-a, and the actual temperature and humidity (M Tm by the detector Mm). , MHm), the rotational speed of the outside air fan 23 is controlled based on the deviation from the measured value of the air-fuel mixture enthalpy M ′.

上記の状態においては、冷却コイル15を通過する給気SAの温湿度は設定給気条件を満たしているので、冷却手段による冷却は不要である。排気ファン27は、加圧空気量を別とすれば取り入れた外気量と同量を排気すればよいので、例えば外気ファン23と排気ファン27が同容量であれば、外気ファン23の回転数と同じに制御すればよく、あるいは室内外の差圧を計測し、その差圧を無くすように回転数を制御してもよい。
II)混合2段階加湿運転(運転モード2の領域での運転)
In the above state, the temperature / humidity of the supply air SA passing through the cooling coil 15 satisfies the set supply air condition, so that cooling by the cooling means is unnecessary. The exhaust fan 27 only needs to exhaust the same amount as the amount of outside air taken in, except for the amount of pressurized air. For example, if the outside air fan 23 and the exhaust fan 27 have the same capacity, the rotation speed of the outside air fan 23 It may be controlled in the same way, or the differential pressure inside and outside the room may be measured and the rotational speed may be controlled so as to eliminate the differential pressure.
II) Mixing two-stage humidification operation (operation in the region of operation mode 2)

この場合、運転モード2の領域の動作指令部2−aは外気利用運転システムコントローラC1から1段目調節バルブV1の一定開度指示を与え、且つ給気SAの温湿度の計測値(SA Tm,SA Hm)から絶対湿度を演算してV1指令部47を介して1段目調節バルブV1の開度制御を行う。1段目加湿器12を運転する場合、運転パラメータから還気RA'の絶対湿度を設定絶対湿度とし、RA'の絶対湿度の計測値から1段目調節バルブV1の開度制御を行うが、1段目加湿器12の入口条件は一定(RA)であり、RA'は1段目加湿器12の能力(飽和効率)から設定されているため、基本的には1段目調節バルブV1の開度は制御する必要はなく、外気利用運転システムコントローラC1からV1指令部47への信号は運転か停止かの信号のみにするほうが簡易的な場合もある。   In this case, the operation command unit 2-a in the region of the operation mode 2 gives a constant opening instruction of the first-stage control valve V1 from the outside air operation system controller C1, and the measured value (SA Tm) of the temperature and humidity of the supply air SA. , SA Hm), the absolute humidity is calculated from the first control valve V1 through the V1 command section 47. When operating the first stage humidifier 12, the absolute humidity of the return air RA ′ is set as the set absolute humidity from the operation parameters, and the opening control of the first stage control valve V <b> 1 is performed from the measured value of the absolute humidity of RA ′. Since the inlet condition of the first-stage humidifier 12 is constant (RA) and RA ′ is set from the capacity (saturation efficiency) of the first-stage humidifier 12, basically, the first-stage humidifying valve V1 It is not necessary to control the opening degree, and it may be simpler that the signal from the outside air operation system controller C1 to the V1 command unit 47 is only a signal of operation or stop.

ファン指示部49は、外気利用運転システムコントローラC1から、混合気エンタルピM'の設定値、つまりM−SA線上にあるエンタルピ設定値を受け取り、検出器Mmによる実際の温湿度(M Tm,M Hm)から演算される混合気エンタルピM'計測値との偏差に基づき外気ファン23と排気ファン27の回転数を制御する。   The fan instruction unit 49 receives the set value of the mixture enthalpy M ′, that is, the enthalpy set value on the M-SA line, from the outside air operation system controller C1, and the actual temperature and humidity (M Tm, M Hm) by the detector Mm. ), The rotational speed of the outside air fan 23 and the exhaust fan 27 is controlled based on the deviation from the measured value of the air-fuel mixture enthalpy M ′.

V2指令部48は、外気利用運転システムコントローラC1から2段目調節バルブV2を開放し開度調整するような偏差を有する絶対湿度の設定値信号を受け取り、検出器SAmによる給気SAの計測値(SA Tm,SA Hm)から求め絶対湿度が設定絶対湿度になるように2段目調節バルブV2の開度制御を行う。
III)混合2段階加湿+冷却コイル併用運転(運転モード3の領域での運転)
The V2 command unit 48 receives an absolute humidity setting value signal having a deviation that opens the second stage control valve V2 and adjusts the opening degree from the outside air operation system controller C1, and the measured value of the supply air SA by the detector SAm. The opening degree of the second-stage regulating valve V2 is controlled so that the absolute humidity is determined from (SA Tm, SA Hm) and becomes the set absolute humidity.
III) Mixed two-stage humidification + cooling coil combined operation (operation in the region of operation mode 3)

この場合、運転モード3の領域の動作指令部3−aは外気利用運転システムコントローラC1から1段目調節バルブV1を開放する方向、且つ流量調整可能に偏差を有する絶対湿度の設定値を受け取り、V1指示部47を介して1段目調節バルブV1を開とする。   In this case, the operation command unit 3-a in the region of the operation mode 3 receives the set value of the absolute humidity having a deviation in the direction in which the first stage adjustment valve V1 is opened and the flow rate can be adjusted, from the outside air operation system controller C1. The first stage adjustment valve V1 is opened via the V1 instruction section 47.

ファン指示部49は、外気利用運転システムコントローラC1から、混合気エンタルピM'の設置値(RA'と外気状態点を結んだ直線と曲線M−M'との交点の乾球温度および絶対湿度におけるエンタルピ)を受け取り、検出器Mmからの実際の温湿度から演算される混合気エンタルピM'計測値との偏差に基づき外気ファン23の回転数を制御する。   The fan instruction unit 49 receives the installation value of the air-fuel mixture enthalpy M ′ from the outside air operation system controller C1 (at the dry bulb temperature and the absolute humidity at the intersection of the straight line connecting the RA ′ and the outside air state point and the curve MM ′). Enthalpy) is received, and the rotational speed of the outside air fan 23 is controlled based on the deviation from the measured value of the mixture enthalpy M ′ calculated from the actual temperature and humidity from the detector Mm.

V2指示部4は、外気利用運転システムコントローラC1から、1段目調節バルブV1を開放し開度調整するような偏差を有する絶対湿度の設定値信号を受け取り、検出器SAmによる給気SAの計測値(SA Tm,SA Hm)から求め絶対湿度が設定絶対湿度になるように2段目調節バルブV2の開度制御を行う。上記運転モード3の領域において、冷却温度が不足する場合には、雪貯蔵部30からの雪冷外気SOAを還気RAに混合するようにしてもよく、また、それでも冷熱が不足する場合には冷却コイル15により雪冷水36の冷熱を用いて冷却し、更に不足する場合には最終的に冷凍機R2による冷熱により冷却することができる。ここで、雪貯蔵部30からの雪冷外気SOA及び雪冷水36を優先して用いることにより、冷凍サイクルの圧縮動力などの運転動力(エネルギ)を低減することができる。
IV)全外気2段目加湿単独運転(運転モード4の領域での運転)
The V2 instructing unit 4 receives an absolute humidity set value signal having a deviation such that the first stage control valve V1 is opened and the opening degree is adjusted from the outside air operation system controller C1, and the supply SA is measured by the detector SAm. The opening degree of the second-stage regulating valve V2 is controlled so that the absolute humidity is determined from the values (SA Tm, SA Hm) so that the absolute humidity becomes the set absolute humidity. In the region of the operation mode 3, when the cooling temperature is insufficient, the snow-cooled outside air SOA from the snow storage unit 30 may be mixed with the return air RA. The cooling coil 15 is used to cool the snow cold water 36 using the cold heat, and when it is insufficient, it can be finally cooled by the cold heat generated by the refrigerator R2. Here, operation power (energy) such as compression power of the refrigeration cycle can be reduced by preferentially using the snow-cooled outside air SOA and the snow-cooled water 36 from the snow storage unit 30.
IV) All outside air second-stage humidification single operation (operation in operation mode 4 area)

この場合、運転モード4の領域の動作指令部4−aは外気利用運転システムコントローラC1からの指令により図示しない1段目調節バルブV1はOFFとされ、ファン指示部49は、外気利用運転システムコントローラC1からの一定回転数指令によって外気ファン23と排気ファン27を一定回転数で制御する。   In this case, the operation command unit 4-a in the region of the operation mode 4 turns off the first stage adjustment valve V1 (not shown) in response to a command from the outside air utilization operation system controller C1, and the fan instruction unit 49 operates as the outside air utilization operation system controller. The outside air fan 23 and the exhaust fan 27 are controlled at a constant rotational speed by a constant rotational speed command from C1.

V2指示部48は、外気利用運転システムコントローラC1から2段目調節バルブV2を開放し開度調整するような偏差を有する絶対湿度の設定値信号を受け取り、検出器SAmによる給気SAの計測値(SA Tm,SA Hm)から求め絶対湿度が設定絶対湿度になるように2段目調節バルブV2の開度制御を行う。上記運転モード4の領域において、冷却温度が不足する場合には、雪貯蔵部30からの雪冷外気SOAを還気RAに混合するようにしてもよく、また、それでも冷熱が不足する場合には冷却コイル15により雪冷水36の冷熱を用いて冷却し、更に不足する場合には最終的に冷凍機R2による冷熱により冷却することができる。ここで、雪貯蔵部30からの雪冷外気SOA及び雪冷水36を優先して用いることにより、冷凍サイクルの圧縮動力などの運転動力(エネルギ)を低減することができる。   The V2 instruction unit 48 receives an absolute humidity setting value signal having a deviation that opens the second stage control valve V2 and adjusts the opening degree from the outside air operation system controller C1, and the measured value of the supply air SA by the detector SAm. The opening degree of the second-stage regulating valve V2 is controlled so that the absolute humidity is determined from (SA Tm, SA Hm) and becomes the set absolute humidity. When the cooling temperature is insufficient in the region of the operation mode 4, the snow-cooled outside air SOA from the snow storage unit 30 may be mixed with the return air RA. The cooling coil 15 is used to cool the snow cold water 36 using the cold heat, and when it is insufficient, it can be finally cooled by the cold heat generated by the refrigerator R2. Here, operation power (energy) such as compression power of the refrigeration cycle can be reduced by preferentially using the snow-cooled outside air SOA and the snow-cooled water 36 from the snow storage unit 30.

更に、上記運転モード1〜4のいずれにも当てはまらない運転モード5の場合には、運転モード5の領域の動作指令部5−aは、外気利用運転システムコントローラC1からの指令により、冷却手段の冷却コイル15を用いて給気SAの計測温度が設定温度になるように制御される。このとき、雪貯蔵部30からの雪冷外気SOAが利用可能な場合には雪冷外気SOAを還気RAに混合して混合気MAの温度を低下させる第1冷却を行い、更に、冷却手段の冷却コイル15に雪冷水36の冷熱を供給する第2冷却を行い、それでも冷熱が不足する場合には最終的に冷凍機R2による冷熱を冷却手段の冷却コイル15に供給する第3冷却を行う。ここで、雪貯蔵部30からの雪冷水36の冷熱を優先して用いることにより、冷凍サイクルの圧縮動力などの運転動力(エネルギ)を低減することができる。   Further, in the case of the operation mode 5 that does not apply to any of the above operation modes 1 to 4, the operation command unit 5-a in the region of the operation mode 5 receives the command from the outside air operation system controller C1 to The cooling coil 15 is used to control the measured temperature of the supply air SA to the set temperature. At this time, when the snow-cooled outside air SOA from the snow storage unit 30 is available, the snow-cooled outside air SOA is mixed with the return air RA to perform the first cooling that lowers the temperature of the air-fuel mixture MA, and further, cooling means The second cooling for supplying the cold heat of the snow cold water 36 to the cooling coil 15 is performed, and if the cold heat is still insufficient, the third cooling for finally supplying the cold heat from the refrigerator R2 to the cooling coil 15 of the cooling means is performed. . Here, operation power (energy) such as compression power of the refrigeration cycle can be reduced by preferentially using the cold heat of the snow cold water 36 from the snow storage unit 30.

上記したように、本発明の雪を用いた空調システムによれば、中間期や冬季において外気を利用した外気冷房を行う際に、還気RAを加湿する1段目加湿器12と、外気OAと還気RAの混合気MAを加湿する2段目加湿器14を備えたことにより、給気SAの加湿不足を防止できると共に、加湿による冷却効果を利用することができ、よって外気利用による冷却効果を最大限に高められる効果がある。更に、中間期や冬季に、冷房負荷が大きくて外気混合冷却だけでは冷房能力が不足する際にも、雪貯蔵部30からの雪冷外気SOAを還気RAに混合し、及び又は、雪貯蔵部30からの雪冷水36の冷熱を用いた冷却手段により給気SAを冷却することにより、雪の冷熱を有効に利用して、冷凍機のような冷熱供給装置の使用を最少限にして運転エネルギを大幅低減することができる。   As described above, according to the air conditioning system using snow of the present invention, the first stage humidifier 12 that humidifies the return air RA and the outside air OA when performing outside air cooling using outside air in the intermediate period or winter season. Provided with the second stage humidifier 14 for humidifying the air-fuel mixture MA of the return air RA and the humidification of the supply air SA can be prevented, and the cooling effect by the humidification can be used, and therefore the cooling by the use of the outside air There is an effect to maximize the effect. Furthermore, even when the cooling load is large and the cooling capacity is insufficient only by the outside air mixed cooling in the intermediate period or winter season, the snow cooling outside air SOA from the snow storage unit 30 is mixed with the return air RA and / or the snow storage. The supply air SA is cooled by the cooling means using the cold heat of the snow cold water 36 from the section 30 so that the cold heat of the snow is effectively used and the use of the cold heat supply device such as a refrigerator is minimized. Energy can be greatly reduced.

尚、本発明の雪を用いた空調システムは、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The air conditioning system using snow according to the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

1 雪を用いた空調システム
3 外気導入口
4 外気通路
5 還気取入口
6 空調対象室
7 還気通路
9 混合部
10 給気風路
11 給気通路
12 1段目加湿器(1段目加湿手段)
14 2段目加湿器(2段目加湿手段)
15 冷却コイル(冷却手段)
16 循環流路
17 冷凍機発生冷熱熱交換器
19 給気ファン(給気手段)
23 外気ファン(外気送給手段)
27 排気ファン(排気手段)
30 雪貯蔵部
31 U字溝
32 連続溝
33 雪
36 雪冷水
37 雪冷水槽
38 雪冷水熱交換器
56 雪冷水利用動作指示部
5−a 運転モード5の領域の動作指令部(最大負荷時対応指令部)
D1 雪外気ダンパー(外気切換手段)
D2 外気ダンパー(外気切換手段)
R1 ブライン冷凍機
R2 冷凍機
DESCRIPTION OF SYMBOLS 1 Air-conditioning system using snow 3 Outside air introduction port 4 Outside air passage 5 Return air intake 6 Air-conditioning target room 7 Return air passage 9 Mixing part 10 Supply air passage 11 Supply air passage 12 First stage humidifier (first stage humidifier) )
14 Second stage humidifier (second stage humidifier)
15 Cooling coil (cooling means)
16 Circulating channel 17 Refrigerator-generated cold heat exchanger 19 Air supply fan (air supply means)
23 Outside air fan (outside air feeding means)
27 Exhaust fan (exhaust means)
30 Snow storage part 31 U-shaped groove 32 Continuous groove 33 Snow 36 Snow cold water 37 Snow cold water tank 38 Snow cold water heat exchanger 56 Snow cold water use operation instruction part 5-a Operation command part of operation mode 5 area (corresponding to maximum load) Command section)
D1 Snow outside air damper (outside air switching means)
D2 Outside air damper (outside air switching means)
R1 brine refrigerator R2 refrigerator

Claims (10)

機械室には、外気導入口に連通する第一の流通路である外気通路と、還気取入口を介し空調対象室に連通する第二の流通路である還気通路と、前記外気通路及び前記還気通路に外気通路及び還気通路とは区画された混合部を介して連通すると共に、前記混合部と区画され且つ給気風路を介し空調対象室に連通する第三の流通路である給気通路とを備え、
室外には、雪を堆積した雪貯蔵部を備え、
前記還気通路には、前記還気取入口からの還気を水により断熱加湿する1段目加湿手段を設置し、前記給気通路には、外気導入口からの外気と還気取入口からの還気が混合した混合気を水により断熱加湿する2段目加湿手段と、前記雪貯蔵部からの雪冷水が有する冷熱を供給可能な冷熱媒を循環流路に流す冷熱供給手段に接続された冷却コイルである冷却手段と、給気通路内の混合気を給気風路を介して空調対象室に送給する給気手段とを設置し、前記外気通路には、混合気の温湿度状態を調整するための外気を搬送する風量調整が可能な外気送給手段を設置し、前記空調対象室には、室内空気の一部を排気するための排気手段を設置し、前記外気導入口には、外気と前記雪貯槽部の雪により冷却した雪冷外気とを切り換えて供給し得る外気切換手段を設置した
ことを特徴とする雪を用いた空調システム。
The machine room includes an outside air passage which is a first flow passage communicating with the outside air introduction port, a return air passage which is a second flow passage communicating with the air-conditioning target chamber via the return air inlet, the outside air passage, The outside air passage and the return air passage communicate with the return air passage through a partitioned mixing section, and are a third flow passage that is partitioned from the mixing section and communicates with the air-conditioning target chamber through a supply air passage. An air supply passage,
Outside the room, there is a snow storage section that accumulates snow,
The return air passage is provided with first-stage humidification means for adiabatic humidification of the return air from the return air intake with water, and the air supply passage is provided with the outside air from the outside air inlet and the return air intake. A second stage humidifying means for adiabatically humidifying the air-fuel mixture mixed with the return air, and a cold heat supply means for supplying a cooling medium capable of supplying the cold heat of the snow cold water from the snow storage section to the circulation channel. The cooling means is a cooling coil, and the air supply means for supplying the air-fuel mixture in the air supply passage to the air-conditioning target room through the air supply passage, and the temperature and humidity state of the air-fuel mixture is provided in the outside air passage An outside air supply means capable of adjusting the air volume for conveying outside air for adjusting the air volume is installed, and in the air conditioning target room, an exhaust means for exhausting a part of the indoor air is installed, and the outside air introduction port is provided. Is the outside air that can be switched between the outside air and the snow-cooled outside air cooled by the snow in the snow storage tank. Air conditioning system using the snow, characterized in that they have installed switch means.
前記冷却手段に接続される前記冷熱供給手段は、前記冷熱媒に対し、前記雪貯蔵部から外部に取り出した雪冷水の冷熱を熱交換器により、冷凍機により発生した冷熱を熱交換器により、それぞれ適宜伝熱させることが可能であることを特徴とする請求項1に記載の雪を用いた空調システム。   The cold supply means connected to the cooling means, with respect to the cooling medium, the cold heat of snow cold water taken out from the snow storage unit to the outside by a heat exchanger, the cold generated by the refrigerator by a heat exchanger, The air conditioning system using snow according to claim 1, wherein heat can be appropriately transferred. 1段目加湿手段の加湿量を還気取入口にて計測し演算された絶対湿度に応じて、外気送給手段の風量を混合部にて計測し演算されたエンタルピに応じて、2段目加湿手段の加湿量を給気風路にて計測し演算された絶対湿度に応じて、それぞれ制御する制御装置を有していることを特徴とする請求項1又は2に記載の雪を用いた空調システム。   The humidification amount of the first stage humidifying means is measured at the return air intake and is calculated according to the absolute humidity. The air volume of the outside air supply means is measured at the mixing section and the second stage according to the calculated enthalpy. The air conditioning system using snow according to claim 1 or 2, further comprising a control device that controls the humidification amount of the humidification means in accordance with the absolute humidity calculated by measuring the humidification amount in the supply air passage. system. 空調対象室へ給気風路内を送給される給気設定温湿度点のエンタルピと同エンタルピ線上にあり、且つ、給気風路内を送給される給気の設定絶対湿度まで加湿可能な2段目加湿手段入口最小絶対湿度点を境界点として設定し、還気設定温湿度点と前記境界点とを結んで境界点側に延長した直線により、T−Xa空気線図上の境界点左側領域を2分し、給気及び還気の設定絶対湿度まで加湿可能な1段目加湿手段入口最小絶対湿度点を各乾球温度毎にT−Xa空気線図上の境界点右側領域で結んだ曲線により、T−Xa空気線図上の境界点右側領域を2分することで、少なくともT−Xa空気線図上を前記境界点を頂点に持つ4つの領域に分けて、温湿度を測定し求めた外気の状態点が4つの領域の何れに含まれるかで運転モードを切り替える制御装置を備えることを特徴とする請求項1乃至3のいずれか1項に記載の雪を用いた空調システム。   It is on the same enthalpy line as the enthalpy of the air supply setting temperature / humidity point supplied to the air conditioning target room and can be humidified up to the set absolute humidity of the air supply supplied through the air supply path 2 The minimum absolute humidity point at the inlet of the stage humidifying means is set as the boundary point, and the left side of the boundary point on the T-Xa air diagram is defined by a straight line connecting the return air temperature / humidity point and the boundary point to the boundary point side. Divide the area into two and connect the minimum absolute humidity point at the inlet of the first stage humidifier that can humidify to the set absolute humidity of the supply and return air at the right side of the boundary point on the T-Xa air diagram for each dry bulb temperature By dividing the right area of the boundary point on the T-Xa air diagram by the curve, the temperature and humidity are measured by dividing the area at least on the T-Xa air diagram into four areas having the boundary point at the apex. The operation mode is switched depending on which of the four regions the outside air state point is included. Air conditioning systems using snow according to any one of claims 1 to 3, characterized in that it comprises a control device. 還気設定温湿度点と前記境界点とを結んで境界点側に延長した直線の上部領域に外気の状態点が含まれる場合には、1段目加湿手段はOFFとし、混合部の空気温度測定値により求められたエンタルピに基づき外気送給手段の風量を制御し、給気風路内の給気温湿度測定値により求められた絶対湿度に基づき2段目加湿手段の加湿量を制御する制御装置を備えることを特徴とする請求項4に記載の雪を用いた空調システム。   If the outside air state point is included in the upper area of the straight line connecting the return air set temperature / humidity point and the boundary point to the boundary point side, the first stage humidification means is turned OFF and the air temperature of the mixing section A control device that controls the air volume of the outside air supply means based on the enthalpy obtained from the measured value and controls the humidification amount of the second stage humidifying means based on the absolute humidity obtained from the measured air temperature and humidity in the air supply air passage. The air conditioning system using snow according to claim 4. 還気設定温湿度点と前記境界点とを結んで境界点側に延長した直線の下部領域に外気の状態点が含まれる場合には、還気取入口の還気温湿度測定値により求められた絶対湿度に基づき1段目加湿手段の加湿量を制御し、混合部の空気温度測定値により求められたエンタルピに基づき外気送給手段の風量を制御し、給気風路内の給気温湿度測定値により求められた絶対湿度に基づき2段目加湿手段の加湿量を制御する制御装置を備えることを特徴とする請求項4に記載の雪を用いた空調システム。   When the outside air state point is included in the lower area of the straight line connecting the return air set temperature / humidity point and the boundary point to the boundary point side, it was obtained from the return air temperature measurement value of the return air inlet Controls the humidification amount of the first-stage humidification means based on the absolute humidity, controls the air volume of the outside air supply means based on the enthalpy obtained from the air temperature measurement value of the mixing section, and measures the air supply humidity in the supply air passage 5. The air conditioning system using snow according to claim 4, further comprising a control device that controls a humidification amount of the second-stage humidification unit based on the absolute humidity obtained by the step. 給気及び還気の設定絶対湿度まで加湿可能な2段目加湿手段入口最小絶対湿度点を各乾球温度毎にT−Xa空気線図上の境界点右側領域で結んだ曲線の上部領域に外気の状態点が含まれる場合には、給気風路内の給気温湿度測定値により求められた絶対湿度に基づき2段目加湿手段の加湿量を制御し、1段目加湿手段はOFFとし、給気風路内の給気温度に基づき、前記冷熱媒が有し前記冷却手段へ供給される供給熱量を制御する制御装置を備えることを特徴とする請求項4に記載の雪を用いた空調システム。   In the upper area of the curve connecting the minimum absolute humidity point at the entrance of the second stage humidifying means that can humidify to the set absolute humidity of the supply and return air at the right side of the boundary point on the T-Xa air diagram for each dry bulb temperature When the outside air state point is included, the humidification amount of the second-stage humidifying means is controlled based on the absolute humidity obtained from the measured temperature of the supplied air temperature in the supply air path, the first-stage humidifying means is turned OFF, 5. The air conditioning system using snow according to claim 4, further comprising a control device that controls the amount of heat supplied by the cooling medium and supplied to the cooling unit based on a supply air temperature in the supply air passage. . 給気及び還気の設定絶対湿度まで加湿可能な2段目加湿手段入口最小絶対湿度点を各乾球温度毎にT−Xa空気線図上の境界点右側領域で結んだ曲線の下部領域に外気の状態点が含まれる場合には、還気取入口の還気温湿度測定値により求められた絶対湿度に基づいて1段目加湿手段の加湿量を制御し、混合部の空気温度測定値により求められたエンタルピに基づいて外気送給手段の風量を制御し、給気風路内の給気温湿度測定値により求められた絶対湿度に基づいて2段目加湿手段の加湿量を制御し、給気風路内の給気温度に基づき、前記冷熱媒が有し前記冷却手段へ供給される供給熱量を制御する制御装置を備えることを特徴とする請求項4に記載の雪を用いた空調システム。   In the lower area of the curve connecting the minimum absolute humidity point at the entrance of the second stage humidifying means that can humidify to the set absolute humidity of the supply and return air at the right side of the boundary point on the T-Xa air diagram for each dry bulb temperature When the outside air state point is included, the humidification amount of the first-stage humidifying means is controlled based on the absolute humidity obtained from the return temperature humidity measurement value of the return air inlet, and the air temperature measurement value of the mixing unit is used. The air volume of the outside air supply means is controlled based on the obtained enthalpy, and the humidification amount of the second stage humidifying means is controlled based on the absolute humidity obtained from the measured air temperature and humidity in the supply air path. 5. The air conditioning system using snow according to claim 4, further comprising: a control device that controls the amount of heat supplied to the cooling means that the cooling medium has, based on a supply air temperature in the road. 前記雪貯蔵部から外部に取り出した雪冷水が有する冷熱の利用可能を判断して、前記冷熱供給手段の循環流路を流れる前記冷熱媒への雪冷水が有する冷熱の供給を制御する雪冷水利用動作指令部を有することを特徴とする請求項7又は8に記載の雪を用いた空調システム。   Use of snow cold water for controlling the supply of cold heat of the snow cold water to the cold medium flowing through the circulation channel of the cold heat supply means by judging the availability of the cold heat of the snow cold water taken out from the snow storage unit The air conditioning system using snow according to claim 7 or 8, further comprising an operation command unit. 外気の状態点がT−Xa空気線図上で請求項5乃至8の何れの場合にも当てはまらない場合では、雪冷外気を外気通路に供給する第1冷却と、前記冷熱供給手段の循環流路を流れる前記冷熱媒へ雪冷水が有する冷熱を供給する第2冷却と、冷熱が不足する場合に前記冷熱供給手段の循環流路を流れる前記冷熱媒へ冷凍機が発生する冷熱を供給する第3冷却とを行う最大負荷時対応指令部を有することを特徴とする雪を用いた空調システム。   When the outside air state point does not apply to the case of any of claims 5 to 8 on the T-Xa air diagram, the first cooling for supplying the snow-cooled outside air to the outside air passage, and the circulation flow of the cold heat supply means A second cooling for supplying the cold heat of the snow chilled water to the cooling medium flowing through the passage; and a second cooling for supplying the cold generated by the refrigerator to the cooling heat medium flowing through the circulation flow path of the cold heat supply means when the cold heat is insufficient. 3. An air-conditioning system using snow, characterized by having a maximum load response command unit that performs cooling.
JP2011004966A 2011-01-13 2011-01-13 Air conditioning system using snow Active JP5623298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004966A JP5623298B2 (en) 2011-01-13 2011-01-13 Air conditioning system using snow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004966A JP5623298B2 (en) 2011-01-13 2011-01-13 Air conditioning system using snow

Publications (2)

Publication Number Publication Date
JP2012145289A true JP2012145289A (en) 2012-08-02
JP5623298B2 JP5623298B2 (en) 2014-11-12

Family

ID=46789020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004966A Active JP5623298B2 (en) 2011-01-13 2011-01-13 Air conditioning system using snow

Country Status (1)

Country Link
JP (1) JP5623298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134302A (en) * 2013-01-08 2014-07-24 Ntt Facilities Inc Heat supply system
JP2015055417A (en) * 2013-09-12 2015-03-23 株式会社雪屋媚山商店 Removed-snow-utilizing heat supply control system
JP2017514095A (en) * 2014-04-23 2017-06-01 ネイバー ビジネス プラットフォーム コーポレーション Server room cooling apparatus and method for manufacturing air conditioning system of data center including the same
CN107143971A (en) * 2017-04-18 2017-09-08 珠海格力电器股份有限公司 A kind of snow defence control method, device, system and air-conditioning
JP2017195670A (en) * 2016-04-19 2017-10-26 トヨタ自動車株式会社 On-vehicle battery cooling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791787A (en) * 1993-09-25 1995-04-04 Satake Eng Co Ltd Insulated storehouse for agricultural products
JP2002310583A (en) * 2001-04-09 2002-10-23 Hisao Matsumoto Cold heat exchange method from cold storage snow dam
JP2005155932A (en) * 2003-11-20 2005-06-16 Sanki Eng Co Ltd Refrigeration air conditioning system using snow
JP2006170543A (en) * 2004-12-16 2006-06-29 Techno Ryowa Ltd Air conditioning system for constant temperature and constant humidity
JP2007064556A (en) * 2005-08-31 2007-03-15 Sanki Eng Co Ltd Air conditioner and method for outdoor air cooling operation
JP2009063227A (en) * 2007-09-06 2009-03-26 Caterpillar Japan Ltd Air conditioning control device
JP2010261696A (en) * 2009-11-30 2010-11-18 Kajima Corp Outside air cooling type air conditioner for computer room

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791787A (en) * 1993-09-25 1995-04-04 Satake Eng Co Ltd Insulated storehouse for agricultural products
JP2002310583A (en) * 2001-04-09 2002-10-23 Hisao Matsumoto Cold heat exchange method from cold storage snow dam
JP2005155932A (en) * 2003-11-20 2005-06-16 Sanki Eng Co Ltd Refrigeration air conditioning system using snow
JP2006170543A (en) * 2004-12-16 2006-06-29 Techno Ryowa Ltd Air conditioning system for constant temperature and constant humidity
JP2007064556A (en) * 2005-08-31 2007-03-15 Sanki Eng Co Ltd Air conditioner and method for outdoor air cooling operation
JP2009063227A (en) * 2007-09-06 2009-03-26 Caterpillar Japan Ltd Air conditioning control device
JP2010261696A (en) * 2009-11-30 2010-11-18 Kajima Corp Outside air cooling type air conditioner for computer room

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134302A (en) * 2013-01-08 2014-07-24 Ntt Facilities Inc Heat supply system
JP2015055417A (en) * 2013-09-12 2015-03-23 株式会社雪屋媚山商店 Removed-snow-utilizing heat supply control system
JP2017514095A (en) * 2014-04-23 2017-06-01 ネイバー ビジネス プラットフォーム コーポレーション Server room cooling apparatus and method for manufacturing air conditioning system of data center including the same
US11090773B2 (en) 2014-04-23 2021-08-17 Naver Cloud Corporation Method for manufacturing server room cooling apparatus and air conditioning system for data center provided with same
JP2017195670A (en) * 2016-04-19 2017-10-26 トヨタ自動車株式会社 On-vehicle battery cooling system
CN107143971A (en) * 2017-04-18 2017-09-08 珠海格力电器股份有限公司 A kind of snow defence control method, device, system and air-conditioning
CN107143971B (en) * 2017-04-18 2019-07-23 珠海格力电器股份有限公司 A kind of snow defence control method, device, system and air-conditioning

Also Published As

Publication number Publication date
JP5623298B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5465953B2 (en) Outside air-conditioning system and outside air cooling operation method
CN102980248B (en) Outer air-conditioner with air conditioning function
JP5185319B2 (en) Air conditioning system and air conditioning control method for server room management
US9185829B2 (en) Air-conditioning system and air-conditioning method for server room management
WO2016179884A1 (en) Variable-refrigerant-flow radiant air-conditioning system
WO2016002071A1 (en) Air-conditioning and ventilation apparatus
US20130048267A1 (en) Ventilation and air-conditioning apparatus and method for controlling the same
KR102047754B1 (en) Multi-function smart air conditioning system
JP5623298B2 (en) Air conditioning system using snow
KR101070186B1 (en) Direct expansion air handling unit having apparatus for automatic controlling air volum of blower by change of refrigerant flow
CN102494387B (en) Energy-saving control method for subway brake assist system (BAS) ventilation and air conditioning system
CN104913393A (en) Constant-temperature constant-humidity air conditioner
KR102089362B1 (en) An air conditioner and controlling method of the same
JP2009030820A (en) Air-conditioning control device and its method
JP2006145070A (en) Air conditioning system and air conditioning system control method
JP5554431B2 (en) External air conditioner with air conditioning function
JP2015172472A (en) Ventilation device for air conditioning
CN107477740A (en) A kind of fresh air treatment system using two phase flow separate heat pipe temperature control
CN204853680U (en) Air conditioner with constant temperature and humidity
CN102878634A (en) Energy-conservation control method of dehumidifying machine special for swimming pool
JP2016017674A (en) Outdoor atmosphere utilizing air conditioning system
JP2015057576A (en) Air conditioner with outdoor air cooling function
CN106152285B (en) Air conditioning system and control method thereof
KR20050098226A (en) Air-conditioning system
US20220235961A1 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250